
MODULES OVER POLYCYCLIC GROUPS
HAVE MANY IRREDUCIBLE IMAGES

by KENNETH A. BROWN

(Received 16 October, 1979)

1. Introduction. Recall that a Noetherian ring R is a Hilbert ring if the Jacobson
radical of every factor ring of R is nilpotent. As one of the main results of [13], J. E.
Roseblade proved that if / is a commutative Hilbert ring and G is a polycyclic-by-finite
group then JG is a Hilbert ring. The main theorem of this paper is a generalisation of this
result in the case where all the field images of J are absolute fields—we shall say that J is
absolutely Hilbert. The result is stated in terms of the (Gabriel-Rentschler-) Krull
dimension; the definition and basic properties of this may be found in [5]. Let M be a
finitely generated right module over the ring R. We write AnnR(M) (or just Ann(M)) for
the ideal {reR : Mr = 0}, the annihilator of M in R. If M is also a left module, its left
annihilator will be denoted l-AnnR(M). If R is a group ring JG, put

TC(M) = D{AnnR(X): X an irreducible image of M).

Let k-dim(M) denote the Krull dimension of M.

THEOREM A. Let M be a finitely generated JG-module, where J is an absolutely
Hilbert domain and G is a polycyclic-by-finite group. Let 7 = AnnJG(M). Then

k-dim(JG/J) = k-dim(JG/TG (M)).

Roseblade has observed that, even when / is a field and G is finite, we cannot in
general conclude that / = TG(M) in the above situation [13, §5.4]. If, however, I is a prime
ideal of JG then Theorem A implies that / = TG{M); in particular, on taking M to be a
prime factor ring, we retrieve the conclusion that JG is a Hilbert ring.

Suppose that M is a critical JG-module—that is, a module whose proper factors have
strictly smaller Krull dimension. Then, as the main result of [16], D. Segal proved that,
provided G is actually nilpotent-by-finite and k-dim(J) < 1, M is residually simple; that is,

0 = f]{K :KcM, MjK irreducible}.

It remains an open question whether Segal's theorem is true when G is polycyclic-by-
finite. While Theorem A certainly provides evidence in favour of this possibility, there
does not appear to be any obvious route from Theorem A to the desired conclusion.

Return once more to the notation of Theorem A, and suppose that H is a nilpotent
normal subgroup of G such that the augmentation ideal h of JH is contained in TG(M).
Then Roseblade proved [13, Theorem B] that there exists n > l such that h" cI. He asked
whether this conclusion remained valid if h were replaced by an arbitrary ideal of JH [13,
p. 310]. We answer this question with the next theorem.

Glasgow Math. J. 22 (1981) 141-150.

https://doi.org/10.1017/S0017089500004584 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500004584


142 KENNETH A. BROWN

THEOREM B. In the notation of Theorem A, if K is an ideal of JG, with I g K g
TG(M), and K/I has the AR property in JG/I then there exists n > 1 such that Kn c j .

For the definition of the AR property, see §3. We indicate in Corollary C why the
above result yields a positive answer to Roseblade's question.

As a consequence of his theorem, Roseblade deduced that if H is any normal
subgroup of G whose augmentation ideal annihilates every chief factor of M then
Mb" = 0 for some n ^ l [13, Corollary B]. We extend this result from augmentation ideals
to arbitrary ideals of JG (Corollary D).

The paper is organised as follows. In §2 we obtain a generalisation of yet another
result of Roseblade [13, Theorem E]. This result (Theorem 2.1) is needed in the proofs of
Theorems A and B, and may be of some independent interest. In its present form,
Theorem 2.1 is due to Dan Segal (unpublished). (We are grateful to him for supplying this
improvement of an earlier version of the result.) After obtaining some preliminary
lemmas in §3, we prove the main results in §4. It is necessary to prove Theorems A and B
together, arguing by induction on the Hirsch number of the group G. The argument
makes use of the results of [2, §6], which describe the meet irreducible factor rings of JG,
to reduce the proof to the case where the annihilator 7 of M is a prime ideal, and the
group G has various desirable properties. Heavy use is then made of the main result of
[14] to deduce Theorems A and B from Theorem 2.1. Finally, §5 contains a few
concluding remarks. In particular, we note there that Theorem A cannot be extended to
arbitrary non-commutative Hilbert rings.

2. A generalisation oi a result of Roseblade. The statement and proof of the result
stated below involves the concept of a plinth A for the polycyclic-by-finite group G. Our
use of this term follows [14, §2.3]. Namely, let A be a finitely generated Abelian group,
and G a polycyclic-by-finite group acting on A. Then A is a plinth for G if and only if the
QG-module A<8>2 Q is an irreducible <QH-module for every subgroup H of finite index in
G. The plinth A is eccentric if and only if GICC(A) is infinite. A non-empty subset X of
A is said to be G-orbital if it has only finitely many G-conjugates.

Let / be an ideal of the group ring RG. We write I+ = {g e G : (g -1 ) e I}. Thus 7+ is a
normal subgroup of G. When I+ = 1,1 is said to be faithful. We use the appropriate small
German letters to denote augmentation ideals; thus, if H is a subgroup of G, we write
I) = I (h - 1)RH. If H c r then h G s /. K P is an ideal of RH then the normaliser of P

in G isNG(P) = {geG:Pe = P}.
The following result generalises [13, Theorem E].

THEOREM 2.1 (D. Segal). Let G be a polycyclic-by-finite group, let A be a finitely
generated Abelian group on which G acts, and let J be an absolutely Hilbert domain. If
0 ^ A 6 JA then there exists a maximal ideal M of JA such that M contains no G-conjugate
ofk.

Proof. Since J is semisimple, there is a maximal ideal P of J such that \<£ PA. Hence,
replacing J by J/P, we may assume that J = k is an absolute field. Furthermore, replacing
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fc by the finite field generated by the coefficients of A, we may assume that fc is finite, as in
[13, p. 321]. We argue by induction on the rank h(A) of A. If A is a plinth (and so if
h(A) = 1) then the result is [13, Theorem E]. Suppose that A is not a plinth, so that by
[13, Lemma 2] there exists a normal subgroup Gx of finite index in G, and a subgroup B
of A, such that A/B is torsion-free, BG> = B, and B is a plinth of Gt. Let {tu . . . ,(„} be a

n

transversal to Gx in G. Replacing A by Y[ X.'' (non-zero since kA is a domain) we may
assume that G = Gt.

Now A = BxC, for some subgroup C of A. Let

J=2

where 0 t , . . . , 0r e fcB, and 1, c 2 , . . . , cr are distinct elements of C. If necessary, we may
replace A by Ac, for some ceC, to ensure that /3i ̂  0. Let g e G, and write cf = bf\, for
bj e B, c\ e C; so l,c'2,..., c'r are distinct, and

r

A8 = P ! + I | 3 ^ , (1)
J=2

with (3J e fcB.
By the induction hypothesis, there exists a maximal ideal T of fcB such that 0f ^ T for

all g e G. Let 0 = 7̂ "; so B/D is finite by the Nullstellensatz, since k is a finite field.
Hence, |A : DC|<°°. Since £> has only finitely many G-conjugates, and dimfc(kB/T)<°°,
we also have \G : CG(fcB/T)|<<». Thus H = NG(DC)r\CG(kB/T) has finite index in G.

m

Let {g j , . . . , gm} be a transversal to H in G, and put ( 1 = 1 ] ^ .
i = l

Put K = fcB/T, an absolute field, and define ir : kA -> K(A/B) by ?7(X ftx) =
XOc + T)Bc (/3c£kB). It is easily seen that TT is a well-defined ring epimorphism with
kernel TkA, and that IT is an H-module map. We claim that ir(/x)^0. For ir(/x) =
[I """(A81), and so if TT(H) = 0 then TT(AK') = 0 for some i, since K(A/B) is a domain. That is,

i

A81 6 TkA; so from (1), (ifeT, a contradiction. Hence, 7r(/j.)^0.
The induction hypothesis now implies that there exists a maximal ideal L of kA such

that TT(H)H4TT(L) for all h e f t Hence, ^ V i - for all heH, and so Ag£L for all g6G, as
required.

3. Preliminary lemmas and definitions. Recall that an ideal Z of a Noetherian ring
R is said to have the (right) AR property if, given a right ideal E of R, there exists n ̂  1
such that E D I" £ EL This amounts to requiring that every finitely generated essential
extension of an R -module M for which ZsAnn(M) is annihilated by some power of I;
see [1, Lemma 1]. A related concept which we also need is that of a clan; a prime ideal P
of R belongs to a clan if P belongs to a finite set {Pu P2,..., Pn} of mutually incompara-

n

ble prime ideals of R such that the chieftain N = fl Pi of P is localisable, and ATN has the
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AR property in RN. The definition and basic properties of clans can be found in [9]. If P is
maximal then N is semimaximal, by the proof of [9, Theorem 5]. If J?/Pf is Artinian,
l < i < n , then [8, Theorem 4.5] shows that N itself has the AR property; in fact N is
simply the largest ideal which annihilates every chief factor of the injective hulls of R/Pt,
for i = 1 , . . . , n.

LEMMA 3.1. Let G be a poly cyclic-by-finite group, let J be an absolutely Hilbert ring,
and let I be an ideal of JG with the AR property. Suppose that M is a finitely generated
JG-module, all of whose irreducible images are annihilated by I. Then I annihilates every
chief factor of M.

Proof. Suppose the result is false, and let U/V be a chief factor of M, with UI£ V.
Let V be chosen maximal such that U/V is a counterexample. Then clearly U/V is
essential in M/V. It follows from the main result of [7] that M/V is Artinian. We can thus
extract from M/V the uniform submodule X, with a short exact sequence

0-> l / / V - » X - * Y ^ O , (2)

where Y is irreducible, and YI-0.
Let P = Ann(LtyV), Q = Ann(Y). By [3, Theorem 4.5], P belongs to a clan; let N be

its chieftain. As noted above, N^Q. It follows from [9, Theorem 5] that clan(Q) =
clan(P), so that N is the chieftain of Q. Since I has the AR property and / s Q , I
annihilates every chief factor in the injective hull of R/Q, and moreover every chief factor
in the injective hulls of these chief factors is killed by I. It follows that JcJV. This
completes the proof.

The proof of the next result is left to the reader.

LEMMA 3.2. The product of finitely many ideals with the AR property has the AR
property.

We refer the reader to [S] for the definition and basic properties of the Krull
dimension. Recall that the dimension of a finitely generated right module M over the
Noetherian ring R will be denoted by k-dimR(M), or simply by k-dim(M). If M is a left
module, its left Krull dimension will be denoted by l-dimR(M), or l-dim(M). The ring R is
said to be K-homogeneous if all its non-zero ideals have the same right Krull dimension.

LEMMA 3.3. Let J be an absolutely Hilbert ring, G a polycyclic-by-finite group.
(i) / / / is an ideal of JG, and H is a normal subgroup of finite index in G, then

k-dimJG(JG/J) = k-dim JH(JH/J n JH).
(ii) / / T, / are ideals of RG with TQI then k-dim(//T) = l-dim(J/T).

Proof, (i) By [16, Lemma 8], k-dim/G(JG/r) = k-dimRH(/G/r). (This is proved in [16]
under the extra hypothesis that k-dimj(/)<oo, but this is unnecessary.) It follows that

k-dimJG (JG/L) > k-dimJH (JH+I/T)

= k-dimJH(JH//nJH).
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For the reverse inequality, it suffices to note that JG/I is a finitely generated (JH/I n JH)-
module.

(ii) Suppose the result is false, and choose T as large as possible such that there is an
ideal / containing T for which the stated equality fails. Then it is easily seen that, for all ideals
X of JG such that T^X, T^XDI. From [2, Theorems 4.2 and 6.3], it follows that

k-dimJG (I/T) = k-dimJG (JG/T),

and similarly,

l-dimJG (I/T) = l-dimJG (JG/T).

However, by [3, Theorem 3.14],

k-dim(JG/T) = l-dim(JG/T).

Hence, k-dim(//T) = l-dim(I/T), contradicting the choice of T. This completes the proof.

4. Proofs of the main results. It is convenient to make an ad hoc definition to
describe a type of group which will appear in the course of the proof. Thus, a polycyclic-
by-finite group G is said to satisfy hypothesis (*) if the following hold:

(a) G is torsion free;
(b) G is orbitally sound (see [14, §1.3]);
(c) the FC-subgroup A(G) = {geG : \G : CG(g)|<°°} is central in G;
(d) G contains a series of normal subgroups

1 = GO<=G1<= . . . c=Gn = G

such that Gj/Gj-! is a plinth for G/Gi_1; for l < i < n .
We now show that such groups will arise.

LEMMA 4.1. / / G is a poly cyclic-by-finite group, there exists a normal subgroup H of
finite index in G which satisfies (*).

Proof. It is easily checked that the class of groups satisfying each of (a)-(d) is closed
under passage to subgroups of finite index, so it suffices to find a subgroup of finite index
in G satisfying each property. For (a), this follows from [12, Lemma 10.2.5]. For (b), use
[14, Theorem C2]. Since A(G) is finitely generated, A(C) is central, where C = CG(A(G)),
and this gives (c). Finally, for (d), we use [12, Lemma 12.1.4], and induction.

We shall prove Theorems A and B in tandem. Recall that J is an absolutely Hilbert
domain, G is a polycyclic-by-finite group, M is a finitely generated JG-module, with
annihilator I, and

TG (M) = D {Ann(X): X an irreducible image of M}.

Then Theorem A states that JG/I and JG/TC(JVf) have the same Krull dimension.

Deduction of Theorem B from Theorem A. We are given an ideal K, with J c X s
TG{M), such that Kjl has the AR property; we have to show that K/I is nilpotent. There
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exists a finite chain

0 = M o c M , c . . . c M n = M

of submodules of M, such that AnniMJMi-^) is a prime ideal, l < i < n , since M is a
Noetherian JG-module. By Lemma 3.1, K kills every chief factor of M; in particular,
KsToCMi/M^i), for l < i < n . By Theorem A, Ta(Mi/Mi_1) = Ann(MJMi_1). Hence
K" £ Ann(M), as required.

Proof of Theorem A. We break the argument into a sequence of steps.
Step I: If H is a normal subgroup of finite index in G, and the result is true for JH, then

it is true for JG. To see this, view M as a JH-module. Now TH(M) 2 TG(M) D JH. For, let
M/V = Y be a simple JH-module. If X is a simple image of the JG -module M/ fl ^g

geG

then XTG(M) = 0, and so E(TG (M) n JH) = 0, for any simple ZH-module E which is an
image of X. However, £sM/Vg, for some geG, and so, since (TG(M)nJH)* =
(TG (M) n JH), Y(TG(M) n JH) = 0.

Now AnrijuCAf) = IC\JH, and, by hypo thesis,

k-dimJH(JH/J n JH) = k-dimjH (JH/TH(M)).

Thus, by the above, and Lemma 3.3(i),

k-dimJG (JG/TG(M)) = k-dimjH (JH/TG(M) n JH)

>k-dimjH(JH/TH(M))

= k-dimjH( JH/inJH)

= k-dimJG (JG/J).

Since TG(M)^I, this proves Step I.
Step II: The induction set-up. We argue by induction on the Hirsch number h(G) of

the group G; that is, the number of infinite cyclic factors occurring in a subnormal series
for G with factors cyclic or finite. If h(G) = 0 then G is finite and, by Step I, we may
assume that G = 1. An argument of the type used in deducing Theorem B shows that M
may be assumed to be cyclic with prime annihilator P; that is, JVfsJ/p. Since J is a
Hilbert ring, P is semisimple, and the result is proved.

Suppose then that h(G) >0, and that the result is known for groups of smaller Hirsch
number. We suppose that the JG-module M affords a counterexample to the theorem,
and aim for a contradiction. Since JG is Noetherian, it may be assumed that

(i) k-dim(JG/TG(M)) = k-dim(JG/Ann(M)) for any module M whose annihilator
strictly contains I;
since M is Noetherian, we may also assume that

(ii) k-dim(JG/TG(M)) = k-dim(JG/Ann(M)) for all proper factors M of M.
By Lemma 4.1, there exists a normal subgroup H of finite index in G which satisfies

(*). By Step I, there is no loss in assuming that H = G, and this we shall henceforth do.
Step III: The ring JG/I is K-homogeneous. By [2, Theorems 6.2 and 4.2], and [3,

Theorem 3.13], there exist ideals I 1 ; . . . , I, and JG such that JG/Ij is a K-homogeneous
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ring, l < j < t , and 1= f] Ir Let k-dim(JG/I) = a, and suppose that JG/I is not K-

homogeneous. Then r > l , and there exists r, l < r < t , such that k-dim(JG/I,) = a for

l < / < r , while k-dim(JG/I,)<a for j>r. Put A = fl i,, B = fl ^ so that
k-dim(JG/A) = a, and k-dim(JG/B) < a. I=1 J=r+1

By the induction hypothesis on I,

k-dim(JG/TG(M/MA)) = k-dim(JG/Ann(M/MA)). (3)

Let Y = Ann(M/MA), so that MYB^MAB^MI^O. Thus, Y^l-Ann(B/I). Suppose
that k-dim(JG/Y)<k-dim(JG/A). Then

l-dim(B/7) < k-dim( JG/ Y) < a.

By Lemma 3.3(ii), this yields k-dim(B/I) < a, and since k-dim(JG/B) < a, this is a
contradiction. Hence,

k-dim(JG/Ann(M/MA)) = a. (4)
Since TG(JVf) = TG(M/MA)nTa(M/MB), and I^Ta(M), (3) and (4) contradict our
choice of M as a counterexample. Therefore JG/I is K-homogeneous.

Step IV: The ideal I is prime. Suppose not, and let A, B be ideals of JG, with I^A,
I^B, and AB^I. There is no loss in assuming that A = l-Ann(B), so that
Ann(M/MA) = A. By Lemma 3.3(ii) and Step III,

k-dim(/G/A) = l-dim(/G/A) = l-dim(B/A) = a.

Hence, using the induction hypothesis on I, we have

k-dim(JG/TG(M/MA)) = k-dim(/G/A) = a.

Since TG(M) = TG(M/A4A)nTG(M/MB), it follows that k-dim(/G/TG(M)) = a, con-
tradicting the choice of M. Therefore, I is prime.

Step V: M is not torsion free over a certain ring. Since I is prime, Ifl J is a prime ideal
of /. Factoring if necessary by (ID J)G, we may thus assume that 7 n / = 0. If I+ £ 1, it is
infinite, since G is torsion free, and the result would follow by induction on h(G), since
JG/iG = J(G/I+). Hence I+ = 1. Recall that the FC-subgroup C of G is central. Since G is
orbitally sound, / = ( /n /C) /G by [14, Theorem Cl].

Let T = TG(M); since I is prime, the assumption that M is a counterexample to
Theorem A amounts to saying that T^I. We shall show that this leads to a contradiction.
Note that T is a semiprime ideal. Let Qx,..., Q, be prime ideals of JG such that

t

T= H Q - Let r be such that Qf is infinite for all i = l,...,r, while Q? = l for

For 0 < i < r, define E{ by: Eo = C; for i > 1, £< = E ^ if H( = Q? D Et_x i= 1, and, if
Qt nEj_! = 1, Ej = Ej-iHj, where Hj c Q^ is a nontrivial Abelian normal subgroup of G.
Put E = Er, so E < G , E = CxH, say. For r +1 < i < ( , Qe = (Q f~l JC)JG, and so, since
(I n JC)JG = I s T s Q, there exists /X; € (Q n JC) \ (I C\ JC). For 1 < i < r, choose ^ € Hf,
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r t

hi^l. Note that h, - 1 £ I ("I JE, since I+ = 1. Consider the element 0 = Y[ (fij - 1 ) fl Mi
( i = l i = r + l

of JE. Clearly, /3 e fl Qi = T. Since C is central, i n JC is a prime ideal of JC, and so
i = l

ir\JE = (ir\JC)JE is a prime ideal of JE. Thus, it follows that /3^inJE.
Let S = JE/ir\JE. If M is torsion free as an S-module, there exists a free S-

submodule F of M, and \eJE\ (IC\JE), such that M/F is AG-torsion by [13, §3]. Let L
be a maximal ideal of JE containing i n JE, and put L°= |~| £B> s o ^° is semimaximal. If

B = I 1 ^ E II Vi£L, then JE = B + L°. Since B s T , B kills every simple image of M,

and so M = M°L. Thus every maximal ideal L of JE which contains ID JE and with B £ L
must contain a conjugate of A, as in [13, Corollary Cl]. Since /3 e B it follows that every
maximal ideal of JE which contains IC\JE also contains a conjugate of k(i. But since
A|3^inJE, and JE/I n JE ss (JC/I n JC)H, this contradicts Theorem 2.1. Hence M is not
a torsion free S-module.

Step VI: Completion of the proof. Let the ideal P of S be maximal among an-
nihilators of non-zero S-submodules of M, and let U = {meM: mP = 0}, V = UJG, and
N = Na(P), so that E c JV. If X is a transversal to N in G then, by [13, Lemma 3], U is a
Noetherian JN-module, and V = X® Ux.

xeX

Let U/Y be a simple JN-module. Then there exists a simple JG-module VIW such
that U/Y embeds in V/W; just choose a maximal submodule W containing YG. For
l < j < r , the ideal h(G of JG has the AR property by [12, Theorem 11.2.14], and the

same applies to the ideal I FI M-, pG by [12, Theorem 11.2.2], since f[ /xe is central.
\i=r+l / i=r+l

Hence, BG = n f ) i G n ^ has the AR property by Lemma 3.2. Since BG^T, it follows

from Lemma 3.1 that V(BG) £ W. From this, we obtain U(BN) £ Y. That is, the ideal BN
of JiV annihilates every simple image of U.

Now suppose that (a) |G:iV| = °°. Then, by induction on the Hirsch number,
Theorems A and B are true for JN-modules. Thus, by Theorem B applied to U, there
exists fci > 1 such that U(BN)k> = 0. Since B is G-invariant, V(BG)k> = 0. Now, since / is
prime, and TG(M/V)2TG(M), and since Theorem A is true for M/V, we must have
Ann/G(M/V);gI Hence, Theorem B applies to M/V, and there exists k2 —1 such that
MiBGpC; V. Therefore M(BG)k*+k* = 0, and so, since I is prime, BG^I, a contradic-
tion. This completes the proof in case (a).

Suppose that (b) |G:iV|<°°. Then there exist only finitely many G-conjugates of
m

P = PUP2,.., Pm.SetQ = ( /n JE) + n ^ <JE. Since I n J E is prime and G-invariant, and
i = l _

P 5 1 n JE, it follows that Q ̂  I n JE. Let U = {m e M : mQ = 0}. Since Q is G-invariant,
U is a JG -submodule, and [ /c [/, so that 17^ 0. Once again, the maximality of / ensures
the validity of Theorems A and B for U, so, as above, there exists fcjSrl such that
U(BG)k< = 0. Similarly, there exists fc2>l such that M(BG)k*Q U, and as before we
deduce that BG £ I, a contradiction. This completes the proof of the theorem.
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The following corollary answers the question raised in [13, p. 310] in the affirmative.

COROLLARY C. Let J, G and M be as in Theorem A. If H is a normal nilpotent
subgroup of G, and T is an ideal of JH which annihilates every irreducible image of M, then
MTn = 0 for some n > l .

Proof. The stated hypotheses apply to every G-conjugate of T, so there is no loss in
assuming that TG = T. Since H is nilpotent, T is a polycentral ideal of JH [15, Theorem
C]. By [12, Theorem 11.2.9], it follows that the ideal TG of JG has the AR property. The
corollary now follows from Theorem B.

The following generalisation of [13, Corollary B] can be proved by the same
argument used to deduce Theorem B.

COROLLARY D. Let J, G and M be as in Theorem A. If the ideal T of JG annihilates
every chief factor of M, then there exists n > 1 such that MT" = 0.

5. Concluding remarks. It would be interesting to know the extent to which the
hypothesis that J is absolutely Hilbert is necessary for Theorems A and B. Since / is an
image of JG, the conclusion of Theorem A clearly implies that J must be a Hilbert ring,
but it seems plausible that this condition might also be sufficient.

Ian Musson has shown that the solvable Lie algebra L = (x,y : [x, y] = x) over any
field K of characteristic zero has enveloping algebra R which admits a finitely generated
uniserial module M of Krull dimension one [11]. Indeed, the unique irreducible image M
of M has dimension one over K, and so R/Ann(M) is Artinian. Since R is a Hilbert ring
[4] this example shows that Theorem A is not valid for arbitrary Hilbert rings.
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