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ABSTRACT

This paper presents a continuous time version of a stochastic investment
model originally due to Wilkie. The model is constructed via stochastic
differential equations. Explicit distributions are obtained in the case where
the SDEs are driven by Brownian motion, which is the continuous time
analogue of the time series with white noise residuals considered by Wilkie.
In addition, the cases where the driving "noise" are stable processes and
Gamma processes are considered.
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1. INTRODUCTION

Wilkie (1986) presented an investment model based on time series, which has
since been updated and extended in Wilkie (1995). This paper presents some
continuous time variants of Wilkie's original model using stochastic
differential equations driven by appropriate Levy processes. There is no
single correct continuous time equivalent to the model in Wilkie (1986); the
aim of this paper is to suggest some possible ways of constructing the
analogous continuous time models and to analyse these mathematically. It
seems that whatever one takes to be the "right" continuous time equivalent
of the Wilkie model, similar methods to those presented here can be used to
analyse it.

One reason one might be interested in a continuous time model is that in
a continuous time setting one is free to choose any unit of time and to model
the state of the various investment variables at any time, not just at discrete
instants. However, the main attraction of continuous time models is their
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78 TERENCE CHAN

mathematical tractability; whereas the Wilkie model is mainly intended for
computer simulations, in the continuous time setting here many questions
admit explicit answers which can be obtained in a simple way. Here, we
concentrate on obtaining explicit distributions but other questions can
undoubtedly be answered.

The model introduced in Wilkie (1986) only makes use of Gaussian
(white noise) series; for our model the driving noises are allowed to have
other distributions.

2. DESCRIPTION OF THE MODEL

In many ways, the model described here is the most direct and obvious
continuous-time version of the model in Wilkie (1986), although some
modifications are necessitated by the transition to a continuous time scale.
We do not make any special claims about its appropriateness to practical
situations beyond pointing out its similarity to the original Wilkie model
which has by now gained wide acceptance, at least in the world of insurance.
The two main guiding principles behind the construction of the continuous
time model presented here are firstly the analogy with the corresponding
time series and secondly the similarities between certain features of the
Wilkie model and other models which feature widely in different areas of
financial modelling; occasionally we shall depart from an exact analogy with
the time series to emphasise these similarities because the qualitative features
common to all these models are of potentially greater interest. Thus, it would
be more appropriate to refer to the continuous time model presented here as
inspired by the Wilkie model, rather than "the continuous time Wilkie
model". The model should be treated as a "first draft" rather than a final
version. As with the original Wilkie model, the model here is based on four
processes (although these are not exactly the same as the ones in Wilkie
(1986)) and we describe each of these in turn.

Let Z\, Z2, Z3 and Z4 be four independent (not necessarily continuous)
processes. Exactly what kind of processes are the Z, will be discussed later.

1.1. Retail prices index and inflation

Consider first a retail prices index, Q, = exp{Pt}. We use an Ornstein-
Uhlenbeck type model for the process P:

dR, =-aiRtdt + 4>{t)dt + dZ(t)

where a\ > 0, a\ e R and <ft is a (deterministic) positive periodic function
with period h > 0. Here the process R plays the role of the continuous force
of inflation. A direct translation of Wilkie's model would have 4> = constant,
but in passing to continuous time it may be desirable to take into account the
seasonal fluctuations in inflation over a year. The period h here corresponds
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SOME APPLICATIONS OF LEVY PROCESSES 79

to a year in our units of time (see Remark (ii) below). (To spell things out in
a little more detail, supposing 4> = constant, the process Rt in (1.1)
corresponds to Wilkie's V log Q(t), the parameter a\ corresponds to the
parameter Wilkie calls 1 - QA, 4> corresponds to QMU(1 - QA) in Wilkie's
original paper and o\ plays the role of QSD).

Because (1.1) is a linear equation, it is easy to solve explicitly, whatever
our choice of driving noise Z\. The general version of Ito's formula for
discontinuous semimartingales X states that if/ is a continuous function
with the necessary derivatives,

f(X,,t)-f(XQ,0)= ff{Xx,s)ds+ [f{Xs_,s)dXs + \ ['f"(Xs.,s)d[X],
JO JO z J0+

0<s<l

where AXX = Xs - Xs-, / = df/dt, f = df/dx etc. For this and other
aspects of the general theory of stochastic integration with respect to
semimartingales, we refer the reader to Protter (1990) and Roger and
Williams (1987), which approach the subject in different ways. (Note that X
is assumed to be right-continuous and can only have countably many jumps,
so the sum above is actually a sum over countably many values of s).
Consider now the case that f(x, t) = ea'X,. We have / " = 0 and
f'(Xs-,s)AXs =f(Xs,s) —f(Xs-,s), so the terms involving the jumps of X
in Ito's formula all vanish. Therefore applying Ito's formula to eax'Rt, we
obtain an explicit formula for R,:

f
Jo

(1.2)

From (1.2), we can find P, = PQ + Jo Rsds and the resulting double integrals
can be handled by interchanging the order of integration (e.g. see Lemma 3.1
in the sequel).

1.2. Share yield process

Wilkie (1986) next considers two inter-related processes: an index of share
dividends and the dividend yield process. Let Yt denote the share dividend
yield. The continuous time analogue of Wilkie's model would be

where dX, — -a2Xtdt + b\dt + a2dZ2{t).
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(Here, Yt = yoe~*A°+('^- In the sequel, this notation will be frequently used
to denote this kind of "modified initial condition".) Equation (1.3) admits an
explicit solution similar to (1.2), namely

X, = X0e-a» + b, + / a2e-"^dZ2(s). (1.4)

1.3. Share dividend process

We next turn to the index of share dividends, D,. Our model follows Wilkie
in using an exponentially discounted "sum of inflation effects":

f (1.5)

In Wilkie's time series model, the noise has a simultaneous as well as a
lagged effect which is captured by moving average in the noise. There is no
sensible equivalent in the continuous time context for such a moving
average. Another feature of the model (inherited from Wilkie) is the mixing
of the driving noises for Yt and Dt.

The share price S, is related to the dividends and the yield by S, — D,/ Yt.
It is interesting to note that the process St satisfies an equation of the form

dS, = c,S,dt + St{6]dZx (t) + 62dZ2{t) + 8idZ3(t)),

which has exactly the same form as the ubiquitous geometric Brownian
motion model of share prices, except that the coefficient c, here takes a rather
complicated form which involves the whole path of the force of inflation R
up to time t, as well as the usual constant drift terms.

Interchanging the order of integration, it is easy to see that

X f f e-XuRs^duds= [ (1 - e-x{'-u))Rudu ,
Jo Jo Jo

therefore from (1.5) we have

3(t)+P f {\-e~x{'-u))Rudu + ~/ I Rudu + b2t) ,
Jo Jo J

(1.6)

where Z>* is a constant determined by DQ and RQ in a similar manner to Y*
(see Remark (iv) in §1.5 below).
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1.4. Consol yield process

Finally, we have the yield on consols Ct,

/ o • • > • - ' ( L 7 )

dV, = —fl4 Vtdt + a^dZ^t), VQ = v

The equation for V in (1.7) admits an explicit solution for the same form as
(1.2).

1.5. General remarks on the model

(i) We do not claim that the method in (1.1) is the most appropriate way to
model seasonal effects in inflation - it is one simple and obvious way to do it
without destroying the most attractive features of the Ornstein-Uhlenbeck
process but we could equally plausibly let o\ be a periodic function as well
and we would still be able to obtain an explicit solution as before.

(ii) Some remarks on the time scale of the continuous time processes here
and their relationship with their discrete-time counterparts in Wilkie (1986)
might be useful. Typically these continuous time processes run at a much
faster speed than their discrete-time equivalents: for example, if the unit of
time in Wilkie (1986) is years, the unit of time here might be centuries, so
that h = 0.01 would correspond to a year. This is essentially an artifact of
the discretization in passing from continuous time to discrete time. If we
were to discretize (1.1) in multiples of/z using first-order Euler approxima-
tion together with the approximation P, — Pt-h = Jt_h Rs ds « hR,-t, and
noting that <p(t) = <j>(t — h) = </> = constant, we would recover the Wilkie
model provided we rescale time by defining R, := Rht. For example,
assuming that Z\ is Brownian motion for simplicity, the first-order Euler
discretization of (1.1) is

R, - Rt-h = -axhRt.h + ct>h + a] (Zt (?) - Z, (t - h)),

which can be rewritten as

R, = (1 - a\h)Rt-h + (j)h + G\\fh W,

= fj, + a(Rt-h - n) + alVh Wh

where we have put a = 1 — a\h, fx — 4>/a\ and Wt = (Z\(t) — Z\{t — h))/y/h.
Note that Wh, W2h, W^, ••• are i.i.d. standard Gaussian random variables.
Defining R, := R),,, we obtain from (1.8) the AR(1) time-series model of Wilkie:

R, = H + a(Rt-i-n) + axWt, (1.9)
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where a\—a\\fh. The calculations at (2.5) and (2.6) below and the
subsequent discussion illustrate this point in greater detail. Observe that the
corresponding parameters in (1.1) are rescaled in the appropriate way with
this time change: a\ = ha\ and d\ — o\ \fh. Because the parameters are
automatically scaled accordingly once a time scale has been chosen, such
comparisons with the discrete time-series are usually irrelevant from a
practical point of view; in practice, one would choose a suitable time scale
and then fit the model to data directly without reference to any discrete-time
model and if one wished to do simulation, one would choose a discretization
for its numerical efficiency rather than for its consistency with another
discrete-time model. The same comment applies to all the other processes
discussed above.

(Hi) For our choices of Z\, the process R will have a stationary distribution.
Throughout this paper, we assume that the initial condition Ro is some fixed
number as in (1.2). However, it is also possible to let RQ be a random
variable with the stationary distribution, in which case R would be a
stationary process. The same can be said of all the other processes which
have stationary distributions.

(iv) Because the processes X and R in (1.3) are not spatially homogeneous,
the initial values XQ and RQ cannot be absorbed into Y* and so separate
parameters for the initial values are needed. The same applies to the
processes D and C. Also, Wilkie (1986) has an extra drift term of the form
c dt appearing in the equation for Vt in (1.7) but we have omitted it here
because it is clear from the explicit formula for V, that c can be absorbed
into the two parameters v and C , and so serves no additional purpose.

1.6. Levy processes

We are mainly interested in the case where the "noise" processes Z, are
symmetric Levy processes, that is processes with stationary independent
increments. ("Symmetric" in this context just means that Z and —Z have the
same law.) We end this section by briefly recalling some results about Levy
processes which we shall need in the sequel. Let Z be a (symmetric) Levy
process. Since Z has stationary independent increments, its characteristic
function must take the form E [e~'eZl] = e~'^ for some function xp, called
the Levy exponent of Z. The Levy-Khintchine formula says that

! {\-e-i9x-i6x)v{dx)+ I [\-e'iOx)v{dx) (1.10)
J{\x\<\} -Al*l>i}
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SOME APPLICATIONS OF LEVY PROCESSES 8 3

for a,a e R (if Z is symmetric, a = 0) and for some u-finite measure v on
R \{0} satisfying Jmin(l,x2)^(Jx) < oo. The measure v is called the Levy
measure of Z. (To put readers on more familiar ground, consider the
situation when a = a = 0 and suppose that the total mass A of v, A = j^y(dx)
is finite. Then the Levy process Z with such a Levy measure is just an
ordinary compount Poisson process which jumps occurring as a Poisson
process of rate A and whose jump-size distribution is \~xu{dx). In the case
that the integral of v diverges near 0, Z will have infinitely many small jumps
in a finite time-interval. At the other extreme, if v = 0, there are no jumps so
we just have Brownian motion and tp is the same as the exponent for a
normal distribution.)

From the Levy-Khintchine formula we can deduce the exact form Z must
take: it turns out that Z must be a linear combination of a Brownian motion
(the continuous part) and a pure-jump process independent of the Brownian
part. Specifically, let Q (dt, dx) be a Poisson measure on (0, oo) x R {0} with
expectation measure dt x v (here dt denotes Lebesgue measure), then
(assuming a = 0 in (1.10)) we have the Levy decomposition

Z, = aBt + Jt + Al (1.11)

where, corresponding to each of the three terms in (1.10) respectively, B is a
Brownian motion, J is the pure-jump martingale J, = f , < lx(Q((0,t), dx)—tv(dx))
and A is the finite-variation jump process A, = J<,,>l,xQ((0,t],dx). The
processes B, J and A are independent. A more detailed treatment can be found in
Protter (1990) and Rogers and Williams (1987) also contains a nice direct
construction of (1.11). Because of independence, we lose no generality in treating
separately the cases where Z is a Brownian motion and where Z is a pure-jump
process. We do this in the next two sections.

3. EXPLICIT DISTRIBUTIONS IN THE Brownian CASE

If the Z, are all Brownian motions, all the processes described in the previous
section are either Gaussian processes or exponentials of Gaussian processes.
Since in order to specify the law of a Guassian process one only has to
specify the mean and the covariance, the results of this section are essentially
trivial.

Recall that for a Brownian motion W, fGf{s)dWs — B(j^f(s)2ds) where
B is some other Brownian motion. Applying this result to (1.2) gives

rt / 2a,t _ i \

R, - e-a"Ro + / e-">«-sU(s)ds + o^Bx — (2.1)
J V M J
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where B\ is a Brownian motion. Hence, Rt has Gaussian distribution with
mean

f
Jo
f (2.2a)

Jo
and variance

I _ e~
2"]'\

) (2.2b)

(In 2.2a,b) we have used the fact that B, is Gaussian with mean 0 and
variance t). Similar results hold for the other Ornstein-Uhlenbeck type
processes X and V introduced in Section 1.

From (1.6) and (1.7), it is clear that the key to finding the distributions
of Dt and C, lies in obtaining the distribution of Jof(s)Rs ds for
suitable (deterministic) functions / . Since R is a Gaussian process, so is
t H-> J0'f(s)Rs ds and so all we need to do is work out the mean and variance
of fQf(s)Rs ds. The mean is trivial: by interchanging the order of integration
it is easy to see that the mean is just Jof(s)^a(s)ds. We now turn to the
variance. Since the mean is irrelevant here, the variance is simply given by

f(s)Hsdsy] = E° i y f f(s)f(u)HsHu duds

where we have put

2ai

and we use the superscript in E° to emphasise that Ho = B\ (0) = 0. Using
the covariance of Brownian motion E (BSBU) = min(s, u) and interchanging
the order of integration, we get

E° [ T I"f(s)f(u)HsHu du ds]

= 2 [ f(s) ff(u)E(HsHu)duds
Jo Jo

= 2a\ \ f(s)e'a^ / f(u)e-a>» — duds. (2.3)

Jo Jo V ta\ )

Putting/ = 1 in (2.3) gives the variance of Jo' Rs ds to be

t 2e~"x< f>-2ai< T, \
\ {2A)

«i a
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At this point, it may be instructive to compare these results with the
analogous ones for the AR(1) time series (1.9). The mean and variance of
Yli=i Ri has been obtained by Hiirlimann (1992) and Wilkie (1995). Keeping
to our notation established in (1.9), the mean of the accumulated force of
i f l i Yl'inflation Yl'i=i R> ' s

(2.5)

while in the continuous model the mean Jo Rs ds is (assuming (f> = const.)

i:nR(s)ds = iit + ̂ = ^ [1 - e-a"} , (2.6)

where fi = <f>/ci\ as before. We see immediately that (2.5) and (2.6) have the
same form. To check that they in fact agree, recall that to obtain the time-
series (1.9) from (1.1), we discretized time into steps of size h. Therefore
Yl\L\ hR, is precisely the Riemann-sum approximation to f^Rsds. According
to the formula (2.5), the mean of Y!l=i hRi i s

fit

a\

as h —• 0, which is precisely the mean of CRsds given by (2.6). Similarly,
Hiirlimann (1992) gives the variance of ^ / = 1 Rt as

a\ f 2a(l -a') t a
2(l -a2'

(I-a)2 I I-a \-a2

which has the same form as (2.4).
It is just as easy to obtain the distributions of the other processes in our

model. Putting f(s) = pe-p(t-s) in (2.3) we get that j J e ^ N ^ ds has
Gaussian distribution with mean

{2.1a)
JO

and variance

pcr\ ({ax - pf - {ax +
i , — • (2.76)

fli V 2{al~p)2{al+p) /
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Putting / = (3 + 7 — /3e^A('~5) also gives an explicit expression for the
variance of/3/0'(l - e~x{-'~s))Rs ds + 7 JQRS ds, although this is too messy
to write down here - the formula is simplified somewhat by choosing 7 = 0
and simplified considerably by choosing 7 = —/3, for this would then reduce
to (2.7b). The full covariance structure of the process 11-> J^f(s)Rs ds can
also be obtained in this way.

Armed with these results, we can now state the distributions of interest.
We have already found the distributions of Rt and P, = /0 Rs ds (see (2.2)
and (2.4)). Applying the results (2.2) to the process X, we get from (1.3) and
(1.4) that log Y, has Gaussian distribution with mean

logy,

and variance

For the dividend index D, the result (2.3), with/( j) = (3 + 7 - @e~"A('"-s),
together with the analogous results (2.2) for U give that log D, has Gaussian
distribution with mean

logDt + b2t +

and variance

+ 2a\ (/3 + 7 - / 3 e - ^ - V ^ / (/3 + 7-/3e-A('-")) ^ — ) duds.
Jo Jo \ la\ J

Applying (2.2) to Vt shows that it is Gaussian with mean

Hv[t) = ve-a*'

and variance

The distribution of Ct is the convolution of normal and log normal
distributions and the results (2.2) and (2.7) show that Ct has mean
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and variance

It is also possible to specify the full multivariate structure of R, Y and D using
the methods here. Since R, Y and D are either Gaussian or log Gaussian, their
joint law is specified once we have the covariances Co\(Rt, log Y,),
Cov(R,,logD,) and Cov(log Y,,logDt). For the most part, we only need to
know the covariance stucture of the process t\-^Rt, which is given by

E.[R,RS} ' ' ' s " ' " ' * ° - ~ ' ' c

2ax

if s < t. Thus, for example,

B[R, log D,] = nn(t)(log D* + b2t) + [ (0 + 7 - /?
Jo

and we can then substitute the relevant previous results into the above
expression. In addition, we also need the covariance of X, and Z2{t), which is
given by

/ea2t __ I
tL°[XtZ2(t)] — me~"2'mini , t

V 2a2

using the covariance of Brownian motion. The detailed computations of the
covariances are left to the reader.

4. EXPLICIT DISTRIBUTIONS IN THE DISCONTINUOUS CASE

There have been some suggestions that Gaussian noise terms are not entirely
appropriate for these models and that more realistically, the noise should
have jumps. In this section, we perform the same analysis as in Section 2 on
the assumption that the Z, are symmetric pure-jump Levy processes.

From the analysis in Section 2, it is clear that once we know what the law
of fof(s)Zs ds is for fixed t (where/(V) or f(t, s) is a suitable function and Z is
a generic Levy process), we can obtain the necessary explicit distributions. It
all turns out to rest on the following simple lemma allowing the interchange
of order of integration:

LEMMA 3.1: Let f and g be Riemann-integrable functions. Then the laws of

C As) [ g(u) dZu ds and f g(u) f f(s) ds dZu

) Jo Jo Ju
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are the same for each fixed t and the common law is given by

(3.1)

where ip is given by the Levy-Khintchine formula (1.10) and F(u) = Jof(s) ds.

The proof, although not very pretty, uses only well-known standard results
in the theory of stochastic integration and Levy processes and is presented in
the Appendix.

Remarks:
(i) The above lemma is trivial if Z has finite variation, for then the integral
Jog(s)dZs exists as an ordinary Riemann-Stieltjes integral. Changing the
order of integration as for ordinary integrals, we actually have the much
stronger result that

IP {JoA^ fi g(u) dZu ds = /J g{u) J'j{s) ds dZu Vf) = 1.

When Z has infinite variation, the integral with respect to Z is a "genuine"
stochastic integral. In this case, we have to emphasise that Lemma 3.1 holds
only for fixed t; the two integrals clearly cannot have the same law as
processes since the former is a process of finite variation while the latter has
infinite variation.

(ii) Since Ms a fixed parameter in the present context, Lemma 3.1 holds
equally if we allow/and g to also depend on t, which we need to do for some
of the processes considered earlier.

(Hi) Note that a simple special case of (3.1) is that

E|expj-i0 f G(t,u)dZu\\ = e x p | - f i/>(9G(t,u))du\ (3.2)

for any (Riemann-integrable) function G.
Consider now the model described in Section 1 where the Z, are

symmetric Levy processes with jumps. From the explicit formula (1.2) for R,
we see that to find the law of Rt we can apply (3.2) with G(t, u) —
in which case we obtain

TE!~~iOR,l _

where ///?(/) is as defined by (2.2a). In a similar way we can obtain the laws of
the processes X, U and V introduced in Section 1. For the law of /(J R,s ds, we
can apply Lemma 3.1 with g(t,u) = a\e~"^'~"\ f = 1 and for the law of
Jlw-^Rs ds we can take g(t,u) = cri<rUl('-u),/(f,s) = pe~l>{t's). In this
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way, we obtain the distributions of R,, S,, Ct and log Dt in a similar manner
to Section 2. However, the joint distribution is much more difficult to obtain.

We end this section with a brief word on some specific examples of Levy
processes one might choose to use in these models. We just mention two
commonly used Levy processes. One is the symmetric a-stable process,
whose Levy exponent is ip(9) = \9\a and whose Levy measure is

where Ca — 7r~'r(l + a) sin(7ra/2). (Here 0 < a. < 2; a = 2 corresponds to
the Gaussian distribution and a = 1 gives the Cauchy distribution). Stable
distributions are examples of so-called heavy-tailed distributions. One of the
disadvantages of stable processes is that they do not have higher order
moments than 1 (for a < 1 they do not even have a first moment) which may
cause awkward problems, for example, when we take exponentials of stable
processes as we are frequently doing in these models.

Another commonly used class of Levy processes which overcomes this problem
is the Gamma process. A Levy process Y is said to be Gamma with parameters
(Q, (1 where a, (i > 0 if P (Yx < x) = r(a)~'/?Q /*ya~]e~0)'dy: Hence

Note that such a process is non-decreasing, so to obtain a symmetric process,
we simply take two independent copies Y and Y and define Z = Y - Y. The
process Z is therefore a symmetric Levy process with Levy exponent
i/'(#) = alog(l + 02/01) and Levy measure v(dx) = a\x\"le~fj^dx. Looking
at the Levy decomposition, since / f i ^u \x\u(dx) < oo, we see that Z has finite
variation and since /{iv|>n \x\nv(dx) < oo, Zt has finite moments of all orders.

Applying Lemma 3.1 we obtain (replacing i6 with 6 for convenience)

E[expj-0 f f{t-s)dzX\ =exp| ~a f log( 1-

%{u) Jj{s)dsdZu\]

f(s)ds du\ . (3.4)

Although in general it is not possible to give explicit formulae for the
integrals in (3.3) and (3.4) for our choices of/and g as in the preceding two
sections, the Laplace transforms (3.3-4) do give relatively simple expressions
for the moments, involving integrals which can be readily evaluated by
numerical means.
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5. CONCLUDING REMARKS

We have concentrated here on obtaining explicit formulae, both in the case
where our SDEs are driven by Brownian motions and in the case where they
are driven by symmetric Levy processes with jumps. Of course, many other
questions - which we have not considered - do not admit explicit answers
and one must then resort to numerical solutions. It is not our intention here
to give a detailed quantitative analysis of numerical simulations of the
models presented in the preceding sections, as this could well constitute a
paper in its own right. We simply present some examples of numerical
simulations to give a feel for what these processes look like. In the case of
SDEs driven by Brownian motion, great advances have been made in recent
years in numerical methods for solving them. For a comprehensive survey of
these techniques as well as an extensive bibliography on the subject, we refer
the reader to Kloeden and Platen (1992). By contrast, numerical methods for
SDEs driven by processes with jumps, such as stable processes, have received
far less attention until recently and the literature on this subject is more
limited: a systematic treatment in book form can be found in Janicki and
Weron (1993).

For simplicity, we present some simulations for the inflation process R,
only since of the four components, this is closest to the time-series model of
Wilkie. Figure 1 shows three trajectories of the process Rh in the case where
the noise Z, is Brownian motion. The scaling used is such that the time
interval [0, 1] corresponds to a period of 50 years. Specifically, in the context
of Remark (ii) in Section 1, we have used h = 0.02 and in equation (1.2) our
choice of (f> is 4>{t) — b + ccos(2-Kt/h). Since the picture is only intended to
give a qualitative indication of how the process behaves, the actual
numerical values on the vertical axes are not of any great importance: the
parameter values in Wilkie (1986) are used as a rough guide to the sort of
values which might be appropriate for the parameters here - in particular,
the parameter values of Wilkie are rescaled in the manner discussed in
Remark (ii) of Section 1.

Throughout, we have taken the various parameters in our models as
given quantities and we have said nothing about the problems of their
estimation. There is some discussion of this question in §6.4 and §13.2 of
Kloeden and Platen (1992) which is especially relevant to the linear
equations which appear repeatedly in our models.
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FIGURE i: SAMPLE PATH REALIZATIONS OF THE FORCE OF INFLATION PROCESS R,.

APPENDIX: PROOF OF LEMMA 3.1

Consider first the integral I(s) :— /J g(u) dZu. Take a sequence of partitions

(«[ ,4+i °f ^ne interval [0, t], such that
It is known that, as n —> 00,

- ui 0 as n —> CXD.

in probability uniformly in s over the time interval [0, t] (see Protter (1990)).
Therefore, there is a subsequence (n,) such that In.(s) —> I(s) almost surely as
/ —> oo and without loss of generality we can assume that In(s) —> I(s) almost
surely. Next, take a different sequence of successively refining partitions of

[0, t] and call this L(m),s(™}). Put

rm\Uk , I) —

sf>>u[">
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(Of course, Fm{u(£\t) -f F{t) - F(uf) as n -+ oo.). We then have

S\'"'<t

= /'/(*) f g{u)dZuds
Jo Jo

and so for fixed n,

= E
e x P -

1
-n

as w —> oo. In the above calculation, we have used the stationary
independent increments property of Z and the fact that
E[e~'e(z'~Zs)] = fH'- 'W). Letting « —> oo in (Al) then gives the right-hand
side of (3.1).

For the integral fog{u) fuf(s)dsdZu, we know that

f {s)dsdZu

almost surely as n —> oo (passing to a subsequence if necessary). A similar
calculation as in (Al) easily yields the identity (3.1).
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