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Pieri rules for skew dual immaculate func-
tions

Elizabeth Niese, Sheila Sundaram, Stephanie van Willigenburg
and Shiyun Wang

Abstract. In this paper we give Pieri rules for skew dual immaculate functions and their recently dis-
covered row-strict counterparts. We establish our rules using a right-action analogue of the skew
Littlewood-Richardson rule for Hopf algebras of Lam-Lauve-Sottile. We also obtain Pieri rules for
row-strict (dual) immaculate functions.

1 Introduction

Schur-like functions are a new and flourishing area since the discovery of quasisymmet-
ric Schur functions in 2011 [11], which led to numerous other similar functions being
discovered, for example [1, 4, 6, 10, 14, 15, 16, 17]. In essence, Schur-like functions are
functions that refine the ubiquitous Schur functions and reflect many of their proper-
ties, such as their combinatorics [2, 9], their representation theory [5, 7, 21, 22], and in
the case of quasisymmetric Schur functions have already been applied to resolve conjec-
tures [13]. Of the various Schur-like functions to arise after the quasisymmetric Schur
functions, two were naturally related to them: the dual immaculate functions [6] and the
row-strict quasisymmetric Schur functions [17]. Recently a fourth basis that interpolates
between these latter two bases, the row-strict dual immaculate functions, was discovered
[19], thus completing the picture. The representation theory of these functions was re-
vealed in [20], in addition to the fundamental combinatorics in [19]. In this paper we
extend the combinatorics to uncover skew Pieri rules in the spirit of [3, 12, 23] for both
row-strict and classical dual immaculate functions.

More precisely, our paper is structured as follows. In Section 2 we establish a right-
action analogue of [12, Theorem 2.1] in Theorem 2.6. We then recall required back-
ground for the Hopf algebras of quasisymmetric functions, QSym, and noncommutative
symmetric functions, NSym, in Section 3. Finally, in Section 4 we give (left) Pieri rules
for row-strict immaculate functions and row-strict dual immaculate functions in Corol-
laries 4.3 and 4.5, respectively. Our final theorem is Theorem 4.7, in which we establish
Pieri rules for skew dual immaculate functions, and row-strict skew dual immaculate
functions.
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2 The right-action skew Littlewood-Richardson rule for Hopf
algebras

We begin by recalling and deducing general Hopf algebra results that will be useful later.
Following Tewari and van Willigenburg [23], let H and H* be a pair of dual Hopf algebras
over a field k with duality pairing (, ) : H ® H* — k for which the structure of H*
is dual to that of H and vice versa. Let h € H,a € H*. By Sweedler notation, we have
coproduct denoted by Ah = Y, hy ® h;, and similarly i1k, = hy - h; denotes product.
We define the action of one algebra on the other one by the following.

h—a= Z(h,az)al (2.1)
a—h= Z(hz, ayh 2.2)

Let S : H — H denote the antipode map. Then for Ah =} hy @ h;,
D (Shi)hy = e(h)ly = ) hi(Shy), (2.3)

where € and 1 denote counit and unit, respectively. Following Montgomery [18], we can
define the convolution product * for f and g in H by

(f *8)(a) = D (f.a1)(g, @) = (fg,a).
Then it follows that

& f—a)=(gf a).

Similarly, (a — f,b) = (f, ba). Since H* is aleft H-module algebra under —, we have
that

h—\(a-b):Z(hl—\a)-(hz—\b).

Lemma 2.1 ([12]) Forg,h € Hand a € H*,

(@—g)-h=) (S(h)—a)— (g /)
where S : H — H is the antipode.

As in Montgomery [18], define a right action by the following.
h—a= Z(h,m)az (2.4

a—h= Z(hl,a)hz 2.5)
As before, it follows that {g, f — a) = (fg,a) and {a — f,b) = (f,ab).
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Lemma22 Let f € Handa,b € H*. Then

f=(a-by=) (fi—a) (=D

Proof Letf,g€ Handa,b € H*. Then
(g, f = (a- b)) =(fg,ab)
= (a = (f2).b)
= Z(flgl,aﬂfzgz,b)
= D (&1 fi = a)ga o — b)
=D& (A —a)- (= b))
Thus, f — (a-b) = %(fi = a) - (f = b). .

Lemma 2.3 Leta € H*. Then
e(h)-1lg —a=a

forany h € H.

Proof Leta € H*and h € H. Then
e(h) -1 —a= Y (e(h) - 1, ar)as.

This is only nonzero when a; = 1g-. [ ]

Lemma24 Lethe Handa,b € H*. Then
a-(h=b)=> h —(Sh) = a)-b).
Proof Expand the sum using Lemma 2.2 and coassociativity, (A ® 1) o A(h) = (1 ®
A) o A(h) =X h; ®hy ® hs, to get
Do = (S(ha) = @) -b) = > (hy = (S(hy) — @) - (hs — b)
= Z(hl - S(hy) — a) - (hs — b) since H* is an H-module

=((e(h) - 1g) < a) - (h = b) by (2.3)
=a- (h — b) by Lemma 2.3.

Lemma 2.5 Letg,h € Handa € H*. Then

he(a—g) =) (S(h) —a)— (h-g).
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Proof Letg,h € Handa,b € H*. Then
(h-(a—g),b)=Ca—g h—"D)
=(g.a-(h=Db))
= (8. (1 = ((S(2) = @) b)) by Lemma 2.4
= > g1 = ((S(hy) = a) - b))
= > (i - 8, (S(h) < a) - b)
= > {(S(hy) = a) = (1 - g), b).

We can use the right action to obtain an algebraic Littlewood-Richardson formula anal-
ogous to [12, Theorem 2.1] for those bases whose skew elements appear as the right
tensor factor in the coproduct.

Let {Lo} C Hand {Rg} C H" be dual bases with indexing set . Then

Lo-Lg=) bl 4Ly  Ally) =) c La®Lg (2.6)
Y a,fB

Ro-Rg=) ch sRy  A(Ry) =) b ;Ra®Rg 2.7)
Y a.B

where bz 5 and cz 5 are structure constants. We can also write

A(Ly) =Y Ls®Lys  AR)) = > Rs® Rys. (2.8)
3 3

Note that L, — Rg = Rg/o and Rg —~ Lo = L4 /g. Further,

ALag) =Y ¢t gla® Ly A(Rajp) = Y bS, sRx®R,  (29)
T, n,p

The antipode acts on L, by S(L,) = (—l)g(p)Lp* where§ : - Nand*: P — P.

Theorem 2.6  Fora,B,7,0 € P,

La,//g . Ly/g = Z (—1)g(p)cz’pﬁb;’ybz’p*l,y/ﬂ.
oVl
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Proof We use Lemma 2.5 and the preceding facts about the product, coproduct, and
antipode maps on H and H* to obtain

Lajp-Lyjs = Lajp - (Rs = Ly)
= e, 5(S(Lp) = Rs) = (Lx - Ly)

TP
= Z(_l)e(p)ci,p”g(ldp* “~Rs) = (L~ Ly)
TP

S (10 [S05,2)|
7,0 v

= D (1)t by (Rojpr — Ly)

R

_ 0 s .
- Z ()% P e sbY S (R Ly)
T,0,V, 1

0 s
- Z (=1 (p)C:,p,Bb;,ybﬂ,p*L"//"
0,V 1

3 The dual Hopf algebras QSym and NSym

We now focus our attention on the dual Hopf algebra pair of noncommutative symmet-
ric functions and quasisymmetric functions, and introduce our main objects of study
the (row-strict) dual immaculate functions.

A composition @ = (ay, . .., ay) of n, denoted by @ F n is a list of positive integers such
that Zf;l a; = n. We call n the size of @ and sometimes denote it by |a|, and call k the
length of @ and sometimes denote it by £(a). If ¢j, = --- = @;,, = i we sometimes
abbreviate this to i, and denote the empty composition of 0 by 0. There exists a natural
correspondence between compositions @ k nand subsets S C {1,...,n—1} = [n—1].
More precisely, « = (ay,...,a)) corresponds to set(@) = {aj, @1 + az,...,a; +
-+ + @g_1}, and conversely S = {s1,...,Sr_1} corresponds to comp(S) = (51,5, —
S15...,1 — Sg—1). We also denote by S the set complement of S in [n — 1].

Given a composition a, its diagram, also denoted by a, is the array of left-justified boxes
with @; boxes in row i from the bottom. Given two compositions a, 8 we say that 8 C «
if 3; < ejforalll < j < €(B8) < €(@), and given a, 8 such that 8 C a, the skew
diagram a /B is the array of boxes in @ but not 8 when f is placed in the bottom-left
corner of a. If, furthermore, 8 C @ and o; — B; € {0, 1} forall1 < j < £(B) < ()
then we call /3 a vertical strip.
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Example 3.1 If @ = (3,4,1), then |@| = 8, {(@) = 3, and set(a) = {3, 7}. Its diagram
is

and if 8 = (2, 4), then

[]

a/p =
[]

is a vertical strip.

Definition 3.2 Given a composition @, a standard immaculate tableau T of shape a is a
bijective filling of its diagram with 1, . . ., |@| such that

(1) The entries in the leftmost column increase from bottom to top;
(2) The entries in each row increase from left to right.

We obtain a standard skew immaculate tableau of shape @ /B by extending the definition
to skew diagrams @/ in the natural way.

Given a standard (skew) immaculate tableau, T, its descent set is

Des(T) = {i : i + 1 appears strictly above i in T'}.

Example 3.3 A standard skew immaculate tableau of shape (3,4, 1)/(1) is

7
T=[2]3]4]6]

with Des(T) = {1, 5,6).

We are now ready to define our Hopf algebras and functions of central interest.

Given a composition @ = (ay,...,ax) F n and commuting variables {x1, x, ...} we
define the monomial quasisymmetric function M o to be

= (ll ... ak
M, = Z X X
i1<---<ip
the fundamental quasisymmetric function F, to be

Fo = g Xy + e Xi,

ij<<in
ij=ij=jéset(a)
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the dual immaculate function S, to be
63 = Z Fcomp(Des(T))
T
and the row-strict dual immaculate function RS, to be

Rgty = Z Fcomp(Des(T)")
T

where the latter two sums are over all standard immaculate tableaux T of shape @. These
extend naturally to give skew dual immaculate and row-strict dual immaculate functions
62/,8 [6] and 7€6z/ﬁ [19], where @/ B is a skew diagram.

Example 3.4 We have that My = x% +x§ +x§ +---and F(y) = x% +x§ +x§ +---+
X1Xy + X1X3 + XpX3+ -+ = 6’22) = 7?6’{12) from the following standard immaculate
tableau T with Des(T) = 0.

r=[i[z]

The set of all monomial or fundamental quasisymmetric functions forms a basis for
the Hopf algebra of quasisymmetric functions QSym, as do the set of all (row-strict)
dual immaculate functions. There exists an involutory automorphism ¢ defined on
fundamental quasisymmetric functions by

W(Fﬂ!) = Fcomp(set(a"))
such that [19]
¥ (S,) =REG,

for a composition . This extends naturally to skew diagrams « /3 to give
§(S, ) = RS,

Dual to the Hopf algebra of quasisymmetric functions is the Hopf algebra of noncom-
mutative symmetric funtions NSym. Given a composition ¢ = (a@j,...,a) E n
and noncommuting variables {y1, y,, ...} we define the nth elementary noncommutative

symmetric function e, to be
S

[1<-<ip
and the elementary noncommutative symmetric function e to be
€y =€q " Cqy-
Meanwhile, we define the nth complete homogeneous noncommutative symmetric function

h,, to be
hy = Z Yiy Vi

i1<--<in
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and the complete homogeneous noncommutative symmetric function h 4 to be
ho=hg, - hg,.

The set of all elementary or complete homogeneous noncommutative symmetric func-
tions forms a basis for NSym. The duality between QSym and NSym is given by

<M(x» ha> = 6@,8

where 0 o5 = 1if @ = 8 and 0 otherwise. This induces the bases dual to the (row-strict)
dual immaculate functions via

(S, Go) =0dap (RS, RSy) =bap

and implicitly defines the bases of immaculate and row-strict immaculate functions. While
concrete combinatorial definitions of these functions have been established [6, 19], we
will not need them here. However, what we will need is the involutory automorphism in
NSym corresponding to i in QSym, defined by ¥ (eo) = hq thatgivesy (S,) = RS,
[19].

4 The Pieri rules for skew dual immaculate functions

A left Pieri rule for immaculate functions was conjectured in [6, Conjecture 3.7]
and proved in [8]. Given a composition @ = (ay,...,@;) we say that tail(@) =
(@2, ...,ax).1f B € ZF thenneg(ar—B) = |{i : @i —Bi < 0}]. Let sgn(B) = (=1)"8B)
with neg(B) = |{i : B; < 0}].

Following [8], we define Z , to be asetof all 8 € 7 such that

(1) B1+---+Br=sand By +---+B; < sforalli < k;
(2) i —Bi = 0foralll <i<kand|i:a;—-B;=0<1;

(3) Foralll <i <k,

cifa; >s—(B1+---+Bi1),then0 < B; < s— (B +---+ Bi1),
s ifay <s—(By+---+Bi—1), then 8; < 0,and
« ifa; =s—(B1+---+Bi-1), theneither §; < OorB; = @;jand Biy1 =--- = Br = 0.

Now we are ready to define the coefficients of the immaculate basis appearing in the left
Pieri rule.

Definition 4.1 ([8]) For a positive integer s and compositions «, y with || — |y| = s,
let 1 < j < k be the smallest integer such that @; = y;_; forall j < i < k where j = k
when ay # yi_1.Let j < r < k be the largest integer such that &/; < @41 < -+ < ;.
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Let @) = (a1, ...,qa;) Then define

sgn(a —vy), ifl(y) =C(a)and @ —y € Z; o;
sgn(a~V —y Uy if (y) = £(a) - 1,
el o= r — j is even, and
(@YD —yUD ;,0,...,0) € Z o5
0 otherwise.

Theorem 4.2 ([6, 8]) Let m > 0 and « be a composition. Then

_ L)
hnGa = Z ,81 -m, a/eﬁ
Bela|+m
Bizm

0<C(B)-t(a)<1

Applying ¢ to both sides of the left Pieri rule in Theorem 4.2 immediately yields a left
Pieri rule for row-strict immaculate functions.

Corollary 4.3 Let m > 0 and « be a composition. Then

enRGa= Y cpl) REp.
BE|la|+m
Bi1zm

0<l(B)-t(a)<1

Lemma 3.1 of [8] shows that for s > 0, 7 > 0 and compositions «, 8 with || = |B] + s,
(S Fs 6;;> =(h,G,, 6>Es+r,ﬁ)>'

This leads to the following Pieri rule for dual immaculate functions.

Theorem 4.4 ([8]) Let s > 0 and « be a composition. Then

Fo@h= > 28

Bela|+s
0<t(B)-t(a)<1

Again, applying ¢ to both sides gives a Pieri rule for row-strict dual immaculate
functions.

Corollary 4.5 Let s > 0 and « be a composition. Then

FinRS, = > cIRSp
BEe|al+s
0<l(B)—t(a)<1
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We use these results together with Hopf algebra computations to construct a Pieri rule
for skew dual immaculate functions. Using the map ¥, this also gives a Pieri rule for
row-strict skew dual immaculate functions. But first we have a small, yet crucial, lemma.

*

Lemma 4.6  Let o and 'y be compositions. Then S, — &7, = 6a/7.

Proof Recall that if H = QSym and H* = NSym are our pair of dual Hopf algebras,
then we know AG;, = X5 G5 ® 6’;/[; and we have that

Sy — &l = ) (8,858, 5= G,
B
since (S, 65;;) = 0,8, where 6,8 = 1if y = 8 and 0 otherwise. [

We can now give our Pieri rule for (row-strict) skew dual immaculate functions.

Theorem 4.7 Lety C . Then

* * _ _Nnlvl=itl, La *
Sl hyy = (1) igl-lal.s Sp/r
i

and hence by applying y to both sides

* * _pri=ll, qe *
RS\ RS, = > (-1) €ii-lal.s ROp/x
Blt
where |B/7| = |a/y| + s, y/T is a vertical strip of length at most s, £(B) — €(a) € {0, 1}
and CI(EI—IGI 5 is the coefficient of Definition 4. 1. These decompositions are multiplicity-free
up to sign.

Proof Note that &%

(1) = F(isy and 6’(‘8) = F(s). Recall that

AFg= > Fg®F, (4.1)
(B,y) with
By=aor
BOy=a

where for 8 = (B1,...,8x)andy = (¥1,..,Y1), B 7 = (B1s-- s Bis V1s+ Y1)
is the concatenation of Band y,and B Oy = (B1, ..., Br-1,Bk + Y1 Y2, - - -» Y1) is the
near-concatenation of S and y.

Then we have that

S
A(F(s)) = Z Fiy ® Fs_j).
=0
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Thus,

6*

®

oly = 6*S)(G5 — S by Lemma 4.6

= Fiy) (S, = &)

= Z(S(F(s n) — S,) — (F»S;,) byLemma2.5.

We first compute S(F(s—;)) < &,. Since it is well known that S(Fy) =
(=1)lel Feomp(set(a)c) We have that S(F(Y H) = (= )sfiF(lm). Furthermore, we can
write the coproduct as

A(&y) =) b} G5 G,
6,7

Thus,
S(F(s-i)) — &, = (—1)S_iF(1s—i) —~ G,
= D (1B (Fins), ©6) s
0,7

= Z(_l)s_ibg’-r(Gx(‘lsfi)’ 65>6T

- Z( DA

By the definition of product and coproduct on NSym, we have that
=(AG,,C; 0 ;) =(6,,C} - &)).

To compute this for § = (1°7/) we use Proposition 3.34 from [6] which states that

F(1, Sa = 2p Sp where B € 7L ay — B € {0,1} forall k and |B] = || — 7.

The operator F* is used throughout [6], and has the property that (F*&,, (52) =

(Sa, F&p).
Thus,
Y
b(]s 1) T (6’}/9 (1v 1)6 >
= <6ry,F(1sﬂ') 6T>
- <F(1.s 1)6}/7 6?—)
B
= 0pr

where the sum is over all 8 such that 8 € Z™), y — Bx € {0,1} for all k, and |B| =
Iyl = (s =)
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Then using the above calculations, Theorem 4.4 and Lemma 4.6, we have that

6*

®

aly = S(5)(Gy = &)

= N (S(Fismi) = ) = (Fiy )
i=0

=D EC R D= E B S

i=0 7e7t™) BElal+i
lyk‘frk‘e{(o,l.}) 0<l(B)-t(a)<1
T|=lyl-(s—i
S
— (s=i) *
= 2 0T G
i=0 T,
7e7t®™)
Yk—Tk€{0,1}
[Tl=lyl=(s—i)
BE|al+i

C(B)-t(a)ef{0,1}

_ Nyl e .
‘Z/:( D Cigi-lals Sp/r
B/t

where |B/7| = |a/y| + s, y/7 is a vertical strip of length at most s, and £(8) — £(a) €
{0, 1}. ]

Example 4.8 Let us compute 6(2) . 6(1’2’1)/(1’1).

First, we need to compute all compositions 8 £ 4+ fori € {0,1,2} and £(B8) = 3 or 4.
We list all possible choices for 3 as the set

A={(1,1,1,1),(1,1,2),(1,2,1),(2,1,1),(1,1,1,2),(1,1,2,1), (1,2, 1, 1),
(2,1,1,1),(1,1,3),(1,2,2),(1,3,1),(2,1,2),(2,2,1),(3,1,1), (1, 1, 1, 3),
(1,1,2,2),(1,1,3,1),(1,2,1,2),(1,2,2,1),(1,3,1,1), (2, 1,1, 2),
(2,1,2,1),(2,2,1,1),(3,1,1,1), (1, 1,4), (1,2, 3), (1, 3,2), (1,4, 1),
(2,1,3),(2,2,2),(2,3,1),(3,1,2),(3,2,1), (4,1, 1) }.

Next we need to find 7 by removing a vertical strip of length at most s = 2 fromy =
(1, 1). We list all options for 7 as the set B = {0, (1), (1, 1)}.
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By Theorem 4.7, now we expand 6*(‘2) ) by finding all valid pairs (83, T)

such that |3/7| = 4. Thus,

?1,2,1)/(1,1)

* * _ (1,2,1) * (1,2,1) *
@ P2/ T o1 211 T 101,22 1,1,2)

(1,2,1)  ~x (L21)
+Co (12 S 2. T 0,211 S

_ (L2, * _ (12,1 *
CL(1,1,1,2) 2(1.1,1,2) /(1) ~ C1,(1,1,2,1) 2(1.1,2,1)/(1)
_ (L2 * (12,1 "
L1210 22,50/ ~ €121, 2 2,0,1,1)/(1)
(1,2,1) * (1,2,1) *
B Cl,(1,1,3)6(1,1,3)/(1) T (1,22 2(1,2,2)/(1)
(1,2,1) * (1,2,1) *
- C1,(1,3,1)6(1,3,1)/(1) ~ 021,222,122/ (1)
(1,2,1) * (1,2,1) "
- Cl,(2,2,1)6(2,2,1)/(1) - Cl,(3,1,1)6(3,1,1)/(1)
(1,2,1) * (1,2,1) %
+6, (3 G 622 S22/
(1,2,1) * (1,2,1) #
O s P/ 6 (12,1, 202,12/,
(1,2,1) * (1,2,1) "
T 12,21 20,2.2,0/0,0 T2 1,31,1) 2(1,3,1,1)/(1,1)
(1,2,1) * (1,2,1) x
t 21,12 P21 /(1) +Cz,(z,1,z,1) (2,1,2,1)/(1,1)
+e2D * + 2D *

2,(2,2,1,1) T(2,2,1,1)/(1,1) 2,(3,1,1,1) —(3,1,1,1)/(1,1)
(1,2,1) * (1,2,1) *
+c 6(1’1’4)/(1’1) +c S

2,(1,1,4) 2,(1,2,3) 2(1,2,3)/(1,1)
(1L2,1) (1,2,1)  ~s
¢ 1,32 201,3,2) /(L1 T2 (1,41 Sian/
4o o LoD o

2,(2,1,3) T (2,1,3)/(1,1) 2,(2,2,2) —(2,2,2)/(1,1)

(1,2,1) * (1,2,1) %
+¢ S0/ T i ©6.1.2/0
(1,2,1) * (1,2,1) "

¢ 3,20 SGanant Co(4,1,1) 2 (4,1,1)/(1,1)"

a
B1-Jal.p ! 1 and mo
turn out to be zero. Hence we have the following expansion after simplification.

We can compute all the coefficients ¢ using Definition 4.1, and most of them

?2) ’ ?1,2,1)/(1,1) = 6?1,2,1) - t1,1,2,1)/(1) - ?2,2,1)/(1) + 6’62,1,2,1)/(1,1)

+ 6?3,2,1)/(1,1)
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