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A REMARK ABOUT NONCOMMUTATIVE INTEGRAL 
EXTENSIONS^) 

BY 

A. G. HEINICKE 

Let B be a ring with unity, A a imitai subring of the centre Cof B. Suppose further 
that B is ^-integral. (That is, every element of B satisfies a monic polynomial with 
coefficients in A.) Under these assumptions, Hoechsmann [2] showed that "con
traction to A" is a mapping from: 

(1) The prime ideals of B onto the prime ideals of A, 
(2) The maximal ideals of B onto the maximal ideals of A. 

In this note we show that, under additional assumptions, a noncommutative 
version of the rest of the Cohen-Seidenberg "going up theorem" can be estab
lished. 

LEMMA. Let B be a prime ring with unity satisfying: 

(a) B is integral over a unital subring A of the centre C of B 
(b) B has a classical right quotient ring Q which is a simple ring. 
Then any nonzero prime ideal P of B satisfies P n A^O. 

Proof. The ring A is a subring of B (and of Q) and both B and Q are torsion-
free v4-modules. For, if a^O is in A and if ax=0 for some x in B, then aBx=0, 
so x = 0 . We then have the commutative diagram of ^-modules 

-+B- »Q 

K®A-
A 

->K®B-
A 

-+K&Q 

where K is the quotient field of the domain A. Since B and Q are torsion-free 
^[-modules, 0X and 02 are both one-to-one. Therefore each mapping in the diagram 
is, in fact, a ring monomorphism. It is easily verified that K ® Q is a right quotient 
ring for K ® B, that K ® Q is simple, and that BX=K ® B is integral over the 
subfield K± = K ® A of the centre of B±. 

If b± e B1 has as its minimal polynomial 

6ï + ôï"1«n-i+ • • • +b1a1 + a0 = 0 
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where the a^s are in Kx then, if a0^0, bx must be a unit in P, while, if tfo^O, bx 

must be a zero-divisor in B. Therefore any element of B± is either a unit or a zero-
divisor, so B1 = K ® B is its own classical right quotient ring and 1 ® ft is an 
isomorphism. Therefore B± is a simple ring. The ring K ® P can be regarded as 
an ^4-submodule of Bl9 and, as such, is an ideal. If K ® P = 0 , then 0i(P) = O, so 
P = 0 , which is false. Therefore K ®P=B1 = K ® 2?, and it follows that there are 
a7^0 in ^ and /? in P for which 1 <g) l=( l / a ) ®/>. Therefore 0 = 1 ® (a—p)^=ip1 

(a—p), so a=peP r\ A. This proves the lemma. 
In order to extend the results of (2), we will impose one of the following con

ditions on B: 

(N) The ring B is right noetherian 
(P) The ring B satisfies a polynomial identity f(xx,..., xn)=0 for which / h a s 

coefficients in C, the centre of P, and for which, at each prime ideal P of B,f in
duces a nontrivial polynomial identity on 2?/P. 

We note that if B satisfies a standard identity (see [1, p. 154]) then (P) is satisfied. 
Furthermore, if B is integral over a subring A of C, and if there is a bound on the 
degrees of the minimal polynomials of elements of P, then B satisfies (P). (To see 
this, one proceeds as in [1, p. 155]). 

The purpose of introducing these conditions is that each of them is sufficient to 
guarantee that, for each prime ideal P of P, BjP has a right quotient ring which is 
simple. This is guaranteed by Goldie's theorem (when B has (AO) and Posner's 
theorem (when B has (P)) respectively. (See [1, chapter 7], for proofs of these 
results.) 

THEOREM. Let B be a ring with unity which is integral over a unital subring A ofC, 
the centre of B. Suppose further that B satisfies either (N) or (P). Then; 

(a) IfP is a prime ideal of B, P is a maximal ideal of B if and only if P n A is a 
maximal ideal of A, 

(b) IfP and Q are prime ideals ofB, P c <g? and PnA=QnA, then P = Q. 

Proof. In [2], Hoechsmann proved that P is maximal in B implies that P n A is 
maximal in A. 

Suppose only that P is prime in P. Then P n A is prime in A, and we can identify 
A'=Af(A n P) with the subring (A+P)/P of B/P=Bf. Also, B' is integral over A 
so we can, without loss of generality, assume that P = 0 and prove that B is simple 
(in (a)) and that g = 0 (in (b)). 

In (a), we can therefore take A to be a field. The lemma can be applied to con
clude that B has no proper prime ideals, and thus B has no nonzero maximal ideals. 
The ring B itself must then be simple. 

In (b) we see, applying the lemma, that P = 0 implies that Q = 0, as desired. 
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