
SOME GENERALIZED HARDY SPACES 

L. D. M E E K E R 

Introduction and notation. This paper is concerned with generaliza­
tions of the classical Hardy spaces (8, p. 39) and the question of boundary 
values for functions of these various spaces. The general setting is the "big 
disk" A discussed by Arens and Singer in (1, 2) and by Hoffman in (7). Ana­
lytic functions are defined in (1). Classes of such functions corresponding to 
the Hardy Hv spaces are considered and shown to possess boundary values 
in (2). Contrary to the classical case, such functions do not form a Banach 
space; hence they are not the functional analytic analogue of the classical 
spaces. In (3) quasi-analytic functions are defined while in (4) Hardy spaces 
of such functions are considered and are shown to have boundary values and 
to form a Banach space. 

The space A is defined as follows: Let G be a compact abelian group (all 
groups are written additively with 0 as a neutral element) whose dual group T 
is isomorphic to a discrete subgroup of R (the real numbers) under the iso­
morphism \p. Let r + = ^-1([0> °°)). T+ orders T with an archimedian order 
in the obvious manner. A is the space of homomorphisms of the semigroup 
T+ into the multiplicative semigroup of the closed unit disk in the complex 
plane. A is given the topology of uniform convergence on compact subsets 
of T+. 

The group G is naturally embedded as a closed subset of A. This permits 
an identification of the non-vanishing homomorphisms of A with the topo­
logical product (0, 1] X G. The unique singular element œ vanishes on all 
non-zero members of T+. The value of the homomorphism f = (r, x) 9e co 
at cr in T+ is r^(<r)(x, a), where (•, •) is the pairing between the dual groups G 
and T. The isomorphism \p: T —» R induces a dual mapping <p: R —> G writh 
(<p(t), a) = e~^((T)t for all t in R and a in T. The one-parameter subgroup 
cp(R) is dense in G and, corresponding to each coset x + #>(R), there is em­
bedded in A an image 11̂  of the right half-plane C+ defined by 

rx: C+ —» A, rx(s + it) = (e~s, x + tp(t)), s > 0, —œ < / < » . 

The Cauchy measures /zr, 0 < r < 1, are the regular Borel measures on G 
induced by <p and the Cauchy densities 

1 5 
CO, t) = - a , ,2 {s = - l o g r, - oo < t < oo ). 
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The Fourier-Stieltjes transform of /xr at a in V is jEr(o-) = H W . We define 
JLXO to be the Haar measure m of G and /xi to be the measure with unit mass 
on the identity of G. The various Lp-spaces of G and m, with norm || • ||p, will 
be denoted by LV(G). 

1. Harmonic and analytic functions. For each cr in r_i_ the monimial 
Z° is defined on A by Z<r(f) = f (o-) (f £ A). An analytic polynomial is a finite 
linear combination of monomials and a harmonic polynomial is the sum of an 
analytic polynomial and the conjugate of an analytic polynomial. A function 
defined on A0 = A\G, the interior of A, is said to be analytic (to be harmonic) 
if it can be uniformly approximated on each compact subset of A0 by analytic 
(by harmonic) polynomials. If F is harmonic on A0, then it is also continuous 
and the functions Fr (0 < r < 1), defined on G by Fr(x) = F(ryx), are in 
0(G), (the continuous functions on G). Conversely, if/ is in C(G), then the 
function F defined on A by 

(1.1) F(r,x) = jGf(x + y)dfxr(y) = /* /* , (* ) (0 < r < 1, x £ G) 

is continuous on A and harmonic on the interior (7, Theorem 4.1). These 
results applied to the monomial Za yield (Za)r * /xs = (Za)rs for 0 < r, 5 < 1 ; 
hence, for harmonic F, 

(1.2) / v * M s = F r s (0 < r, <> < 1). 

If 1 < p < 00 ? then (1.2) and the Holder inequality imply that for har­
monic F and 0 < r < s < 1 

(1.3) H^rllp = \\FS* nr/s\\p < II^Hp. 

A function/ in LP(G) is said to be of analytic type if its Fourier transform, 

/ , vanishes off T+. 

2. Hardy spaces on A. We seek to construct on A the analogue of the 
classical Hardy spaces. Hoffman (7) has considered for 0 < p the class of 
functions F which are analytic on A0 and, for some r (0 < r < 1), satisfy 

SG\F(S,X + y)\vdnr(y) < M(r) (0< s < 1, x £ G) 

for some constant M(r). For such functions the limit, as s —> 1, of F(s, x) 
exists except on a set having ^-measure zero for each r (0 < r < 1) and the 
limit function is in the Lv space associated with each such measure (7, Theorem 
5.11). At this point the analogy with the classical case fails as there exist 
functions of analytic type in LV{G) which do not occur as boundary functions 
in this sense. 

A more direct translation of the defining conditions for the Hardy spaces 
yields the following result. 

(2.1) THEOREM. Let F be analytic on A0 and satisfy, for some p (1 < p < œ ), 

(2.1.1) jG\F(r,x)\pdm(x) < M < 00 (0 < r < 1). 
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Then there exists a p-integrable function h of analytic type defined on G such 
that 

(1) Fr = h* nr m-almost everywhere for each r, 0 < r < 1, 
(2) l i m ^ i F(r, x) = h{x) m-almost everywhere, 

(3) limr^\\Fr-h\\p = 0. 
If F is bounded on A0, then (1) and (2) hold for some bounded measurable h of 
analytic type and Fr converges to h in the weak-star topology of Lœ(G) as r con­
verges to one. 

Proof. For 1 < p < oo or for bounded F the proof of (1) is parallel to t h a t 
of (8) in the classical case. Up = 1, then we again follow the weak-star com­
pactness a rgument of (8) to find a finite regular Borel measure v on G which 
satisfies FT = (v * p.r)~y 0 < r < 1. Thus v is a ^-analytic measure in the sense 
of (5) and hence translates continuously in the direction of <p (5, pp. 179-186). 
This , with the absolute continuity (with respect to m) of v * jj,r, is sufficient to 
prove t ha t v is absolutely continuous. This defines h for the case p — 1. Equal i ty 
of the Fourier transforms for each r implies (1). 

T o prove (2) we note that , except for a set of Haa r measure zero, equali ty 
in (1) holds on a set independent of r and invariant under translation by <p(R), 
i.e., equality holds on the image lia; of the right half-plane for almost every x 
in G. T h e conclusion (2) then follows from known properties of the Poisson 
extension of f(t) — h(x + <p(t)) ( — °° < t < oo ) to the right half-plane (8, 
p . 123) and from the easily established result t ha t those x for which the limit 
of (2) does not exist form a subset of G which is null in the direction of <p 
(5, p. 181). 

T h e proof of (3) (or the weak-star convergence in the case of bounded F) 
follows directly from the properties of the approximate identi ty {jur: 0 < r < 1} 
(7, Theorem 4.4). This completes the proof of (2.1). 

For fixed p, 1 < p < °o, the analytic functions which satisfy (2.1.1) form 
a normed linear space with the norm given by 

r /» "li/p r n "]I/P 

(2.1.2) s u p [ J \Fr\
pdmj = l i m [ J \Fr\

pdm j . 

Completeness of this space is equivalent to such functions being in 1-1 corre­
spondence with functions of analytic type in LV(G) through their boundary 
values. Since Fr is a continuous function of analytic type, we find, using the 
results of (6, Theorem 7), the inequality of Malliavin (6, (49)), and the 
Fubini theorem, t ha t if h is the boundary value function of (2.1), log \h\ is 
Haar-integrable. There exist bounded measurable functions h of analytic type 
for which log \h\ is not integrable, (if G is not the circle group) (6). T h u s the 
space of analytic functions considered above is not complete. 

From a function theoretic point of view one cannot b u t consider the func­
tions of (2.2) as the proper generalization of the classical liP-spaces; never­
theless, since the corresponding normed linear space is not complete nor 
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isometrically isomorphic to the subspace of LV(G) consisting of those functions 
of analytic type, this generalization is not satisfactory from the standpoint 
of functional analysis. (This is not a new observation as most functional 
analysts have taken the subspace of LP(G) as the proper analogue of the 
classical iP-spaces; see (9, Chapter 8). 

The question of defining a suitable space of the Hardy type consisting of 
functions on A will be considered in the following. 

3. Quasi-harmonic and quasi-analytic functions. In view of the 
identification of the non-vanishing elements of A and the space I X G 
(I = (0, 1]), there exists on A a unique regular Borel measure A which ex­
tends the product Baire measure X X m (X is Lebesque measure on / ) and 
satisfies A({co}) = 0 (3, Theorem 4, p. 232). We shall now consider certain 
subspaces of L*(A, A) - LP {A) (1 < p < °°). 

There are many properties of harmonic functions subject to generalization; 
here we choose the property exemplified by (1.2). This concept must be made 
meaningful for the elements of LV(G) (which we continue to refer to as func­
tions). 

If F is in C(A) (the continuous functions on A) and 0 < r < 1, then the 
functions Pr F and Sr F are well-defined on A by Pr F(s, x) = Fs * fir(x) and 
Sr F(s, x) = Firs, x). Pr and Sr, considered as linear operators defined on the 
dense subspace C(A) of L1 (A), have continuous extensions (with the same name) 
mapping L1(A) into L1(A). If F is harmonic on A0, then Pr F = Sr F for each r 
in (0, 1). This motivates the following definition. 

(3.1) Definition. A function F in LX(A) is called quasi-harmonic if Pr F = SrF 
for each r, 0 < r < 1, equality being considered in L1(A). 

The Fourier transform on Ll(G) extends to L1(A) in the following way. 
If F is in C(A), the Fourier transform of Fr is, for fixed a in T, a X-inte-

grable function on the interval / = (0, 1]. The mapping F —> Fr(<r) has a 
continuous extension ga, mapping LX(A) into Ll(I, X) = Ll(I). 

(3.2) PROPOSITION. Let F be in Ll(A) and suppose %a F = 0 for each a G T. 
Then F = 0. 

Proof. The algebra generated on A by the constant functions and functions 
of the form </>(•, a), where a is in V and <j) is continuous on [0, 1] vanishing 
at 0, are dense in C(A). Since /A 0<-, a)HdA = J70g a( i î )dX for H G C(A), 
continuity shows that JA hFdA = 0 for each h in C(A). Thus F = 0 in Ll(A). 

For a quasi-harmonic function F we find the following. 

(3.3) PROPOSITION. Let F be quasi-harmonic. For each a in V the function g^ F 
is continuous on I and 

(3.3.1) S, F(r) = rM'"a. = Ur{<j)a, (r € I) 

for some constant aa. 
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Proof. For a in r and 0 < r < 1, g „ ( P r F) = %a(Sr F). I t is clear t ha t 
%a(ST F) = ( g , T7) o /3n where /3r is the mapping s -+ sr oi I into 7. Calcula­
tion for continuous functions and a passage to the limit utilizing the con­
t inui ty of %a and Pr shows t ha t %a(PT F) = /xr(o-)S<r F. If g is a representing 
function for %a F, then g o pr(s) = g(sr) = fir(°)g(s) for almost every 5 in 7. 
Clearly g may be assumed continuous and 

aa = lim g(s). 

As remarked earlier, i f / is in C(G), F(r, x) — f * // r(x) is harmonic, hence 
quasi-harmonic, and ||-F||i < | | / | | i - Since the quasi-harmonic functions form a 
closed linear subspace of LX(A) we may extend the mapping / —> F (defined 
above) to a continuous operator ty defined on Ll(G) with values in the quasi-
harmonic subspace of Ll(A). Calculations show tha t 

(3.3.2) g . ( * / ) ( r ) = PrMf(a) (f £ L^G), a G T). 

If / is in LP(G) (1 < p < °° ), yf is in 7 / (A) and 

(3.3.3) ||*/||, < 11/11,. 
A quasi-harmonic function F is called quasi-analytic if ^^ 7̂  = 0 for all a 

not in r + . Clearly continuous quasi-analytic functions are analytic on A0 and 
all integrable functions analytic on A are quasi-analtyic. In part icular the 
functions considered in (2.2) are quasi-analytic. T h e quasi-analytic functions 
also form a closed linear subspace of L 1 (A) . 

4. T h e spaces HP(A). Those quasi-analytic functions which are also in 
L°°(A) are denoted by H°°. H°° is a closed subspace of L°°(A). 

T o construct other H a r d y spaces it is necessary to impose some growth 
requirement, similar to t ha t of (2.1.1), on the quasi-analytic functions. This 
is accomplished by the continuous mappings Nv\ 7 / (A) —> L 1 (7) (1 < p < œ ) 
which are extensions by continuity of the mapping F —*fG \Fr\

v dm defined 
for the continuous subspace of 77(A). 

(4.1) Definition. Le t 1 < p < «5 and F be a quasi-analytic element of LP(A). 
F is said to be of class I P if NP(F) is in L°°(7). 

Hp (1 < p < 00 ) is a normed space under the norm III'Nip defined for F in 

H* by IH ÎII, = \\(K(F))1IP\U = esssuP WO)1*-
(4.2) PROPOSITION. Let f be of analytic type in LP(G) for some p, 1 ^ p <̂  00. 
Then \F/ (see (3)) is in H p and 

(4.2.1) |||*f|||p < \\f\\,. 
Proof. Let {fn: n = 1, 2, . . .} be a sequence of continuous functions of 

analyt ic type with fn —*f in LV(G) and ||/w||P < | | / | |P for all n. Then tyfn —> SF/ 
in 7 / (A) and, for 1 < p < 00, |^/n |* -> | ¥ / | p in L ^ A ) , which implies t ha t 
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Np(^fn) —» Np(^rf) in L1(I). For the continuous functions fn the Fubini 
theorem is applicable and yields |||^/w|||p < \\fn\\p] thus the functions Np(¥fn) 
form a bounded sequence in Lœ{I). Hence Np{^ff) is in Lœ(I) and Skf is in 
Hp if 1 < p < oo. The case £ = oo is obvious. 

From (4.2) it is seen that SF embeds the functions of analytic type in LV(G) 
into Hp. The remaining portion of this section is devoted to showing that this 
embedding is an isometric isomorphism. 

(4.3) PROPOSITION. Let F be in IP , 1 < p < oo. Then there exists a function f 
in LV(G) such that F = tyf and 

(4.3.1) IIIFHI, = H/H,. 

Proof. Consider first the case 1 < p < oo. Let Ar be a A-absolutely con­
tinuous measure with unit mass on the interval [r, 1] (0 < r < 1). The 
mapping F—>ArF = jrF(s, -) d\r is well defined into LV(G) (consider for 
continuous functions and extend by continuity) and \\Ar F\\v < |||-F|||P. From 
the wreak-star compactness of bounded sets in LV(G) we find a n / in LP(G), 
with \\f\\p < III^IUP, which is a weak-star cluster point of the net {ArF: 
0 < r < 1}. Straightforward calculations utilizing the Fubini theorem and 
(3.3) lead to the uniqueness of/ and the equalities $a F = S^(^/) f° r each a 
in T. Hence F = * / by (3.2). The inequality \\f\\p < \\\F\\\P combined with 
the inverse inequality from (4.2.1) finishes the proof in this instance. 

If p = 1 wre must again utilize the weak-star compactness of bounded sets 
in M(G) (the space of finite regular Borel measures on G). Proceeding as 
above we find a measure v in M(G) with \\v\\ < | | |^ | | | i and %„ F(r) = 
(v * fjLr)~(a) for each a in T. If we were certain that the measures v * \xr were 
absolutely continuous with respect to the Haar measure, the proof would 
follows as in (2.2). 

(4.3.1) LEMMA. Let F be in LX(A) and v be in M(G). Suppose, for each 
a £ T, that $<T F(r) = (y*nT)~(<r) for \-almost every r in the interval (0, 1). 
Then v * \xr is absolutely continuous with respect to the Haar measure of G for 
each r of the interval. 

Proof. Let E be a Borel subset of the open interval (0, 1) and define the 
linear functions L and L' on C(G) by 

L(<t>) =f4o<l>d(v*vr)d\(r), Z/(0) = jEXG<j>FdA (</> £ C(G)). 

(F is A-integrable and the function r —» v * /xr into the weak-star topology 
of M(G) is continuous so that L and L' are well-defined). There exist measures 
r and T in M(G) satisfying L(<j>) = /<£ dr and Lr(<j>) = /<£ dr . For <j> = (•, a) 
(o- £ r ) we find that f(c) = f'(o-), by hypothesis; hence r(5) = r'(S) for 
each Borel subset 5 of G. If S has Haar measure zero, then / (5) = 0, which 
implies that / # p * /ir(5) JX(r) = 0 for each Borel subset £ of (0, 1). Since 
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the function r—> v * nr(S) is continuous, v * nT{S) vanishes identically for 
0 < r < 1. This proves the lemma and completes the proof of (4.3). 

F rom (4.2) and (4.3) we find the following theorem. 

(4.4) T H E O R E M . For each p} 1 < p < <», the space Hp with norm | | | - | | | p is 
isometrically isomorphic to HP(G), the closed linear subspace of LP(G) consisting 
of those functions of analytic type. 

T h e space HP(G) has many special properties most of which are based upon 
certain factorization theorems. T h e following proposition shows t h a t these 
properties are preserved under the mapping ^ . 

(4.5) PROPOSITION. Let 1 < p < oo and f e HP(G). 

(1) If g e HQ(G) (q the index dual to p), then ¥ ( / • g) = ^f-^g. 
(2) 7 /7(0) * 0, then log | ¥ / | < ¥ ( log | / | ) , 

with equality if f is outer, see (6, p . 178; 7). 

Proof. T h e proof of (1) is obvious, while the proof of (2) is essentially a 
rephrasing of Malliavin's inequality (6, (49)) and may be proved by using 
the methods of (6). Alternatively one may show tha t for h, defined and inte-
grable on G, \xr * h(x) is A-measurable and a representative of ^fh (the proof 
of this s ta tement is similar to t h a t used in (4)) from which (2) follows as a 
consequence of Malliavin 's theorem and (6, Theorem 4). 

Of the many special properties of HP(G) inherited by H p , we note the 
following: (1) the factorization of F in H 1 into a product of (appropriately 
defined) inner and outer functions, (2) if F in H 1 is an outer function, then 
log \F\ is quasi-harmonic, and (3) the representations of invariant subspaces 
under the multiplication operators Ma F = Z° F (a in T + ) . 

5. N o n - A r c h i m e d i a n ordered groups . In this discussion we extend the 
results of the preceding to certain compact groups whose dual groups are 
ordered with a non-archimedian order. We shall consider here discrete totally 
ordered abelian groups T, with positive semigroups T+ of two types: the 
first, r linearly ordered with T+ the semigroup of elements not less than 
ident i ty; the second, V homomorphic to a subgroup of the real numbers under 
the order-preserving homomorphism 

$: r -> R, r + = {a- £ r : yp(<j) > 0} (^ not one-one) . 

Investigation of the character semigroups A of T + under these conditions 
shows the non-vanishing characters are again homeomorphic to (0, 1] X G 
when given the topology of uniform convergence on compact subsets. (Note: 
For ordered groups of the second type there exist non-trivial characters if \p 
is non-trivial. For Y of the first type the existence of a non-trivial character 
is equivalent to the existence of an "archimedian" element, i.e., an element 
G G T + such t h a t for each r 6 T+ there exists an integer n such t ha t na > r.) 
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The results of (2) show that analytic functions are determined by their 
values on the non-singular elements of A. The results of (2) are valid in this 
context. 

We may again define the measure A on A as in § 3. With this definition the 
subset of singular elements has zero A-measure. Examples show this to be 
expected since the set of singular elements may have dimension strictly less 
than the dimension of A (see (1, § 5). Clearly, if A is so defined the results 
of (4) are valid here. 
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