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Abstract. Let X be a strongly pseudoconvex compact 3-dimensional CR manifolds which bounds a
complex variety with isolated singularities in sof6€ . The weighted dual graph of the exceptional

set of the minimal good resolution dfis a CR invariant ofX’; in caseX has atranversal holomorphic

S action, we show that it is a complete topological invariant of except for two special cases. When
X is a rational CR manifolds, we give explicit algebraic algorithms to compute the graph invariant
in terms of the ring structure @}~ , m" /m***, wherem is the maximal ideal of each singularity.

An example is computed explici’ﬁy to demonstrate how the algorithms work.
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1. Introduction

In view of an example of Webster [We], it is clear that the problem of studying
when two given CR manifolds are analytically equivalent is extremely difficult. In

a previous paper [LYY], we introduce the notion of algebraic equivalence relation
among CR manifolds. Recall that any compact strongly pseudoconvex CR manifold
X in CV bounds a complex varietiy in CV with only isolated singularities at
[Ha-La]. LetV be the normalization of .

DEFINITION 1.1. LetX,X, be two connected compact strongly pseudoconvex
embeddable manifolds of dimension-21. We say thak; and.X; are algebraically
equivalent if the corresponding normal varietigsandV>, which are bounded by
X1 and X respectively, have isomorphic singularitiEsandY>, i.e., (V1, Y1) =
(V2,Y>) as germs of varieties.
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It was observed that two analytically equivalent CR manifolds are automatically
algebraically equivalent. In [LYY], we also introduced some numerical invariants
under algebraic equivalence for connected compact strongly pseudoconvex embed-
dable CR manifolds of real dimension 3. In particular, the geometric gey{us)
of the CR manifoldX was introduced. A real 3-dimensional connected compact
strongly pseudoconvex embeddable CR manifold is called a rational CR manifold
if its geometric genus vanishes.

DEFINITION 1.2. In Definition 1.1, we say thaX; and X, are topologically
algebraic equivalent or have the same topology up to algebraic equivalence if
(Va,Y1) = (V2, Y2) topologically as germs of varieties.

Obviously, in order to understand the analytic classification problem of CR
manifolds, a first step is to understand the classification problem of CR manifolds
up to topologically algebraic equivalence. Then the second step is to understand the
classification problem of CR manifolds up to algebraic equivalence. The purpose of
this paper is to understand the first step. We shall only consider connected compact
strongly pseudoconvex embeddable rational CR manifolds of real dimension 3 in
this paper. LeX be sucha CR manifold. In [LYY], we define the gralpk to be the
graph of the exceptional set of the minimal good resolution of the complex variety
V whose boundary isX. It was shown thaf x is an invariant under algebraic
equivalence. LefX1, X, be two 3-dimensional CR manifolds. We have shown
thatI'y, = I'yx, implies thatX; is topologically algebraic equivalent t&, (cf.
Theorem 2.4 of [LYY]). The converse of the above statement is also true except
for two explicit cases. Therefore it is important to complite explicitly for the
topologically algebraic equivalence problem. The main result of this paper is that we
have developed explicit algorithms to compiite for any rational 3-dimensional
CR manifolds without computing the resolution of the complex variétyWe
would like to remark that for CR manifold&;, X, with transversal holomorphic
Sl-action, X1 is topologically algebraic equivalent t&, if and only if X is
topologically equivalent taX, in the usual sense. Hence for a 3-dimensional CR
manifold X with transversal holomorphi§*-action,I"x is basically a complete
topological invariant.

In Section 2, we recall some basic notations and facts about CR manifolds. We
show that for CR manifolds with transversal holomorpftleaction, topologically
algebraic equivalence is the same as topological equivalence. In Section 3, we give
explicit algebraic algorithms to compute the weighted dual giaphthe minimal
good resolution of a rational two-dimensional singula(i%; p) without taking
the minimal resolution ofV, p). In fact we show how to use the ring structure of
D2 om* /mFt1tofindI explicitly, wherem is the maximal ideal of the singularity
of V. In Section 4, we use the result in Section 3 to computeexplicitly for any
connected compact strongly pseudoconvex embeddable rational CR maxifold
of real dimension 3. An example is computed explicitly to demonstrate how the
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algorithms work in Section 2. In particular, we know how to construct explicitly
I'x, which is a complete topological invariant except for two special cases, for any
3-dimensional connected compact embeddable CR maniolgith transversal
holomorphicS*-action.

2. Preliminary

In this section, we shall recall some basic notations and facts about CR manifolds
that will be needed for later discussion. We also show that for 3-dimensional
CR manifolds with transversal holomorphi-action, topologically algebraic
equivalence and topological equivalence are the same.

The following proposition is proved in [LYY].

PROPOSITION 2.1 [LYY].Let X1 and X, be two strongly pseudoconvex compact
connectedCR manifolds inCM and CV2 respectively. 1fX; is CR equivalent to
X>, thenX is algebraically equivalent t&>,.

In 1974 Boutet de Monvel [Bo] (cf. [Ko] also) proved thatXf is a compact
C strongly pseudoconvex CR manifold of dimension2 1 andn > 3, then
X is CR embeddable i@ . H. Grauert has constructed compact 3-dimensional
strongly pseudoconvex CR manifolds which are not embeddable. Such examples
were also studied by H. Rossi [Ro] and D. Burns [Bu]. In this paper we shall only
consider connected compact embeddable strongly pseudoconvex CR manifolds.
The following theorem is due to Lawson—Yau [La-Ya].

THEOREM 2.2 [La-Ya]. Let X be a strongly pseudoconv&R manifold of
dimension2n — 1 > 1 and suppose thak admits a transversal holomorphic
Sl-action. Then there exists a holomorphic equivariant embeddings V as
a hypersurface in am-dimensional algebraic variety c CV with a linear
C*-action.V has at most one singular point at the origin.

The following theorem illustrates why topologically algebraic equivalence is
important.

THEOREM 2.3.Let X1, X> be strongly pseudoconv®R manifolds of dimension
2n — 1 > 1 and suppose thak; and X, admit transversal holomorphi&?-
action. ThenX is topologically algebraic equivalent t&, if and only if X3 is
topologically equivalent to(,.

Proof.'="In view of Theorem 2.2, there exist holomorphic equivariant embed-
dings X1 — Vi, X, — V> as hypersurfaces in-dimensional algebraic varieties
Vi c €M, V, ¢ M2, with linear C*-actions.V; and 1, each has at most one
singular point at the origin. Sinc¥; is topologically algebraic equivalent 5y,
there exists a homeomorphism(U;,0) — (U, 0), whereU; (respectivelylUs)
is an open neighborhood of 0 iy = normalization oft; (respectively inV, =

https://doi.org/10.1023/A:1000476825608 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000476825608

80 HING SUN LUK AND STEPHEN S.T. YAU

normalization ofl) so thatoU; is homeomorphic t&U,. Let m: Vi — Vi and
m2: Vo — V3 be the normalization maps. Then cleadlyr1(U1)) is homeomorphic
to 0(m2(U>)). As V1 admits a lineaiC*-action, it is clear thaf; is topologically
equivalent ta)(w1(Uy)). Similarly, by following theR (C C*) action, we see that
X> is topologically equivalent té@(m,(U>)). So X1 is topologically equivalent to
Xo.

‘<’ Let S;, (respectivelyS,,) be a sphere of radius; (respectivelyes,) in
CcM (respectivelyCV2) with center at 0. By a result of Milnor [Mi], we know that
(Vin Be,,0) is homeomorphic t¢C (V1 N S, ), 0), whereB,, is the ball of radius
e1in CM with center at 0, and' (V1N S., ) denotes the cone & N S, with vertex
at 0. Similarly,(V2N Be,, 0) is homeomorphic t@' (V>N S.,, 0). SinceX; andX»
admit transversal holomorphit-action, we see that; N S., is homemorphic to
X1 andV2N S,, is homeomorphic td». As X is homeomorphic t», it follows
thatV1NS;, is homeomorphictd>NS.,. ThereforgViN B,,, 0) is homeomorphic
to (V2N B.,,0). This means thak’; is topologically algebraic equivalent £,. O

DEFINITION 2.1. LetX be a connected compact strongly pseudoconvex CR
manifold of real dimension 3 which is embeddable&in Let V' be the subvariety

in C" such that the boundary d6f is X in the C* sense. The has isolated
singularities at” = {p1,...,pm}. Letm: M — V be a resolution of singularities

of V such that the exceptional sét= 7—1(Y") has normal crossing, i.e. irreducible
componentsi; of A are nonsingular, they intersect transversely and no three meet
at a point. The topological nature of the embedding of the exceptiondlised/

is described by the weighted dual grdply. The vertices of'); correspond to the
A;’s. The edges aof'); connecting the vertices correspondingtpandA;, ¢ # j,
correspond to the points of; N A;. Finally, associated to each; is its genus

g; as a Riemann surface, and its weight- A;, the topological self intersection
number. Among all the resolutions Bfsuch that the exceptional sets have normal
crossings, there is a unique minimal ob&, which is called the minimal good
resolution. Any resolutiod/ of V with normal crossing exceptional set is obtained
by applying quadratic transformations successiveiin The graphl x of the

CR manifoldX is defined to bé",,,.

The following theorem was shown in [LYY].

THEOREM 2.4 [LYY]. Let X; and X, be strongly pseudoconvex compact con-
nected embeddab{&R manifolds of dimensiof. Then

(a) I'x, = I'y, implies thatX is topologically algebraic equivalent ;.

(b) If X4 is algebraically equivalent t&, thenl'y, = I'x,.

In fact, if X1 is topologically algebraic equivalent t&,, thenI'y, = I'x, except
for the following two cases: Let
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m . m .
_ J _ J
Iy, = @Fxl and TI'y, = @FXZ,
j=1 j=1

wherel’ , ', are connected graphs.

Case(i) BothI, andI’ are exactly those of the form below with al
equal to or smaller thar-2. The genus of each vertex is zero.

a1 ap an.-

Case(ii) Both ng and FJ)'(Z are exactly those of the form below with ajl
equal to or smaller thar-2 and onea; equal to or smaller than-3. The genus of
each vertex is zero.

ai

an, o/ \\0 as.

DEFINITION 2.2. LetX be a connected compact strongly pseudoconvex embed-
dable CR manifold of real dimension 3. With the notation in Definition 2.1, the

geometric genus ok, p,(X), is defined to be dinkf*(M, O).

PROPOSITION 2.5.Let X be a connected compact strongly pseudoco@ex
manifold of real dimensioB which is embeddable iG™. Let V' be the normal
variety such that the boundary &f is X and V' has isolated singularities at
Y = {p1,...,pm}. Letn: M — V be a resolution of singularities df. LetU;
be a strongly pseudoconvex neighborhoogofl < ¢ < m, such that thdJ;’s
pairwise disjoint. Then

polX) = - dimH e Y(0),0)
=1

= i dImF(UZ - {pi}a Qz)/LZ(Ui - {pi}v Qz)a
i=1

whereL?(U; — {p;}, 2?) denotes the space of holomorpBi¢orms onl; — {p;}
which areL?-integrable and™(U; — {p;}, Q?) is the space of holomorph&forms
onU; — {pz}

Proof. It follows from Lemma 5.3 of [Lal] and the main result of [La2]. O

DEFINITION 2.3. Let(V,p) be a two-dimensional irreducible isolated singular-
ity. Letw: M — V be aresolution of singularity. The geometric genus of the singu-
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larity (V,p), py(V, p), is by definition equal to dink/*(M, O). (V,p) is a rational
singularity if its geometric genus vanishes.

DEFINITION 2.4. A connected compact strongly pseudoconvex CR manifold is
called a rational CR manifold j, (X)) vanishes.

In view of Proposition 2.5, it is clear that rational CR manifolds can bound
varieties with only rational singularities.

3. Explicit determination of the graphs of rational singularities

In this section, we shall develop explicit algorithms which allow us to determine
the weighted dual graphs of minimal resolutions of rational singularitieg 1L g

be a rational singularity. Let: be the maximal ideal of the local rin@y;,. We
shall show that the ring structure of the graded #B§> , m* /m*+* determines
the weighted dual graph explicitly.

DEFINITION 3.1. LetA be the exceptional set in the resolutiond — V of a
normal 2-dimensional singularity. Suppose that the irreducible componests
1 < i < n, of A are nonsingular. The fundamental cydeof A is the minimal
cycleZ =5 a;A; suchthatZ £ 0 andA; - Z < 0 for all A;.

It was shown by Artin [Ar] thatZ exists and is unique.

PROPOSITION 3.1 [La2].Z may be computed as follows. Lét = A, for any
Ajy- Having definedZ; = > a;; A;, if there exists am;; such that4;, - Z; > 0,
let Zj+1 = Zj + AZJ If A; - Z, < Oforall A4;, thenZ = Z,.

Proof. We prove by induction tha¥; < Z. Thisis true if; = 1. If Z; < Z,
sinceZ is minimal, there existgl;; such that4;; - Z; > 0. Howevera;;; = a;; is
impossible for4;; - Z < 0. Thusa;;; = a;; would imply thatA;, - Z; < 0 since
aj, < a; foralliandAy - Ay > 0if k # £. Hencea;;; < a;; if Z; < Z, so that
Zj+1 < Z. O

DEFINITION 3.2. The sequencB, = A;,, Zo = Z1+ Aiy, ..., Z = Zy—1 +
A;,_, = Z in Proposition 3.1 above is called the computation sequence of the
fundamental cycle.

LEMMA 3.1. Let Z1,75,...,7; = Z be the computation sequence of the
fundamental cycle. TheR(M, O(—Z;)/O(—Z;+1)) = 0, I'(M,0y,) = C and
I'(M,0) - T'(M,Og,) is surjective foralll < i < £ — 1.

Proof. O(—Z;)/O(—Z;41) represents the sheaf of germs of sections of a line
bundle overd; of Chernclass-4;;-Z; < 0.Hencd (M, O(-Z;))/O(—Zj11)) =
Oforall 1< j < £— 1. From the exact sheaf sequences
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0> 0(-Z1) >0 -0z —0
0— O(—21)/0(=Z2) - Oz, - Oz, = 0

0— O(—Zj)/O(—Zj+1) — OZ]'+1 — OZJ- —0

One sees inductively’(M,0z;) = C for 1 < j < ¢ — 1. It follows that
['(M,0) — I'(M, Og,) is surjective forall 1< j < £ — 1. O

THEOREM 3.2 (Laufer [La2]).Let Z be the fundamental cycle of a resolution
of p. Thenp is a rational singularity if and only if all thed; have genus 0 and
A;; - Z; = Lfor all Z; in the computation of described in Propositio8.1.

Proof. Suppose is a rational singularity. From the exact sheaf sequence

0— O(—4;) >0 — 0y, =0 (3.1)
we get the following cohomology exact sequence
HYM,0) — HY(M,0,4,) — H>(M,0(—A4;)), (3.2)

whereM denotes a neighborhood dfsuch thatr (M) is Stein. By the theorem of
Siu ([Si]), H?(M, F) = 0 for any coherent shedf on M. SinceH(M,0) =0
also, (3.2) yieldd71(M, 0 4,) = 0 which implies that the genus df; is equal to
zero.

The exact sheaf sequence

0—-0(-Z1) >0 — 0z —0
yields

0 —» (M, 0(=71)) = T'(M,0) == T(M, Oy,)
— HYM,0(-Z1)) — HY(M,0) - H (M, 0y,) — 0.

7 is onto by Lemma 3.1. SincH*(M, O) = 0, HY(M,0(-2Z1)) = HY(M, O).
Consider the exact sheaf sequences

0— O(—2Z2) = O(—Z1) = O(—Z1)/O(—Z2) - 0
0— O(—Z3) — O(—Zz) — O(—Zz)/@(—Zg) — 0
(3.3)
0— O(—Zk+1) — O(—Zk) — O(—Zk)/O(—Zk+1) -0
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Let k£ be the leasj such thatd;, - Z; > 1,ie.4;, - Z; =1for1<j <k-—1
andA;, - Z, > 1. Recall thalO(—Z;)/O(—Z;1) represents the sheaf of germs
of sections of a line bundle ovek;; of Chern class-4;; - Z;, whichis—1 for j <

k — 1. Hencel (M, O(~2;)/O(~Z;,1)) = 0 = HYM,O(-Z;)/O(~Z;:1))
forj < k— 1. ThusHY(M,0) = HY(M,0(—21)) = HY(M,O(—Z3)) = - - - =
HY(M,O(—Zy)). But at the next exact sequence

— HY(M,0(=2y)) = H'(M,O(=2) /O(=Zg11)) = O,

we have—A4;, - Zr < —2 so thatHY(M,O(=Z)/O(=Zy41)) # 0. Then
H(M,O(—Zy)) is mapped onto a nontrivial group and hed&& M, ©) # 0, a
contradiction.

Conversely if4;, - Z; = 1 for all j, the above calculation shows that the map
HY(M,0(-Z)) — HY(M,O0) is surjective (in fact an isomorphism). Consider
the exact sequences

0— O(—Z — Zj+1) — O(—Z — Zj) — O(—Z — Zj)/O(—Z — Zj+1) -0

which just continue the sequences listed in (3@3)—2 — Z;)/O(—Z — Z; 1)
represents the sheaf of germs of sections of a line bundleAyeaf Chern class
—Ai;(Z + Zj) > —1. HenceH (M, O(—Z — Z;)/O(=Z — Zj;1)) = 0 so the
mapHY(M,O0(-Z - Z;)) — HY(M, O) is surjective. Continue the argument. We
have that the ma@gl (M, O(—nZ)) — HY(M,O) is surjective for alln. Hence
by [Gr, Sect. 4, Satz 1, p. 355}1(M, ©) = 0 andp is a rational singularity. 0

The following Proposition follows from Lemma 3.1

PROPOSITION 3.3Letn: M — V be aresolution of a normal singularigy. Let
my be the ideal sheaf gf. Thenn{(O(—-2)) = m,,.

THEOREM 3.4 (Laufer, [La2]).Letw: M — V be a resolution of the rational
singularity p € V with V' Stein. If ¥ is a line bundle ovetM with ¢;(F) :=
c(F|a;) > Oforall 4;in A = n1(p), thenHY (M, O(-Z;)F) = 0 for all Z;,
i > 0, in the computation sequencef

Proof. As in the proof of Theorem 3.2, we consider the exact sequence

0— O(—Zi+1)f — O(—Zi)]: — O(_Zi)f/o(_zi+1)f -0

0— O(—Z — ZZ'+1).7: — O(—Z — Zi)]: — O(—Z — Zi)]:/O(—Z — Zi+1).7: —0
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Sincec;(F') > 0 for all i andp is rational, by Theorem 3.2, the quotient sheaves
always correspond to line bundles of Chern class at le&sSo, as in the proof of
Theorem 3.2HY(M, O(—Z;)F) = 0. O

THEOREM 3.5. Let D = > d;A; and E = _ ¢;A; be divisors formed from
the irreducible components ¢f C M, the resolution of a rational singularity. If
A;-D < 0andA; - E < 0for all i, then the canonical map

I'A,O(-D)) ®:T(A4,0(-E)) - T'(A,0(-D — E))

is surjective.

Proof. (1) Letm, be the ideal sheaf of the singularjty We claim thatn, =
I'(A, O(—Z)) generates the ideal sh€af—Z) nearA. The mafd’(4, O(—Z2)) —
I'(A,O(-2)/0(—Z — A;)) is surjective for alli by Theorem 3.4. Sections in
I'(A,O(-Z2)/O(—Z — A;)) correspond to sections of a line bundle dpn of
Chernclass-A;-Z > 0. Thusl'(A,O(—Z)/O(—Z — A;)) has no common zeros,
as sections of a line bundle. Then at egch A;, some element iii(A, O(—2))
will vanish to order exactly;; on A; (anda; on A, if ¢ = A; N A;) but will have
no other zero neay. This proves our claim.

(2) We next prove that for ang > 1, T'(4, O(—Z))* contains'(A, O(—(¢ +

k)Z)) for k large enough. Lety, . . ., z, generaten, as an®-module. Thenin fact
7*(z1),...,7*(zn) generate the ideal she@f — Z) nearA because™(z1), ..., 7"
(zn) generatd’ (A, O(—%)). Suppose thaf, . . ., f; are the/-fold products of the
21,...,2, Which generatenf;. So 7*(f1),...,7"(f;) generate the ideal sheaf
O(—£Z) nearA. The map

A OV = O(—12)

sending(by,...,b;) € O to Xk, b;w*(f;) is then surjective. Lek be the kernel
of A\. SinceO(—kZ) is locally free of rank 1,

0 O(—kZ)K — O(—kZ)! — O(—(k +£)Z) 0

0 K ot A L O(-t2) 0

is a commutative diagram with exact rows. Taking part of the long exact cohomol-
ogy sequence, we have

D(A,O(—kZ)Y) — T(A,O(—(k +£)Z)) — HYA,O(—kZ)K)
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By [Gr, Sect. 4 Satz 1, p. 355},is the zero map for suitably large Henceim g C
im\ = mb =T(4,0(—2))". Hencel'(4,0(—2))* D T'(A, O(—(k + £)Z)) for
suitably largek, as needed.

(3) In this step we shall show that for al] the mapl'(A, O(—D)/O(—uZ —
D)) ®cT(A,O(-E)/O(~uZ — E)) —+T(A,O(—D —E)/O(—uZ — D — E))
is surjective. In view of Theorem 3.4(A,O(—D — E)/O(—uZ — D — E)) is
successively broken into quotient spaces in the following manner:

O%F(A,%)—H‘(A,%)

T (4, 0252525) =0

O(—Zy41~3Z2—D—FE O(—Z—sZ—D—E
0—T (Av (O(fﬂsz) )) — T (Av (O(fqufoE) ))

O(~Zy—sZ—D—E
— T (A7 O((—ij_lsz—D—]_%‘)) —0

O(~Z1—(u-1)Z-D-E O(~Zi_p—(u-)Z-D—-E
0T (A, ( (l?(lfu(ZfD)fE) )) - T (A, ( (l?(zfu(ZfD)fE) ))

O(=Zp—r—(u—1)Z—D—E
— T (A7 og_zﬁ_f_gu_ﬁz_p_];%) -0

wheres < w andZ,...,7Z, = Z is the computation sequence &f Similarly,
I'(A,O(-D)/O(—uZ — D)) andT'(A,O(—E)/O(—uZ — E)) may be broken
up into quotient spaces in the same manner. Observ€ (a0 (—D)/O(—uZ —

D)) — T'(A,0(-D)/O(—-A4;, — D)) andT'(A,O(—-E)/O(—uZ — E)) —
I'(A,0(—E)/O(—A;, — E)) are surjective by Theorem 3.4. To prove the sur-
jectivity of 7, it suffices to prove for eachthe surjectivity of one of the following
maps

(o) o (o )

_>F<A7 O(-Z, — sZ — D — E) )

O(—Zjs1—sZ —D — E)

(4 g ) e (4 g )

_>F<A7 O(—=Zy — $Z — D — E) )

O(—Zjs1—sZ —D — E)

Q:=1(A0(-2Zyk—sZ—D—E)]O(—Zk+1— sZ — D — E)) corresponds to
sections of aline bundle ovel;, of Chernclass = -1+ A;, - (—sZ—-D—E).If
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c=-1,Q =0.Ifc > 0,then, say;-1+ A4;, - (—sZ—D) > 0. ThenQ is the image
of I'(A,0(-Zy—sZ—D)/O(=Zk41—sZ—D)®cI'(A, O(—E)/O(—A;, — E))
as may be seen as followB(A4,O(-Z; — sZ — D)/O(—Zy41 — sZ — D))
corresponds to sections of a line bundle of Chern clabs- A;, (—-sZ — D) >0
over4;, andI'(4,O(—£)/O(—A;, — E)) to Chern class};, - (—E) > 0. Since
A;, has genus 0, just choose bases for the sections which consist of sections
vanishing to different orders at a given poin& A;, and observe thap is indeed
given by elements of the tensor product.

(4) We are now ready to finish the proof of Theorem 4.5. Consider the following
diagram.

r(4 %)M (4 O(igi)m) “r (4 0(? 7D )

ap aE

I'(A,0(-D)) ®c TI'(4,0(-E)) I'(A,O(-D — E))

['(A,O(-uZ — D — E))

0.

By Theorem 3.4ap anday are surjective and the right-hand column sequence
is exact. Sincex is surjective in view of step 3 above, it remains to show that
['(A,O(-D)) ®c I'(A,O(—E)) containsI'(A, O(—uZ — D — E)) for u suffi-
ciently large. For suitably large, vZ > D andvZ > E sothatl'(Z, O(—vZ)) C
I'(A,0(—-D))andl'(A, O(—vZ)) C T'(A,O(—E)). Thereford (A, O(—D)) ®c
[(A,O(—E)) D T(A, O(—vZ))®@cT(A4,0(—vZ)) D T(A, O(-Z))* D T(A, 0
(—uZ)) for u sufficiently large and bigger than 2It follows thatT'(A, O(—D))
®c'(4,O(—E)) containd (A, O(—uZ — D — E)). O

COROLLARY 3.6 (Artin, [Ar]). Let Z be the fundamental cycle of a reso-
lution of a rational singularityp of the analytic spacé’. Thenmg/m;“rl =
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I'(A,0(—nZ))/T(A, O(=(n+1)Z)) anddime m) /mp+t = —nZ - Z + 1where
my, is the ideal sheaf df” atp. In particular, the Zariski tangent space bfatp is
of dimension-Z - Z + 1.

Proof.dim mg/mg“ =dimI'(4,0(—nZ))/I'(A,O(—(n+ 1)Z)) by Theo-
rem3.50'(A4,0(—nZ))/T(A,0(—(n+1)Z)) =T'(A,O(—nZ)/O(—(n+1)Z))
by Theorem 3.4. We have successively

O(—Z1—nZ) O(—nZ) R O(—nZ)

O—m1D2)  Omt0Z)  Ots—nz) °

0—

O(—Zyky1—nZ) R O(—Zy —nZ) O(—Zy —nZ)
O(-(n+1)2) O(—(n+1)2) O(—Zgy1—nZ2)

0— —0

All the first cohomology groups are 0 by Theorem 3.4.
dimT'(A,O(—nZ)/O(-Z1 —nZ)) = —nA;, - Z + 1.
dimI(A,O(—Zk — nZ)/O(—Zgy1 — nZ))
= A - (Zy+nZ)+1=—nA; - Z
Summing ovek, we get diml’(4, O(—nZ)/O(—(n+ 1)Z)) = —nZ - Z + 1.0

Let m be the maximal ideal oDy, wherep is a rational singularity. Partially
ordert-tuples of integers byb1,...,b,) < (b),...,b}) if b < b, for all i. Ourb;
will always be nonnegative.

DEFINITION 3.3. Nontrivial subspaceSy, ..., S; C m/m? are distinguished if
using graded ring multiplication @m* /m*+1t, S ... §% = 0 modmlrtt+be+l,
Moreover, if a minimalby, ..., b;) is chosenb; > 0 for all 5.

THEOREM 3.7.Suppose that is a rational singularity. Distinguished subspaces

exist if and only if has more than one curve it (p) of the minimal resolution.
Proof.If 7~ 1(p) = A = A, thenanyf € m—m? vanishes to exactly first order

on A; sincem/m? = T'(A, O(—A)/O(—2A)). Hence any-fold product of suctf

vanishes to exactlth order onA and hence is notim!*1 = I'(4, O(—(t+1)A)).
Conversely, suppose thdtis minimal, i.e. noA4; - A; = —1, and has at least

two irreducible components. We must show that distinguished subspaces exist.

Observe that dimn/m? = —Z - Z + 1, HY(A,O(—4; — Z)) = 0 and dim

(A, O(-2)]O(-A;— Z)) = —A;- Z+ 1. We claimthal'(4, O(—A; — Z)) #

I'(A, O(—2Z)) which, from codimension considerationsrin = I'(4, O(—Z2)),
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is equivalent to claiming thatA; - 7 < —Z - Z. We may then takes; =
['(A,O(—A; — Z))/m? RecallZ = ¥ a;A;. S7* ... S% = 0modmatFantl,
(a1,...,a,) may not be minimal. Choose a minim@d, . . ., b;).

So we need only to show that4; - Z < —Z - Z. SinceA, - Z < 0, this is
certainly true if there exists a# ¢ suchthatd; - Z < O orifa; > 2. So we assume
Z=A1+aA>+---+a A, A1-Z <0butd;-Z = 0,5 # 1 and we must
showthatu, = --- =a, =0.1fn04; - A; = —1, this is exactly the statement of
the next lemma.

LEMMA 3.2. Suppose that the rational singularityhasr > 2 irreducible curves
in 7~1(p) of the minimal resolution. If the fundamental cydeis of the form
Ay +apAs + - - + a, A, with the property thatl; - Z < ObutA; - Z =0,5 # 1,
thenay =--- =q, =0.

Proof. The proof is by induction on and the resultis trivially true if = 2. If Y
is the union of a subset of thg, then any singularity having a connected component
of Y as its resolution is rational. The intersection matrix¥ors negative definite
and Z may be computed, using Proposition 3.1, by first computiii§y’), the
fundamental cycle fol”. Theorem 3.2 then ensures that the singularity for the
component ol is rational.

LetC1,...,C, be the connected components\ ¢f | A;. C; U A; is rational
(i.e. the exceptional set in a resolution of a rational singularify()’; U A1) =
A1+ a2Az + -+ + asAg, assuming; = {Ay, ..., Ay}, for in computingZ we
may first computeZ (C; U A4). A;,, for £ past the computation of (C; U Az),
is neverA; sincea; = 1. A, - Ay = 0 for A, € Cj and A, & (C] U Al).
Ay - Z(C; U Ap) < 0. So we see by induction thdg, is never amd,, for A, € C;.
HenceZ(C; U A;) satisfies the induction hypothesis. Thus we may assume, by
induction, that there is only one connected compoignt

Since the dual graph fot is a tree,A; can meet only one curve, saly, in C1.
ThusZ-Z = A;-Ai1+a2. We may replacel; by a curveB with B-B = —(a2+1),
thereby changing the analytic structure. The new set of cupveé’; has the cycle
B + a»As + - + a, A, and so has a negative definite intersection matrix by [Ar,
Prop. 2, p. 130] or [Mu, p. 6]B U C occurs as a resolution of some singularity
[Gr, p. 367]. By Theorem 3.27' = B + apA2 + - - - + a, A, is the fundamental
cycle and the singularity is rationak’ - Z = —1. Hence by Corollary 3.67’
is the fundamental cycle of an exceptional set of the first kind. Hence by [Ho,
p. 154],B U C'is the result of a finite iteration of quadratic transformations. Hence
Ay - A = —1 for somek, as we were required to prove. O

COROLLARY 3.8. If m/m? has no distinguished subspaces, then the minimal
resolution ofp has just one curvel and—A - A 4 1 = dimm/m?.

COROLLARY 3.9. Let Z be the fundamental cycle of a resolution of a rational
singularity p. The minimal resolution gf has at least two curves if and only if
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either there exist4;, A4;, i # j such thatd; - Z < Oand A; - Z < 0 or else
A;-Z < 0andZ > 2A4;. If distinguished subspaces exist, tHe, O(—A; —
Z))/T(A,0(-2%)) is, for all §, a nontrivial subspace ofi/m?.

Proof.* <’ If there existA;, A;, ¢ # j suchthatd; - Z < 0 andA4; - Z < 0,
then clearly the minimal resolution pfhas at least two curves. Suppose next that
A;-Z < 0andZ > 2A4;. Again the minimal resolution gf has at least two curves,
otherwiseZ = A;.

‘=" Itis an immediate consequence of Lemma 3.2. O

LEMMA 3.3. Supposéy, ..., S; are distinguished subspaces. Moreover a mini-
mal (by, ..., b) is chosen so thdt; > Ofor all i. ThenS; +m? C I'(A, O(—A; —
7)) for someA; depending or.

Proof.If an S; + m? contained for eaclia function which vanished to precisely
ordera; on A;, then some linear combination of these functions would vanish
to precisely orden; on 4, for all j. But then we would havé? ... S;... 8% =

0 modm’~?#, whereS; indicates omission from the product aingt by+- - -+b;+1,
contrary to Definition 3.3. O

DEFINITION 3.4. Nontrivial subspacesy, ..., S; of m/m? are maximal distin-
guished subspaces if

(i) for someby, ..., by, S ... 8% = Omodmbrt b+l
(i) the by, ..., b; are minimal with respect to property (i) and positive

(i) there do not existly, ..., T such thatS;, C T; for somesS;, with at least
one of the containments non-trividl; a subspace ofn/m?, and positive
integerscy, . . ., cs such thafy* - - - T¢ = 0modm®++¢+1 Thecy, ..., cs
are minimal with respect to property (i).

ForA;-Z < 0,T'(A,O(—A; — Z)) may be characterized as a subsetohs
follows.

THEOREM 3.10. Let Z = Y a;A; be the fundamental cycle of the resolution
of a rational singularityp. If distinguished subspaces af/m? exist, then maxi-
mal distinguished subspacss, . . ., S; of m/m? exist and are unique. Each;
corresponds tdV; = I'(4,0(—4; — Z2))/T(A,0(—2%)) for an A; such that
Aj - Z <0.b; in Definition3.3isa; for 1 < ¢ < ¢.

Proof. By Lemma 3.3, any distinguished subspdog satisfiesD; C W,
for someW, = I'(A, O(—Ar — Z)/T'(A,0(—2Z)). The proof of Theorem 3.7
(cf. Corollary 3.9) shows tha¥}, is a non-trivial subspace af /m?. Moreover, for
eachk, W, O D, for somei, for otherwise eacl; would have functions vanishing
to precisely ordeti;, on A, and theD; could not be distinguished. Hence given any
S1,..., Sy satisfying (i) and (ii) of Definition 3.4, we may choo%g from among
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theW’s and then choose minimal positigg Thus to prove this theorem, we must
show that

() if Wit W = 0modmat+entlandey, . . ., ¢, are minimal non-negative
integers, then

0 if A4;-Z=0,
ci =
7 e if 4;-Z<0

(I w,... W = 0modm®+ T+l wherej = 1,..., s gives the4; such
thatAj - Z < 0.

We shall first showthatfod; - Z < 0,I'(A,O(—A; — Z)) # '(A,O(—24; —
Z))andW; ¢ W;, for1 < j < sandi > s, Wy ¢ W forl < j', 5 < s,
so thate; > aj. The codimension ofV;, 1 < j < s, inm/m?is —A;-Z + 1
which is greater than 1 while the codimensionl®f in m/mz, 1 > s, equals
1. ThusW; ¢ W; for 1 < 7 < s < i. Now consider, say, the divisdf + Aj.

In a manner similar to that used in Proposition 3.1, add successBiely A;,,
By = A,,,...,such thatBy - (Z + A1) > 0,B2- (Z+ A1+ B1) > 0,....
As the proof of Proposition 3.1 shows, there is a ldast> Z + A; such that
A - E1 < 0 for all k. Moreover, the process of adding tli#s terminates at
Eq1.T'(A,0(-A1 — Z)) = I'(A,O(—E1)) since the successive quotient spaces
I'A,O(-Z—-A1—B1—---—By_1)/O(—-Z — A1— B1—---— By)) correspond
to sections of negative bundles and hence are trivial. In adding'tht Z + Aj,
we may first add as many as possible of the: > s, such that4; lies in some
connected componehi} of | ;- , A; with Y, N A1 # ¢. CallthiscycleE'. E' — Z is
aZ,, forsomeZ, used in the calculation & described in Proposition 3.1. We shall
say thatF’ — Z is a subcalculation of . In fact E' = F;, for suppose3 existed so
thatB-E’' > 0.B ¢ Y, for anyY, such tha¥, N A1 # ¢ by our construction of’.
Ford;,1<j<s,ie4;-Z<0,1<A;-E' = A;-(Z+ (E'— Z)) implies that
A;-(E'-Z) > 1-A;-Z > 2which, by Theorem 3.2, contradicts the rationality of
ThusT'(A4,0(—A1 — Z)) =T'(A,0(—E1)) andI'(A, O(—FE1)) /T (A, O(—A4; —
E1)) = T'(A,O(—E1)/O(—E1 — Aj)) has positive dimension by Theorem 3.4
and the fact that-A; - E1 > 0. SinceEy — Z has noA; term for 2< j < s,
W1 & W;for2 < j < s.Alsoweseethdf(A,O(—A1—2) =T'(A4,0(—E1)) €
I'(A,O(—2A1— 7)) becaus& (A, O(— E1)/O(—A1—E1)) has positive dimension
and the coefficients ol in 24, 4+ Z andA; + E1 are 2+ a;. Thusc; > aj, which
was the first thing we had to prove.

We next show thalV’"* ... W2 = 0 modm+-+e+1 To eachd;, 1< j < s,
i.e. A; - Z < 0, we associate the cyclds; above such thatl;, - £; < 0 all
kandI'(A,0(-A; — Z)) = I'(A,O(-FEj)). Let D; = E; — Z. We claim
that £/ is uniquely determined. Lef?j be another minimal cycle bigger than or
equal toZ + A; such that4y, - E; < 0. Let E; be the cycle miE;, E;) by
taking minimal of the coefficients of}; and E; componentwise. It is clear that

https://doi.org/10.1023/A:1000476825608 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000476825608

92 HING SUN LUK AND STEPHEN S.T. YAU

Ej > Aj+ Z andE; - Ay < 0 all A. SOE; = E; = E;. We must show that
arFr+---+asEs > (a1+---+as+1)Z, ormore simplya1 D1+ - -+asDs > Z.
We have thatD; > A;. Let us use Proposition 3.1 to compufeas follows. Let
A;, = A1. Then choose;,, A;,, ... to beA;, i > sfor as long as possible. Lét
be the resulting cycle. Sincé; - Z = 0 for i > s, this is just a subcalculation of
Ds. Itis in fact a complete calculation in this first case. Next, in calculadinge
must add amM;, 1 < j < s, sinceA; - Fy < 0 fori > s. Now again add4; with

i+ > s for as long as possible. Sinek - F1 < 0, this is just a subcalculation fa@»;.
Continue in this manner until reachit= a1 A1 + - - - + as A5 + - - -. We perform
a1 Subcalculations ab1, a» subcalculations oD, . . ., as subcalculations obD;.
Hencea1D1 + -+ + a;D,s > Z and the theorem is proved. |

LEMMA 3.4. LetZ = Y a;A; be the fundamental cycle of the resolution of a
rational singularity. Supposg& - A; < Oforl1 <i < sandZ-A; =0fori > s.
Forl<j < s,letD; = E; — Z whereE; is the least cycle greater than or equal to
Z+Ajsuchthatd, - E; < Oforall k. If A;,7 > s, appearsinD; andA;- A, =1
for somel < 7 < s andZ # j, thenA; has coefficient in D;.

Proof. Suppose on the contrary that the coefficient4gfin D; is bigger than
1. Then there exists a cyclé in the calculation of£; such that4; appears in
G — Z with coefficientone andl; -G = 1. S04;- (G- Z%2) =1.G — Zisacycle
appearing in a subcalculation gf A, - (G — Z) = 1 sinceA; occurs inG — Z.
ThenA, + G — Z appears in a subcalculation gfandA4; - (A, + G — Z) = 2,
contradicting the fact that is a rational singularity. O

COROLLARY 3.11. LetZ = Y a;A; be the fundamental cycle of the resolution
of a rational singularity. Supposg - A; < Ofor1 < j < sandZ - A; = Ofor
i>s. Forl<j<s,letD; = E; — Z whereE is the least cycle greater than or
equaltoZ + A; suchthatd, - E; < Oforall k.

D Forl<j<s, letS; =T(A0(-A; — Z2))/T(A,0(—2%)). Thencodim
S; = —A; - Z + 1. Here codim S; = codimension ofS; in m/m? =
[(A,O(-Z))/ T(A,0(~22)).

(2) Let|D;| be the union of the curves appearing/ip with non-zero coefficient.
Then|D,| consists of4; and those components, of | ;. A; such that
Y, NA; # ¢. Moreover|D;| N |Dj,| # ¢ if and only ifcodim S; N S, <
codimsS; + codimsS, if and only if A;, N|D;| # ¢.

(3) E; is obtained in a manner similar to Propositi@il. Add successively; =
A;, B, = A,;,,...suchthatBy - (Z—i—Aj) >0, B5- (Z—i—Aj—i—Bl) >0,....
The process of adding thié’s terminates af’;. In adding theB’s to Z + A;,
we only need to add thos4;, i > s, such thatA; lies in some connected
componenty, of ;. A4; withY, N A; # ¢. D; = E; — Z is a Z;, for
someZ;, used in the calculation of described in Propositio.1. Moreover
arD1+---+asDs > Z.
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Proof. (3) was already contained in the proof of Theorem 3.10. For (1), we first
observe thatn/m? = T'(A,0(—Z))/T(A, O(—2Z)) by Corollary 3.6. From the
short exact sequence
[(4,0(-4;-2))  L(A0(=2)  I(A0(-2)

I'(4,0(-22)) I'(4,0(=22)) TI'(A,0(-4; - %))
we deduce that

0— — 0,

dimT'(A,O(-Z2))
I'(A,O0(-A; - 2))
_dimI'(A,0(-2)
- O(=4;-2))
=-A;-Z+1
For (2), we observe that
['(A4,0(=4; - 4
I'A,0(-27
I'(A,0(=4;, - Dj - 2))
I'(A,0(-22))
I'(A,0(=D; — 2))
C Ao 1Z)
Recall that
I'(A,O(-A; - Z)) T(A,O(-D; - 7))
['(A,0(-22))  T(A4,0(=2%2))
From the short exact sequence
[(A4,0(-4; - D; - 2))  I'(A,0(-D;— %))
['(A,0(-22)) I'(A,0(-22))
I'(A,O0(-D; — 2))
I'(A,0(=4j, - D; - 7))
we deduce that

codim$; =

by Theorem 34

SjﬂSjl =

by part(3) of the Corollary

S; =

0—

—0

I'(A,0(=D; — 2))
I'(A,0(=Aj, —D; = Z))

dim Sj — dImSJ N Sjl =dim

Hence
I'(A,0(=Dj — 2))
I'(A,0(-4;, — Dj — Z))

=1-4; - (Dj+2)=1-4;-Z— A, D,

codimS; N Sj, —codimsS; = dim

= COdimSj1 — (Ajl . Dj).
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As shown in the proof of Theorem 3.10D;| consists ofA; and thoseA;
lying in some connected componeYit of (J;., A; with Y, N A; # ¢. Thus
A - Dj > 0if and only if |Dj,| N |D;| # ¢. (2) follows from the equality
Aj, - D;j = codimSj, + codimS; — codimS; N Sj,. O

Thus so far, in our goal of determining the weighted dual graph for the minimal
resolution ofp, we have found thosd; such that4; - Z < 0 and we know which
Aj's can be joined by cycles; suchthatd;- Z = 0. Also, sincei; +- - - +as+1 <
—Z - Z + 1 = dimension of Zariski tangent space of the singulgpitywe have an
apriori estimate on what part of the graded ring structure is needed to determine
if distinguished and hence maximal distinguished subspaces exist. We now must
determine the graded ring structure for the singularities offfhahe connected
components 0f/A4;, i > s, so that we can apply Theorem 3.10 and Corollary 3.11
to find more of the curves in the resolution.

LEMMA 3.5. LetZ = 3" a; A; be the fundamental cycle of the minimal resolution
of a rational singularity. Supposg - A; < Ofor1 < i < sandZ - A; = 0for
i>s.Forl<j<s,letD; = E; — Z whereE; is the least cycle greater than or
equaltoZ + A; suchthatd, - E; < Ofor all k. Let{J;., A; = U, Y, whereY,’s
are connected components|9f. , A;. Thena1Dy + --- +asDs > Z + 3, Z,
whereZ, = Z(Y,) is the fundamental cycle dix, |.

Proof.By Corollary 3.11, we know that; D1 + - - - + a5 D > Z. We shall first
prove that for any,, there exists an irreducible componetit C Y, such that its
coefficienting1D1 + - - - + asDs — Z is honzero.

Suppose on the contrary that for all irreducible componetjtsC Y, the
coefficientofA} ina1D1+- - -+asDs— Z are zero. Observe that for all irreducible
componentsd; C Y, and allD;, A} - D; < 0 because of the statement (3) of
Corollary 3.1. We claim that actuallyj, - D; = 0 for all A} C Y, and for allD;.

Supposed} - D; < 0 for someA} and someD;. ComputeZ by Proposition
3.1, starting withZ; = A;. The first stage of adding;, i > s, givesD;. We must
then add somel;/, 1 < j' < s with Ay NY, # ¢. Subsequently adding as many
A;, i > s, as possible gives a subcalculatibhof someD ;.. A} - D;» < 0 for all
A} CY,. SinceAj does not appear im Dy + - - - +a,D, — Z, the subcalculation
D' of Dj: is to includeA;], with the same coefficient as dogs:. So A} - D' < 0.
Recall thatd} - D; < 0 andZ is the sum ofD; and theseD’ by the end of the
proof of Theorem 3.10. We deduce th#t- Z < 0, contradicting the choice af,.
This proves our claim that} - D; = 0 forall A} C Y, and for allD;.

Let F # O be a divisor obtained from sonig; by setting equal to zero the
coefficients ofA, £ Y, (i.e. FF = D;/Y,) for some; such thatd; NY, #
¢. Aj + F can only fail to beZ(A; UY,) (fundamental cycle ofd; UY,) if
A; - (A; + F) > 0sinceA; appears once ifv; and A; 4 F is a subcalculation
of Z(A; UY,) by the construction oD;. Since we are only determining some
property of the intersection matrix, we are free to disregard the complex structure.
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Thus replaced; by a cycleB with B - B negative enough so that- (B + F) < 0.

Al - (B+F) = Aj(A; + F) = A} - D;j = 0forall A} CY,. Then, as before,
applying Proposition 3.2, p. 130 of [Ar] tB + F, B UY, has a negative definite
intersection matrix4; U'Y,, is rational so that a computation as in Theorem 3.2 of
A;UY, involves only+1's sothatals@3 UY,, is rational and3 + F' = Z(BUY,).
Then by Corollary 3.9B UY,, has only one curve in its minimal resolution. Hence
if Y, # ¢, eitherB or someAj} hasAj] - A} = —1. ButB - B is very negative.
Henced] - A} = —1, contradicting the minimality afl. This finishes the proof that
Y, Nla1D1 + - -+ asDy — Z| # ¢ for any connected componeyif of |J;. , A;.

As observed aboved; - D; < 0 for all A7 C Y, and allD;. By definition,
A7 -Z = 0. Therefore we havdj - (a1D1+---+asDs—Z) < Oforall A} CY,,.
Sincea1 D1+ - -+asDs—Z > 0andY,N|a1 D1+ - -+asDs—Z| # ¢ forany con-
nected component, of ;. ; A;, we concludethaiy D1+ - -+asDs—2 > 3 Z,
in view of the definition of fundamental cycle. O

We may now characteriz&; = I'(A,O(—A; — Z)) /T (A, O(-2Z2)) fori > s,
i.e.for A; suchthat4; - Z = 0.

PROPOSITION 3.12.Let Z = Y a;A; be the fundamental cycle of the minimal

resolution of a rational singularity. Supposé- A; < Ofor 1 < ¢ < s and

Z-A; =0fori >s Forl <j < s letD; = E; — Z whereE; is the

least cycle greater than or equal t6 + A; such that4, - E; < O for all .

Let U;~, 4i = U,—1Y, whereY,’s are connected components|df. , 4;. Let

W; =T(A,0(-A; — Z2))/T(A,0(-2%Z)). Then

Q) Fori <s, W; =T(A4,0(-D; — Z))/T'(A,0(—2Z)) and has codimension
—A;-Z +linm/m?.

(2 Fori>sand4; CY,, W; =T(A4,0(-2Z, — 2))/T'(A,0(-2Z)) where
Z, = Z(Y,) is the fundamental cycle with support &j.

@) W; D Wj, i > s, 35 < s, if and only if A; meets the componeh} which
containsA;.

(4) W;, i > s, are those subspaces of codimensioin m/m? such that for
dsi1,...,dsyr, lettinga = a1+ --- + as andd = ds41 + - - - + ds Wherer
is the number o¥,,,

(Wyi1 +m2)ds+1 . (Wyy, + m?)dstrmett
C m(Wi+m?)™ ... (W, +m?)% (3.4)

and when a minimal s€t/; 1, .. .,d,,) is chosen, all the/; are positive.

(5) m** C (Wi +m?)™ ... (W, +m?)%, (3.5)

wherea = a1 + - -+ + a5 impliesA = Ay U --- U Aj,.
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Proof. (1) follows from Corollary 3.11 and the proof of Theorem 3.10.

Fori > sandA; CY,, then'(4,0(—-A4;, — Z)) =I'(A,O0(—Z, — Z)) where
Z, =Z(Y,) sinced] - Z = 0for A} CY,. So (2) follows.

(3) follows immediately from the fact thd?;, 1 < j < s, involves preciselyl;
and thosed; appearing iny, N A; # ¢.

By Theorem 3.5 (W1 + m?)% ... (W, +m?)% =T (A,0(—(d + a)Z
—a1D1 — -+ — asDy)) and (Wey1 + m?) %+t .. (W, + m2) b+ motl =
F(A, O (—(d +a+ 1)Z - d5+1 Z5+1 — = dr+s ZT+S))- Thel’efore(Ws+1 +
m2)ds+1 . (Wiy, + m2)ds+rmatt C md(Wy + m?)% .. (W, + m?)% if and
onlyifds 1Zsi 1+ +drysZrys > a1D1+---+asDs— Z. Since the support of
a1D1+---+a,Dy — Z is preciselyJ;. ; A; by Lemma 3.5¢,1, ..., d,4 can be
found such that the above inequality holds and whena minimédset, . . . , ds,)
is chosen, all thd; are positive. If a subspad@+ m? appeared on the left side of
(3.4) and had a functiof € T+m?, with f ¢ T'(A, O(- A% —Z)) forall AZ C Y,
thenf would vanish to exactly order; on all A, C A suchthatd,NY, # ¢. Then
the exponent fof7"+m?) could be setequal to 0.7 +m? Z T'(A, O(— A% — Z))
for all A%, then there would exist ap € T + m? with f & T'(A, O(-AY — 7))
for all AY sinceT + m? is closed under linear combination. Since suchfan
cannot existT + m? C I'(A,O(—AY — 7)) for someA? whereAY C Y,. As
(T + m?)/m? andT'(A, O(—AY — Z))/T(A,O(—27)) are both codimension 1
subspaces of,/m?, we conclude thatl’ + m?)/m? = W.

Statement (5) is obvious. O

Thus we may determine the graded ring structure for the singularity which has
Y, as its resolution as follows.

PROPOSITION 3.13.Let Z = ) a;A; be the fundamental cycle of the minimal
resolution of a rational singularity. Supposé- A; < Ofor 1 < ¢ < s and
Z-A; = 0fori > s. LetU,~ , A; = U, -1 Y, whereY,’s are connected components
of U;ss 4i and Z, = Z(Y,) be the fundamental cycle with support B Each
Y,, can be blown down to an isolated singularity. Letm, be the maximal ideal
of O,,. Thenm, /m?2 ~ T'(A,0(-Z, — 22))/T(A, O(-2Z — 2Z,)). In general
mpy/mitt ~ T(A,0(=\Z, — 2)02))/T(A,O(—(\ + 1)Z, — 2\Z)) and this
isomorphism preserves multiplication in the graded rings.

Proof. In view of Theorem 3.4, for any and anyA? C Y,, the following
sequence is exact

0— T(4,O(~A4Y — 7)) 5 T(4,0(~2)) - T <%) S

There exists functiorf € I'(4, O(—Z)) — I'(A, O(— AY — Z)) which represents

an elementf in T(A4,0(—Z)/O(—AY — Z)), as a section of the corresponding
line bundle. Sinced; - Z = 0, so this bundle has Chern class 0 so tfiat

https://doi.org/10.1023/A:1000476825608 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000476825608

PSEUDOCONVEX COMPACT 3-DIMENSIONAL RATIONAL CR MANIFOLDS 97

I'(A,0(—-Z)/O(—AY — Z)) has no zeros. Hence the zero setfofiear A} is
just A? and thosed;, such thatd;, N AY # ¢. However'(A, O(-AY — Z)) =
I'(A,0(=Z, - 2)) = '(A,0(=A}, — 7)) for any two A}, A, C Y,. Thusf
vanishes to ordedi;, for Ay NY, # ¢ and f has no other zeros ne&}. Thus
multiplication by 2! induces an isomorphism

m) /mitt = (Y, 0(=AZ,)) /T (Y, 0(—(A+1)Z,))

O(_AZV) >
O(-A+12)

B O(=2)\Z — \Z,)
~ 1 (A’ O(=22Z — (A + 1)ZV)>

~ D(A, O(=2)\Z — AZ,))JT(A, O(=20\Z — (A + 1) Z,)).

=T (Y,,,

The first isomorphism follows from Corollary 3.6 and Theorem 3.4 while the last
isomorphism follows from Theorem 3.4. Also all these isomorphisms preserve
multiplication in the graded ring as needed. O

COROLLARY 3.14. Let Z = Y a;A; be the fundamental cycle of the minimal
resolution of a rational singularity. SupposeZ - A; < Ofor 1 < 7 < s and
Z-A; =0fori>s. LetU;-, A; = U,—, Y, whereY,’s are connected compo-
nents oflJ,., A4; and Z, = Z(Y,) be the fundamental cycle with support bn
EachY, can be blown down to an isolated singularity. Then the graded ring
structure for the singularity;, of Y, is determined by the graded ring structure
for the ring O,,. Moreover, any finite part of the grading of the rig,, is deter-
mined by a suitably large finite part of the grading for the rifyg.

Proof.Letm, be the maximal ideal a@,, andm be the maximum ideal a,,.
In view of Proposition 3.13

T'(A, O(=\Z, — 2\Z))
(A,0(—(A+1)Z, —2)\2))°

A A1 o
ml//ml/ ~ T

LetWw, =T'(A4,0(-2,—-Z))/T(A,0(-2Z)). By Theorem 2.5['(A, O(-\Z, —
2)\Z)) is spanned byn (W, +m?)* andl'(A4, O(—(\+1)Z, — 2)\Z)) is spanned
by m*Y(W, + m?)*?L. Thus the graded ring structure for the singulasjty
of Y, is determined by the graded ring structure for the dhg O

THEOREM 3.15.Letp be arational singularity anar the ideal ofp. There exists
an explicit algorithm to determine the weighted graph of the minimal resolution
of p.

Proof. Let 7 = " a;A; be the fundamental cycle of the minimal resolution
of a rational singularityp. SupposeZ - A; < Oforl < i < sandZ-A4;, =0
fori > s. LetU;», 4i = U,—1Y, whereY,’s are connected components of
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Uiss 4i andZ, = Z(Y,) be the fundamental cycle with support & We may
apply our previous results Proposition 3.13, Corollary 3.14, and Theorem 3.10 to
algebraically determine thost; C Y, such that4; - Z, < 0 and also determine
the existence of componerits - of |J, A, with 4, - Z, = 0. Continuing in this
manner, we will eventually find all th&,, in a minimal resolutiom. We must still
determine which4,, intersect and wha#i;, - A; equals. Let us suppose that we
know which Ay, intersect, then we may determine the weights A, as follows.

The above calculations of the form, - Z < 0 group theA; as follows.
X1 ={A1,..., A}, whered; - Z < Oifand only if 1 < ¢ < s. The next part
of the grouping isXy (s11) = {A(s41),50 A1), - Z(Ysr1) <O}, Xogy) =
{Au i Awng Z2(Y)) <0}, .oo Xo (44r), WhereY g, ..., Yy, are connected
components ofJ;.; A; and A(,) ; are those curves i, such thatA, ; -
Z(Yy,) < 0. We next consider connected components, of UA,, A, ¢ X U
Xo (1)U UXo (s10) X3, (11,0) = {A(t1,02).5 € Yurto: At )" 2 (Ytat)) < O}
After a finite number of steps all of the4,, are listed. LetX1, X», ..., X, be the
curves listed at each step. Thifs = |, X5 ;). Theorem 3.10 algebraically gives
the fundamental cycle of each connected componentdf, A, € X,. Part (1)
of Corollary 3.11 then determines;, - A, for A € X,. Next add the curves of
X,—1. Knowing, by assumption which curves intersect, knowing the weights in
and knowing from Theorem 3.10 the coefficientdf € X,_, which appears in
the fundamental cycle of each connected compoRenit UA,, A, € X, 1 U X,
we may compute the fundamental cycle of each connected comp&ngsing
a computation as in Proposition 3.1). Part (1) of Corollary 3.11 then determines
Ag- Ay for A € X,_1. We next add the cycles K, _, and repeatthe computation.
In this way we work back td(; and determinel,, - A for all curvesAy.

It thus remains to algebraically determine whidh intersect. Supposd,,
Aj € X;1. Corollary 3.11 tells whemd; N |Dj| # ¢. |Dj| consists ofd; and
those components, of |J;., 4; such thaty, N A;; # ¢. However, Proposition
3.12 tells whend; meets a component,. Thus we know which4; in X inter-
sect and what componerits a givenA4; in X; meets.A, € X, corresponds to
I'Y,,O0(-Z, — Ax))/I'(Y,,0(-2Z,)) by Theorem 3.10, which in turn corre-
spondstd'(A,0(-2Z — Z, — Ag))/I'(A,O(—2Z — 2Z,,)) by Proposition 3.13,
for somey, suchthatd, CY,.LetE; be the least cycl& suchthatd,;- £ < 0 for
alljandE > 2Z+ Z,+ A;. ThenE,, < 27 + 27, sinceA;, < Z, by the choice of
v. ThusE, — 27 — Z,, does notinvolve anyl; € X;. InfactE, = 272+ Z, +D,§”
where|D,CY"| consists of4, and those componeni$, ; of UA,, A; ¢ X1 U X»
such thaty, - N A, # ¢. Ej, is obtained in a manner similar to Proposition 3.1:
Add successively3; = A;,, B> = A, ..., such thatB, - (27 + Z, + A;) > 0,
By-(2Z + Z, + Ar + B1) > 0,.... The process of adding thB’s terminates
at By. (A, 0(-2Z — Z, — Ay, — A;)) = T(A,0(-2Z — Z, — DYr — A;))
since the successive quotient spaces, O(—27Z — Z, — A, — A, — By — -+ —

By 1)/0(-2Z—Z,— A;— A, —B1—---— By)) correspond to sections of negative
bundles and hence are trivial. In addiB¢ to 27 + Z, + A, we may first add as
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many as possible of thé,, ¢ > s, such that4, lies in some connected component
Y, - of UAy, Ay & X1U X, whereY, N Ay # ¢. Callthis cycleE . £}, —27 - Z,

is aZy, for someZ, used in the calculation df described in Proposition 3.1. In fact
E;, = Ey, for suppose3 existed sothaB - E; > 0.B ¢ Y, ; foranyY, - such that
Y, - N Ay # ¢ by our construction ofy,.. ForA; € X, U X, A;-(2Z+ Z,) <0

by Theorem 3.2. KX A; - E, = A; - [2Z + Z, + (E}, — (2Z + Z,))] implies
A-(E,-2Z—-27,) >1-A;-(2Z+ Z,) > 2 which, by Theorem 3.2, contradicts
the rationality ofp. ThusEy, = E|, = 2Z + Z, + D,’:" as claimed. Consider the
sheaf exact sequence

O(-2Z — Z, — D)”) R O(—27Z — 7,)
O(-27Z ~Z,—A; —D}*)  O(-2Z—Z,— A; — D})”)

0—

O(-2Z — 7,)

v 0.
0(-2Z —-7,—-D,")

SinceHY(A,0(-2Z — 7, — DZ")) = 0 by Theorem 3.4, we have the following
short exact sequence

— — — YV — —
O(-2% — 7, — D} )Y r(a O(-27 — 7,) _
O(-2Z — Z, — A; — D)) O(-27 — 7, — A; — D))

o7 <A, 022~ 2) > ~o0. (3.5)
O(—2Z — 7, — D))

O—>I‘<A,

As HY(A,0(-2Z — Z, — D} — A;)) = 0, HY(A,0(-2Z — Z, — D,*)) =0
by Theorem 3.4, we have

(A O(-2% — Z,) ) (A, O(-2Z - 7,)) (3.6)

"O(—2Z — Z, — A - D))~ T(A,0(~2Z — Z, — A, — D))

< O(—2Z - 7,) ) (A, O(-2Z — Z,))
I A, Y, - Y,
O(-27 — 7, — D}") T'(A,O(-2Z — Z, — D}*))

T(A,0(—27 — 7))

T T(A4,0(-2Z - Z, — Ay))’ 3.7)

In view of (3.5), (3.6) and (3.7), we have
I'(A,0O(-2Z - Z,))
I'(A,0(-2Z — Z, — A; — D))

dim

— — — YV
— dimr (4, 02 % YD’“ )
O(-2% — Z, - D" — A;)
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[(A,0(-2% — 7,))
(A,0(-2Z — Z, — Ayg))
(A, 0(=22 — 7,))
(A,0(-2Z — Z, — Ap))
O(-2Z - 7,)
O(_ZZ - Zl/ - AZ))
T(A,0(=22 — 7,))
(A,0(-2Z — Z, — Ayg))
T(A,0(=27 — 7,))
T(A,0(=27 — Z, — A7)
T(A,0(=22 — 7,))
(A,0(-2Z — Z, — Ayg))

dim
+ T

=—A;-(2Z+ 2,) + dimr —A;- D)

=dimT (A,

=dim

—Ai . DZ”.

dim
+ T

Therefore
T'(A,0(-2Z — Z,))
(4,0(=2Z — Z, — A;)) NT(A, O(=2Z — Z, — Ay))
T(4,0(-2Z — 7))
(A, 0(-2Z — Z, — A; — Ay))
I'(A,0(-2Z — Z,))
['(A,0(-2Z — Z, — A; — D))

dim T

=dim

=dim
(A, 0(-2Z - Z,))
A, O(-2Z — Z, — Ay))

T(A,O(—27 — 7))
(A,0(—2Z — Z, — Ap))

= dim

+dimr —A;-D)". (3.8)
Itis clear from (3.8) that
I'(4,0(-2Z — 7))
(A,0(-2Z — Z, — A))) NT(A,0(-2Z — Z, — Ay))
I'(A,0(=2Z - 2))) I'(A,0(=2Z - 2)))
(A7 O(_ZZ — 2y — AZ)) (A7 O(_ZZ — 2y — Ak))

dim T

dim dim 3.9
<dim +dim (3.9)
if and only if A; - DZ" > 0; ifand only if A; € X3 will meet either4, € X, or
some connected componént, in UA,, A, ¢ X1U Xp, such thal, - N Ay, # ¢.

In X3, we have similar considerations INA, O(-4Z — 2Z, — Z,;)) for
appropriateZ, ; = Z(Y, ;) whereY, . is a component otUA4,, A, C Y, but
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Ay € X». Thus our final step is to algebraically distinguish, for exaniple=
I'(A,O0(-4Z2-27,-2,,—A;))forA; € X1.NoZ, orZ, ; involvesamd; € X;.
Recall that in view of Proposition 3.12, fér > s, W), + m? = (A O(—A; —
2)) =T(A,0(-2, — Z)) whereZ, = Z(Y,) andA; CY,. Forany4; € Xj,
—Ai-(Zy+Z2)>-1-A;-Z>0,s0'(A4,0(—Z, — Z)]O(—A; — Z, — Z))
is nontrivial. By Theorem 3.5H*(A, O(-A; — Z, — Z)) = 0. Hence the map
I'A,O(-Z2,—-2)) = T'(A,0(-2,—-2)]O(—A; — Z, — Z)) is surjective. Since
Wy + m? is closed under linear combinatiol/;, + m? contains functions that
vanish to exactly order; on A4;, A; € X1. ThusthdJ;, 1 < 7 < s, are characterized
by being maximal subspacesIofA, O(—-Z, . — 2Z, — 4Z)) such that

U, U (Weyq +m?)%+ . (Weys +m?)o+s Cm, (3.10)
where
e=4da1+---+4as+esy1+ - +eqs+1

thee, may be arbitrarily large an@s, . . . , as) are the minimal possible exponents
for Uy, ..., Us.

To see this, we observe that by Theorem 8%,... U (W41 + m?)es+1
(Wr+s+m2)6r+s =T'(A4,0(— Zle a; (4Z+2ZV+Z,,77—+AZ')—EZ:1 6u+s(Zu+s+
Z)) andm® =I'(A,O(—eZ)). Therefore (3.8) holds if and only ¥'5_, a;(4Z +
22y + Zy s+ Ai)+ 3 cr eprs(Zuvs +Z) 2 (Bar+---+as+esiite - tep s+
1)Z which, inturn, is equivalentty>;_; a;(A;i +22,+ Z, + )+ -1 €prsZpts >
Z. Since the support of — 7, a;(A; + 2Z, + Z, ;) is contained inJ,- , A;,
est1,---, 615 Can be found and may be arbitrarily large such that the above
inequality holds. It is also clear théds, . . .,a,) are the minimal possible expo-
nents forUy, ..., Us.

If a subspacq” of I'(4,0(—4Z — 2Z, — Z,;)) appeared on the left side of
(3.8) and had a functiofi € 7', with f ¢ I'(A,O(—-4Z - 2Z, — Z, . — A;)) for
all A; € X;, thenf would vanish to exactly order4qa; on all A; € X1. Then the
exponent fofl’ could be setequalto 0.7 ¢ I'(A,O(—-4Z — 22, — Z,, » — A;))
forall A; € X1, then there would exist afre T' with f ¢ T'(A,O(—4Z — 27, —

Z,r — A;)) for all A; € X, sinceT is closed under linear combinations. Since
suchanf cannotexist]’ C I'(4, O(—-4Z - 2Z, — Z, . — A;)) forsome4; € X;.

We may get a crude estimate fay, 1, . . ., e, by considering all possible ways
that theA, can intersect, then determining, as described previously, the possible
weighted graph. We can then determine all the cycles used in the computation of
(3.8) and take the maximum of the needgd;, . . ., e,.

Summarizing all of the above results gives the following.

THEOREM 3.16.Letp be arational singularity anar the ideal ofp. There exists

an explicit algorithm to compute the weighted dual graph of the minimal resolution
of p in terms of the ring structure @22, m™ /m™*1.
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4. Determination of the graphs of rational CR manifolds

Let X be a connected compact strongly pseudoconvex CR manifold of real dimen-
sion 3 which is embeddable itf*. Let V' be the subvariety irt” such that the
boundary ofi/ is X andV has isolated singularities &t = {p1,...,p.}. LetV

be the normalization df . Note thati’ may not be inC". ChooseV large enough

so thatV’ is embeddable i€". LetY = {qi,...,¢,} be the normal singularities

of V.

LEMMA 4.1. The algebra ofcR functions onX is isomorphic to the algebra of
holomorphic functions ofr .

Proof. By the strong pseudoconvexity &f = 9V and the normality of/, one
easily sees that CR functions dn extend to holomorphic functions dri. The
natural map from the algbera of CR functionsXno the algebra of holomorphic
functions onV is an isomorphism because of the uniqueness of the extension.

In view of Lemma 4.1, the analytic spectrum of the algebra of CR functions
on X is V becauséd/ is a strongly pseudoconvex analytic space. Therefore, to
compute the graph x, we only need to apply our theory developed in Section 3
to the singularitie$V, ¢1), ..., (V, ¢;). The following example illustrates how our
theory works.

EXAMPLE. Let us consider the 3-dimensional compact connected CR manifold
X = {(z,y,2) € C3: |z]? + |y|>+|#|?> = 1, zy — 28 = 0}. X bounds the complex
varietyV = {(z,vy,2) € C3: 2y — 2% = 0} with isolated singularity at the origin.

It is not difficult to show that holomorphic two forms dn— {0} are of the form

h - w, whereh is a holomorphic function o andw is of the following form

de Ndy dyANdz dzANdx _ 6
) AR T f=zy—2°.
0z ox oy

One can check thab is a L2-integrable holomorphic 2-forms ovi — {0}. By
Proposition 2.5, we conclude thaf(X) is zero. SaX is a rational CR manifold.
Letm = (z,y,2)C{z,y, 2}/ (xy — 2°)C{z,y, }. Then

k
mk — ((L‘,y,Z) C{xayaz} ’ k 2 27
(:Ey - 26)(*%" Y, z)k_z(c{xa Y, Z}
C
m/mZ _ (w,y,z) {(L‘,y,Z}

a [((I;y - ZG)C{(I;’ y,z} + (x,y,z)z(C{x,y, Z}]

 GwoClews
= ., y.z) - DY)
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3 _ ((II,y,Z)ZC{lﬁ,y, Z}
[((I;y - ZG)C{(I;’ Y, Z} + (:E, Y, Z)S(C{(I;v Y, Z}]

= (2% 9%, 2y, y2, 2%).

m?/m,

Recall that by Theorem 3.10, if distinguished subspaces:pi:? exist, then
maximal distinguished subspacgs . .., S; of m/m? exist and are unique. Each
S; corresponds tdl; = I'(A, O(—Z — A;))/T'(A,O(—2Z2)) for an A; such that
A;-Z < 0.b;inDefinition 3.4isa; forl<i < t.ar+--+a+1< -Z-Z+1=
dimm/m? = 3 implies thatu; + - - - + a; < 2. So there exist at most two maximal
distinguished subspaces. By Corollary 3.11, coflim= —A; - Z + 1 > 2. Since
dim m/m? = 3 andS; is a nontrivial subspace of,/m?, we conclude that dim
Sj =1. Let

2 2

S1=(x)+m* and Sz = (y)+m*.

Then

5155 = (zy) + (z, y)m? + m* = (2°) + (&, y)m? + m*
=0in mz/ms.
We have found two curved;, A, in the exceptional set such thdt - Z < 0
and A, - Z < 0. Moreover,a; = ap = 1. All the other curvesd;, j > 3, if
they exist, must have the property théf - Z = 0. Since 3= codimS; NS> <
codimS; + codimS, = 4, in view of Corollary 3.11, we know that; and A, can
be joined by cycles|; such that4, - Z = 0. We now must determine the graded
ring structure for the singularities of th¢, the connected components ¢f. , A4;,
so that we can apply Theorem 3.10 and Corollary 3.11 to find more of the curves
in the resolution.
Let W3 = (z,y) + m?. Then we claim that

(2, y) + m?)m® < m((x) +m?)((y) +m?).

The L.H.S. is(z, y)m® + m® while the R.H.S. iSzy)m + (z,y)m? + m>. So the
above inclusion is clear. Therefore by (4) of Proposition 3.12, there is only one
connected componeii of ;.3 A4;. In view of (3) of Proposition 3.12, we know
that A1 NY3 # ¢ and A, N Y3 # ¢. By the proof of Corollary 3.14, we know that

the graded ring structure for the singulastyof Yz is @5 o m4/mE+t, where

mk ~ mF (W3 4+ m?)* Es1
m13€+1 mkil(Wg + mZ)k+1’ =z =

ms o m(@y)+m?)  (zy)mtm®
m3 ((z,y) +m2)?  (z,9)? + (z,y)m? +m?

= <wz’yzﬂ z37>’
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N

m§ ., m*((z,y) +m?)? _ (z,y)?m? + (z,y)m® + m®
m3  m((z,y) +m?)3  (z,y)°m+ (2,9)?°m3 + (z,y)mS + m”’

= (0?22, 222, 028, y2%, 20)  ((w2)(y2) = 0inm3/m3).

We see that there are two distinguished subspaces

W1 = (z2) +m3, W)z = (y2) +m3

in ma/m3 and ((zz) + m3)((yz) + m3) = 0 in m3/m3. We have found two
curvesAs) 1, A(z)2 in the exceptional set aof; such thatAs); - Z3 < 0 and
A3),2- Z3 < 0. Moreover, the coefficients of 3) ; andA3) » in Z3 are one. All the
other curvesls) ;, j > 3, if they exist, must have the property thig, ; - Z3 = 0.
Since 3= codimWs) 1 N W(3) » < codimW(3) 1 + codimW () » = 4, in view of
Corollary 3.11, we know that3) 1 and A s) » can be joined by cycled s) ; such
thatA(3),Z- - Z3=0.

We now must determine the graded ring structure for the singularitiggf,
the connected components|df. , A 3) ;, S0 that we can apply Theorem 3.10 and
Corollary 3.11 to find more of the curves in the resolution.

Let W(g) 3 = (zz, zy) + m3. Then we claim that

(W(g),3+m3)m3 C ma((2x) +m5)((2y) +m3) .

The L.H.S.igzz, zy)m3+m3 while the R.H.S. i$22) (zy)m3a+ (22, zy)m3+m3.

So the above inclusion is clear. Therefore by (4) of Proposition 3.12, there is only
one connected compone, 3 of U,.3 4s) ;- In view of (3) of Proposition 3.12,

we know thatd(z) 1 NY(3) 3 # ¢ andAz) 2N ¥(3) 3 # ¢. By the proof of Corollary
3.14, we know that the graded ring structure for the singulagtys of Y(3) 3 is

BiZomfy 5/m(s 5 Where
m(3)3 mh(Wg) 3 + m3)*

g ? k 2 17
migs M Wi+ mh)kt

mas  m3(Waa+mj) ma(zz, zy) + m3
mé),a Wz z+m3)?  (2z,2y)? + (22, zy)m§ + m§

(zz, zy)ma/m3 + m3/m3
(zz, z*y)2(93/m§1 + (zz, zy)m%/mg7

whereQj is the local ring of the singularitys. By the proof of Corollary 3.14, we

have
m_g ~ m3 (W3 + m?)3 ma m> (W3 + m?)
m3  m2(W3+ m?2)*’ m3  m2(W3+ m?2)*’
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% ~ m8 m_% -~ m4(W3—i—m2)2

m3  m2(Wa+ m?2)*’ m3  mA(Wa+ m?2)*
Therefore

e (55, 2y)m3 (W - 1) + m2(W + m2)3

IR

m%3),3 (zz, 2y)°m? + (zz, zy)m2(W3 + m?)2 + m?(W3 + m?)*

> {(zz, 2y) (z,y)m® + (zz, zy)m° + (z,y)3m3 + (z,y)>m°®

+(z, y)m7 + mg}/{(zw, zy)zm2

(
2,2 4 6
+(z, zy) (2, y) "M + (22, 2y) (z, y)m" + (27, 2y)m
+(,9)'m? + (z,9)°m* + (z,9)°m® + (,y)m® + m'%}
m§(W(3),3 +mj)*
1z ms(Wga+mB)®

1

(2, 2y)?m3 + (2, 2y)m§ + m3
33

(zz, 2y) + (zz, zy)zmg + (2=, zy)mg + mg

(22, 2y)°m3/m} + (zz, zy)m3/m] + m§/m}
(zz, 29)3ma/mi + (zx, 2y)2m3/mi + (zz, 2y)m3/m}’
By the proof of Corollary 3.14, we have

m_g ~ m8(W3 + m?)® m_‘sl ~ m8(W3 + m?)*
mi  mS(Wa+m?)7’ mi  mS(Wa+m?)7’
m_% o~ miO(W3 + m?)? m_g ~ m! (W3 + m?)®
mi  mS(Waz+m?)"’ mb  mS(Wsz+m?)"’
m_g ~ m® (W3 + m?)3 m3 miY (W3 + m?)
mb  m3(W3+m?2)7’ mb  m3 (W3 +m?2)7
Therefore

2
"3)3

3
(3.3

(22, 2y)?mO(W3 + m?)?
+(zz, 2y)mO(W3 + m?)* + mS(W3 + m?)®
(2, 2y)3m>(W3 + m?) + (zz, zy)?m>(W3 + m?)3
+(zz, 2y)m® (W3 4+ m?)® + mS(W3 + m?)’
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= {(z2, 29)*(z,y)?m® + (zz, 2y)?(2, y)m® + (22, 2y)*m™°
(2, 2y) (2, 9)*m° + (22, 29) (2, y)m*? + (22, 2y)m™
2,9)°m® + (z,y)°m® + (2,9)*m* + (z,9)*m!?

2,14

z,y)*m™ + (2, y)m*® + m'®} { (22, 2y)* (@, y)m® + (22, 29)m

2,9)°m’ + (z,9)°m° + (z,9)*m + (z,y)*m!®

+(z,9)?m™ + (z,y)m* + m'®}
~ <Z121132, 212y27 215$,Z15y,Z18> ((ZGJT) ($6y) — Z18).

It follows thatm(g)yg/m(zs)’3 has no distinguished subspaces. By Corollary 3.8,
the minimal resolution ofy(3) 3 has just one curvel s 3 and —A%3),3 +1=
By our previous discussion, we know that the graphgdoks like the following

A(3),1 does not intersecd 3) > because there is no cycle in a rational singularity
graph. We also know that

Zz=A@) 1+ A3+ A2
In view of (1) of Corollary 3.11, we have
—A@)1- Z3+1=codimWg) 1 =2
which implies

_A(23)71 — 2 i.e. A%S),l — _2.
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Similarly, we conclude thazlié),2 = —2. So the graph o¥3 is given by

We now want to determine the intersection propertiesAgfand A, with
Y3. According to the proof of Theorem 3.15, we need to charactdrize=
(A, O(-2Z—Z3—Aq))andU; :=T'(A,O(—2Z—Z3z— A)). They are character-
ized by being maximal subspaced$fd, O(—2Z — Z3)) = mW3 = (x, y)m+m>

such that

UrUz (W3 + m?)% € m2t2testl (3.11)
whereez may be arbitrarily large. Lét; = (22, z2z) +m® andUs, = (2, yz) +m>.
Then

UrUp (W3 + m?)*

= [(2y)(2,2)(y, 2) + (22, 02,97, y2)m® + O] (W3 + m?)*

= [(z°)(x, 2)(y, 2) + (2%, 22,4%, y2)m® + m®| (W3 + m?)® C m® .

We claim that/; andU, are maximal subspacesibfA, O(—2Z — Z3)) such that
(3.11) holds. We need to estimateA, O(—2Z — Z3)) /T'(A, O(—2Z — Z3 — A;))
1 =1,2. Inview of Theorem 3.4, we have, fore= 1, 2,

L(A,0(=22 —Z5) _ ( A,0(=2Z — Z3) )
[(A,0(-2Z — Z3 — A;)) O(—2Z — Z3 — A;)

The Chern class of the line bundle correspondin@te-2Z — Z3)/O(—2Z —
Z3 — A;) is given by—A; - (2Z + Z3) = —2A;- Z — 1 > 1. Therefore dim
T'(A,0(-2Z — Z3))JT(A,O(—2Z — Z3— A;)) > 1+1=2.Sol'(4,0(—2Z —
Z3 — A;)) is a subspace of codimension at least tw@'{d, O(—2Z — Z3)). On
the other hand/; = z(x, z) + m2, Uz = y(y, z) + m? are exactly codimension 2
subspaces ifi (A, O(—2Z — Zz)) = (z,y)m + mS. So our claim is proved.

Recall thatW(g)J_ = F(Yg, @ (—Z3 — A(3),1)/O (—2Z3)) and W(3),2 =
['(Y3, O (=23 —A3)2) /O (—2Z3)) are maximal subspacesiitg/m3 = I'(Y3, O
Z3)/O (—2Z3)), suchthat¥(g) 1- W3 o = 0inmgz/mj =T (Y3, 0 (—2Z3)/O
3Z3)). By the proof of Corollary 3.14, we have

(Y O(—Z3— A1)
O(—2Z3)

(_
(_

(g 022~ 25— Ag)
' 0(—27 - 223)
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L T(A,0(-2Z — Z3 — Ag) 1))
T(4,0(—27 —273))

O(—Zz3— A
F<Y3, (—Z3 (3),2)>

O(—2Z3)

2Z Z3— A)2)
—27 — 273)
D(A,O(~27Z — Z3 — Ag3)2))
(A O(—27 — 273)

||2

and
O(=2Z3)\ . O(-4Z — 273)
r (v 0(—323)> =1 (4 O(—4Z - 3Zs)>
~ ['(A,0(-4Z — 273))
= T(A,0(—4Z — 323))
~ m?(W3 + m?)?
— m(W3+m?)3

Sol'(A,0(-2Z — Z3— Az 1)) andl'(A, O(—2Z — Z3— A(3) 2)) are the greatest
subspaces df (A4, O(—2Z — Z3)) = m(W3 + m?) such that

(A, 0(-2Z — Zz — A1) - T'(A,0(-2Z — Z3 — Az) 2)
C m(W3 +m?)3. (3.12)
We claim that

(A, 0(-2Z — Z3 — Az 1)

= (2%, 9%, yz) + (23, 2%2, 222, %, 22, y2?) + m*,

(A, 0(-2Z — Z3 — Az)2))

It is easy to check that
(22,42, y2) + (23,22, 222, 3, 12, y22) + m]
x[(2?, 9% 22) + (2°,2%2, 22, 4%, yP2,y2%) + m

C (w,y)3m + (=, )Zm3 + (z, y)m +m’.
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So0(3.12) holds. We now estimdi¢A, O(—27 — Z3) /| O(=2Z — Z3— A(3) ;)i =
1, 2. Inview of Theorem 3.4, we have for= 1,2,1'(A, O(—2Z — Z3) | O(—-2Z —
Zz—Am)iy) =1(A,0(-22—Z3) /T (A, O(-2Z — Z3— Az);)). The Chern class
of the line bundle corresponding X —2Z — Z3) /O(—2Z — Z3 — A3);) is given
by —A); - (2Z + Z3) = —A(z),; - Z3 = 1. Therefore dinT'(A, O(-2Z — Z3))/
(A, O(-2Z — Z3— A(3),Z)) =1+41= 2 Sol'(A,0 (-2Z — Z3 — A(3),z))
is a subspace of codimension two A, O(—2Z — Zz)). On the other hand,
(22,92, y2) +(23, 2%z, 2%, 13, y2,y2%) +mt and(a?, 42, w2) + (3, 222, 222, %,
y2z,yz?) +m* are exactly codimension two subspaceE{d, O(—2Z — Z3)) =
m(W3z +m?) = (z,y)m + m3. So our claim is proved.

[(A, O(—2Z — Z3))
(4,0(—2Z — Z3— A1) NT(A,0(=2Z — Zs— Az 1))

dim T

m(Ws3 + m?)

= dim
(22, x2) +m3] N [(22,y2,y2) + (23, 222, 222, y3, y?2, y22) + mT|

(z,y)m + m3 B
(22) + (28, 222, 222,43, y%2,y2%) + m*

4,

dim I(A,0(-2Z - Z3)) _ (z,y)m+m3
D(A,O0(=2Z — Zz — A1) (22,22) +m3

=2,

[(A, O(—2Z — Z3))

dim
T(A,0(—2Z — Z3— Az 1))
B (z,y)m +m?2 _ 5
(#2092, y2) + (28,222,222, 8,422, y2%) +m4
Hence
dim F(Av O(_ZZ - Z3))
(A, O(-2Z —Z3— A1))NT(A,O(-2Z — Z3 — A(3),1))
 T(A,0(=27 — Z3)) T(A,0(-2Z — Z3))
=dim + dim .
I'(A,0(-2Z — Zz — Ay)) (A, 0(-2Z — Z3 — Az) 1))

By the proof of Theorem 3.15, we conclude tHgtN A3) 1 = ¢ andA1N A3y 3 =
¢.

(A, 0(—2Z — Z3))
(A,0(=2Z — Z3 — A1)) NT(A,O(=2Z — Z3 — Az) )

dlmr
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m(Ws3 + m?)
(22, 22) + m®| N [(2%,y%, 22) + (a3, %2, 32%,y,y%2,y2?) + m]

(z,y)m + m3
(22, z2) + (23, 222,222, Y3, 922, y22) + m*

=dim =3<2+2

: ['(A,0(-27Z — Z3)) : (A, 0(-27Z — Z3))

=dim + dim .
(A, O(-27 — Z3z — A1) (A, 0(-2Z — Z3 — Az)2))

By the proof of Theorem 3.15, we conclude tHat A3 » # ¢ or AiNAz) 3 # ¢-

Since we already know1NA3) 3 = ¢, we conclude thaiNA ) > # ¢. Similarly,

we can conclude that; N A3) 1 # ¢. So the graph of the singularity looks like

-2 -2 -2

A Ay Apys A, Al

We also know that
Z=A1+A@2+ Azt Apga+ A2
In view of (1) of Corollary 3.11, we have
—A1-Z+1=codimW, =2
which implies
—A2=2 ie A?=-2
Similarly, we can deduce that? = —2. So the complete weighted dual graph is

-2 =2 -2 -2 =2

A Ape Aps Ap)a A

Thus, the grapi'y is

-2 =2 -2 -2 -2
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