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Abstract. LetX be a strongly pseudoconvex compact 3-dimensional CR manifolds which bounds a
complex variety with isolated singularities in someC N . The weighted dual graph of the exceptional
set of the minimal good resolution ofV is a CR invariant ofX; in caseX has a tranversal holomorphic
S1 action, we show that it is a complete topological invariant of except for two special cases. When
X is a rational CR manifolds, we give explicit algebraic algorithms to compute the graph invariant
in terms of the ring structure of

L
1

k=0m
k=mk+1, wherem is the maximal ideal of each singularity.

An example is computed explicitly to demonstrate how the algorithms work.
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1. Introduction

In view of an example of Webster [We], it is clear that the problem of studying
when two given CR manifolds are analytically equivalent is extremely difficult. In
a previous paper [LYY], we introduce the notion of algebraic equivalence relation
among CR manifolds. Recall that any compact strongly pseudoconvexCR manifold
X in C

N bounds a complex varietyV in C
N with only isolated singularities atY

[Ha-La]. Let ~V be the normalization ofV .

DEFINITION 1.1. LetX1,X2 be two connected compact strongly pseudoconvex
embeddable manifolds of dimension 2n�1. We say thatX1andX2 are algebraically
equivalent if the corresponding normal varieties~V1 and ~V2, which are bounded by
X1 andX2 respectively, have isomorphic singularitiesY1 andY2, i.e., ( ~V1; Y1) �=
(~V2; Y2) as germs of varieties.
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78 HING SUN LUK AND STEPHEN S.T. YAU

It was observed that two analytically equivalent CR manifolds are automatically
algebraically equivalent. In [LYY], we also introduced some numerical invariants
under algebraic equivalence for connected compact strongly pseudoconvex embed-
dable CR manifolds of real dimension 3. In particular, the geometric genuspg(X)
of the CR manifoldX was introduced. A real 3-dimensional connected compact
strongly pseudoconvex embeddable CR manifold is called a rational CR manifold
if its geometric genus vanishes.

DEFINITION 1.2. In Definition 1.1, we say thatX1 andX2 are topologically
algebraic equivalent or have the same topology up to algebraic equivalence if
( ~V1; Y1) �= (~V2; Y2) topologically as germs of varieties.

Obviously, in order to understand the analytic classification problem of CR
manifolds, a first step is to understand the classification problem of CR manifolds
up to topologically algebraic equivalence. Then the second step is to understand the
classification problem of CR manifolds up to algebraic equivalence. The purpose of
this paper is to understand the first step. We shall only consider connected compact
strongly pseudoconvex embeddable rational CR manifolds of real dimension 3 in
this paper. LetX be such a CR manifold. In [LYY], we define the graph�X to be the
graph of the exceptional set of the minimal good resolution of the complex variety
V whose boundary isX. It was shown that�X is an invariant under algebraic
equivalence. LetX1, X2 be two 3-dimensional CR manifolds. We have shown
that�X1 = �X2 implies thatX1 is topologically algebraic equivalent toX2 (cf.
Theorem 2.4 of [LYY]). The converse of the above statement is also true except
for two explicit cases. Therefore it is important to compute�X explicitly for the
topologically algebraic equivalence problem. The main result of this paper is that we
have developed explicit algorithms to compute�X for any rational 3-dimensional
CR manifolds without computing the resolution of the complex varietyV . We
would like to remark that for CR manifoldsX1, X2 with transversal holomorphic
S1-action,X1 is topologically algebraic equivalent toX2 if and only if X1 is
topologically equivalent toX2 in the usual sense. Hence for a 3-dimensional CR
manifoldX with transversal holomorphicS1-action,�X is basically a complete
topological invariant.

In Section 2, we recall some basic notations and facts about CR manifolds. We
show that for CR manifolds with transversal holomorphicS1-action, topologically
algebraic equivalence is the same as topological equivalence. In Section 3, we give
explicit algebraic algorithms to compute the weighted dual graph� of the minimal
good resolution of a rational two-dimensional singularity(V; p) without taking
the minimal resolution of(V; p). In fact we show how to use the ring structure ofL

1

k=0m
k=mk+1 to find�explicitly, wherem is the maximal ideal of the singularity

of V . In Section 4, we use the result in Section 3 to compute�X explicitly for any
connected compact strongly pseudoconvex embeddable rational CR manifoldX
of real dimension 3. An example is computed explicitly to demonstrate how the
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algorithms work in Section 2. In particular, we know how to construct explicitly
�X , which is a complete topological invariant except for two special cases, for any
3-dimensional connected compact embeddable CR manifoldX with transversal
holomorphicS1-action.

2. Preliminary

In this section, we shall recall some basic notations and facts about CR manifolds
that will be needed for later discussion. We also show that for 3-dimensional
CR manifolds with transversal holomorphicS1-action, topologically algebraic
equivalence and topological equivalence are the same.

The following proposition is proved in [LYY].

PROPOSITION 2.1 [LYY].LetX1 andX2 be two strongly pseudoconvex compact
connectedCR manifolds inCN1 and CN2 respectively. IfX1 is CR equivalent to
X2, thenX1 is algebraically equivalent toX2.

In 1974 Boutet de Monvel [Bo] (cf. [Ko] also) proved that ifX is a compact
C1 strongly pseudoconvex CR manifold of dimension 2n � 1 andn > 3, then
X is CR embeddable inCN . H. Grauert has constructed compact 3-dimensional
strongly pseudoconvex CR manifolds which are not embeddable. Such examples
were also studied by H. Rossi [Ro] and D. Burns [Bu]. In this paper we shall only
consider connected compact embeddable strongly pseudoconvex CR manifolds.

The following theorem is due to Lawson–Yau [La-Ya].

THEOREM 2.2 [La-Ya]. Let X be a strongly pseudoconvexCR manifold of
dimension2n � 1 > 1 and suppose thatX admits a transversal holomorphic
S1-action. Then there exists a holomorphic equivariant embeddingX ,! V as
a hypersurface in ann-dimensional algebraic varietyV � C

N with a linear
C
� -action.V has at most one singular point at the origin.

The following theorem illustrates why topologically algebraic equivalence is
important.

THEOREM 2.3.LetX1,X2 be strongly pseudoconvexCRmanifolds of dimension
2n � 1 > 1 and suppose thatX1 and X2 admit transversal holomorphicS1-
action. ThenX1 is topologically algebraic equivalent toX2 if and only ifX1 is
topologically equivalent toX2.

Proof.‘)’ In view of Theorem 2.2, there exist holomorphic equivariant embed-
dingsX1 ,! V1, X2 ,! V2 as hypersurfaces inn-dimensional algebraic varieties
V1 � C

N1 , V2 � C
N2 , with linear C � -actions.V1 andV2 each has at most one

singular point at the origin. SinceX1 is topologically algebraic equivalent toX2,
there exists a homeomorphism': (U1;0) ! (U2;0), whereU1 (respectivelyU2)
is an open neighborhood of 0 in~V1 = normalization ofV1 (respectively in~V2 =
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normalization ofV2) so that@U1 is homeomorphic to@U2. Let �1: ~V1 ! V1 and
�2: ~V2 ! V2 be the normalization maps. Then clearly@(�1(U1)) is homeomorphic
to @(�2(U2)). As V1 admits a linearC � -action, it is clear thatX1 is topologically
equivalent to@(�1(U1)). Similarly, by following theR+(� C

� ) action, we see that
X2 is topologically equivalent to@(�2(U2)). SoX1 is topologically equivalent to
X2.

‘(’ Let S"1 (respectivelyS"2) be a sphere of radius"1 (respectively"2) in
C
N1 (respectivelyCN2 ) with center at 0. By a result of Milnor [Mi], we know that

(V1\B"1;0) is homeomorphic to(C(V1\S"1);0), whereB"1 is the ball of radius
"1 in C

N1 with center at 0, andC(V1\S"1) denotes the cone ofV1\S"1 with vertex
at 0. Similarly,(V2\B"2;0) is homeomorphic toC(V2\S"2;0). SinceX1 andX2

admit transversal holomorphicS1-action, we see thatV1 \ S"1 is homemorphic to
X1 andV2\S"2 is homeomorphic toX2. AsX1 is homeomorphic toX2, it follows
thatV1\S"1 is homeomorphic toV2\S"2. Therefore(V1\B"1;0) is homeomorphic
to (V2\B"2;0). This means thatX1 is topologically algebraic equivalent toX2.2

DEFINITION 2.1. LetX be a connected compact strongly pseudoconvex CR
manifold of real dimension 3 which is embeddable inC

n . LetV be the subvariety
in C

n such that the boundary ofV is X in theC1 sense. ThenV has isolated
singularities atY = fp1; : : : ; pmg. Let �:M ! V be a resolution of singularities
of V such that the exceptional setA = ��1(Y ) has normal crossing, i.e. irreducible
componentsAi of A are nonsingular, they intersect transversely and no three meet
at a point. The topological nature of the embedding of the exceptional setA in M
is described by the weighted dual graph�M . The vertices of�M correspond to the
Ai’s. The edges of�M connecting the vertices corresponding toAi andAj , i 6= j,
correspond to the points ofAi \ Aj. Finally, associated to eachAi is its genus
gi as a Riemann surface, and its weightAi � Ai, the topological self intersection
number. Among all the resolutions ofV such that the exceptional sets have normal
crossings, there is a unique minimal oneM0, which is called the minimal good
resolution. Any resolutionM of V with normal crossing exceptional set is obtained
by applying quadratic transformations successively onM0. The graph�X of the
CR manifoldX is defined to be�M0.

The following theorem was shown in [LYY].

THEOREM 2.4 [LYY]. LetX1 andX2 be strongly pseudoconvex compact con-
nected embeddableCR manifolds of dimension3. Then

(a) �X1 = �X2 implies thatX1 is topologically algebraic equivalent toX2.

(b) If X1 is algebraically equivalent toX2, then�X1 = �X2.

In fact, ifX1 is topologically algebraic equivalent toX2, then�X1 = �X2 except
for the following two cases: Let
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�X1 =
mM
j=1

�jX1
and �X2 =

mM
j=1

�jX2
;

where�jX1
, �jX2

are connected graphs.

Case(i) Both�jX1
and�jX2

are exactly those of the form below with allai
equal to or smaller than�2. The genus of each vertex is zero.

�� ������ :::::::::::: �

a1 a2 an:

Case(ii) Both�jX1
and�jX2

are exactly those of the form below with allai
equal to or smaller than�2 and oneai equal to or smaller than�3. The genus of
each vertex is zero.

DEFINITION 2.2. LetX be a connected compact strongly pseudoconvex embed-
dable CR manifold of real dimension 3. With the notation in Definition 2.1, the
geometric genus ofX, pg(X), is defined to be dimH1(M;O).

PROPOSITION 2.5.LetX be a connected compact strongly pseudoconvexCR
manifold of real dimension3 which is embeddable inC n . Let V be the normal
variety such that the boundary ofV is X and V has isolated singularities at
Y = fp1; : : : ; pmg. Let �:M ! V be a resolution of singularities ofV . LetUi
be a strongly pseudoconvex neighborhood ofpi, 1 6 i 6 m, such that theUi’s
pairwise disjoint. Then

pg(X) =
mX
i=1

dimH1(��1(Ui);O)

=
mX
i=1

dim�(Ui � fpig;

2)=L2(Ui � fpig;


2);

whereL2(Ui � fpig;

2) denotes the space of holomorphic2-forms onUi � fpig

which areL2-integrable and�(Ui�fpig;
2) is the space of holomorphic2-forms
onUi � fpig.

Proof. It follows from Lemma 5.3 of [La1] and the main result of [La2]. 2

DEFINITION 2.3. Let(V; p) be a two-dimensional irreducible isolated singular-
ity. Let�:M ! V be a resolution of singularity. The geometric genus of the singu-
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82 HING SUN LUK AND STEPHEN S.T. YAU

larity (V; p), pg(V; p), is by definition equal to dimH1(M;O). (V; p) is a rational
singularity if its geometric genus vanishes.

DEFINITION 2.4. A connected compact strongly pseudoconvex CR manifold is
called a rational CR manifold ifpg(X) vanishes.

In view of Proposition 2.5, it is clear that rational CR manifolds can bound
varieties with only rational singularities.

3. Explicit determination of the graphs of rational singularities

In this section, we shall develop explicit algorithms which allow us to determine
the weighted dual graphs of minimal resolutions of rational singularities. Let(V; p)
be a rational singularity. Letm be the maximal ideal of the local ringOV;p. We
shall show that the ring structure of the graded ring

L
1

k=0m
k=mk+1 determines

the weighted dual graph explicitly.

DEFINITION 3.1. LetA be the exceptional set in the resolution�:M ! V of a
normal 2-dimensional singularityp. Suppose that the irreducible componentsAi,
1 6 i 6 n, of A are nonsingular. The fundamental cycleZ of A is the minimal
cycleZ =

P
aiAi such thatZ 6= 0 andAi � Z 6 0 for allAi.

It was shown by Artin [Ar] thatZ exists and is unique.

PROPOSITION 3.1 [La2].Z may be computed as follows. LetZ1 = Ai0 for any
Ai0. Having definedZj =

P
ajiAi, if there exists anAij such thatAij � Zj > 0,

letZj+1 = Zj +Aij . If Ai � Z` 6 0 for all Ai, thenZ = Z`.
Proof. We prove by induction thatZj 6 Z. This is true ifj = 1. If Zj < Z,

sinceZ is minimal, there existsAij such thatAij � Zj > 0. Howeverajij = aij is
impossible forAij � Z 6 0. Thusajij = aij would imply thatAij � Zj 6 0 since
aji 6 ai for all i andAk � A` > 0 if k 6= `. Henceajij < aij if Zj < Z, so that
Zj+1 6 Z. 2

DEFINITION 3.2. The sequenceZ1 = Ai0, Z2 = Z1 + Ai1; : : : ; Z` = Z`�1 +
Ai`�1 = Z in Proposition 3.1 above is called the computation sequence of the
fundamental cycle.

LEMMA 3.1. Let Z1; Z2; : : : ; Z` = Z be the computation sequence of the
fundamental cycle. Then�(M;O(�Zi)=O(�Zi+1)) = 0, �(M;OZi)

�= C and
�(M;O)! �(M;OZi) is surjective for all1 6 i 6 `� 1.

Proof.O(�Zj)=O(�Zj+1) represents the sheaf of germs of sections of a line
bundle overAj of Chern class�Aij �Zj < 0. Hence�(M;O(�Zj))=O(�Zj+1)) =
0 for all 16 j 6 `� 1. From the exact sheaf sequences
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0! O(�Z1)! O ! OZ1 ! 0

0! O(�Z1)=O(�Z2)! OZ2 ! OZ1 ! 0

...

0! O(�Zj)=O(�Zj+1)! OZj+1 ! OZj ! 0

...

One sees inductively�(M;OZj )
�= C for 1 6 j 6 ` � 1. It follows that

�(M;O)! �(M;OZj ) is surjective for all 16 j 6 `� 1. 2

THEOREM 3.2 (Laufer [La2]). Let Z be the fundamental cycle of a resolution
of p. Thenp is a rational singularity if and only if all theAi have genus 0 and
Aij � Zj = 1 for all Zj in the computation ofZ described in Proposition3:1.

Proof.Supposep is a rational singularity. From the exact sheaf sequence

0! O(�Ai)! O ! OAi
! 0 (3.1)

we get the following cohomology exact sequence

H1(M;O)! H1(M;OAi
)! H2(M;O(�Ai)); (3.2)

whereM denotes a neighborhood ofA such that�(M) is Stein. By the theorem of
Siu ([Si]),H2(M;F) = 0 for any coherent sheafF onM . SinceH1(M;O) = 0
also, (3.2) yieldsH1(M;OAi

) = 0 which implies that the genus ofAi is equal to
zero.

The exact sheaf sequence

0! O(�Z1)! O ! OZ1 ! 0

yields

0 ! �(M;O(�Z1))! �(M;O)
�
�! �(M;OZ1)

! H1(M;O(�Z1))! H1(M;O)! H1(M;OZ1)! 0:

� is onto by Lemma 3.1. SinceH1(M;O) = 0,H1(M;O(�Z1)) = H1(M;O).
Consider the exact sheaf sequences

0! O(�Z2)! O(�Z1)! O(�Z1)=O(�Z2)! 0

0! O(�Z3)! O(�Z2)! O(�Z2)=O(�Z3)! 0

...

0! O(�Zk+1)! O(�Zk)! O(�Zk)=O(�Zk+1)! 0

...

(3.3)
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Let k be the leastj such thatAij � Zj > 1, i.e.Aij � Zj = 1 for 1 6 j 6 k � 1
andAik � Zk > 1. Recall thatO(�Zj)=O(�Zj+1) represents the sheaf of germs
of sections of a line bundle overAij of Chern class�Aij �Zj, which is�1 for j 6
k � 1. Hence�(M;O(�Zj)=O(�Zj+1)) = 0 = H1(M;O(�Zj)=O(�Zj+1))
for j 6 k � 1. ThusH1(M;O) �= H1(M;O(�Z1)) �= H1(M;O(�Z2)) �= � � � �=
H1(M;O(�Zk)). But at the next exact sequence

! H1(M;O(�Zk))! H1(M;O(�Zk)=O(�Zk+1))! 0;

we have�Aik � Zk 6 �2 so thatH1(M;O(�Zk)=O(�Zk+1)) 6= 0. Then
H1(M;O(�Zk)) is mapped onto a nontrivial group and henceH1(M;O) 6= 0, a
contradiction.

Conversely ifAij � Zj = 1 for all j, the above calculation shows that the map
H1(M;O(�Z)) ! H1(M;O) is surjective (in fact an isomorphism). Consider
the exact sequences

0! O(�Z � Zj+1)! O(�Z � Zj)! O(�Z � Zj)=O(�Z � Zj+1)! 0

which just continue the sequences listed in (3.3).O(�Z � Zj)=O(�Z � Zj+1)
represents the sheaf of germs of sections of a line bundle overAij of Chern class
�Aij (Z + Zj) > �1. HenceH1(M;O(�Z � Zj)=O(�Z � Zj+1)) = 0 so the
mapH1(M;O(�Z�Zj))! H1(M;O) is surjective. Continue the argument. We
have that the mapH1(M;O(�nZ)) ! H1(M;O) is surjective for alln. Hence
by [Gr, Sect. 4, Satz 1, p. 355],H1(M;O) = 0 andp is a rational singularity. 2

The following Proposition follows from Lemma 3.1

PROPOSITION 3.3.Let�:M ! V be a resolution of a normal singularityp. Let
mp be the ideal sheaf ofp. Then��0(O(�Z)) = mp.

THEOREM 3.4 (Laufer, [La2]).Let �:M ! V be a resolution of the rational
singularity p 2 V with V Stein. IfF is a line bundle overM with ci(F ) :=
c(F jAi

) > 0 for all Ai in A = ��1(p), thenH1(M;O(�Zi)F) = 0 for all Zi,
i > 0, in the computation sequence ofZ.

Proof.As in the proof of Theorem 3.2, we consider the exact sequence

...

0! O(�Zi+1)F ! O(�Zi)F ! O(�Zi)F=O(�Zi+1)F ! 0

...

0! O(�Z � Zi+1)F ! O(�Z � Zi)F ! O(�Z � Zi)F=O(�Z � Zi+1)F ! 0

...
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Sinceci(F ) > 0 for all i andp is rational, by Theorem 3.2, the quotient sheaves
always correspond to line bundles of Chern class at least�1. So, as in the proof of
Theorem 3.2,H1(M;O(�Zi)F) = 0. 2

THEOREM 3.5. Let D =
P
diAi andE =

P
eiAi be divisors formed from

the irreducible components ofA � M , the resolution of a rational singularity. If
Ai �D 6 0 andAi � E 6 0 for all i, then the canonical map

�(A;O(�D))
C �(A;O(�E))! �(A;O(�D �E))

is surjective.
Proof. (1) Letmp be the ideal sheaf of the singularityp. We claim thatmp =

�(A;O(�Z)) generates the ideal sheafO(�Z) nearA. The map�(A;O(�Z))!
�(A;O(�Z)=O(�Z � Ai)) is surjective for alli by Theorem 3.4. Sections in
�(A;O(�Z)=O(�Z � Ai)) correspond to sections of a line bundle onAi of
Chern class�Ai �Z > 0. Thus�(A;O(�Z)=O(�Z�Ai)) has no common zeros,
as sections of a line bundle. Then at eachq 2 Ai, some element in�(A;O(�Z))
will vanish to order exactlyai onAi (andaj onAj if q = Ai \ Aj) but will have
no other zero nearq. This proves our claim.

(2) We next prove that for anỳ> 1, �(A;O(�Z))` contains�(A;O(�(` +
k)Z)) for k large enough. Letz1; : : : ; zn generatemp as anO-module. Then in fact
��(z1); : : : ; �

�(zn) generate the ideal sheafO(�Z) nearA because��(z1); : : : ; �
�

(zn) generate�(A;O(�Z)). Suppose thatf1; : : : ; ft are thè -fold products of the
z1; : : : ; zn which generatem`

p. So ��(f1); : : : ; �
�(ft) generate the ideal sheaf

O(�`Z) nearA. The map

�:Ot ! O(�`Z)

sending(b1; : : : ; bt) 2 O
t to

Pt
i=1 bi�

�(fi) is then surjective. LetK be the kernel
of �. SinceO(�kZ) is locally free of rank 1,

0 - O(�kZ)K - O(�kZ)t - O(�(k + `)Z) - 0

0 - K
?

- Ot
?

� - O(�`Z)
?

- 0

is a commutative diagram with exact rows. Taking part of the long exact cohomol-
ogy sequence, we have

�(A;O(�kZ)t) - �(A;O(�(k + `)Z)) - H1(A;O(�kZ)K)

�(A;Ot)
?

� - �(A;O(�`Z))
?

�

- H1(A;K):

?
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By [Gr, Sect. 4 Satz 1, p. 355],
 is the zero map for suitably largek. Henceim� �
im� = m`

p = �(A;O(�Z))`. Hence�(A;O(�Z))` � �(A;O(�(k + `)Z)) for
suitably largek, as needed.

(3) In this step we shall show that for allu, the map�(A;O(�D)=O(�uZ �

D))
C �(A;O(�E)=O(�uZ�E))
�
�! �(A;O(�D�E)=O(�uZ�D�E))

is surjective. In view of Theorem 3.4,�(A;O(�D � E)=O(�uZ �D � E)) is
successively broken into quotient spaces in the following manner:

0! �
�
A; O(�Z1�D�E)

O(�uZ�D�E)

�
! �

�
A; O(�D�E)

O(�uZ�D�E)

�
! �

�
A; O(�D�E)

O(�Z1�D�E)

�
! 0

...

0! �
�
A;

O(�Zk+1�sZ�D�E)
O(�uZ�D�E)

�
! �

�
A; O(�Zk�sZ�D�E)

O(�uZ�D�E)

�
! �

�
A; O(�Zk�sZ�D�E)

O(�Zk+1�sZ�D�E)

�
! 0

...

0! �
�
A;

O(�Z`�1�(u�1)Z�D�E)
O(�uZ�D�E)

�
! �

�
A;

O(�Z`�2�(u�1)Z�D�E)
O(�uZ�D�E)

�
! �

�
A;

O(�Z`�2�(u�1)Z�D�E)
O(�Z`�1�(u�1)Z�D�E)

�
! 0

wheres 6 u andZ1; : : : ; Z` = Z is the computation sequence ofZ. Similarly,
�(A;O(�D)=O(�uZ � D)) and�(A;O(�E)=O(�uZ � E)) may be broken
up into quotient spaces in the same manner. Observe that�(A;O(�D)=O(�uZ�
D)) ! �(A;O(�D)=O(�Aik � D)) and �(A;O(�E)=O(�uZ � E)) !
�(A;O(�E)=O(�Aik � E)) are surjective by Theorem 3.4. To prove the sur-
jectivity of � , it suffices to prove for eachk the surjectivity of one of the following
maps

�

�
A;

O(�Zk � sZ �D)

O(�Zk+1� sZ �D)

�

C �

�
A;

O(�E)

O(�Aik �E)

�

! �

�
A;

O(�Zk � sZ �D �E)

O(�Zk+1� sZ �D �E)

�
;

�

�
A;

O(�D)

O(�Aik �D)

�

C �

�
A;

O(�Zk � sZ �E)

O(�Zk+1� sZ �E)

�

! �

�
A;

O(�Zk � sZ �D �E)

O(�Zk+1� sZ �D �E)

�
:

Q := �(A;O(�Zk � sZ �D � E)=O(�Zk+1 � sZ �D �E)) corresponds to
sections of a line bundle overAik of Chern classc = �1+Aik � (�sZ�D�E). If
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c = �1,Q = 0. If c > 0, then, say,�1+Aik �(�sZ�D) > 0. ThenQ is the image
of�(A;O(�Zk�sZ�D)=O(�Zk+1�sZ�D)
C �(A;O(�E)=O(�Aik�E))
as may be seen as follows.�(A;O(�Zk � sZ � D)=O(�Zk+1 � sZ � D))
corresponds to sections of a line bundle of Chern class�1+ Aik(�sZ �D) > 0
overAik and�(A;O(�E)=O(�Aik �E)) to Chern classAik � (�E) > 0. Since
Aik has genus 0, just choose bases for the sections which consist of sections
vanishing to different orders at a given pointq 2 Aik and observe thatQ is indeed
given by elements of the tensor product.

(4) We are now ready to finish the proof of Theorem 4.5. Consider the following
diagram.

0

�

�
A;

O(�D)

O(�uZ �D)

�

C�

�
A;

O(�E)

O(�uZ �E)

�
�- �

�
A;

O(�D �E)

O(�uZ �D �E)

�

6

�(A;O(�D))

6
�D


C �(A;O(�E))

6
�E

- �(A;O(�D �E))

6

�(A;O(�uZ �D �E))

6

0:

6

By Theorem 3.4,�D and�E are surjective and the right-hand column sequence
is exact. Since� is surjective in view of step 3 above, it remains to show that
�(A;O(�D)) 
C �(A;O(�E)) contains�(A;O(�uZ � D � E)) for u suffi-
ciently large. For suitably largev, vZ > D andvZ > E so that�(Z;O(�vZ)) �
�(A;O(�D)) and�(A;O(�vZ)) � �(A;O(�E)). Therefore�(A;O(�D))
C

�(A;O(�E)) � �(A;O(�vZ))
C �(A;O(�vZ))� �(A;O(�Z))2v � �(A;O
(�uZ)) for u sufficiently large and bigger than 2v. It follows that�(A;O(�D))

C �(A;O(�E)) contains�(A;O(�uZ �D �E)). 2

COROLLARY 3.6 (Artin, [Ar]). Let Z be the fundamental cycle of a reso-
lution of a rational singularityp of the analytic spaceV . Thenmn

p=m
n+1
p =
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�(A;O(�nZ))=�(A;O(�(n+1)Z)) anddimC m
n
p=m

n+1
p = �nZ �Z+1 where

mp is the ideal sheaf ofV at p. In particular, the Zariski tangent space ofV at p is
of dimension�Z � Z + 1.

Proof.dimmn
p=m

n+1
p = dim�(A;O(�nZ))=�(A;O(�(n + 1)Z)) by Theo-

rem 3.5.�(A;O(�nZ))=�(A;O(�(n+1)Z)) = �(A;O(�nZ)=O(�(n+1)Z))
by Theorem 3.4. We have successively

0!
O(�Z1 � nZ)

O(�(n+ 1)Z)
!

O(�nZ)

O(�(n+ 1)Z)
!

O(�nZ)

O(�Z1 � nZ)
! 0

...

0!
O(�Zk+1� nZ)

O(�(n+ 1)Z)
!

O(�Zk � nZ)

O(�(n+ 1)Z)
!

O(�Zk � nZ)

O(�Zk+1� nZ)
! 0

...

All the first cohomology groups are 0 by Theorem 3.4.

dim�(A;O(�nZ)=O(�Z1 � nZ)) = �nAi0 � Z + 1:

dim�(A;O(�Zk � nZ)=O(�Zk+1� nZ))

= �Aik � (Zk + nZ) + 1 = �nAik � Z:

Summing overk, we get dim�(A;O(�nZ)=O(�(n+ 1)Z)) = �nZ � Z + 1.2

Letm be the maximal ideal ofOV;p wherep is a rational singularity. Partially
ordert-tuples of integers by(b1; : : : ; bt) 6 (b01; : : : ; b

0
t) if bi 6 b0i for all i. Our bi

will always be nonnegative.

DEFINITION 3.3. Nontrivial subspacesS1; : : : ; St � m=m2 are distinguished if
using graded ring multiplication of�mk=mk+1,Sb1

1 � � �Sbtt � 0 modmb1+���+bt+1.
Moreover, if a minimal(b1; : : : ; bt) is chosen,bi > 0 for all i.

THEOREM 3.7.Suppose thatp is a rational singularity. Distinguished subspaces
exist if and only ifp has more than one curve in��1(p) of the minimal resolution.

Proof.If ��1(p) = A = A1, then anyf 2 m�m2 vanishes to exactly first order
onA1 sincem=m2 = �(A;O(�A)=O(�2A)). Hence anyt-fold product of suchf
vanishes to exactlytth order onA and hence is not inmt+1 = �(A;O(�(t+1)A)).

Conversely, suppose thatA is minimal, i.e. noAi � Ai = �1, and has at least
two irreducible components. We must show that distinguished subspaces exist.
Observe that dimm=m2 = �Z � Z + 1, H1(A;O(�Ai � Z)) = 0 and dim
�(A;O(�Z)=O(�Ai�Z)) = �Ai �Z +1. We claim that�(A;O(�Ai�Z)) 6=
�(A;O(�2Z)) which, from codimension considerations inm = �(A;O(�Z)),
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is equivalent to claiming that�Ai � Z < �Z � Z. We may then takeSi =
�(A;O(�Ai � Z))=m2. RecallZ =

P
aiAi. S

a1
1 : : : Sann � 0 modma1+���+an+1.

(a1; : : : ; an) may not be minimal. Choose a minimal(b1; : : : ; bt).
So we need only to show that�Ai � Z < �Z � Z. SinceAj � Z 6 0, this is

certainly true if there exists aj 6= i such thatAj �Z < 0 or if ai > 2. So we assume
Z = A1 + a2A2 + � � � + arAr, A1 � Z < 0 butAj � Z = 0, j 6= 1 and we must
show thata2 = � � � = ar = 0. If noAj � Aj = �1, this is exactly the statement of
the next lemma.

LEMMA 3.2. Suppose that the rational singularityp hasr > 2 irreducible curves
in ��1(p) of the minimal resolution. If the fundamental cycleZ is of the form
A1 + a2A2 + � � �+ arAr with the property thatA1 � Z < 0 butAj � Z = 0, j 6= 1,
thena2 = � � � = ar = 0.

Proof.The proof is by induction onr and the result is trivially true ifr = 2. If Y
is the union of a subset of theAi, then any singularity having a connected component
of Y as its resolution is rational. The intersection matrix forY is negative definite
andZ may be computed, using Proposition 3.1, by first computingZ(Y ), the
fundamental cycle forY . Theorem 3.2 then ensures that the singularity for the
component ofY is rational.

Let C1; : : : ; C� be the connected components of
S
i>1Ai. Cj [ A1 is rational

(i.e. the exceptional set in a resolution of a rational singularity).Z(Cj [ A1) =
A1 + a2A2 + � � � + asAs, assumingCj = fA2; : : : ; Asg, for in computingZ we
may first computeZ(Cj [ A1). Ai` , for ` past the computation ofZ(Cj [ A1),
is neverA1 sincea1 = 1. Ak � Ak0 = 0 for Ak 2 Cj andAk0 62 (Cj [ A1).
Ak �Z(Cj [A1) 6 0. So we see by induction thatAi` is never anAk for Ak 2 Cj .
HenceZ(Cj [ A1) satisfies the induction hypothesis. Thus we may assume, by
induction, that there is only one connected componentC1.

Since the dual graph forA is a tree,A1 can meet only one curve, sayA2, inC1.
ThusZ �Z = A1�A1+a2. We may replaceA1 by a curveB withB �B = �(a2+1),
thereby changing the analytic structure. The new set of curvesB[C1 has the cycle
B + a2A2 + � + arAr and so has a negative definite intersection matrix by [Ar,
Prop. 2, p. 130] or [Mu, p. 6].B [ C occurs as a resolution of some singularity
[Gr, p. 367]. By Theorem 3.2,Z 0 = B + a2A2 + � � � + arAr is the fundamental
cycle and the singularity is rational.Z 0 � Z = �1. Hence by Corollary 3.6,Z 0

is the fundamental cycle of an exceptional set of the first kind. Hence by [Ho,
p. 154],B [C is the result of a finite iteration of quadratic transformations. Hence
Ak �Ak = �1 for somek, as we were required to prove. 2

COROLLARY 3.8. If m=m2 has no distinguished subspaces, then the minimal
resolution ofp has just one curveA and�A �A+ 1 = dimm=m2.

COROLLARY 3.9. LetZ be the fundamental cycle of a resolution of a rational
singularity p. The minimal resolution ofp has at least two curves if and only if
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either there existAi; Aj ; i 6= j such thatAi � Z < 0 andAj � Z < 0 or else
Ai � Z < 0 andZ > 2Ai. If distinguished subspaces exist, then�(A;O(�Aj �
Z))=�(A;O(�2Z)) is, for all j, a nontrivial subspace ofm=m2.

Proof. ‘(’ If there existAi; Aj ; i 6= j such thatAi � Z < 0 andAj � Z < 0,
then clearly the minimal resolution ofp has at least two curves. Suppose next that
Ai �Z < 0 andZ > 2Ai. Again the minimal resolution ofp has at least two curves,
otherwiseZ = Ai.

‘)’ It is an immediate consequence of Lemma 3.2. 2

LEMMA 3.3. SupposeS1; : : : ; St are distinguished subspaces. Moreover a mini-
mal(b1; : : : ; bt) is chosen so thatbi > 0 for all i. ThenSi+m2 � �(A;O(�Aj �
Z)) for someAj depending oni.

Proof.If anSi+m2 contained for eachj a function which vanished to precisely
orderaj on Aj , then some linear combination of these functions would vanish
to precisely orderaj onAj for all j. But then we would haveSb1

1 : : : Ŝi : : : S
bt
t �

0 modmb�bi , whereŜi indicates omission from the product andb= b1+� � �+bt+1,
contrary to Definition 3.3. 2

DEFINITION 3.4. Nontrivial subspacesS1; : : : ; St of m=m2 are maximal distin-
guished subspaces if

(i) for someb1; : : : ; bt, S
b1
1 : : : Sbtt � 0 modmb1+���+bt+1;

(ii) the b1; : : : ; bt are minimal with respect to property (i) and positive

(iii) there do not existT1; : : : ; Ts such thatSji � Ti for someSji with at least
one of the containments non-trivial,Ti a subspace ofm=m2, and positive
integersc1; : : : ; cs such thatT c1

1 � � � T cs
s � 0 modmc1+���+cs+1. Thec1; : : : ; cs

are minimal with respect to property (i).

ForAj � Z < 0,�(A;O(�Aj � Z)) may be characterized as a subset ofm as
follows.

THEOREM 3.10. Let Z =
P
aiAi be the fundamental cycle of the resolution

of a rational singularityp. If distinguished subspaces ofm=m2 exist, then maxi-
mal distinguished subspacesS1; : : : ; St of m=m2 exist and are unique. EachSj
corresponds toWj = �(A;O(�Aj � Z))=�(A;O(�2Z)) for an Aj such that
Aj � Z < 0. bi in Definition3:3 is ai for 1 6 i 6 t.

Proof. By Lemma 3.3, any distinguished subspaceDi satisfiesDi � Wk

for someWk = �(A;O(�Ak � Z)=�(A;O(�2Z)). The proof of Theorem 3.7
(cf. Corollary 3.9) shows thatWk is a non-trivial subspace ofm=m2. Moreover, for
eachk,Wk � Di for somei, for otherwise eachDi would have functions vanishing
to precisely orderak onAk and theDi could not be distinguished. Hence given any
S1; : : : ; St satisfying (i) and (ii) of Definition 3.4, we may chooseTk from among
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theW ’s and then choose minimal positivec`. Thus to prove this theorem, we must
show that

(I) if W c1
1 : : :W cn

n � 0 modmc1+���+cn+1 andc1; : : : ; cn are minimal non-negative
integers, then

cj =

(
0 if Aj � Z = 0;

aj if Aj � Z < 0:

(II) W a1
1 ; : : : ;W as

s � 0 modma1+���+as+1, wherej = 1; : : : ; s gives theAj such
thatAj � Z < 0.

We shall first show that forAj �Z < 0,�(A;O(�Aj�Z)) 6= �(A;O(�2Aj�
Z)) andWi 6� Wj , for 1 6 j 6 s and i > s, Wj0 6� Wj for 1 6 j0, j 6 s,
so thatcj > aj . The codimension ofWj, 1 6 j 6 s, in m=m2 is �Aj � Z + 1
which is greater than 1 while the codimension ofWi in m=m2, i > s, equals
1. ThusWi 6� Wj for 1 6 j 6 s < i. Now consider, say, the divisorZ + A1.
In a manner similar to that used in Proposition 3.1, add successivelyB1 = Ai1,
B2 = Ai2; : : : , such thatB1 � (Z + A1) > 0, B2 � (Z + A1 + B1) > 0; : : :.
As the proof of Proposition 3.1 shows, there is a leastE1 > Z + A1 such that
Ak � E1 6 0 for all k. Moreover, the process of adding theB’s terminates at
E1. �(A;O(�A1 � Z)) = �(A;O(�E1)) since the successive quotient spaces
�(A;O(�Z�A1�B1�� � ��B`�1)=O(�Z�A1�B1�� � ��B`)) correspond
to sections of negative bundles and hence are trivial. In adding theB’s toZ +A1,
we may first add as many as possible of theAi, i > s, such thatAi lies in some
connected componentY� of

S
i>sAi with Y�\A1 6= �. Call this cycleE0.E0�Z is

aZk for someZk used in the calculation ofZ described in Proposition 3.1. We shall
say thatE0�Z is a subcalculation ofZ. In factE0 = E1, for supposeB existed so
thatB �E0 > 0.B 62 Y� for anyY� such thatY�\A1 6= � by our construction ofE0.
ForAj, 16 j 6 s, i.e.Aj �Z < 0, 16 Aj �E

0 = Aj � (Z +(E0�Z)) implies that
Aj �(E

0�Z) > 1�Aj �Z > 2 which, by Theorem 3.2, contradicts the rationality ofp.
Thus�(A;O(�A1 � Z)) = �(A;O(�E1)) and�(A;O(�E1))=�(A;O(�Aj �
E1)) = �(A;O(�E1)=O(�E1 � Aj)) has positive dimension by Theorem 3.4
and the fact that�Aj � E1 > 0. SinceE1 � Z has noAj term for 26 j 6 s,
W1 6�Wj for 2 6 j 6 s. Also we see that�(A;O(�A1�Z) = �(A;O(�E1)) 6�
�(A;O(�2A1�Z))because�(A;O(�E1)=O(�A1�E1))has positive dimension
and the coefficients ofA1 in 2A1+Z andA1+E1 are 2+a1. Thuscj > aj , which
was the first thing we had to prove.

We next show thatW a1
1 : : :W as

s � 0 modma1+���+as+1. To eachAj , 16 j 6 s,
i.e. Aj � Z < 0, we associate the cyclesEj above such thatAk � Ej 6 0 all
k and �(A;O(�Aj � Z)) = �(A;O(�Ej)). Let Dj = Ej � Z. We claim
thatEj is uniquely determined. Let~Ej be another minimal cycle bigger than or
equal toZ + Aj such thatAk � ~Ej 6 0. Let Êj be the cycle min(Ej ; ~Ej) by
taking minimal of the coefficients ofEj and ~Ej componentwise. It is clear that
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Êj > Aj + Z andÊj � Ak 6 0 all Ak. So Êj = Ej = ~Ej . We must show that
a1E1+� � �+asEs > (a1+� � �+as+1)Z, or more simply,a1D1+� � �+asDs > Z.
We have thatDj > Aj . Let us use Proposition 3.1 to computeZ as follows. Let
Ai1 = A1. Then chooseAi2; Ai3; : : : to beAi, i > s for as long as possible. LetF1

be the resulting cycle. SinceAi � Z = 0 for i > s, this is just a subcalculation of
D1. It is in fact a complete calculation in this first case. Next, in calculatingZ, we
must add anAj, 1 6 j 6 s, sinceAi � F1 6 0 for i > s. Now again addAi with
i > s for as long as possible. SinceAi �F1 6 0, this is just a subcalculation forDj .
Continue in this manner until reachingZ = a1A1 + � � �+ asAs+ � � �. We perform
a1 subcalculations ofD1, a2 subcalculations ofD2; : : :, as subcalculations ofDs.
Hencea1D1 + � � �+ asDs > Z and the theorem is proved. 2

LEMMA 3.4. Let Z =
P
aiAi be the fundamental cycle of the resolution of a

rational singularity. SupposeZ � Ai < 0 for 1 6 i 6 s andZ � Ai = 0 for i > s.
For 1 6 j 6 s, letDj = Ej�Z whereEj is the least cycle greater than or equal to
Z+Aj such thatAk �Ej 6 0 for all k. If Ai, i > s, appears inDj andAi �A` = 1
for some16 ` 6 s and` 6= j, thenAi has coefficient1 in Dj .

Proof. Suppose on the contrary that the coefficient ofAi in Dj is bigger than
1. Then there exists a cycleG in the calculation ofEj such thatAi appears in
G�Z with coefficient one andAi �G = 1. SoAi � (G�Z) = 1.G�Z is a cycle
appearing in a subcalculation ofZ. A` � (G � Z) = 1 sinceAi occurs inG � Z.
ThenA` + G� Z appears in a subcalculation ofZ andAi � (A` + G� Z) = 2,
contradicting the fact thatp is a rational singularity. 2

COROLLARY 3.11. LetZ =
P
aiAi be the fundamental cycle of the resolution

of a rational singularity. SupposeZ � Aj < 0 for 1 6 j 6 s andZ � Ai = 0 for
i > s. For 16 j 6 s, letDj = Ej �Z whereEj is the least cycle greater than or
equal toZ +Aj such thatAk � Ej 6 0 for all k.

(1) For 1 6 j 6 s, let Sj = �(A;O(�Aj � Z))=�(A;O(�2Z)). Thencodim
Sj = �Aj � Z + 1. Here codim Sj = codimension ofSj in m=m2 =
�(A;O(�Z))= �(A;O(�2Z)).

(2) Let jDj j be the union of the curves appearing inDj with non-zero coefficient.
Then jDj j consists ofAj and those componentsY� of

S
i>sAi such that

Y� \ Aj 6= �. MoreoverjDj j \ jDj1j 6= � if and only if codimSj \ Sj1 <
codimSj + codimSj1 if and only ifAj1 \ jDj j 6= �.

(3) Ej is obtained in a manner similar to Proposition3:1. Add successivelyB1 =
Ai1,B2 = Ai2; : : : such thatB1 � (Z +Aj) > 0,B2 � (Z +Aj +B1) > 0; : : :.
The process of adding theB’s terminates atEj. In adding theB’s toZ +Aj ,
we only need to add thoseAi, i > s, such thatAi lies in some connected
componentY� of

S
i>sAi with Y� \ Aj 6= �. Dj = Ej � Z is a Zk for

someZk used in the calculation ofZ described in Proposition3:1. Moreover
a1D1 + � � �+ asDs > Z.
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Proof.(3) was already contained in the proof of Theorem 3.10. For (1), we first
observe thatm=m2 �= �(A;O(�Z))=�(A;O(�2Z)) by Corollary 3.6. From the
short exact sequence

0!
�(A;O(�Aj � Z))

�(A;O(�2Z))
!

�(A;O(�Z))

�(A;O(�2Z))
!

�(A;O(�Z))

�(A;O(�Aj � Z))
! 0;

we deduce that

codimSj =
dim�(A;O(�Z))

�(A;O(�Aj � Z))

=
dim�(A;O(�Z)

O(�Aj � Z))
by Theorem 3:4

= �Aj � Z + 1:

For (2), we observe that

Sj \ Sj1 =
�(A;O(�Aj �Aj1 � Z))

�(A;O(�2Z))

=
�(A;O(�Aj1 �Dj � Z))

�(A;O(�2Z))
by part(3) of the Corollary

�
�(A;O(�Dj � Z))

�(A;O(�2Z))
:

Recall that

Sj =
�(A;O(�Aj � Z))

�(A;O(�2Z))
=

�(A;O(�Dj � Z))

�(A;O(�2Z))
:

From the short exact sequence

0 !
�(A;O(�Aj1 �Dj � Z))

�(A;O(�2Z))
!

�(A;O(�Dj � Z))

�(A;O(�2Z))

!
�(A;O(�Dj � Z))

�(A;O(�Aj1 �Dj � Z))
! 0

we deduce that

dimSj � dimSj \ Sj1 = dim
�(A;O(�Dj � Z))

�(A;O(�Aj1 �Dj � Z))
:

Hence

codimSj \ Sj1 � codimSj = dim
�(A;O(�Dj � Z))

�(A;O(�Aj1 �Dj � Z))

= 1�Aj1 � (Dj + Z) = 1�Aj1 � Z �Aj1 �Dj

= codimSj1 � (Aj1 �Dj):
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As shown in the proof of Theorem 3.10,jDj j consists ofAj and thoseAi

lying in some connected componentY� of
S
i>sAi with Y� \ Aj 6= �. Thus

Aj1 � Dj > 0 if and only if jDj1j \ jDj j 6= �. (2) follows from the equality
Aj1 �Dj = codimSj1 + codimSj � codimSj \ Sj1. 2

Thus so far, in our goal of determining the weighted dual graph for the minimal
resolution ofp, we have found thoseAj such thatAj � Z < 0 and we know which
Aj ’s can be joined by cyclesAi such thatAi �Z = 0. Also, sincea1+ � � �+as+1 6
�Z � Z + 1 = dimension of Zariski tangent space of the singularityp, we have an
apriori estimate on what part of the graded ring structure is needed to determine
if distinguished and hence maximal distinguished subspaces exist. We now must
determine the graded ring structure for the singularities of theY�, the connected
components of[Ai, i > s, so that we can apply Theorem 3.10 and Corollary 3.11
to find more of the curves in the resolution.

LEMMA 3.5. LetZ =
P
aiAi be the fundamental cycle of the minimal resolution

of a rational singularity. SupposeZ � Ai < 0 for 1 6 i 6 s andZ � Ai = 0 for
i > s. For 16 j 6 s, letDj = Ej �Z whereEj is the least cycle greater than or
equal toZ +Aj such thatAk �Ej 6 0 for all k. Let

S
i>sAi =

S
� Y� whereY� ’s

are connected components of
S
i>sAi. Thena1D1 + � � � + asDs > Z +

P
� Z�

whereZ� = Z(Y�) is the fundamental cycle onjY� j.
Proof.By Corollary 3.11, we know thata1D1 + � � �+ asDs > Z. We shall first

prove that for anyY�, there exists an irreducible componentA�
k � Y� such that its

coefficient ina1D1 + � � �+ asDs � Z is nonzero.
Suppose on the contrary that for all irreducible componentsA�

k � Y� , the
coefficient ofA�

k in a1D1+ � � �+asDs�Z are zero. Observe that for all irreducible
componentsA�

k � Y� and allDj , A�
k � Dj 6 0 because of the statement (3) of

Corollary 3.1. We claim that actuallyA�
k �Dj = 0 for allA�

k � Y� and for allDj.
SupposeA�

k � Dj < 0 for someA�
k and someDj. ComputeZ by Proposition

3.1, starting withZ1 = Aj. The first stage of addingAi, i > s, givesDj . We must
then add someAj0 , 1 6 j0 6 s with Aj0 \ Y� 6= �. Subsequently adding as many
Ai, i > s, as possible gives a subcalculationD0 of someDj0 . A�

` �Dj0 6 0 for all
A�
` � Y� . SinceA�

k does not appear ina1D1+ � � �+ asDs�Z, the subcalculation
D0 of Dj0 is to includeA�

k with the same coefficient as doesDj0 . SoA�
k �D

0 6 0.
Recall thatA�

k � Dj < 0 andZ is the sum ofDj and theseD0 by the end of the
proof of Theorem 3.10. We deduce thatA�

k �Z < 0, contradicting the choice ofY� .
This proves our claim thatA�

k �Dj = 0 for allA�
k � Y� and for allDj .

Let F 6= 0 be a divisor obtained from someDj by setting equal to zero the
coefficients ofA` 6� Y� (i.e. F = Dj=Y�) for somej such thatAj \ Y� 6=
�. Aj + F can only fail to beZ(Aj [ Y�) (fundamental cycle ofAj [ Y�) if
Aj � (Aj + F ) > 0 sinceAj appears once inDj andAj + F is a subcalculation
of Z(Aj [ Y�) by the construction ofDj. Since we are only determining some
property of the intersection matrix, we are free to disregard the complex structure.
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Thus replaceAj by a cycleB with B �B negative enough so thatB � (B+F ) < 0.
A�
k � (B + F ) = A�

k(Aj + F ) = A�
k � Dj = 0 for all A�

k � Y� . Then, as before,
applying Proposition 3.2, p. 130 of [Ar] toB + F , B [ Y� has a negative definite
intersection matrix.Aj [ Y� is rational so that a computation as in Theorem 3.2 of
Aj[Y� involves only+1’s so that alsoB[Y� is rational andB+F = Z(B[Y�).
Then by Corollary 3.9,B [Y� has only one curve in its minimal resolution. Hence
if Y� 6= �, eitherB or someA�

k hasA�
k � A

�
k = �1. ButB � B is very negative.

HenceA�
k �A

�
k = �1, contradicting the minimality ofA. This finishes the proof that

Y� \ ja1D1 + � � �+ asDs � Zj 6= � for any connected componentY� of
S
i>sAi.

As observed above,A�
k � Dj 6 0 for all A�

k � Y� and allDj . By definition,
A�
k �Z = 0. Therefore we haveA�

k � (a1D1+ � � �+asDs�Z) 6 0 for allA�
k � Y� .

Sincea1D1+� � �+asDs�Z > 0 andY�\ja1D1+� � �+asDs�Zj 6= � for any con-
nected componentY� of

S
i>sAi, we conclude thata1D1+� � �+asDs�Z >

P
Z�

in view of the definition of fundamental cycle. 2

We may now characterizeWi = �(A;O(�Ai�Z))=�(A;O(�2Z)) for i > s,
i.e. forAi such thatAi � Z = 0.

PROPOSITION 3.12.LetZ =
P
aiAi be the fundamental cycle of the minimal

resolution of a rational singularity. SupposeZ � Ai < 0 for 1 6 i 6 s and
Z � Ai = 0 for i > s. For 1 6 j 6 s, let Dj = Ej � Z whereEj is the
least cycle greater than or equal toZ + Aj such thatAk � Ej 6 0 for all k.
Let

S
i>sAi =

Sr
�=1Y� whereY� ’s are connected components of

S
i>sAi. Let

Wi = �(A;O(�Ai � Z))=�(A;O(�2Z)). Then

(1) For i 6 s, Wi = �(A;O(�Di � Z))=�(A;O(�2Z)) and has codimension
�Ai � Z + 1 in m=m2.

(2) For i > s andAi � Y� , Wi = �(A;O(�Z� � Z))=�(A;O(�2Z)) where
Z� = Z(Y�) is the fundamental cycle with support onY�.

(3) Wi � Wj , i > s, j 6 s, if and only ifAj meets the componentY� which
containsAi.

(4) Wi, i > s, are those subspaces of codimension1 in m=m2 such that for
ds+1; : : : ; ds+r, lettinga = a1 + � � �+ as andd = ds+1 + � � �+ ds+r wherer
is the number ofY� ,

(Ws+1 +m2)ds+1 : : : (Ws+r +m2)ds+rma+1

� md(W1 +m2)a1 : : : (Ws +m2)as (3.4)

and when a minimal set(ds+1; : : : ; ds+r) is chosen, all thedi are positive.

(5) ma+1 � (W1+m2)a1 : : : (Ws+m2)as ; (3:5)

wherea = a1 + � � �+ as impliesA = A1 [ � � � [As.
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Proof.(1) follows from Corollary 3.11 and the proof of Theorem 3.10.
For i > s andAi � Y� , then�(A;O(�Ai �Z)) = �(A;O(�Z� �Z)) where

Z� = Z(Y�) sinceA�
k � Z = 0 forA�

k � Y� . So (2) follows.
(3) follows immediately from the fact thatDj , 16 j 6 s, involves preciselyAj

and thoseA�
k appearing inY� \Aj 6= �.

By Theorem 3.5,md(W1 + m2)a1 : : : (Ws + m2)as = � (A;O(�(d + a)Z
�a1D1 � � � � � asDs)) and (Ws+1 + m2)ds+1 : : : (Ws+r + m2)ds+r ma+1 =
�(A;O (�(d + a + 1)Z � ds+1 Zs+1 � � � � � dr+s Zr+s)). Therefore(Ws+1 +
m2)ds+1 : : : (Ws+r + m2)ds+rma+1 � md(W1 + m2)a1 : : : (Ws + m2)as if and
only if ds+1Zs+1+ � � �+dr+sZr+s > a1D1+ � � �+asDs�Z. Since the support of
a1D1+ � � �+asDs�Z is precisely

S
i>sAi by Lemma 3.5,ds+1; : : : ; dr+s can be

found such that the above inequality holds and when a minimal set(ds+1; : : : ; ds+r)
is chosen, all thedi are positive. If a subspaceT +m2 appeared on the left side of
(3.4) and had a functionf 2 T+m2, with f 62 �(A;O(�A�

k�Z)) for allA�
k � Y� ,

thenf would vanish to exactly ordera` on allA` � A such thatA`\Y� 6= �. Then
the exponent for(T +m2) could be set equal to 0. IfT+m2 6� �(A;O(�A�

k�Z))
for all A�

k, then there would exist anf 2 T +m2 with f 62 �(A;O(�A�
k � Z))

for all A�
k sinceT + m2 is closed under linear combination. Since such anf

cannot exist,T +m2 � �(A;O(�A�
k � Z)) for someA�

k whereA�
k � Y�. As

(T + m2)=m2 and�(A;O(�A�
k � Z))=�(A;O(�2Z)) are both codimension 1

subspaces ofm=m2, we conclude that(T +m2)=m2 =Wk.
Statement (5) is obvious. 2

Thus we may determine the graded ring structure for the singularity which has
Y� as its resolution as follows.

PROPOSITION 3.13.LetZ =
P
aiAi be the fundamental cycle of the minimal

resolution of a rational singularity. SupposeZ � Ai < 0 for 1 6 i 6 s and
Z �Ai = 0 for i > s. Let

S
i>sAi =

Sr
�=1Y� whereY� ’s are connected components

of
S
i>sAi andZ� = Z(Y�) be the fundamental cycle with support onY�. Each

Y� can be blown down to an isolated singularityq� . Letm� be the maximal ideal
ofOq� . Thenm�=m

2
� � �(A;O(�Z� � 2Z))=�(A;O(�2Z � 2Z�)). In general

m�
�=m

�+1
� � �(A;O(��Z� � 2�Z))=�(A;O(�(� + 1)Z� � 2�Z)) and this

isomorphism preserves multiplication in the graded rings.
Proof. In view of Theorem 3.4, for any� and anyA�

i � Y� , the following
sequence is exact

0! �(A;O(�A�
i � Z))! �(A;O(�Z))! �

 
A;O(�Z)

O(�A�
i � Z)

!
! 0:

There exists functionf 2 �(A;O(�Z)) � �(A;O(�A�
i � Z)) which represents

an element~f in �(A;O(�Z)=O(�A�
i � Z)), as a section of the corresponding

line bundle. SinceAi � Z = 0, so this bundle has Chern class 0 so that~f 2
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�(A;O(�Z)=O(�A�
i � Z)) has no zeros. Hence the zero set off nearA�

i is
justA�

i and thoseAk such thatAk \ A�
i 6= �. However,�(A;O(�A�

i � Z)) =
�(A;O(�Z� � Z)) = �(A;O(�A�

i0 � Z)) for any twoA�
i , A�

i0 � Y� . Thusf
vanishes to orderak for Ak \ Y� 6= � andf has no other zeros nearY� . Thus
multiplication byf2� induces an isomorphism

m�
�=m

�+1
� � �(Y� ;O(��Z�))=�(Y� ;O(�(�+ 1)Z�))

= �

�
Y� ;

O(��Z�)

O(�(�+ 1)Z�)

�

� �

�
A;

O(�2�Z � �Z�)

O(�2�Z � (�+ 1)Z�)

�

� �(A;O(�2�Z � �Z�))=�(A;O(�2�Z � (�+ 1)Z�)):

The first isomorphism follows from Corollary 3.6 and Theorem 3.4 while the last
isomorphism follows from Theorem 3.4. Also all these isomorphisms preserve
multiplication in the graded ring as needed. 2

COROLLARY 3.14. Let Z =
P
aiAi be the fundamental cycle of the minimal

resolution of a rational singularityp. SupposeZ � Ai < 0 for 1 6 i 6 s and
Z � Ai = 0 for i > s. Let

S
i>sAi =

Sr
�=1Y� whereY� ’s are connected compo-

nents of
S
i>sAi andZ� = Z(Y�) be the fundamental cycle with support onY� .

EachY� can be blown down to an isolated singularityq� . Then the graded ring
structure for the singularityq� of Y� is determined by the graded ring structure
for the ringOp. Moreover, any finite part of the grading of the ringOq� is deter-
mined by a suitably large finite part of the grading for the ringOp.

Proof.Letm� be the maximal ideal ofOq� andm be the maximum ideal ofOp.
In view of Proposition 3.13

m�
�=m

�+1
� �

�(A;O(��Z� � 2�Z))
�(A;O(�(�+ 1)Z� � 2�Z))

:

LetW� = �(A;O(�Z��Z))=�(A;O(�2Z)). By Theorem 2.5,�(A;O(��Z��
2�Z)) is spanned bym�(W�+m2)� and�(A;O(�(�+1)Z��2�Z)) is spanned
by m��1(W� + m2)�+1. Thus the graded ring structure for the singularityq�
of Y� is determined by the graded ring structure for the ringOp. 2

THEOREM 3.15.Letp be a rational singularity andm the ideal ofp. There exists
an explicit algorithm to determine the weighted graph of the minimal resolution
of p.

Proof. Let Z =
P
aiAi be the fundamental cycle of the minimal resolution

of a rational singularityp. SupposeZ � Ai < 0 for 1 6 i 6 s andZ � Ai = 0
for i > s. Let

S
i>sAi =

Sr
�=1 Y� whereY� ’s are connected components of
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S
i>sAi andZ� = Z(Y�) be the fundamental cycle with support onY� . We may

apply our previous results Proposition 3.13, Corollary 3.14, and Theorem 3.10 to
algebraically determine thoseAi � Y� such thatAi � Z� < 0 and also determine
the existence of componentsY�;� of

S
`A` with A` � Z� = 0. Continuing in this

manner, we will eventually find all theAk in a minimal resolutionA. We must still
determine whichAk intersect and whatAk � Ak equals. Let us suppose that we
know whichAk intersect, then we may determine the weightsAk �Ak as follows.

The above calculations of the formA` � Z < 0 group theAk as follows.
X1 = fA1; : : : ; Asg, whereAi � Z < 0 if and only if 16 i 6 s. The next part
of the grouping isX2;(s+1) = fA(s+1);j :A(s+1);j � Z(Ys+1) < 0g; : : : ;X2;(t1) =
fA(t1);j :A(t1);j �Z(Y(t1)) < 0g; : : : ;X2;(s+r), whereYs+1; : : : ; Ys+r are connected
components of

S
i>sAi andA(t1);j are those curves inYt1 such thatA(t1);j �

Z(Yt1) < 0. We next consider connected componentsYt1;t2 of [A`, A` 62 X1[
X2;(s+1)[� � �[X2;(s+r).X3;(t1;t2) = fA(t1;t2);j � Yt1;t2:A(t1;t2);j �Z(Y(t1;t2)) < 0g.
After a finite numberr of steps all of theAk are listed. LetX1;X2; : : : ;Xr be the
curves listed at each step. ThusX2 =

S
tX2;(t). Theorem 3.10 algebraically gives

the fundamental cycle of each connected component of[A`, A` 2 Xr. Part (1)
of Corollary 3.11 then determinesAk � Ak for Ak 2 Xr. Next add the curves of
Xr�1. Knowing, by assumption which curves intersect, knowing the weights inXr

and knowing from Theorem 3.10 the coefficient ofAk 2 Xr�1 which appears in
the fundamental cycle of each connected componentR of [A`, A` 2 Xr�1 [Xr,
we may compute the fundamental cycle of each connected componentR (using
a computation as in Proposition 3.1). Part (1) of Corollary 3.11 then determines
Ak �Ak forAk 2 Xr�1. We next add the cycles inXr�2 and repeat the computation.
In this way we work back toX1 and determineAk �Ak for all curvesAk.

It thus remains to algebraically determine whichAk intersect. SupposeAi,
Aj0 2 X1. Corollary 3.11 tells whenAi \ jDj0 j 6= �. jDj0 j consists ofAj0 and
those componentsY� of

S
i>sAi such thatY� \ Aj0 6= �. However, Proposition

3.12 tells whenAi meets a componentY� . Thus we know whichAi in X1 inter-
sect and what componentsY� a givenAi in X1 meets.Ak 2 X2 corresponds to
�(Y� ;O(�Z� � Ak))=�(Y� ;O(�2Z�)) by Theorem 3.10, which in turn corre-
sponds to�(A;O(�2Z �Z� �Ak))=�(A;O(�2Z � 2Z�)) by Proposition 3.13,
for someY� such thatAk � Y� . LetEk be the least cycleE such thatAj �E 6 0 for
all j andE > 2Z+Z�+Ak. ThenEk 6 2Z+2Z� sinceAk 6 Z� by the choice of
�. ThusEk�2Z�Z� does not involve anyAi 2 X1. In factEk = 2Z+Z�+DY�

k

wherejDY�
k j consists ofAk and those componentsY�;� of [A`, A` =2 X1 [ X2

such thatY�;� \ Ak 6= �. Ek is obtained in a manner similar to Proposition 3.1:
Add successivelyB1 = Ai1, B2 = Ai2; : : :, such thatB1 � (2Z + Z� + Ak) > 0,
B2 � (2Z + Z� + Ak + B1) > 0; : : :. The process of adding theB’s terminates
at Ek. �(A;O(�2Z � Z� � Ak � Ai)) = �(A;O(�2Z � Z� � DYk

� � Ai))
since the successive quotient spaces�(A;O(�2Z � Z� �Ai �Ak �B1� � � � �
B`�1)=O(�2Z�Z��Ai�Ak�B1�� � ��B`)) correspond to sections of negative
bundles and hence are trivial. In addingB’s to 2Z +Z� +Ak, we may first add as
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many as possible of theA`, ` > s, such thatA` lies in some connected component
Y�;� of[A`,A` 62 X1[X2, whereY�;� \Ak 6= �. Call this cycleE0

k.E0

k�2Z�Z�
is aZk for someZk used in the calculation ofZ described in Proposition 3.1. In fact
E0

k = Ek, for supposeB existed so thatB �E0

k > 0.B 62 Y�;� for anyY�;� such that
Y�;� \Ak 6= � by our construction ofE0

k. ForAj 2 X1[X2,Aj � (2Z +Z�) < 0
by Theorem 3.2. 16 Aj � E

0

k = Aj � [2Z + Z� + (E0

k � (2Z + Z�))] implies
A � (E0

k�2Z�Z�) > 1�Aj � (2Z+Z�) > 2 which, by Theorem 3.2, contradicts
the rationality ofp. ThusEk = E0

k = 2Z + Z� + DY�
k as claimed. Consider the

sheaf exact sequence

0 !
O(�2Z � Z� �DY�

k )

O(�2Z � Z� �Ai �DY�
k )

!
O(�2Z � Z�)

O(�2Z � Z� �Ai �DY�
k )

!
O(�2Z � Z�)

O(�2Z � Z� �DY�
k )

! 0:

SinceH1(A;O(�2Z � Z� �DY�
k )) = 0 by Theorem 3.4, we have the following

short exact sequence

0 ! �

 
A;

O(�2Z � Z� �DY�
k )

O(�2Z � Z� �Ai �DY�
k )

!
! �

 
A;

O(�2Z � Z�)

O(�2Z � Z� �Ai �DY�
k )

!

! �

 
A;

O(�2Z � Z�)

O(�2Z � Z� �DY�
k )

!
! 0: (3.5)

As H1(A;O(�2Z � Z� �DY�
k � Ai)) = 0,H1(A;O(�2Z � Z� �DY�

k )) = 0
by Theorem 3.4, we have

�

 
A;

O(�2Z � Z�)

O(�2Z � Z� �Ai �DY�
k )

!
=

�(A;O(�2Z � Z�))

�(A;O(�2Z � Z� �Ai �DY�
k )

(3.6)

�

 
A;

O(�2Z � Z�)

O(�2Z � Z� �DY�
k )

!
=

�(A;O(�2Z � Z�))

�(A;O(�2Z � Z� �DY�
k ))

=
�(A;O(�2Z � Z�))

�(A;O(�2Z � Z� �Ak))
: (3.7)

In view of (3.5), (3.6) and (3.7), we have

dim
�(A;O(�2Z � Z�))

�(A;O(�2Z � Z� �Ai �DY�
k )

= dim�

 
A;

O(�2Z � Z� �DY�
k )

O(�2Z � Z� �DY�
k �Ai)

!
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+dim
�(A;O(�2Z � Z�))

�(A;O(�2Z � Z� �Ak))

= �Ai � (2Z + Z�) + dim
�(A;O(�2Z � Z�))

�(A;O(�2Z � Z� �Ak))
�Ai �D

Y�
k

= dim�

�
A;

O(�2Z � Z�)

O(�2Z � Z� �Ai)

�

+dim
�(A;O(�2Z � Z�))

�(A;O(�2Z � Z� �Ak))
�Ai �D

Y�
k

= dim
�(A;O(�2Z � Z�))

�(A;O(�2Z � Z� �Ai))

+dim
�(A;O(�2Z � Z�))

�(A;O(�2Z � Z� �Ak))
�Ai �D

Y�
k :

Therefore

dim
�(A;O(�2Z � Z�))

�(A;O(�2Z � Z� �Ai)) \ �(A;O(�2Z � Z� �Ak))

= dim
�(A;O(�2Z � Z�))

�(A;O(�2Z � Z� �Ai �Ak))

= dim
�(A;O(�2Z � Z�))

�(A;O(�2Z � Z� �Ai �DY�
k ))

= dim
�(A;O(�2Z � Z�))

�(A;O(�2Z � Z� �Ai))

+dim
�(A;O(�2Z � Z�))

�(A;O(�2Z � Z� �Ak))
�Ai �D

Y�
k : (3.8)

It is clear from (3.8) that

dim
�(A;O(�2Z � Z�))

�(A;O(�2Z � Z� �Ai)) \ �(A;O(�2Z � Z� �Ak))

< dim
�(A;O(�2Z � Z�))

�(A;O(�2Z � Z� �Ai))
+ dim

�(A;O(�2Z � Z�))

�(A;O(�2Z � Z� �Ak))
(3.9)

if and only if Ai �D
Y�
k > 0; if and only ifAi 2 X1 will meet eitherAk 2 X2 or

some connected componentY�;� in [A`,A` 62 X1[X2, such thatY�;� \Ak 6= �.
In X3, we have similar considerations in�(A;O(�4Z � 2Z� � Z�;� )) for

appropriateZ�;� = Z(Y�;� ) whereY�;� is a component of[A`, A` � Y� but
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A` 62 X2. Thus our final step is to algebraically distinguish, for exampleUi =
�(A;O(�4Z�2Z��Z�;��Ai)) forAi 2 X1. NoZ� orZ�;� involves anAj 2 X1.
Recall that in view of Proposition 3.12, fork > s, Wk +m2 = �(A;O(�Ak �
Z)) = �(A;O(�Z� � Z)) whereZ� = Z(Y�) andAk � Y� . For anyAi 2 X1,
�Ai � (Z� + Z) > �1� Ai � Z > 0, so�(A;O(�Z� � Z)=O(�Ai � Z� � Z))
is nontrivial. By Theorem 3.5,H1(A;O(�Ai � Z� � Z)) = 0. Hence the map
�(A;O(�Z��Z))! �(A;O(�Z��Z)=O(�Ai�Z��Z)) is surjective. Since
Wk + m2 is closed under linear combination,Wk + m2 contains functions that
vanish to exactly orderai onAi,Ai 2 X1. Thus theUi, 16 i 6 s, are characterized
by being maximal subspaces of�(A;O(�Z�;� � 2Z� � 4Z)) such that

Ua1
1 : : : Uas

s (Ws+1 +m2)es+1 : : : (Wr+s +m2)er+s � me; (3.10)

where

e = 4a1 + � � �+ 4as + es+1 + � � �+ er+s + 1

theek may be arbitrarily large and(a1; : : : ; as) are the minimal possible exponents
for U1; : : : ; Us.

To see this, we observe that by Theorem 3.5,Ua1
1 : : : Uas

s (Ws+1 +m2)es+1 : : :
(Wr+s+m

2)er+s = �(A;O(�
Ps

i=1 ai(4Z+2Z�+Z�;�+Ai)�
Pr

�=1 e�+s(Z�+s+
Z)) andme = �(A;O(�eZ)). Therefore (3.8) holds if and only if

Ps
i=1 ai(4Z +

2Z�+Z�;�+Ai)+
Pr

�=1 e�+s(Z�+s+Z) > (4a1+� � �+4as+es+1+� � �+er+s+
1)Z which, in turn, is equivalent to

Ps
i=1 ai(Ai+2Z�+Z�;� )+

Pr
�=1 e�+sZ�+s >

Z. Since the support ofZ �
Ps

i=1 ai(Ai + 2Z� + Z�;� ) is contained in
S
i>sAi,

es+1; : : : ; er+s can be found and may be arbitrarily large such that the above
inequality holds. It is also clear that(a1; : : : ; as) are the minimal possible expo-
nents forU1; : : : ; Us.

If a subspaceT of �(A;O(�4Z � 2Z� � Z�;� )) appeared on the left side of
(3.8) and had a functionf 2 T , with f 62 �(A;O(�4Z � 2Z� � Z�;� �Ai)) for
all Ai 2 X1, thenf would vanish to exactly order�4ai on allAi 2 X1. Then the
exponent forT could be set equal to 0. IfT 6� �(A;O(�4Z � 2Z� �Z�;� �Ai))
for all Ai 2 X1, then there would exist anf 2 T with f 62 �(A;O(�4Z � 2Z� �
Z�;� � Ai)) for all Ai 2 X1 sinceT is closed under linear combinations. Since
such anf cannot exist,T � �(A;O(�4Z�2Z��Z�;� �Ai)) for someAi 2 X1.

We may get a crude estimate fores+1; : : : ; en by considering all possible ways
that theAk can intersect, then determining, as described previously, the possible
weighted graph. We can then determine all the cycles used in the computation of
(3.8) and take the maximum of the neededes+1; : : : ; en.

Summarizing all of the above results gives the following.

THEOREM 3.16.Letp be a rational singularity andm the ideal ofp. There exists
an explicit algorithm to compute the weighted dual graph of the minimal resolution
of p in terms of the ring structure of

L
1

n=0m
n=mn+1.
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4. Determination of the graphs of rational CR manifolds

LetX be a connected compact strongly pseudoconvex CR manifold of real dimen-
sion 3 which is embeddable inC n . Let V be the subvariety inC n such that the
boundary ofV is X andV has isolated singularities atY = fp1; : : : ; pmg. Let ~V
be the normalization ofV . Note that~V may not be inC n . ChooseN large enough
so that~V is embeddable inCN . Let ~Y = fq1; : : : ; qrg be the normal singularities
of ~V .

LEMMA 4.1. The algebra ofCR functions onX is isomorphic to the algebra of
holomorphic functions on~V .

Proof.By the strong pseudoconvexity ofX = @ ~V and the normality of~V , one
easily sees that CR functions onX extend to holomorphic functions on~V . The
natural map from the algbera of CR functions onX to the algebra of holomorphic
functions on~V is an isomorphism because of the uniqueness of the extension.2

In view of Lemma 4.1, the analytic spectrum of the algebra of CR functions
on X is ~V because~V is a strongly pseudoconvex analytic space. Therefore, to
compute the graph�X , we only need to apply our theory developed in Section 3
to the singularities( ~V ; q1); : : : ; ( ~V ; qr). The following example illustrates how our
theory works.

EXAMPLE. Let us consider the 3-dimensional compact connected CR manifold
X = f(x; y; z) 2 C

3: jxj2+ jyj2+ jzj2 = 1,xy� z6 = 0g.X bounds the complex
varietyV = f(x; y; z) 2 C

3:xy � z6 = 0g with isolated singularity at the origin.
It is not difficult to show that holomorphic two forms onV � f0g are of the form
h � !, whereh is a holomorphic function onV and! is of the following form

dx ^ dy
@f
@z

=
dy ^ dz

@f
@x

=
dz ^ dx

@f
@y

; f = xy � z6:

One can check that! is aL2-integrable holomorphic 2-forms onV � f0g. By
Proposition 2.5, we conclude thatpg(X) is zero. SoX is a rational CR manifold.

Letm = (x; y; z)C fx; y; zg=(xy � z6)C fx; y; zg. Then

mk =
(x; y; z)kC fx; y; zg

(xy � z6)(x; y; z)k�2C fx; y; zg
; k > 2;

m=m2 =
(x; y; z)C fx; y; zg

[(xy � z6)C fx; y; zg + (x; y; z)2C fx; y; zg]

=
(x; y; z)C fx; y; zg

(x; y; z)2C fx; y; zg
= hx; y; zi;
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m2=m3 =
(x; y; z)2C fx; y; zg

[(xy � z6)C fx; y; zg + (x; y; z)3C fx; y; zg]

= hx2; y2; xy; yz; z2i:

Recall that by Theorem 3.10, if distinguished subspaces ofm=m2 exist, then
maximal distinguished subspacesS1; : : : ; St of m=m2 exist and are unique. Each
Sj corresponds toWj = �(A;O(�Z �Aj))=�(A;O(�2Z)) for anAj such that
Aj �Z < 0.bi in Definition 3.4 isai for 1 6 i 6 t. a1+ � � �+at+16 �Z �Z+1 =
dimm=m2 = 3 implies thata1+ � � �+ at 6 2. So there exist at most two maximal
distinguished subspaces. By Corollary 3.11, codimSj = �Aj � Z + 1 > 2. Since
dim m=m2 = 3 andSj is a nontrivial subspace ofm=m2, we conclude that dim
Sj = 1. Let

S1 = (x) +m2 and S2 = (y) +m2:

Then

S1S2 = (xy) + (x; y)m2 +m4 = (z6) + (x; y)m2 +m4

� 0 in m2=m3:

We have found two curvesA1, A2 in the exceptional set such thatA1 � Z < 0
andA2 � Z < 0. Moreover,a1 = a2 = 1. All the other curvesAj , j > 3, if
they exist, must have the property thatAj � Z = 0. Since 3= codimS1 \ S2 <
codimS1 + codimS2 = 4, in view of Corollary 3.11, we know thatA1 andA2 can
be joined by cyclesAi such thatAi � Z = 0. We now must determine the graded
ring structure for the singularities of theY� , the connected components of

S
i>2Ai,

so that we can apply Theorem 3.10 and Corollary 3.11 to find more of the curves
in the resolution.

LetW3 = (x; y) +m2. Then we claim that

((x; y) +m2)m3 � m((x) +m2)((y) +m2):

The L.H.S. is(x; y)m3 +m5 while the R.H.S. is(xy)m+ (x; y)m3 +m5. So the
above inclusion is clear. Therefore by (4) of Proposition 3.12, there is only one
connected componentY3 of

S
j>3Aj. In view of (3) of Proposition 3.12, we know

thatA1 \ Y3 6= � andA2 \ Y3 6= �. By the proof of Corollary 3.14, we know that
the graded ring structure for the singularityq3 of Y3 is

L
1

k=0m
k
3=m

k+1
3 , where

mk
3

mk+1
3

�=
mk(W3 +m2)k

mk�1(W3 +m2)k+1 ; k > 1;

m3

m2
3

�=
m((x; y) +m2)

((x; y) +m2)2
=

(xy)m+m3

(x; y)2 + (x; y)m2 +m4 = hxz; yz; z3; i;
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m2
3

m3
3

�=
m2((x; y) +m2)2

m((x; y) +m2)3
=

(x; y)2m2 + (x; y)m3 +m6

(x; y)3m+ (x; y)2m3 + (x; y)m5 +m7 ;

�= hx2z2; y2z2; xz3; yz3; z6i ((xz)(yz) � 0 inm2
3=m

3
3):

We see that there are two distinguished subspaces

W(3);1 = (xz) +m2
3; W(3);2 = (yz) +m2

3

in m3=m
2
3 and ((xz) + m2

3)((yz) + m2
3) � 0 in m2

3=m
3
3. We have found two

curvesA(3);1; A(3);2 in the exceptional set ofq3 such thatA(3);1 � Z3 < 0 and
A(3);2 �Z3 < 0. Moreover, the coefficients ofA(3);1 andA(3);2 inZ3 are one. All the
other curvesA(3);j , j > 3, if they exist, must have the property thatA(3);j �Z3 = 0.
Since 3= codimW(3);1 \W(3);2 < codimW(3);1 + codimW(3);2 = 4, in view of
Corollary 3.11, we know thatA(3);1 andA(3);2 can be joined by cyclesA(3);i such
thatA(3);i � Z3 = 0.

We now must determine the graded ring structure for the singularities ofY(3);� ,
the connected components of

S
i>2A(3);i, so that we can apply Theorem 3.10 and

Corollary 3.11 to find more of the curves in the resolution.
LetW(3);3 = (zx; zy) +m2

3. Then we claim that

(W(3);3 +m2
3)m

3
3 � m3((zx) +m2

3)((zy) +m2
3) :

The L.H.S. is(zx; zy)m3
3+m

5
3 while the R.H.S. is(zx)(zy)m3+(zx; zy)m2

3+m
5
3.

So the above inclusion is clear. Therefore by (4) of Proposition 3.12, there is only
one connected componentY(3);3 of

S
j>3A(3);j . In view of (3) of Proposition 3.12,

we know thatA(3);1\Y(3);3 6= � andA(3);2\Y(3);3 6= �. By the proof of Corollary
3.14, we know that the graded ring structure for the singularityq(3);3 of Y(3);3 isL

1

k=0m
k
(3);3=m

k+1
(3);3 where

mk
(3);3

mk+1
(3);3

�=
mk

3(W(3);3 +m2
3)
k

mk�1
3 (W(3);3 +m2

m)
k+1

; k > 1;

m(3);3

m2
(3);3

�=
m3(W(3);3 +m2

3)

(W(3);3 +m2
3)

2
�

m3(zx; zy) +m3
3

(zx; zy)2 + (zx; zy)m2
3 +m4

3

�=
(zx; zy)m3=m

4
3 +m3

3=m
4
3

(zx; zy)2O3=m
4
3 + (zx; zy)m2

3=m
4
3
;

whereO3 is the local ring of the singularityq3. By the proof of Corollary 3.14, we
have

m3
3

m4
3

�=
m3(W3 +m2)3

m2(W3 +m2)4
;

m3

m4
3

�=
m5(W3 +m2)

m2(W3 +m2)4
;

comp4112.tex; 4/09/1996; 7:38; v.7; p.28

https://doi.org/10.1023/A:1000476825608 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000476825608


PSEUDOCONVEX COMPACT 3-DIMENSIONAL RATIONAL CR MANIFOLDS 105

O3

m4
3

�=
m6

m2(W3 +m2)4
;

m2
3

m4
3

�=
m4(W3 +m2)2

m2(W3 +m2)4
:

Therefore

m(3);3

m2
(3);3

�=
(zx; zy)m3(W3 +m2) +m2(W3 +m2)3

(zx; zy)2m2 + (zx; zy)m2(W3 +m2)2 +m2(W3 +m2)4

�= f(zx; zy)(x; y)m3 + (zx; zy)m5 + (x; y)3m3 + (x; y)2m5

+(x; y)m7 +m9g=f(zx; zy)2m2

+(zx; zy)(x; y)2m2 + (zx; zy)(x; y)m4 + (zx; zy)m6

+(x; y)4m2 + (x; y)3m4 + (x; y)2m6 + (x; y)m8 +m10g

= hz6x; z6y; z9i;

m2
(3);3

m3
(3);3

�=
m2

3(W(3);3 +m2
3)

2

m3(W(3);3 +m2
3)

3

=
(zx; zy)2m2

3 + (zx; zy)m4
3 +m6

3

(zx; zy)3m3 + (zx; zy)2m3
3 + (zx; zy)m5

3 +m7
3

�=
(zx; zy)2m2

3=m
7
3 + (zx; zy)m4

3=m
7
3 +m6

3=m
7
3

(zx; zy)3m3=m
7
3 + (zx; zy)2m3

3=m
7
3 + (zx; zy)m5

3=m
7
3

:

By the proof of Corollary 3.14, we have

m6
3

m7
3

�=
m6(W3 +m2)6

m5(W3 +m2)7
;

m4
3

m7
3

�=
m8(W3 +m2)4

m5(W3 +m2)7
;

m2
3

m7
3

�=
m10(W3 +m2)2

m5(W3 +m2)7
;

m5
3

m7
3

�=
m7(W3 +m2)5

m5(W3 +m2)7
;

m3
3

m7
3

�=
m9(W3 +m2)3

m5(W3 +m2)7
;

m3

m7
3

�=
m11(W3 +m2)

m5(W3 +m2)7
:

Therefore

m2
(3);3

m3
(3);3

�=

(zx; zy)2m6(W3 +m2)2

+(zx; zy)m6(W3 +m2)4 +m6(W3 +m2)6

(zx; zy)3m5(W3 +m2) + (zx; zy)2m5(W3 +m2)3

+(zx; zy)m5(W3 +m2)5 +m5(W3 +m2)7
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�= f(zx; zy)2(x; y)2m6 + (zx; zy)2(x; y)m8 + (zx; zy)2m10

+(zx; zy)(x; y)4m6 + (zx; zy)(x; y)3m8

+(zx; zy)(x; y)2m10 + (zx; zy)(x; y)m12 + (zx; zy)m14

+(x; y)6m6 + (x; y)5m8 + (x; y)4m10+ (x; y)3m12

+(x; y)2m14+ (x; y)m16 +m18g=f(zx; zy)3(x; y)m5 + (zx; zy)3m7

+(zx; zy)2(x; y)3m5 + (zx; zy)2(x; y)2m7

+(zx; zy)2(x; y)m9 + (zx; zy)2m11

+(zx; zy)(x; y)5m5 + (zx; zy)(x; y)4m7

+(zx; zy)(x; y)3m9 + (zx; zy)(x; y)2m11

+(zx; zy)(x; y)m13 + (zx; zy)m15 + (x; y)7m5

+(x; y)6m7 + (x; y)5m9 + (x; y)4m11+ (x; y)3m13

+(x; y)2m15+ (x; y)m17 +m19g

�= hz12x2; z12y2; z15x; z15y; z18i ((z6x)(x6y) = z18):

It follows thatm(3);3=m
2
(3);3 has no distinguished subspaces. By Corollary 3.8,

the minimal resolution ofq(3);3 has just one curveA(3);3 and�A2
(3);3 + 1 =

dimm(3);3=m
2
(3);3 = 3. SoA2

(3);3 = �2.
By our previous discussion, we know that the graph ofY3 looks like the following

�2
�� �����������������������������

A(3);1 A(3);3 A(3);2

A(3);1 does not intersectA(3);2 because there is no cycle in a rational singularity
graph. We also know that

Z3 = A(3);1 +A(3);3 +A(3);2:

In view of (1) of Corollary 3.11, we have

�A(3);1 � Z3 + 1 = codimW(3);1 = 2

which implies

�A2
(3);1 = 2 i:e: A2

(3);1 = �2:

comp4112.tex; 4/09/1996; 7:38; v.7; p.30

https://doi.org/10.1023/A:1000476825608 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000476825608


PSEUDOCONVEX COMPACT 3-DIMENSIONAL RATIONAL CR MANIFOLDS 107

Similarly, we conclude thatA2
(3);2 = �2. So the graph ofY3 is given by

�2 � 2 � 2
�� �����������������������������

A(3);1 A(3);3 A(3);2

We now want to determine the intersection properties ofA1 and A2 with
Y3. According to the proof of Theorem 3.15, we need to characterizeU1 :=
�(A;O(�2Z�Z3�A1))andU2 := �(A;O(�2Z�Z3�A2)). They are character-
ized by being maximal subspacesof�(A;O(�2Z�Z3)) = mW3 = (x; y)m+m3

such that

U1U2(W3 +m2)e3 � m2+2+e3+1; (3.11)

wheree3 may be arbitrarily large. LetU1 = (x2; xz)+m3 andU2 = (y2; yz)+m3.
Then

U1U2(W3 +m2)e3

= [(xy)(x; z)(y; z) + (x2; xz; y2; yz)m3 +m6](W3 +m2)e3

= [(z6)(x; z)(y; z) + (x2; xz; y2; yz)m3 +m6](W3 +m2)e3 � m5+e3:

We claim thatU1 andU2 are maximal subspaces of�(A;O(�2Z �Z3)) such that
(3.11) holds. We need to estimate�(A;O(�2Z�Z3))=�(A;O(�2Z�Z3�Ai))
i = 1;2. In view of Theorem 3.4, we have, fori = 1;2,

�(A;O(�2Z � Z3))

�(A;O(�2Z � Z3 �Ai))
= �

�
A;O(�2Z � Z3)

O(�2Z � Z3 �Ai)

�
:

The Chern class of the line bundle corresponding toO(�2Z � Z3)=O(�2Z �
Z3 � Ai) is given by�Ai � (2Z + Z3) = �2Ai � Z � 1 > 1. Therefore dim
�(A;O(�2Z�Z3))=�(A;O(�2Z �Z3�Ai)) > 1+1 = 2. So�(A;O(�2Z �
Z3 � Ai)) is a subspace of codimension at least two in�(A;O(�2Z � Z3)). On
the other hand,U1 = x(x; z) +m3, U2 = y(y; z) +m3 are exactly codimension 2
subspaces in�(A;O(�2Z � Z3)) = (x; y)m+m3. So our claim is proved.

Recall thatW(3);1 = �(Y3;O (�Z3 � A(3);1)=O (�2Z3)) and W(3);2 =

�(Y3;O (�Z3�A(3);2)=O (�2Z3)) are maximal subspaces inm3=m
2
3 = �(Y3;O

(�Z3)=O (�2Z3)), such thatW(3);1 �W(3);2� 0 inm3=m
2
3 = � (Y3;O (�2Z3)=O

(�3Z3)). By the proof of Corollary 3.14, we have

�

 
Y3;O(�Z3 �A(3);1)

O(�2Z3)

!

�= �

 
A;
O(�2Z � Z3�A(3);1)

O(�2Z � 2Z3)

!
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�=
�(A;O(�2Z � Z3 �A(3);1))

�(A;O(�2Z � 2Z3))
;

�

 
Y3;

O(�Z3 �A(3);2)

O(�2Z3)

!

�= �

 
A;
O(�2Z � Z3�A(3);2)

O(�2Z � 2Z3)

!

�=
�(A;O(�2Z � Z3 �A(3);2))

�(A;O(�2Z � 2Z3))

and

�

�
Y3;

O(�2Z3)

O(�3Z3)

�
�= �

�
A;
O(�4Z � 2Z3)

O(�4Z � 3Z3)

�

�=
�(A;O(�4Z � 2Z3))

�(A;O(�4Z � 3Z3))

�=
m2(W3 +m2)2

m(W3 +m2)3
:

So�(A;O(�2Z�Z3�A(3);1)) and�(A;O(�2Z�Z3�A(3);2)) are the greatest
subspaces of�(A;O(�2Z � Z3)) = m(W3 +m2) such that

�(A;O(�2Z � Z3 �A(3);1)) � �(A;O(�2Z � Z3 �A(3);2))

� m(W3 +m2)3: (3.12)

We claim that

�(A;O(�2Z � Z3 �A(3);1))

= (x2; y2; yz) + (x3; x2z; xz2; y3; y2z; yz2) +m4;

�(A;O(�2Z � Z3 �A(3);2))

= (x2; y2; xz) + (x3; x2z; xz2; y3; y2z; yz2) +m4:

It is easy to check that

[(x2; y2; yz) + (x3; x2z; xz2; y3; y2z; yz2) +m4]

�[(x2; y2; xz) + (x3; x2z; xz2; y3; y2z; yz2) +m4]

� (x; y)3m+ (x; y)2m3 + (x; y)m5 +m7:
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So (3.12) holds. We now estimate�(A;O(�2Z�Z3)=O(�2Z�Z3�A(3);i)), i =
1;2. In view of Theorem 3.4, we have fori = 1;2,�(A;O(�2Z�Z3)=O(�2Z�
Z3�A(3);i)) = �(A;O(�2Z�Z3)=�(A;O(�2Z�Z3�A(3);i)). The Chern class
of the line bundle corresponding toO(�2Z�Z3)=O(�2Z�Z3�A(3);i) is given
by�A(3);i � (2Z + Z3) = �A(3);i � Z3 = 1. Therefore dim�(A;O(�2Z � Z3))=
�(A;O(�2Z � Z3� A(3);i)) = 1 + 1 = 2. So�(A;O (�2Z � Z3 � A(3);i))
is a subspace of codimension two in�(A;O(�2Z � Z3)). On the other hand,
(x2; y2; yz) +(x3; x2z,xz2; y3; y2z; yz2) +m4 and(x2; y2; xz)+(x3,x2z; xz2; y3,
y2z; yz2) +m4 are exactly codimension two subspaces in�(A;O(�2Z �Z3)) =
m(W3 +m2) = (x; y)m+m3. So our claim is proved.

dim
�(A;O(�2Z � Z3))

�(A;O(�2Z � Z3 �A1)) \ �(A;O(�2Z � Z3 �A(3);1))

= dim
m(W3 +m2)

[(x2; xz) +m3] \ [(x2; y2; yz) + (x3; x2z; xz2; y3; y2z; yz2) +m4]

= dim
(x; y)m+m3

(x2) + (x3; x2z; xz2; y3; y2z; yz2) +m4 = 4;

dim
�(A;O(�2Z � Z3))

�(A;O(�2Z � Z3 �A1))
=

(x; y)m+m3

(x2; xz) +m3 = 2;

dim
�(A;O(�2Z � Z3))

�(A;O(�2Z � Z3 �A(3);1))

=
(x; y)m+m3

(x2; y2; yz) + (x3; x2z; xz2; y3; y2z; yz2) +m4 = 2:

Hence

dim
�(A;O(�2Z � Z3))

�(A;O(�2Z � Z3 �A1)) \ �(A;O(�2Z � Z3 �A(3);1))

= dim
�(A;O(�2Z � Z3))

�(A;O(�2Z � Z3 �A1))
+ dim

�(A;O(�2Z � Z3))

�(A;O(�2Z � Z3 �A(3);1))
:

By the proof of Theorem 3.15, we conclude thatA1\A(3);1 = � andA1\A(3);3 =
�.

dim
�(A;O(�2Z � Z3))

�(A;O(�2Z � Z3 �A1)) \ �(A;O(�2Z � Z3�A(3);2))
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= dim
m(W3 +m2)

[(x2; xz) +m3] \ [(x2; y2; xz) + (x3; x2z; xz2; y3; y2z; yz2) +m4]

= dim
(x; y)m+m3

(x2; xz) + (x3; x2z; xz2; y3; y2z; yz2) +m4 = 3 < 2+ 2

= dim
�(A;O(�2Z � Z3))

�(A;O(�2Z � Z3 �A1))
+ dim

�(A;O(�2Z � Z3))

�(A;O(�2Z � Z3 �A(3);2))
:

By the proof of Theorem 3.15, we conclude thatA1\A(3);2 6= � orA1\A(3);3 6= �.
Since we already knowA1\A(3);3 = �, we conclude thatA1\A(3);2 6= �. Similarly,
we can conclude thatA2 \A(3);1 6= �. So the graph of the singularity looks like

We also know that

Z = A1 +A(3);2 +A(3);3 +A(3);1 +A2:

In view of (1) of Corollary 3.11, we have

�A1 � Z + 1 = codimW1 = 2

which implies

�A2
1 = 2 i:e: A2

1 = �2:

Similarly, we can deduce thatA2
2 = �2. So the complete weighted dual graph is

Thus, the graph�X is
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