GENERALIZED AFFINE KAC-MOODY LIE ALGEBRAS OVER LOCALIZATIONS OF THE POLYNOMIAL RING IN ONE VARIABLE

MURRAY BREMNER

Abstract

We consider simple complex Lie algebras extended over the commutative ring $C\left[z,\left(z-a_{1}\right)^{-1}, \ldots,\left(z-a_{n}\right)^{-1}\right]$ where $a_{1}, \ldots, a_{n} \in C$. We compute the universal central extensions of these Lie algebras and present explicit commutation relations for these extensions. These algebras generalize the untwisted affine Kac-Moody Lie algebras, which correspond to the case $n=1, a_{1}=0$.

1. Introduction. An untwisted affine Kac-Moody Lie algebra may be defined in two ways: either by generators and relations in terms of the data in a generalized Cartan matrix, or as the universal central extension of a loop algebra. By a loop algebra we mean a Lie algebra of the form $L=\mathbf{C}\left[z, z^{-1}\right] \otimes \mathbf{C} \mathfrak{9}$, where \mathfrak{g} is a finite-dimensional simple complex Lie algebra; the commutation relations are $[f \otimes x, g \otimes y]=f g \otimes[x y]$. It is well-known that the homology group $H_{2}(L, \mathbf{C})$ is one-dimensional, and hence the center of the universal central extension \hat{L} of L is also one-dimensional. All of this material, together with the theory of general Kac-Moody algebras and their representations, is explained in detail in [Kac, 1990].

The loop algebra construction suggests a natural generalization. We let A be any commutative associative \mathbf{C}-algebra; we then form the Lie algebra $L=A \otimes_{\mathbf{C}} \mathfrak{9}$, with Lie brackets defined by the formula given above. The theory of affine Kac-Moody algebras leads us to expect that the most interesting representations of L will be projective; that is, they will be ordinary representations of the universal central extension \hat{L} of L. The homology group $H_{2}(L, \mathbf{C})$, and the commutation relations for \hat{L}, can be computed in terms of Kähler differentials of A, following [Kassel, 1984].

The ring of Laurent polynomials $\mathbf{C}\left[z, z^{-1}\right]$ may be regarded as the ring of rational functions on the projective line $\mathbf{C} \cup\{\infty\}$ which have poles only at $z \in\{\infty, 0\}$. One of the simplest generalizations of this picture is to allow poles at an arbitrary finite set of points $\left\{\infty, a_{1}, a_{2}, \ldots, a_{n}\right\}$. This gives the ring

$$
A=\mathbf{C}\left[z,\left(z-a_{1}\right)^{-1}, \ldots,\left(z-a_{n}\right)^{-1}\right] ;
$$

for the rest of this paper this will be the definition of A. The universal central extensions \hat{L} of the Lie algebras $L=A \otimes_{\mathbf{C}} \mathfrak{q}$ are the Lie algebras to which the title of this paper

[^0]refers. (Perhaps it is more informative and convenient to call these Lie algebras N-point affine algebras, where $N=n+1$.)

Since the automorphism group $\mathrm{PGL}_{2}(\mathbf{C})$ of the projective line is (simply) 3-transitive, we lose no generality by assuming that ∞ is one of the points where a pole is allowed; indeed we could even assume that $a_{1}=0$ and $a_{2}=1$. For $n \in\{1,2\}$ there is thus a unique isomorphism class of rings A. For $n \geq 3$ there will be parametrized families of non-isomorphic rings.

In principle, there is nothing to prevent us from letting A be the localization of a finite algebraic extension B of $\mathbf{C}[z]$. That is, we let K be a finite extension of the function field $\mathbf{C}(z)$, and let B be the subring of K consisting of the elements which are integral over $\mathbf{C}[z]$. This corresponds to replacing the projective line with an algebraic curve of positive genus. (Some results for the case of genus 1 appear in [Sheinman, 1990].) However in what follows we will consider only the case of genus zero.

Another generalization of the affine Kac-Moody Lie algebras has been studied in [Moody et al., 1990]. That paper considers the ring $B=\mathbf{C}\left[t_{1}, t_{1}^{-1}, \ldots, t_{n}, t_{n}^{-1}\right]$ and the universal central extension of $B \otimes_{\mathbf{C}} \mathfrak{9}$, called a toroidal Lie algebra. The toroidal algebras have a \mathbf{Z}^{n}-grading (with finite dimensional subspaces), whereas the N-point affine algebras appear to have no grading by any finite Abelian group except when $N=2$. The centre of a toroidal algebra is infinite dimensional, whereas the centre of an N-point affine algebra is finite dimensional (see Theorem 2 below). We have a surjective ring homomorphism $B \rightarrow A$ given by $t_{i} \longmapsto z-a_{i}$ for $1 \leq i \leq n$. This induces a surjective linear map $H_{2}\left(\boldsymbol{B} \otimes_{\mathbf{C}} \mathfrak{g}, \mathbf{C}\right) \rightarrow H_{2}\left(A \otimes_{\mathbf{C}} \mathfrak{g}, \mathbf{C}\right)$, which shows that the N-point affine algebra is a homomorphic image of the toroidal algebra.

I thank S. Berman, R. V. Moody, D. Melville and the referee for helpful comments on a previous version of this paper.
2. Calculating $H_{2}(L, \mathbf{C})$. We start with an elementary fact.

Lemma 1. The subset $\{1\} \cup\left\{z^{k},\left(z-a_{j}\right)^{-k} \mid k \in Z_{+}, 1 \leq j \leq n\right\}$ is a basis of A over \mathbf{C}.

Proof. This subset spans A over \mathbf{C} by the theory of partial fractions. To show that this subset is linearly independent, suppose that the linear combination

$$
\sum_{k=0}^{m_{0}} b_{k}^{0} z^{k}+\sum_{j=1}^{n} \sum_{k=1}^{m_{j}} b_{k}^{j}\left(z-a_{j}\right)^{-k}
$$

equals 0 in A. If $m_{j}=0$ for all $j, 1 \leq j \leq n$, then this expression is a polynomial, and so all its coefficients (i.e. the b_{k}^{0} for $0 \leq k \leq m_{0}$) must be 0 . In the other case, $m_{j} \geq 1$ for some $j, 1 \leq j \leq n$, and $b_{m_{j}}^{j} \neq 0$. Multiplying the expression by $\left(z-a_{j}\right)^{m_{j}}$ then gives an element of A in which $z-a_{j}$ never occurs with negative exponent, and in which every term, except that with coefficient $b_{m_{j}}^{j}$, has $z-a_{j}$ as a factor. This element of A is clearly still 0 in A, and so its value at $z=a_{j}$ is also 0 . But this gives $b_{m_{j}}^{j}=0$, a contradiction. Thus all the coefficients of the expression must be 0 .

Using the results of [Kassel, 1984] (see also the special case worked out in [Moody et al., 1990]), it is not hard to determine the dimension of the center of the universal central extension \hat{L} of $A \otimes \mathbf{C} \mathfrak{g}$. The center of \hat{L} is linearly isomorphic to the homology group $H_{2}(L, \mathbf{C})$.

ThEOREM 2. We have $H_{2}(L, \mathbf{C}) \cong \mathbf{C}^{n}$. Hence the center of \hat{L} has dimension n.
Proof. Let $\left\{f_{i} \mid i \in I\right\}$, for some index set I, denote the basis for A described in the lemma. Let F be the free left A-module on the generators $\left\{\tilde{d} f_{i}\right\}$, where the $\tilde{d} f_{i}$ are formal symbols in bijective correspondence with the f_{i}. By setting $\left(\tilde{d} f_{i}\right) g=g\left(\tilde{d} f_{i}\right)$ for any $g \in A$ we may regard F as a two-sided A-module. We define a \mathbf{C}-linear map $\tilde{d}: A \rightarrow F$ by $\tilde{d}\left(\sum_{i} c_{i} f_{i}\right)=\sum_{i} c_{i}\left(\tilde{d} f_{i}\right)$. We let K denote the submodule of F spanned by the elements $\tilde{d}(g h)-\{(\tilde{d} g) h+g(\tilde{d} h)\}$ for any $g, h \in A$. In F / K the following elements are zero:

$$
\tilde{d} 1, \quad \tilde{d}\left(z^{k}\right)-k z^{k-1} \tilde{d} z, \quad \tilde{d}\left(\left(z-a_{i}\right)^{-k}\right)+k\left(z-a_{i}\right)^{-k-1} \tilde{d}\left(z-a_{i}\right),
$$

for $k \geq 1,1 \leq i \leq n$. Note also that $\tilde{d}\left(z-a_{i}\right)=\tilde{d} z$. Write $\Omega_{A}=F / K$. The differential map $d: A \rightarrow \Omega_{A}$ is defined by $d g=\tilde{d} g+K$. A basis of Ω_{A} consists of the elements

$$
z^{k} d z \quad(k \geq 0),\left(z-a_{i}\right)^{-k} d z \quad(k \geq 1,1 \leq i \leq n)
$$

Write $C=\Omega_{A} / d A$. Then since

$$
d\left(z^{k}\right)=k z^{k-1} d z, \quad d\left(\left(z-a_{i}\right)^{-k}\right)=-k\left(z-a_{i}\right)^{-k-1} d z
$$

we see that a basis of C consists of the cosets of the n elements

$$
c_{i}=\left(z-a_{i}\right)^{-1} d z, \quad 1 \leq i \leq n .
$$

The result of [Kassel, 1984] states that the center of \hat{L} is linearly isomorphic to C.
Write $g(d h) \longmapsto \overline{g(d h)}$ for the canonical quotient map $\Omega_{A} \rightarrow C$. Kassel's paper shows, in addition, that \hat{L} is linearly isomorphic to $(A \otimes \mathbf{C} \mathfrak{g}) \oplus C$, with Lie brackets

$$
[g \otimes x, h \otimes y]=g h \otimes[x y]+(x, y) \overline{(d g) h}, \quad[\hat{L}, C]=0
$$

where (x, y) denotes the Killing form of \mathfrak{g}.
3. Commutation relations for the universal central extension. To give a more explicit form to the commutation relations for \hat{L}, we need a formula to express the product of two basis elements of A as a linear combination of basis elements. We start with a combinatorial result.

Lemma 3. For any non-negative integer a, and any real numbers b, c, we have the identity of binomial coefficients (where the sum is always finite):

$$
\binom{b-c}{a}=\sum_{i=0}^{\infty}(-1)^{i}\binom{b}{a-i}\binom{c+i-1}{i} .
$$

Proof. From the formal power series expansion of the equation

$$
(1+x)^{b}=(1+x)^{c}(1+x)^{b-c},
$$

we derive the Vandermonde convolution formula

$$
\binom{b}{a}=\sum_{i=0}^{\infty}\binom{b-c}{a-i}\binom{c}{i} .
$$

(See [Riordan, 1968], p. 8.) Writing $b^{\prime}=b-c$, replacing c by $-c$, and then using b instead of b^{\prime}, we obtain

$$
\binom{b-c}{a}=\sum_{i=0}^{\infty}\binom{b}{a-i}\binom{-c}{i}
$$

Now using the relation

$$
\binom{-c}{i}=(-1)^{i}\binom{c+i-1}{i}
$$

we obtain the result.
There are two non-trivial cases for the product of basis elements of A.
Proposition 4. (a) We have

$$
z^{k}\left(z-a_{j}\right)^{-1}=\sum_{i=1}^{1}\binom{k}{l-i} a_{j}^{k-l+i}\left(z-a_{j}\right)^{-i}+\sum_{h=0}^{k-1}\binom{k-h-1}{l-1} a_{j}^{k-l-h} z^{h} .
$$

(b) For $i \neq j$, we have

$$
\begin{aligned}
\left(z-a_{i}\right)^{-k}\left(z-a_{j}\right)^{-1}= & \sum_{h=1}^{k}(-1)^{\prime}\binom{k+l-h-1}{l-1}\left(a_{j}-a_{i}\right)^{h-k-1}\left(z-a_{i}\right)^{-h} \\
& +\sum_{h=1}^{l}(-1)^{l+h}\binom{k+l-h-1}{k-1}\left(a_{j}-a_{i}\right)^{h-k-1}\left(z-a_{j}\right)^{-h} .
\end{aligned}
$$

Proof. (a) We first consider the special case $a_{j}=1$. We set $w=z-1$ and obtain

$$
\begin{aligned}
z^{k}(z-1)^{-1} & =(w+1)^{k} w^{-1}=\sum_{i=0}^{k}\binom{k}{i} w^{i-1} \\
& =\sum_{i=0}^{\prime-1}\binom{k}{i}(z-1)^{i-1}+\sum_{i=1}^{k}\binom{k}{i}(z-1)^{i-1},
\end{aligned}
$$

where the second summation must be rewritten, since the powers of $z-1$ are nonnegative. We have

$$
\sum_{i=l}^{k}\binom{k}{i} \sum_{h=0}^{i-1}(-1)^{i-l-h}\binom{i-l}{h} z^{h}=\sum_{h=0}^{k-1}\left(\sum_{i=l+h}^{k}(-1)^{i-l-h}\binom{k}{i}\binom{i-l}{h}\right) z^{h} .
$$

Replacing i by $i+l+h$ in the inner summation, and using the lemma with $a=k-l-h$, $b=k, c=h+1$, gives

$$
\sum_{i=0}^{k-l-h}(-1)^{i}\binom{k}{i+l+h}\binom{i+h}{h}=\sum_{i=0}^{k-1-h}(-1)^{i}\binom{k}{k-l-h-i}\binom{i+h}{i}=\binom{k-h-1}{k-l-h} .
$$

We now conclude that

$$
z^{k}(z-1)^{-l}=\sum_{i=1}^{l}\binom{k}{l-i}(z-1)^{-i}+\sum_{h=0}^{k-1}\binom{k-h-1}{l-1} z^{h}
$$

where we have replaced i by $l-i$ in the first summation.
For the case of arbitrary nonzero a_{j}, we set $z=a_{j} w$ and obtain $z^{k}\left(z-a_{j}\right)^{-1}=$ $a_{j}^{k-1} w^{k}(w-1)^{-1}$. We conclude that

$$
\begin{aligned}
z^{k}\left(z-a_{j}\right)^{-1} & =a_{j}^{k-1} \sum_{i=1}^{l}\binom{k}{l-i}(w-1)^{-i}+a_{j}^{k-1} \sum_{h=0}^{k-1}\binom{k-h-1}{l-1} w^{h} \\
& =\sum_{i=1}^{l}\binom{k}{l-i} a_{j}^{k-l+i}\left(z-a_{j}\right)^{-i}+\sum_{h=0}^{k-1}\binom{k-h-1}{l-1} a_{j}^{k-l-h} z^{h} .
\end{aligned}
$$

(b) We first consider the special case $a_{i}=0, a_{j}=1$. We set $w=1 / z$ and obtain

$$
\begin{aligned}
z^{-k}(z-1)^{-l}= & (-1)^{l} w^{k+l}(w-1)^{-l} \\
= & (-1)^{\prime} \sum_{i=0}^{l}\binom{k+l}{l-i}(w-1)^{-i}-(-1)^{l}\binom{k+l}{l} \\
& +(-1)^{l} \sum_{h=0}^{k}\binom{k+l-h-1}{l-1} w^{\prime \prime},
\end{aligned}
$$

where the first summation must be rewritten. Using $1 /(w-1)=-(1+1 /(z-1))$ we have

$$
\begin{aligned}
\sum_{i=0}^{l}\binom{k+l}{l-i}(-1)^{-i}\left(1+\frac{1}{z-1}\right)^{i} & =\sum_{i=0}^{l}\binom{k+l}{l-i}(-1)^{-i} \sum_{h=0}^{i}\binom{i}{h}(z-1)^{-h} \\
& =\sum_{h=0}^{l}\left(\sum_{i=h}^{l}(-1)^{-i}\binom{k+l}{l-i}\binom{i}{h}\right)(z-1)^{-h}
\end{aligned}
$$

Replacing i by $i+h$ in the inner sum, and using the lemma with $a=l-h, b=k+l$, $c=h+1$, gives

$$
(-1)^{h} \sum_{i=0}^{l-h}(-1)^{i}\binom{k+l}{l-h-i}\binom{h+i}{h}=\binom{k+l-h-1}{l-h}=\binom{k+l-h-1}{k-1} .
$$

We conclude that

$$
z^{-k}(z-1)^{-l}=\sum_{h=1}^{l}(-1)^{1+h}\binom{k+l-h-1}{k-1}(z-1)^{-h}+\sum_{h=1}^{k}(-1)^{\prime}\binom{k+l-h-1}{l-1} z^{-h}
$$

where the three constant terms have cancelled.
For the case of general a_{i}, a_{j}, we set $z=\left(a_{j}-a_{i}\right) w+a_{i}$, and obtain

$$
\begin{aligned}
\left(z-a_{i}\right)^{-k}\left(z-a_{j}\right)^{-l}= & \left(a_{j}-a_{i}\right)^{-k-l} w^{-k}(w-1)^{-1} \\
= & \sum_{h=1}^{1}(-1)^{l+h}\binom{k+l-h-1}{k-1}\left(a_{j}-a_{i}\right)^{-k-1}(w-1)^{-h} \\
& +\sum_{h=1}^{k}(-1)^{\prime}\binom{k+l-h-1}{l-1}\left(a_{j}-a_{i}\right)^{-k-1} w^{-h} .
\end{aligned}
$$

Since $w=\left(z-a_{i}\right) /\left(a_{j}-a_{i}\right)$ and $w-1=\left(z-a_{j}\right) /\left(a_{j}-a_{i}\right)$, we conclude that

$$
\begin{aligned}
\left(z-a_{i}\right)^{-k}\left(z-a_{j}\right)^{-l}= & \sum_{h=1}^{l}(-1)^{l+h}\binom{k+l-h-1}{k-1}\left(a_{j}-a_{i}\right)^{h-k-1}\left(z-a_{j}\right)^{-h} \\
& +\sum_{h=1}^{k}(-1)^{\prime}\binom{k+l-h-1}{l-1}\left(a_{j}-a_{i}\right)^{h-k-1}\left(z-a_{i}\right)^{-h} .
\end{aligned}
$$

In order to write down the explicit commutation relations for \hat{L} we also need to work out $\overline{(d g) h}$ for any two elements g, h of the basis of A given in the first lemma. In each case the result will lie in the n-dimensional vector space C spanned by the central basis elements $c_{i}=\left(z-a_{i}\right)^{-1} d z$ for $1 \leq i \leq n$.

PRoposition 5. (a) For $g=z^{k}, h=\left(z-a_{j}\right)^{-1}$, we have

$$
\overline{(d g) h}=k\binom{k-1}{l-1} a_{j}^{k-l} c_{j} .
$$

(b) For $g=\left(z-a_{i}\right)^{-k}, h=\left(z-a_{j}\right)^{-1}$, we have

$$
\overline{(d g) h}=(-1)^{l} k\binom{k+l-1}{k}\left(a_{j}-a_{i}\right)^{-k-1}\left(c_{j}-c_{i}\right) .
$$

Proof. For (a), it is easy to see that the coefficient of c_{m} in $\overline{(d g) h}$ is just the coefficient of $\left(z-a_{m}\right)^{-1}$ in the expansion of $k z^{k-1}\left(z-a_{j}\right)^{-l}$ as a linear combination of basis elements of A. This coefficient can be easily read off from the formula in the previous proposition. For (b) we find the coefficient of $\left(z-a_{m}\right)^{-1}$ in the expansion of $-k\left(z-a_{i}\right)^{-k-1}\left(z-a_{j}\right)^{-1}$. Note that the correctness of the last proposition can be checked by verifying that in each case $\overline{(d g) h}$ and $\overline{g(d h)}$ give the same answer but with opposite sign.

We can now write down the commutation relations for \hat{L}. We first introduce some shorthand notation for non-central elements of \hat{L}. For any $x \in \mathfrak{\varrho}$, we set

$$
\begin{gathered}
x(0,0)=1 \otimes x, x(k, 0)=z^{k} \otimes x, \quad k \in Z_{+} \\
x(k, i)=\left(z-a_{i}\right)^{-k} \otimes x, \quad 1 \leq i \leq n, k \in Z_{+}
\end{gathered}
$$

THEOREM 6. The commutation relations for \hat{L} are:

$$
\begin{aligned}
& {[x(k, i), y(l, i)]=[x y](k+l, i), \quad k, l \in Z_{+}, 0 \leq i \leq n,} \\
& {[x(k, 0), y(l, j)]=\sum_{i=1}^{l}\binom{k}{l-i} a_{j}^{k-l+i}[x y](-i, j)} \\
& \\
& +\sum_{h=0}^{k-1}\binom{k-h-1}{l-1} a_{j}^{k-l-h}[x y](h, 0) \\
& \\
& +k\binom{k-1}{l-1} a_{j}^{k-l}(x, y) c_{j}, \quad k, l \in Z_{+}, \quad 1 \leq j \leq n,
\end{aligned}
$$

and

$$
\begin{aligned}
& {[x(k, i), y(l, j)]} \\
& \quad=\sum_{h=1}^{k}(-1)^{l}\binom{k+l-h-1}{l-1}\left(a_{j}-a_{i}\right)^{h-k-l}[x y](-h, i) \\
& \quad+\sum_{h=1}^{l}(-1)^{l+h}\binom{k+l-h-1}{k-1}\left(a_{j}-a_{i}\right)^{h-k-l}[x y](-h, j) \\
& \quad+(-1)^{l} k\binom{k+l-1}{k}\left(a_{j}-a_{i}\right)^{-k-l}(x, y)\left(c_{j}-c_{i}\right), \quad k, l \in Z_{+}, \quad 1 \leq i, j \leq n .
\end{aligned}
$$

We conclude with some brief remarks on representation theory. To define Verma modules over the Lie algebras \hat{L}, we consider the subalgebra $\hat{L}_{0} \oplus \hat{L}_{+}$where $\hat{L}_{0}=\left(\mathbf{C} \otimes \mathfrak{g}_{0}\right) \oplus C$ (here \mathfrak{g}_{0} is the Cartan subalgebra of \mathfrak{g}) and $\hat{L}_{+}=z \mathbf{C}[z] \otimes \mathfrak{g}$. We let v be a symbol and consider the vector space $\mathbf{C} v$. We make this into a module over the Lie algebra $\hat{L}_{0} \oplus \hat{L}_{+}$ by defining $\hat{L}_{+} . v=\{0\}$ and $a . v=\lambda(a) v$ for all $a \in \hat{L}_{0}$, where $\lambda \in \hat{L}_{\theta}^{*}$ (the dual vector space). We then form the induced module

$$
V(\lambda)=U(\hat{L}) \otimes_{U\left(\hat{L}_{0} \oplus \hat{L}_{+}\right)} \mathbf{C} v
$$

and call this the Verma module with highest weight λ. The standard argument from KacMoody theory then shows that each $V(\lambda)$ has a unique maximal proper submodule, and hence a unique irreducible quotient $M(\lambda)$.

References

V. G. Kac (1990), Infinite dimensional Lie algebras, 3rd edition, Cambridge University Press.
C. Kassel (1984), Kähler differentials and coverings of complex simple Lie algebras extended over a commutative algebra, J. Pure Appl. Algebra 34, 265-275.
R. Moody, S. E. Rao and T. Yokonuma (1990), Toroidal Lie algebras and vertex representations, Geom. Dedicata 35, 283-307.
J. Riordan (1968), Combinatorial Identities, John Wiley \& Sons.
O. K. Sheinman (1990), Elliptic affine Lie algebras, Functional Anal. Appl. 24, 210-219.

Department of Mathematics
University of Toronto
100 St. George Street
Toronto, Ontario
M5S IAI

Current address:
Department of Mathematics and Statistics
University of Saskatchewan
Saskatoon, Saskatchewan
S7NOWO

[^0]: The author thanks the Natural Sciences and Engineering Research Council of Canada for financial support. Received by the editors August 4, 1992; revised November 12, 1992.
 AMS subject classification: 17B65, 17B67.
 (C) Canadian Mathematical Society 1994.

