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1. Introduction. We define the nth cyclotomic polynomial <f>n(z) by the equation

*B(z)= ft U-e(rM)) (e(a) = e2™) (1)
r = l

(r,n) = l

and we write

*„(*) = I a(m,n)zm, (2)
m = 0

where <t> is Euler's function.
Erdos and Vaughan [3] have shown that

|a(m,n)|<exp((T1/2+0(l))m1/2) (3)

uniformly in n as m-><», where

and that for every large m

/ m \1/2

logmax|a(m, n) |»l- . (4)
« Mog m /

Vaughan [8] has obtained a sharper bound for infinitely many m; that is

lim sup(m~1/2(log m)1/4 log max \a(m, n)\) > 0. (5)

Erdos and Vaughan conjectured that

log max \a(m, n)\ = o(m112) (6)
n

as m -» oo. in this paper we prove this, and more. In particular we obtain the exact order
of magnitude of

L(m) = log max \a(m,n)\, (7)
n

namely that
L(m)Xm1/2(logm)-1/4 (8)

as m —* oo.
From (10) below it can be seen that if Pt>p2> m, (piP2, n) = 1, then a(m, n) =

a(m, Pip2n). Hence the definition of L(m) would be unchanged if we were to replace max
by lim sup.

n—*°°
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144 H. L. MONTGOMERY AND R. C. VAUGHAN

The upper bound here stems from Theorem 1 below, a theorem of independent
interest concerning exponential sums with multiplicative coefficients.

THEOREM 1. Let 5P be a set of prime numbers and let M denote the set of m all of whose
prime divisors are in 9P. Then, for X > 1, we have

X fi(m)e(ma)«X(log2X)-1/2

m:SX
m€i

uniformly in $* and a eIR.

This estimate is best possible, as can be seen by taking

g> = {p : p = ±2(mod 5)} and a = 1/5.

In this case standard methods can be used to show that

#{m : m <X, /x(m) + 0, m eM}~ cX(log X)~1/2

as X —» oo, where c is a suitable positive constant, and that

#{m : m <X, m € M, /x(m) # 0, m = k(mod 5)}~ jcX(log X)"1/2

for k = 1, 2, 3, 4. Since /x(m) = ( —I for meM, the sum in question is

icXOog X)"1/2 f ( | )e( | ) + o(X(log X)-1/2) = ( y c + o(l))x(log X)"1'2.

The upper bound for L(m) in (8) is deduced from Theorem 1 in two steps.

THEOREM 2. For each z with | z | < l we have

log IO^CZ)!«(i -uir^iogr—r^-) .

THEOREM 3. We have

L(m)«m1/2(log2m)-1/4.

To complement this we also prove the following result.

THEOREM 4. For all sufficiently large m we have

L(m)»m1/2(logm)-1/4.

2. Proof of Theorem 1. We first of all observe that

I 1* I 1,
m^X msX
meM (m,P) = l

where
P=Y\P
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and z is a parameter at our disposal. Since

W<p£Z

whenever 2 < w < z , Theorem 2.2 of Halberstam and Richert [4] with z = X gives

mSX p<X

Hence

p s X

Let JV denote the set of natural numbers n, none of whose prime factors are in
Then

when tneJl,

Therefore

fi(m)c(ma)= ^ Z
nejV rsX/n

Davenport [1] has shown that for any fixed h

X n(r)e(r/3)«Y(log(2Y))-h

uniformly in p. Hence

The terms with n < \/X contribute «X/log X The remaining terms contribute

« I I 2k(k + l)-2.
0 f c

By (9) with ̂  replaced by Jf, that is *̂ replaced by dP = {p: p^ ^*}, we see that the above
is

kto
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146 H. L. MONTGOMERY AND R. C. VAUGHAN

Therefore, by (9),

meM

where II (si) = U. (1 - - ) • Now U(&)Tl(c&)«log X, so that at least one of II (#>) and
psX \ P /
pe.g?

is «VlogX.

3. Proofs of Theorems 2 and 3. Theorem 2 is trivial when n = 1 and so we may
suppose that n > l . Then, by (1),

*B(z)=n(i-2n/drW)- do)

Let N denote the squarefree kernel of n; JV = \\ p. Then
p|n

<Mz)=n d-cz^r^^^^u^).
d|N

Thus it suffices to establish Theorem 2 when

n> l , n(n)i=0. (11)

In that case the formula (10) becomes

*n(z) = II (1" z")^""1' = expf̂ Cn) I n(d)log(l- zd)\

On expanding log(l-zd) in powers of z this gives

( ) (12)

with

c m = - I dft(d). (13)
m d|(m.n)

For an arbitrary real number a we have

X cme(ma)= Z r Z li(d)e(dka).
msX k s x " dsX/k

d|n

Thus, by Theorem 1, when X > 1 we have

Theorem 2 now follows easily from (12) by partial summation.
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The proof of Theorem 3 is a straightforward application of Cauchy's inequalities for
the coefficients of a power series followed by an appeal to Theorem 2 with |z| =
l-m-1/2(log3m)-1/4.

4. Preliminaries to the proof of Theorem 4. The proof of Theorem 4 is based on a
precise analysis of the behaviour of ^n(z) for particular choices of n. In Vaughan [8] it
was shown that <5n(z) can be made large by choosing n to be the product of primes p < M
with p = ±2(mod 5). However the argument given there is not precise enough to localize
the behaviour of a(m, n) with respect to m.

It is possible to obtain quite precise estimates for a{m, n) by starting from (12), or
more or less equivalently exp(F(z)), where F is given by (15) below, and to apply the
saddle point method to

-M
2 m

where % is a circle radius p < l , centre 0, analogously to the simplest arguments used to
estimate the partition function. However this gives rise to considerable technical compli-
cations as the Dirichlet series generating function D(s, a) occurring in (19) below has an
algebraic singularity at s = 1. To avoid these complications we employ a method which
gives less precise estimates, albeit sufficient for the purpose at. hand. We obtain an
asymptotic estimate for

log|$n(pe(a/5))| as p ^ l -

and a sharp upper bound for log|<I>n(pe(a))| that is uniform in a. These estimates then

permit us to complete the proof by a combinatorial argument similar to that of §8 of

Erdos and Vaughan [3].
Let SP = {p: p = ±2(mod 5)}, let Jf denote the set of natural numbers all of whose

prime factors are in *3>, and let

I d(d) (14)

For technical ease we work with

F{z)= £ c(m)zm (15)
m = l

oo

rather than the series £ Cmz>n which occurs in (12). Clearly if n = np^M,P=±2(mods) P with
m = l

M large, then a(m,n) is the coefficient of zm in the power series expansion of
exp(-ft(n)F(z)).

We suppose that z = pe(a) with 0 < p < l and aeU. Let

X=(log-)\ (16)

For large X we define major and minor arcs as follows. When 1 < a :S q :< (log X)3 and
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148 H. L. MONTGOMERY AND R. C. VAUGHAN

(a, q ) = l , let the major arc M(q,a) consist of the set of z = pe(a) with | a - a / q | <
(logX)4q"1X"1. Since X is large, the major arcs are pairwise disjoint. We define the
minor arcs M to be the set of those z, with \z\ = p, lying in no major arc M(q, a).

5. The minor arcs. The treatment of the minor arcs is based on the following special
case of Corollary 1 of Montgomery and Vaughan [6]. Note that, by (14), c(m) is
multiplicative and

LEMMA 1. Suppose that \a -a/q |<q~2, (a, q) = 1 and 2 < .R < q < M/i?. Then

Z c(m)e(ma)« + MR~1/2(logR)3/2.

m=i logM

From this we deduce the following result.

LEMMA 2. Suppose that zem. Then

XF(z)«
logX'

Proof. We are given that X is large and z e m. By Dirichlet's theorem on diophantine
approximation there are a, a, q with z = pe(a), 1 < a <q <X/(log X)4 and | a - a / q | <
(logX)4X~1q~1. Since zem we further have q>(logX)3.

Let
n

Sn = Z c(m)e(am).
m = l

Then, by (15),

F(z) = ( l -p) £ SnP
n.

n = l

By (14), |c(m)|<l. Thus, by (16),

Z SnP
n+ I Snp"« I n

nsXlogX n>XlogX ttsX/logX

[XlogX])pfc+[xlogX1«X2/logX.
k > 0

When X/ logX<n<XlogX we have (logX)3<q<n/(logX)3 and \a-a/q\<q
Hence, by Lemma 1 with R = (log X)3 we have

SH « n/log n.

Therefore

Z Snp"« £ -^-«X2/logX
X/logX<n==XlogX n = l l O g A

Combining our estimates gives the desired conclusion.
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6. The major arcs. Let

^ (17)

77

The argument of Satz 231 of Landau [5] shows that whenever |Im w|<— one has

— e-wT(s)ds=exp(-cw).

By Satz 229 of Landau [5],

This with (15) and a straightforward application of Satz 232 of Landau [5] shows that

= — D(s,a)( F(s) ds,
2m Jo-()_ioo M - Z T T I X / S /() M-ZTTIX/S/

where

D(s,a)= £ -e(ma).

Thus, in order to study F{z) in the neighborhood of the point pe(a/q), i.e., for z eM(q, a),
we investigate the behaviour of D(s, a/q). This investigation is dependent on replacing the
additive character e(am/q) by a linear combination of Dirichlet characters. This we
accomplish in the following way. We have

D{s,a/q) = 2, L ——e(amlq).
d|q m = l "I

Moreover, by (14),
c(nq/d) = c(q/d)c(n,q/d),

where

c{n,r) = - X mfi(m).
" m \n

(m,r)=l

Therefore

!!!!,L (20)
d|q (q/a) P(a)

where T(^) is the Gauss sum

r(x)=ix(r)e(r/q) (21)
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150 H. L. MONTGOMERY AND R. C. VAUGHAN

and

£ c{n, r)
D(s, r,X)= L — X(n).

n = i n
Now,

D(s,r,x) = L(l + s,x)G(s,r,X), (22)
where

G(s,r,x)= 1 1
mejV "I

(m,r)=l

Clearly G(s, r, x) is of the form

G(s>*) =

where x' is the character induced by x and having modulus q. Thus, by (20) and (22),

x'). (23)

As a function of s, G(s, x') is regular and non-zero for <r> 1 and satisfies

(24)
p

where Xs is the quadratic character modulo 5 and Xi is the principal character modulo 5.
Let

T = exp((logX)1/2), (25)

5= '
C(logX)1/2>

where C is a large constant. Let si denote the set of complex numbers s = <r + it with
either l - 2 8 < c r < l and |f|<2T or <r> 1, and let si' denote the set of complex numbers s
with either 1 - 2 8 < a < 1 and 0 < |f| < 2T or o- > 1. Then by combining the general theory
of L-functions as expounded in Davenport [2], for example, with the argument of
Theorem 3.11 of Titchmarsh [7] it follows that, for each non-principal character x to a
modulus q ̂  5(log X)3, L(s, x) is regular and non-zero in si and satisfies

and

uniformly in si, for each fixed positive e. Also, if x is a principal character to a modulus q
with q<5(logX)3, then

« — 1 V n 1

a L p|q v V
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is regular in si, L(s, x) is non-zero in si and L(s, x) satisfies

S ^ p|q

uniformly in si.

Therefore, by (24), when x' is non-principal and is not induced by xs, G(s, x') has an
analytic continuation throughout si, and

uniformly in si. Let <€ denote the piecewise linear path with vertices cro-i°°, <ro-iT,
1-8-iT, 1-8 + iT, o-n+iT, cro+ia>. Then

(27)

r(s).

1 ( / d \ I X VL idm )Gh * k ) r() *
and by (18) this is

For pe ((a/q) +13) 6 M(q, a) we have q s (log X)3 and | (31 < (log X)4q ~ *X~'. Hence the expres-
sion above is

«Xexp(-CiaogX)1/2)

for a suitable positive constant ct.
When x' is principal or is induced by Xs w e observe that G(s, x') has an analytic

continuation throughout si' and that

+ s, x)G(s, x')«. (1 + |s - l|-1/2)(q(l + \t\)Y

holds uniformly in si'. Now let ^ have vertices

<70 — I 0 0 , <T0 — l'T, 1 — S — / T , 1 — 5 — IT), 1 + T) — IT), 1 + T) + IT), 1 — 5 + IT),

1-8 + iT, <T0 +iT,

where TJ is any small positive number. Then (27) holds once more. Moreover, by (18)
again we obtain

1 CT"+i°°/d\s I X \
—- - )L(l + s,x)G(s,x') — ^ — r ^
2ITI Jo.0_ioo \q / \ 1 — 2 I T J X | 3 /

= ^ ~ (-) L(l + s, x)G(s, x')(, - .-.-)
2T7J .L \q / \l-27nXp/

) ^ d + s, x)G(s, x)L Ya
^ q/ \l-27nXj3

O(Xexp(-c2(logX)1/2)),
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where <(?„ has vertices

1 — 6 — IT), 1 + T) — IT), 1 + 7}+it], 1 — 8+ IT}.

When x' is principal we have, by (24),

G(s,x')2=(s-l)H(s,X'),

where H is regular and non-zero in M, and

n

)
(S - 1)L(S, XlX) p«±2(mod5) ^ P

Thus there is a function K(s, x'), regular in $&, such that

in .sf, and K(s, x')2 = W(s, x') in ^- Moreover

uniformly in sd. Using x0 f°r t n e principal character modulo d and *o for the principal
character modulo q we find, on letting TJ —>0+, that

1 f^'^/dX' / X V
— - L(l + s,Xo)G(s,x$L
2TTI J^-joo \q I

0 .YflI - 2mX/3 /

f1
f ( ) o x ^ ) ( )r(u)

+ O(Xexp(-c2(logX)1/2))

«eq
eX(logX)-3/2.

Therefore, by (19) and (23), the total contribution to F(z), when zeM(q,a), from
the characters not induced by Xs is

Thus we have established the following lemma.

LEMMA 3. Suppose that 5Jfq, 1 < a ^ q ^ ( l o g X)3, (a, q)= 1, X is large and ze
M(q, a). Then

F(z) «X/logX.

We now have to turn our attention to the situation when characters induced by x5

occur. Then 5 | q and such characters can only occur to moduli d dividing q with 5 | d. Let
X denote such a character. Then, much as in the case of the principal character above we
find that for sed'
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where J is regular in si and satisfies

• n
p=±2(mod5)

Moreover, for q < (log X)3, d \ q, we have

2-n-i .Lo_ioo \q I
,X')( x Y

A Vl-277iX/3/

= - f (-)"L(1 + u, y)(l - u)~1/2J(u, xo
\ l -

+ O(Xexp(-c3(logX)1/2)).

By the formula at the bottom of page 67 of Davenport [2] we have
fx(d/5)xs(d/5)51/2. Hence, by (19) and (23), when zeM(q,a) we have

S|d|q

where 7(u, d, q) is equal to

(T^T((7^)(/4rr n
\ L(U, X5) / \ p | d \ p / / V p | q P - X s ( P V p -

(
Thus

p-±2(mod5)
(p,q)=l

where

fJ / X \ u

(l-u)-1 / 2 Br(u,
JJ_8 \ l -2TnX/

ql5)du,

B 1 ( u , r ) = r ( u ) L ( l + u>,
\>"±2(mod5)

and

fclr

n
Plr

p"±2(mod 5)

When 1 - 8 < U < 1 we have B1(u,r) = B1(l,r) + (l-u)B[(v,r) for some ue(u, 1), and
B[(w, r)«ErB uniformly on [u, 1]. Hence

4TT

fx / X \ u

( 1 / 5 ) ( l - u ) - 1 / 2 - , y - du + O(X/logX).
JJ_8 \ l-27nX/3/
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We also have

V 3 Vp-±2(mod5)

where

n -
p | r p +

p«±2(mod 5)

We can evaluate B(r) by observing that it is multiplicative and satisfies

2
B(p) = -5—7 when *s(p) = - 1 ,

B(pfc) = -P2~2k when fc>l and XS(P) = - 1 .
B(pk) = -p1-2k when xs(p) = +l ,
B(5fc) = 5"2fc.

Thus

We also observe that

and that

f (l-u)
Jl-8 l - 6

XTT 1 / 2

Combining the above results establishes the following lemma.

LEMMA 4. Let Xs denote the quadratic character modulo 5 and let

p2

Then

I /n\\ X I Y \
)• (29)

https://doi.org/10.1017/S0017089500006145 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500006145


COEFFICIENTS OF CYCLOTOMIC POLYNOMIALS 155

Suppose further that 1 < a < q < (log X)3, (a, q) = 1, 51 q, X is large, and z e M(q, a). Then

|F(z ) | s^(^5)ao^+o(io^)' (30)

where
= l and B(r)<4/(3r) (r>l).

7. Completion of the proof of Theorem 4. Let M be large and let

n= I I P>
psM

p-±2(mod5)

so that neJf. We shall show for some n' that |a(M, n')|>exp(cM1/2(logM)~1/4) for a
suitable positive constant c. By (13) and (14) we have

I cmzm= I c(m)zm + o ( X | 2 |m) . (32)
m = l m = l V > M '

Suppose |z| = p = e~1/x with X large. Then, by Lemmas 2, 3 and 4

AX / X \

- ( l o g X ) 1 / 2 + ° V l o g ^

provided that

M>XloglogX. (33)

By (12) and Cauchy's inequalities for the coefficients of power series we have

Im AX I X

Now we may choose

X = (^y/2Qlogm)1/4

provided that (33) is satisfied, and it certainly will be when

2<m<M2/logM. (34)

Thus
/>} 5/4/ A \ 1/2 / 1/2 \ \

la(m,n)|<expZ
n ^ / 4 +o( m )). (35)

\ (log m) ' \(logm)'/ /
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Now instead choose X so that

(logX)1/2=100- ( 3 6 )

Again (33) is satisfied. Thus, by (32) and Lemma 4,

X cmpme(am/5) = x(a)A- ^Tr2+O\ 1. (37)

The maximum of the function of x given by

25/4(Ax)1/2 x
(logX)1/4 X

occurs with AX"2

(logX)1'2'

Hence, by (36) and (35),

V i / Mm /25/4( AM/200)1'2 M / X \ \

i& p
 WM/200))-4 - ^ + ° y ) -

Therefore, by (36),

A similar argument shows that

Also it follows easily from Theorem 3 that

£ , |a(m,n)|pm<l.

Hence, by (12), (37), (38) and (39) there is an a such that

Therefore there is an Mo and a positive constant C such that

M M
— < M 0 < — and |a(M0,n)|>exp(CM1/2(logM)-1/4). (40)

Let
A = exp(jM1/2(logM)-1/4j. (41)
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If |a(M, n)|> A, then we are finished. Hence we may assume that

\a{M, n)|<A. (42)

By (10)

<t>mn(z)=U*n(zmldr(d) ((m,n)=l). (43)
d|m

Let p, q denote distinct prime numbers with p, q = ±l(mod 5), q > M. Further let a-(m, n)
denote the coefficient of zm in the power series expansion of "^(z)" 1 , valid for | z | < l .
Note that lr, N ., IA N , , ,..,

a_(0,n)=l, a-(l,n) = tJ.(n). (44)
Now, since q>M, it follows from (43) with m = pq that

a(M, npq) = £ a("> n)a-(v, n)
U20.D20
u+pu=iVf

where
b1(M,p)= X a(M-pu, n)a_(u, «)•

If |fci(M, p)|>2A, then we are finished. Hence we may suppose that

Ifc^M, p)|<2A for each prime p = ±l(mod5). (45)

Now let Pi, p2 denote distinct prime numbers in the residue classes ±l(mod5) with
p\>M, p\>M. Then, by (43) with m = P!p2, we have

a(M, np!p2) = Z a ( " . n)a-(«i. n)a_(u2, n)
u SO, u,£0, u2^0
u+plvl+p2v2=M

= a(M, n) + b1(M, P l ) + 6i(Af, p2) + b2(M, P l , p2),
where

X — p2u2, n)a_(t!1; n)a_(u2, n).

If \b2(M, p1( p2) |>6A, then the desired conclusion follows from (42) and (45). Hence we
may suppose that

|fc2(M,Pl,p2)|<6A (46)

for all distinct primes pl5 p 2 =± l (mod 5) with p\>M, p\>M.
Now let Pi, p2, p3, q denote distinct primes in the residue classes ±l(mod5) with

p2i>M,q>M. Then, by (43) with m = p1p2p3q, we have

a(M, np1p2p3q) = X a("> n)a-(vlt n)a^(v2, n)a_(v3, n)
u£0,Oj20,l)220,l>3£0
U + PiOi+p2U2"+"P3u3 = M

Y X b2(M, pf, p,) + i>3(M, p1; p2, p3)
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with

b3(M,pu p2,p3)= £ a(M-p1v1-p2v2-p3v3)a-(v1, n)a_(u2, n)a_(u3, n).

When M-Mo is odd a straightforward application of the Hardy-Littlewood-Vinogradov
method as expounded in Chapter 3 of Vaughan [9] shows that there are distinct primes
Pi. P2> P3 with Pi>\M, p{ = ±l(mod 5) and p1 + p2+p3 = M - M 0 . For such a choice of
Pi, Pi, Pa we have

b3(M, px, p2, p3) = a(M0, n)a(l, n)3.

Hence, by (40), (41) and (44), we have

\b3(M, p1; p2, p3)|>26A.

Thus, when M-Mo is odd, it follows from (42), (45) and (46) that

\a(M, np1p2p3q)\> A,

as required.
Now suppose that M-Mo is even. If \b3(M, pu p2, p3)|>26A, then we are finished.

Hence we may suppose that

|b3(M,Pl,p2,p3)|<26A, (47)

for all distinct primes px, p2, p3 = ±l(mod 5) with p2
t>M. By applying the Hardy-

Littlewood-Vinogradov method as above one can readily show that there are primes
Pi, P2, P3, P4 with Pi>^M, Pi = ±l(mod 5) and p1 + p2 + p3 + p4 = M-M 0 . By (43) with
m = Pip2p3p4 we obtain

a(M, np1p2p3p4) = a(M,n) + Y, b^M, pf) + X b2{M, ph p,)

+ Z MM, ̂  p,-, pk) + a{M0, n)a_(l, n)4.
i<j<k

The argument can now be completed much as in the previous case. Thus we have shown
that

max |a(M, n)\> A.
n

This completes the proof of Theorem 4.
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