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Recent research on the acoustic realization of affixes has revealed differences between
phonologically homophonous affixes, e.g. the different kinds of final [s] and [z] in English
(Plag, Homann & Kunter 2017, Zimmermann 2016a). Such results are unexpected and
unaccounted for in widely accepted post-Bloomfieldian item-and-arrangement models
(Hockett 1954), which separate lexical and post-lexical phonology, and in models which
interpret phonetic effects as consequences of different prosodic structure. This paper
demonstrates that the differences in duration of English final S as a function of the mor-
phological function it expresses (non-morphemic, plural, third person singular, genitive,
genitive plural, cliticized has, and cliticized is) can be approximated by considering the
support for these morphological functions from the words’ sublexical and collocational
properties. We estimated this support using naïve discriminative learning and replicated
previous results for English vowels (Tucker, Sims & Baayen 2019), indicating that
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ences at UC Berkeley 2017, International Symposium of Morphology Lille 2017, 40. DGfS-
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an ongoing collaboration within the DFG Research Unit FOR2373 ‘Spoken Morphology’. We
are very grateful to the Deutsche Forschungsgemeinschaft for funding this research (Grants: BA
3080/3-1 ‘The articulation of morphologically complex words’ to Harald Baayen; PL151/8-1
‘Morpho-phonetic Variation in English’ to Ingo Plag and Mirjam Ernestus; PL151/7-1 ‘FOR
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segment duration is lengthened under higher functional certainty but shortened under
functional uncertainty. We discuss the implications of these results, obtained with a wide
learning network that eschews representations for morphemes and exponents, for models
in theoretical morphology as well as for models of lexical processing.

KEYWORDS: acoustic duration, discriminative learning, lexical processing, morphology,
phonetics

1. INTRODUCTION

Many studies have shown that the phonetic realization of words may depend on
the morphological structure of the word. For example, Kemps et al. (2005a, b)
and Blazej & Cohen-Goldberg (2015) showed that free and bound variants of
a stem differ acoustically and that listeners make use of such phonetic cues in
speech perception. Paradigmatic probability has been demonstrated to influence
the duration of linking elements in Dutch compounds (Kuperman et al. 2007) and
the dispersion of vowels in Russian verbal suffixes (Cohen 2015). Syntagmatic
probability influences the duration of the regular plural suffix in English (Rose
2017), and the duration of third person singular -s in English is subject to both
syntagmatic and paradigmatic probabilities (Cohen 2014a). Some studies have
found that the phonetic properties of segments vary according to the strength of
the morphological boundary they are adjacent to (e.g. Smith, Baker & Hawkins
2012, Lee-Kim, Davidson & Hwang 2013), and others provided evidence that the
duration of affixes is dependent on the segmentability of the affix (e.g. Hay 2007,
Plag et al. 2017).

Several studies have investigated phonologically homophonous affixes with
quite unexpected results. Ben Hedia & Plag (2017) found that the nasal consonant
of the locative prefix im- (as in import, implant) is shorter than the one in
words with negative in- (impossible, impotent). Plag et al. (2017) investigated
multi-functional word-final [s] and [z] in conversational North American English,
using a rather small sample from the Buckeye corpus with manual phonetic
annotation (Pitt et al. 2007). Their data showed robust differences in the acoustic
durations of seven kinds of final [s] and [z] (non-morphemic, plural, third person
singular, genitive, genitive plural, cliticized has, and cliticized is). Basically, the
same patterns of durational differences hold for New Zealand English, as shown
in a study based on a very large sample with automatic phonetic annotation
from the QuakeBox corpus (Zimmermann 2016a). Seyfarth et al. (2018) also
found differences in stem and suffix durations in English S-inflected words (e.g.
frees, laps) compared to their simplex phonologically homophonous counterparts
(e.g. freeze, lapse). All of these recent findings challenge traditional models of
phonology–morphology interaction and of speech production which postulate
that phonetic processing does not have access to morphological information
(e.g. Chomsky & Halle 1968, Kiparsky 1982, Levelt & Wheeldon 1994, Levelt,
Roelofs & Meyer 1999).
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In this paper, we concentrate on word-final [s] and [z] (from now on S) in
English and address the question of how the differences between the different
types of word-final S observed by Plag and colleagues and by Zimmermann can
be explained (Zimmermann 2016a, Plag et al. 2017). Plag et al. (2017) discuss a
number of possible explanations for their findings, none of which were found to
be satisfactory.

It is well known from many studies that various (conditional) probabilities
predict aspects of the speech signal (e.g. Bybee 2001, Jurafsky et al. 2001a, b,
Bell et al. 2003, Pluymaekers, Ernestus & Baayen 2005b, a, Bell et al. 2009,
Torreira & Ernestus 2009). In the case of final S, however, the usual measures
of experience (lexical frequency, transitional phoneme probability, neighborhood
density, bigram frequency, etc.) do not appear to account for the differences in
S duration. As reported by Plag et al. (2017), inclusion of these measures in
regression models does not render superfluous the factor distinguishing between
the different functions realized with S.

In this paper, we follow up on a study by Tucker et al. (2019) which made use of
naïve discriminative learning to predict the acoustic duration of the stem vowels
of English regular and irregular verbs. Naïve discriminative learning uses wide
learning networks to study the consequences of error-driven learning for language
and language processing. These networks make it possible to study in detail
the ‘discriminative capability’ of linguistic cues, i.e. how well morphological
functions such as those realized with the English S exponent are discriminated
by sublexical and collocational features.

The study of Tucker et al. (2019) calls attention to two opposing forces shaping
the duration of verbs’ stem vowels. When sublexical and collocational features
support strongly and directly a verb’s tense, this verb’s vowel has a longer duration
for the majority of data points. Conversely, when features support different
semantic functions, vowel duration is reduced. In what follows, we investigate
whether the findings of Tucker et al. generalize and also contribute to clarifying
the variation in the duration of S as a function of the morphological function it
realizes.

To do so, we proceed as follows. We begin with a more detailed introduction to
the duration of S. We then proceed with a corpus study of S in the full Buckeye,
extending and replicating the results of the original Plag et al. (2017) study. This is
followed by an introduction to naïve discriminative learning (NDL) and specific
NDL measures such as activation or activation diversity that we use to predict
the duration of S. Application of these measures to the Buckeye data shows that
indeed these measures provide improved prediction accuracy. We conclude with a
discussion of the theoretical implications of this result, which is non-trivial as it is
obtained with a computational model that eschews form units such as morphemes
or exponents and instead estimates discriminative capability directly from low-
level form features.
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2. FINAL S IN ENGLISH

Homophony has attracted considerable attention in recent years as a testbed for
theories of the mental lexicon. Research on lexemes has shown that homophonous
lexemes show striking phonetic differences (e.g. Gahl 2008, Drager 2011). Gahl
(2008) investigated the acoustic realization of 223 supposedly homophonous
word pairs such as time and thyme and found that, quite consistently, the
more frequent members of the pairs, e.g. time, are significantly shorter than
the corresponding less frequent ones, e.g. thyme (see Lohmann (2018b) for a
replication and Lohmann (2018a) for a replication with homophonous noun–
verb pairs). This can be taken as evidence that two homophonous lexemes cannot
be represented exclusively by one identical phonological form with information
on their combined frequency but that the individual frequencies must be stored
with the respective lemmas and have an effect on their articulation. Similarly,
Drager (2011) found that the different functions of like go together with different
acoustic properties. Whether like is used as an adverbial, as a verb, as a discourse
particle, or as a quotative lexeme has an effect on several phonetic parameters,
i.e. the ratio of the duration of /l/ to vowel duration, on the pitch level, and on the
degree of monophthongization of the vowel /aI/. These fine differences indicate
that homophony of two or more lemmas at the phonetic level may not exist (see
Podlubny, Geeraert & Tucker 2015 for a replication in Canadian English).

Similar findings seem to hold for stems or affixes. Thus, Smith et al. (2012)
found acoustic differences (in durational and amplitude measurements) between
morphemic and non-morphemic initial mis- and dis- (as in, e.g. distasteful vs.
distinctive). Kemps et al. (2005b) provided evidence that free and bound variants
of a base (e.g. help without a suffix as against help in helper) differ acoustically,
even if no morpho-phonological alternations apply, and that Dutch and English
listeners make use of such phonetic cues in speech perception (see also Kemps
et al. 2005a).

The homophony of morphemic sounds and their non-morphemic counterparts
in English have also been investigated for some time. In particular, there are some
previous studies available that have investigated the phenomenon that is the topic
of the present paper: word-final S in English.2

One early study of S is that of Walsh & Parker (1983). Walsh & Parker (1983)
tested plural /s/ against non-morphemic /s/ in a reading experiment and found that
the plural S had longer mean durations than non-morphemic S. The authors did
not use a statistical test, nor did they use a multivariate statistical analysis with

[2] There have also been some studies of English word-final /t/ and /d/ (Losiewicz 1992, Zimmer-
mann 2016b, Seyfarth et al. 2018). These studies have mostly failed to find any significant
difference between the duration of past-tense /t/ and /d/ and non-morphemic /t/ and /d/.
Losiewicz claims to have found a significant difference, but a reanalysis of her data using a
mixed-effect regression and pertinent covariates shows a null effect for past tense versus non-
morphemic /t/ and /d/. Zimmermann (2016b) finds a significant contrast between the duration
of the clitics of would and had and one between would and non-morphemic /d/.
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pertinent lexical and phonetic covariates. A reanalysis of the dataset using mixed-
effect regression and additional covariates carried out by the second author of the
present study showed that the data do not bear out the effects that the authors
claimed they did (Plag 2014).

In a more recent study, Song et al. (2013) found a significant difference between
plural, which is 7 ms longer, and non-morphemic /z/ in utterance-final position but
not in non-final position. Song et al.’s study is based on conversational speech, but
their dataset is very restricted (only monosyllables and nine different word types).
Furthermore, the set of covariates taken into account was small and potential
variability in voicing was not included in the analysis. Furthermore, Song et al.’s
data is child-directed speech, which has been shown to differ from inter-adult
speech in various ways (see, e.g. Foulkes, Docherty & Watt 2005 for an overview
and discussion).

Addressing some of the problems of earlier work, Plag and colleagues inves-
tigated final S in a sample of 644 English words (segmented manually) with
conversational speech data from the Buckeye speech corpus (Plag et al. 2017).
They measured the absolute duration of S in non-morphemic /s/ and /z/ and of
six different English /s/ and /z/ morphemes (plural, genitive, genitive plural, and
third person singular, as well as cliticized forms of has and is), as well as their
relative duration (i.e. the ratio of S duration and whole word duration). As the
present study is primarily geared toward explaining the findings of that study, we
will look at them in more detail.

The authors used regression models that predicted the absolute or relative
duration of S based on the type of morpheme and a number of covariates that are
known to influence segmental durations, such as local speech rate, stem duration,
base frequency, number of previous mentions, bigram frequency, neighborhood
density, the number of consonants in the rhyme before the final S, the voicing
of S, the following phonetic context, and the position of the word in the utterance.

In general, there are fewer significant contrasts between the different mor-
phological categories for voiced than for unvoiced realizations of S, which is
partly due to the lack of statistical power (the voiced subset is quite small) and
partly due to the fact that the voiced instances are usually shorter, which makes
it more difficult to find significant differences. Still, there are four significant
contrasts for voiced realizations: third person singular [z] is shorter than plural,
genitive, and genitive-plural [z] and plural [z] is significantly longer than the
voiced is clitic.

For unvoiced S, there are 10 significant contrasts (out of 21 possible pair-
wise contrasts). In this subset, non-morphemic S is longer than all types of
morphemic S. The two suffixes (plural and third person singular) are shorter than
non-morphemic S but longer than the two clitics of has and is. The clitics are
significantly shorter than the third person singular S and the plural S.

127

https://doi.org/10.1017/S0022226719000203 Published online by Cambridge University Press

https://doi.org/10.1017/S0022226719000203


F. T O M A S C H E K , I . P L AG , M . E R N E S T U S & R . H A R A L D BA AY E N

With relative durations, there are even more significant contrasts (8 for /z/ and
12 for /s/), patterning similarly to the absolute duration differences, i.e. contrasts
between plural and the rest for voiced realizations and among non-morphemic,
suffixal, and clitic S for unvoiced realizations.

In another study of conversational speech, Zimmermann (2016a) found pho-
netic effects in New Zealand English that are very similar to those of Plag
et al. (2017). The same durational contrasts were found, plus a few more.
Zimmermann’s results were based on a very large sample of over 6900 automati-
cally segmented words from the QuakeBox corpus (Walsh et al. 2013).

In a recent experimental study, Seyfarth et al. (2018) investigated homophone
pairs and found suffixal [s] and [z] to be longer than non-morphemic [s] and [z] in
otherwise homophonous monosyllabic word pairs. This contradicts the findings
from the conversational speech data, and it is unclear how this difference arises.
Plag and colleagues used natural speech data and Seyfarth and colleagues made up
dialogues in an experiment. Plag and colleagues sampled words across the board
and Seyfarth and colleagues investigated differences between actual homophones.
While using homophones may control for the influence of contextual phonetic
parameters, it may also introduce unclear variation since the processing of
homophones may differ from that of non-homophones. Furthermore, Seyfarth and
colleagues did not properly distinguish between different kinds of morphemic S,
with unclear consequences for the results. Sixteen out of the 26 words with
morphemic S involved plurals and 10 involved 3rd person singular S. Twenty out
of the 26 stimuli pairs had final [z] and not [s]. This means that the majority of the
morphemic stimuli were voiced plurals. Interestingly, both Plag et al. (2017) and
Zimmermann (2016b) find that voiced plural S is indeed significantly longer than
non-morphemic voiced S, which is actually in line with Seyfarth et al.’s results for
this constellation of voicing and morphemic status.

In summary, both Plag et al. (2017) and Zimmermann (2016b) have found
rather complex patterns of durational differences between different types of S
in conversational speech. The findings are robust across corpora and across
varieties. In their theoretical discussion, the authors show that no extant theory can
account for these facts. Strictly feed-forward models of speech production (such
as Levelt et al. 1999) or theoretical models of morphology–phonology interaction
(e.g. Kiparsky 1982, Bermúdez-Otero 2018) rely on the distinction of lexical
versus post-lexical phonology and phonetics, and they exclude the possibility
that the morphemic status of a sound influences its phonetic realization since this
information is not available at the articulation stage.

Prosodic phonology (e.g. Nespor & Vogel 2007) is a theory in which prosodic
constituency can lead to phonetic effects (see, e.g. Keating 2006, Bergmann
2015). While it can account for some of the differences between homophonous
morphemes with different morphological functions (e.g. durational differences
between the free and bound variants of a stem (Kemps et al. 2005b), it cannot
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explain all of them. Importantly, this approach is unable to explain the patterning
of the contrasts we find for final S in English.3

It is presently unclear how the observed differences in the duration of word-final
S can be accounted for. In this paper, we investigate whether these differences can
be understood as a consequence of error-driven learning of words’ segmental and
collocational properties. In order to do so, we first extend the original study of Plag
et al. (2017), which was based on a small and manually segmented sample from
the Buckeye corpus, to the full Buckeye corpus (Pitt et al. 2007). After replicating
the differences in S duration, we introduce a naïve discriminative learning and
train a wide learning network on the Buckeye corpus. Three measures derived
from the resulting network are found to be predictive for S duration and improve
on a statistical model that includes a factor for the different functions that can
be realized with S. We conclude with a discussion of the implications of our
modeling results for theoretical morphology and models of lexical processing.

3. REPLICATION OF PLAG ET AL.4

Plag et al. (2017) based their investigation on a sample from the Buckeye corpus
(Pitt et al. 2007). The Buckeye corpus is a corpus of conversational speech
containing the recordings from 40 speakers in Columbus, Ohio, speaking freely
with an interviewer (stratified on age and gender: 20 female, 20 male, 20 old,
and 20 young). The style of speech is unmonitored casual speech. The corpus
provides orthographic transcriptions as well as wide and narrow time-aligned
phonetic transcriptions at the word and segment level. We redid the analysis of
Plag et al. (2017) on the full Buckeye corpus, using the segmentations that this
corpus makes available.

We extracted all words which end in [s] or [z], resulting in a total of 28928 S
segments. Table 1 shows the number of tokens depending on morphological
function and voicing investigated in the replication. Extraction was based on the
narrow phonetic transcription. Information about the grammatical status of a given
S instance was coded automatically on the basis of the part-of-speech information
of the target word and the following word as provided in the corpus.

For this substantially larger dataset, a Box–Cox analysis indicated that a
logarithmic transformation of S duration would make the data more normal-
distribution-like. The predictor of interest is the morphological function that the
S exponent realizes (EXPONENTFOR), with NON-MORPHEMIC, 3RDSG, GEN,
HAS/IS, PL-GEN, PLURAL, and NON-MORPHEMIC as reference levels. Unlike

[3] The existing prosodic phonological literature on final S in English (e.g. Goad 1998, Goad,
White & Steele 2003) posits three different kinds of prosodic configurations in which final S
may occur. However, these configurations, and the predictions that may follow from them, do
not match the patterns of acoustic duration differences found in the data. See Plag et al. (2017:
210) for a more detailed discussion.

[4] All analyses can be found in the Supplementary Material downloadable from https://osf.io/
anms7/.
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Voiced Unvoiced

s 1470 10141
3rdSg 832 2846
GEN 42 180
Has/is 622 5133
PL-GEN 0 12
Plural 1367 6095

Table 1
Number of S tokens in each morphological function split by voicing for the

replication study (s = non-morphemic final S, 3rdSg = 3rd person singular, GEN = genitive,
PL-GEN = plural genitive).

Plag et al. (2017), we collapsed the has and is clitics into one class, as it is not
possible to differentiate between the two by means of automatic pre-processing.

Following Plag et al. (2017), we included several predictors as controls. A fac-
tor VOICING (with levels voiced and unvoiced) was implemented indicating
whenever a periodic pitch pulse was present in more than 75% of the duration of
the segment. A factor MANNERFOLLOWING coded for the manner of articulation
of the segment following S (levels ABSENT, APPROXIMANT, FRICATIVE, NASAL,
PLOSIVE, and VOWEL). Random intercepts for SPEAKER and WORD were also
included. A factor CLUSTER with levels 1, 2, and 3 was included to control
for the number of consonants in the coda, where 1 equals a vowel-S sequence.
Two covariates were included, the local speech rate and the duration of the base
word. Speaking rate was calculated by dividing the number of syllables in a
phrase by the duration of that phrase. As in the Plag et al. (2017) study, base
word duration was strongly correlated with word frequency (Spearman’s rank
correlation r − 0.69), and to avoid collinearity in the tested data, frequency was
not included as a predictor (see Tomaschek, Hendrix & Baayen 2018b for effects
of collinearity in regression analyses). We used linear mixed-effect regression
as implemented in the lme4 package (version: 1.1–12 Bates et al. 2015) using
treatment coding for all factors.

Table 2 presents the estimates of the coefficients of the model and the corre-
sponding standard errors and t-values. In order to establish which morphological
functions differed in mean durations, we tested all pair-wise contrasts between
the different types of S using the difflsmeans function from the lmerTest
package (Kuznetsova, Brockhoff & Bojesen Christensen 2014).

Compared to monomorphemic words ending with S, S duration was shorter
when S realized PLURAL, 3RDSG, GEN, and HAS/IS. Plag et al. (2017) observed
a difference as well for genitive plurals, but for the full Buckeye, this contrast
was not supported. Furthermore, as in the study of Plag et al. (2017), the S was
articulated with shorter duration when realizing HAS or IS compared to when
it realizes plurals or the third person singular. Plag et al. (2017) observed an
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Estimate Std. error df t-Value

Intercept −1.52 0.02 148.39 −69.93
ExponentFor = 3rdSg −0.10 0.02 1372.72 −5.65
ExponentFor = GEN −0.15 0.03 5647.45 −5.46
ExponentFor = has/is −0.15 0.02 1416.32 −7.33
ExponentFor = PL-GEN −0.12 0.11 5778.72 −1.08
ExponentFor = plural −0.10 0.01 1380.73 −8.98
Voicing = unvoiced 0.23 0.01 28924.37 35.66
Cluster = 2 −0.19 0.01 5778.52 −26.03
Cluster = 3 −0.29 0.01 6103.94 −19.73
MannerFollowing = app −0.31 0.01 28822.04 −37.63
MannerFollowing = fri −0.52 0.01 28900.28 −71.39
MannerFollowing = nas −0.47 0.01 28872.42 −31.94
MannerFollowing = plo −0.51 0.01 28906.19 −72.46
MannerFollowing = vow −0.43 0.01 28909.55 −62.94
LocalSpeechRate −0.08 0.00 28837.16 −38.43
BaseDuration 0.19 0.01 16193.21 32.88

Table 2
Coefficients and associated statistics for the mixed-effect model fit to the log-transformed

duration of S, using the full Buckeye corpus (app = approximant, fri = fricative,
nas = nasal, plo = plosive, vow = vowel).

interaction of EXPONENTFOR by VOICING, but this interaction did not replicate
for the enlarged dataset. The differences between the present analysis and that of
Plag et al. (2017) have two possible sources. First, Plag et al. (2017) manually
inspected all data points and curated the automatic annotations and segmentations
where necessary. By contrast, we followed the annotations and segmentations
provided by the Buckeye corpus, which are also generally manually corrected on
the basis of forced alignments. It is unclear at what level of carefulness the original
manual corrections of the Buckeye corpus were performed. In addition, whereas
misalignment tends to be very consistent and systematic in forced aligners, human
annotators can be biased by their own expectations and create different kinds of
variations in the annotation (Ernestus & Baayen 2011). Therefore, there is no way
to know which annotation can be strongly relied on, especially for phones with
gradual transitions such as sonorants. Second, by considering the full corpus, the
present analysis is possibly somewhat more robust against spurious small-sample
effects. For instance, in the dataset of Plag et al. (2017), there were only 81 voiced
S tokens, as opposed to 563 voiceless S tokens. Table 3 summarizes a comparison
of the significant contrasts for unvoiced S in the small sample of Plag et al. (2017)
with those found in the full corpus used here. Apart from one contrast, all contrasts
are significant in both datasets.

131

https://doi.org/10.1017/S0022226719000203 Published online by Cambridge University Press

https://doi.org/10.1017/S0022226719000203


F. T O M A S C H E K , I . P L AG , M . E R N E S T U S & R . H A R A L D BA AY E N

S PL 3RDSG GEN HAS/IS PL-GEN

s Yes Yes Yes Yes No
PL Yes
3rdSg Yes
GEN
has/is
PL-GEN

Table 3
Significant contrasts for unvoiced S in the small sample of Plag et al. (2017) and the

present replication study (see Table 2). ‘Yes’ indicates an effect found in both studies and
‘no’ indicates an effect found only in the small sample, for α = 0.05 (under Tukey’s HSD)

(s = non-morphemic final S, 3rdSg = 3rd person singular, GEN = genitive,
PL-GEN = plural genitive).

Two things are important to note. First, the main finding of Plag et al. (2017) is
the difference in duration between unvoiced non-morphemic S (longest), clitic S,
and suffix S (shortest). This difference is also found in the larger dataset with
automatic annotation. Second, while in the Plag et al. (2017) data set there was a
significant interaction between voicing and morpheme type, this interaction is no
longer present in the larger dataset.

To summarize, we have replicated the main findings of Plag et al. (2017) for a
much larger dataset derived from the same speech corpus. However, we still lack
an explanation for the durational patterns observed. In the following sections,
we will provide such an explanation, arguing that durational variation in word-
final S is chiefly influenced by how strongly the final S is associated with its
morphological function as a result of learning. This association strength will be
derived from a naïve discriminative learning network, as explained in the next
section.

4. NAÏVE DISCRIMINATIVE LEARNING

4.1 General overview

Naïve discriminative learning (NDL) is a computational modeling framework
that is grounded in simple but powerful principles of discrimination learning
(Ramscar & Yarlett 2007, Ramscar et al. 2010, Baayen et al. 2011, Rescorla
1988). The general cognitive mechanisms assumed in this theory have been shown
to be able to model a number of important effects observed in animal learning
and human learning, e.g. the blocking effect (Kamin 1969) and the feature-
label ordering effect (Ramscar et al. 2010). NDL has recently been extended
to language learning and language usage, and several studies have shown that it
can successfully model different morphological phenomena and their effects onto
human behavior, e.g. reaction times in experiments investigating morphological
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processing (e.g. Baayen et al. 2011, Blevins, Ackerman & Malouf 2016; see Plag
2018: Section 2.7.7 for an introduction).

Discriminative learning theory rests on the central assumption that learning
results from exposure to informative relations among events in the environment.
Humans (and other organisms) use these relations, or ‘associations’, to build cog-
nitive representations of their environments. Crucially, these associations (and the
resulting representations) are constantly updated on the basis of new experiences.
Formally speaking, the associations are built between features (henceforth cues)
and classes or categories (henceforth outcomes) that co-occur in events in which
the learner is predicting the outcomes from the cues. The association between cues
and outcomes is computed mathematically using the so-called Rescorla–Wagner
equations (Rescorla & Wagner 1972, Wagner & Rescorla 1972, Rescorla 1988;
see Appendix A for a technical description). The equations work in such a way
that the association strength or ‘weight’ of an association between a cue and an
outcome increases every time that this cue and outcome co-occur. Importantly,
this association weight decreases whenever the cue occurs without the outcome
being present in a learning event. During learning, weights are continuously
recalibrated. At any stage of learning, the association weight between a cue and
an outcome can be conceptualized as the support which that specific cue can
provide for that specific outcome given the other cues and outcomes which had
been encountered during the learning history.

Let us look at an example of how our understanding of the world is constantly
modulated by the matches and mismatches between our past experiences and
what we actually observe. Our example is a phenomenon known as ‘anti-priming’
found by Marsolek (2008). He presented speakers with sequences of two pictures
and asked these speakers to say the name of the second picture. The critical
manipulation was implemented in the first picture, which could be either similar,
to some extent, to the target picture (e.g. grand piano, followed by table), or
unrelated (e.g. orange, followed by table). In contrast to typical priming findings,
Marsolek observed that speakers responded more quickly for unrelated pairs
compared to related pairs. This ‘anti-priming’ – caused by prior presentation of
a related picture – follows straightforwardly from the learning rule of Rescorla
& Wagner (1972). The weights of visual features (i.e. the cues) that are shared
by grand piano and table, such as having legs and a large flat surface, are
strengthened for grand piano but weakened for table when the picture of the
grand piano is presented. Slower response times in this case of anti-priming are a
direct consequence of critical features losing strength to table compared to cases
in which a visually unrelated prime, such as an orange, had been presented.

Taking a morphological example, the association of the phonological string
/aIz/ with a causative meaning (‘make’) in English would be strengthened each
time a listener encounters the word modernize and weakened each time the listener
hears the words size or eyes. The association strengths resulting from such expe-
riences influence language processing in both production and comprehension.
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Technically, the mathematical engine of NDL, i.e. the Rescorla–Wagner equa-
tions, is an optimized computational implementation of an error-driven dis-
crimination learning. This engine can be viewed as implementing ‘incremental
regression’ (for a nearly identical algorithm from physics, see Widrow & Hoff
(1960) and for a Bayesian optimized algorithm, Kalman (1960)). NDL was first
applied to large corpus data and used to study chronometric measures of lexical
processing by Baayen et al. (2011). An extension of the learning algorithm is
reported in Sering, Milin & Baayen (2018b). Implementations are available both
for R (Shaoul et al. 2014) and Python (Sering et al. 2018a).

Once a network has been trained, it provides different measures that represent
different aspects of the association strength between cues and outcomes. These
measures may subsequently be used as predictors of human responses (e.g.
response times in lexical decision experiments). In the present study, we will use
three NDL measures to predict the acoustic duration of S in regression analyses.

Other approaches to learning are available, for instance, the Bayesian model
presented in Kleinschmidt & Jaeger (2015). Where NDL comes into its own,
compared to models based on probability theory, is when there are thousands
or tens of thousands of different features (cues) that have to be learned to
discriminate equally large numbers of classes (outcomes). Cues compete for
outcomes in often unforeseeable ways reminiscent of chaotic systems, which is
why it is a truly daunting challenge to capture the dynamics of such systems with
probabilities defined over hand-crafted hierarchies of units (i.e. with probabilistic
statistics). Errors at lower levels of the hierarchy tend to propagate to higher levels
and render the performance of such models less than optimal. This is why in
computational linguistics, there is a strong movement in the direction of end-to-
end models which bypass the engineering by hand of intermediate representations
using neural networks. NDL adopts this end-to-end approach. In contrast to
approaches in machine learning, however, NDL does not use any hidden layers.
Rather, it makes use of the simplest possible network architecture, with just one
input layer and one output layer.

NDL thus offers a simple method for assessing the consequences of discrim-
ination learning that has hardly any free parameters (namely, only a learning
rate, typically set to 0.001, and the maximum amount of learning λ, set to 1.0).
Consequently, once the representations for the input and output layers of the
network have been defined and the learning rate and λ have been set, its
performance is determined completely by the corpus on which it is trained.

NDL also differs from standard applications of neural networks in machine
learning in that it uses very large numbers of input and output features. We
therefore refer to the NDL networks as ‘wide learning’ networks. The weights
of these networks are updated incrementally by applying the learning rule of
Rescorla and Wagner to the so-called learning events. Learning events are defined
as moments in learning time at which a set of cues and a set of outcomes are
evaluated jointly. Association weights between cues and outcomes are strength-
ened for those outcomes that were correctly predicted and weakened for all other
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outcomes. For technical details, see Milin et al. (2017b) and Sering et al. (2018b),
and for a simple introductory implementation, see Plag (2018: Section 7.4.4).

This approach to simulate language learning has proved useful for, e.g. model-
ing child language acquisition (Ramscar et al. 2010, 2011, Ramscar, Dye & Klein
2013a, Ramscar et al. 2013b), for disentangling linguistic maturation from cogni-
tive decline over the lifespan (Ramscar et al. 2014, 2017), for predicting reaction
times in the visual lexical decision task (Baayen et al. 2011, Milin et al. 2017b)
and self-paced reading (Milin, Divjak & Baayen 2017a), as well as for auditory
comprehension (Baayen et al. 2016b, Arnold et al. 2017). The computational
model developed by Arnold et al. (2017) is based on a wide learning network that
has features derived automatically from the speech signal as input. This model
outperformed off-the-shelf deep learning models on single-word recognition and
shows hardly any degradation in performance when presented with speech in
noise (see also Shafaei Bajestan & Baayen 2018).

By adopting an end-to-end approach with wide learning, naïve discriminative
learning approaches morphology, the study of words’ forms and meanings, from
a very different perspective than the standard post-Bloomfieldian hierarchical
calculus based on phonemes, morphemes, and words. The relation between form
and meaning is addressed directly, without intervening layers of representations.
In what follows, we will make use of wide learning networks primarily as a
convenient tool from machine learning. In Section 6, we will briefly return to the
question of the implications of successful end-to-end learning for morphological
theory.

4.2 From NDL to phonetic durations

The present study follows up on Tucker et al. (2019), who used NDL measures to
predict the durations of stem vowels of regular and irregular verbs in English in
the Buckeye corpus. Their NDL wide learning network had diphones as cues,
and as outcomes both content lexemes (or more specifically, pointers to the
meanings of content words) and morphological functions (such as plural or the
clitic has). In what follows, we refer to these pointers to meanings/functions as
lexomes (see Milin et al. 2017b for a detailed discussion). Tucker et al. observed
that the prediction accuracy of statistical model fits to vowel duration improved
substantially when classical predictors such as frequency of occurrence and neigh-
borhood density were replaced by predictors grounded in naïve discriminative
learning.

Following their lead, we implemented a network that has morphologi-
cal function lexomes as outcomes, but restricted them to those that are
implicated with English word-final S: CLITIC, GENITIVE PLURAL, GENITIVE
SINGULAR, PLURAL NOUN, SINGULAR NOUN, THIRD PERSON VERB, VERB,
VERB PARTICIPLE, PAST-TENSE VERB, and OTHER (such as adverbs). The
number of morphological functions is larger than that examined in the original
Plag et al. (2017) study, as we also include S that is word-final in past-tense or
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past-participle forms as a result of reduction (e.g. in pass for passed). Voicing of
S was based on the phonetic transcription provided by the Buckeye corpus.

The findings by Tucker et al. (2019) indicate that speakers have to balance
opposing forces during articulation, one that seeks to lengthen parts of the signal
in the presence of strong bottom-up support and one that seeks to shorten them in
case of high uncertainty. To parameterize these forces, we derived three different
measures from the NDL wide learning network which are used as predictors of S
duration: the S lexomes’ activations, their priors, and their activation diversities.
Table 4 provides an example of a simple NDL network where the diphone cues
for the word form ‘dogs’ are associated with, among others, the lexome of the
morphological function PLURAL. We will discuss each measure in turn.

Table 4
The table illustrates a cue-to-outcome network with a set of cues C with k cues c and a set
of lexome outcomes O with n outcomes o. We illustrate the calculation of NDL measures
for the lexome of the morphological function PLURAL as an outcome, located in the second
column, and its associated cue set C� = ld dO Og gz zb, located in rows 3–7. Each ith

cue c is associated with each jth outcome o by a weight wi, j , representing their
connection strength, where i = 1, 2, . . . , k and j = 1, 2, . . . , n. Summed weights for C�
afferent to o j give the j th activation a. The cues in c1, c2 represent any kind of cues that

might occur in the first and second row.

A lexome’s activation represents the bottom-up support for that lexome, given
the cues in the input. The activation for a given lexome is obtained simply by the
summation of the weights on the connections from those cues that are instantiated
in the input to that outcome (equivalent to the weights marked in red in Table 4).
Hence, activation represents a measure of the cumulative evidence in the input.

A lexome’s prior is a measure of an outcome’s baseline activation, calculated
by the sum of all absolute weights pertinent to the lexome outcome (equivalent
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to the weights in the column marked in light gray in Table 4).5 The prior can be
understood as a measure of network entrenchment. It is an NDL measure that
is independent of a particular input to the network; rather it captures a priori
availability which results from learning and typically corresponds to frequency
of occurrence.

Finally, a lexome’s activation diversity is a measure of the extent to which
the input makes contact with the lexicon. Activation diversity is the sum of the
absolute activations pertinent from a cue set to all lexome outcomes (equivalent
to the activations located in the bottom row highlighted in dark gray in Table 4).
One can think of this measure as quantifying the extent to which the cues in the
input perturb the state of the lexicon. If the cues were to support only the targeted
outcome, leaving all other outcomes completely unaffected, then the perturbation
of the lexicon would be relatively small. However, in reality, learning is seldom
this crisp and clear-cut, and the states of outcomes other than the targeted ones
are almost always affected as well. In summary, the more the lexicon as a whole
is perturbed, the greater the uncertainty about the targeted lexomes will be.

Tucker et al. (2019) observed that vowel duration decreased with activation
diversity. When uncertainty about the targeted outcome increases, acoustic dura-
tions decrease (for further examples of shortening under uncertainty, see also
Kuperman et al. (2007) and Cohen (2014a)). Arnold et al. (2017) performed
an auditory experiment in which subjects had to indicate whether they could
identify the words presented to them. These words were randomly selected from
the GECO corpus (Schweitzer & Lewandowski 2013). Arnold et al. observed that
words with low activation diversity (i.e. with short vectors that hardly penetrate
lexical space) were quickly rejected, whereas words with large activation diversity
(i.e. with long vectors that reach deep into lexical space) were more likely to be
identified, but at the cost of longer response times.

Tucker et al. (2019) also observed that prediction accuracy decreases when
instead of using the diphones in the transcription of what speakers actually said,
the diphones in the dictionary forms are used. We therefore worked with diphones
derived from the actual speech. However, we considered a broader range of
features as cues.

Several studies that made use of discriminative learning actually worked with
two networks, one network predicting lexomes from form cues, resulting in
form-to-lexome networks, and the other predicting lexome outcomes from lexome
cues, creating lexome-to-lexome networks (Baayen et al. 2016b, Milin et al.
2017a, b, Baayen, Milin & Ramscar 2016a). Lexome-to-lexome networks stand
in the tradition of distributional semantics (Landauer & Dumais 1997, Lund &
Burgess 1996a, Shaoul & Westbury 2010a, Mikolov et al. 2013). The row vectors

[5] Technically, the sum of the absolute values of a vector is the L1-norm. It is related to the
L2-norm, which is the Euclidean distance. For example, the Euclidean distance for the vector
(−3,−4) is 5 (by Pythagoras), but the L1-norm is 7, the distance traveled from the origin to the
point (−3,−4) when movement is possible only along the horizontal axis or along the vertical
axis.
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of the weight matrix of lexome-to-lexome networks of NDL specify, for each
lexome, the association strengths of that lexome with the full set of lexomes.
These association strengths can be interpreted as gauging collocational strengths.
In the present study, we do not work with a separate lexome-to-lexome network.
Rather, we used a joint network that contains both lexomes and their diphones as
cues and morphological functions as outcomes.6

4.3 Cue-to-outcome structure

Let us now turn to the actual modeling procedures that we employed and
the evaluation of these models that led us to focus on inflectional lexomes as
outcomes.

As a general strategy, we wanted to explore various constellations of cues
and outcomes. We also considered the possibility that S duration might be co-
determined by the lexomes in a word’s immediate context. Therefore, just as in
models for distributional semantics, such as those presented by Lund & Burgess
(1996b), Shaoul & Westbury (2010b), and Mikolov et al. (2013), we placed an
n-word window around a given target word and restricted cues and outcomes
to features within this window. By varying the window size between zero and
maximally two to the left or the right of the target word, and the specific features
selected for cues and outcomes, we obtained a total of 38 NDL networks.

We created diphone cues on the basis of an entire phrase. This procedure
created transition cues between words. A sequence such as ‘dogs bark’ gives the
diphone cues dO Og gz zb bA Ar rk with zb as the transition cue.

Table 5 illustrates several different choices for cues and outcomes, given the
phrase the small dogs bark at the cat, where dogs is the pivotal word carrying S.
Examples 1, 2, and 5 illustrate models in which lexomes are outcomes and
examples 3 and 4 have diphones as outcomes. Example 1 has only diphones as
cues, and this model is a standard form-to-lexome network following the approach
originally taken by Baayen et al. (2011) and Tucker et al. (2019). Example 2 has
lexomes as cues and outcomes; this is a standard lexome-to-lexome network (see
Baayen et al. 2016a, Milin et al. 2017b for applications of such networks for mod-
eling reaction times). Model 3 seeks to predict diphones from lexomes. Model 4

[6] Depending on the task for which the semantic vectors – in the terminology of computational
linguistics, semantic vectors are called ‘word embeddings’ – are used, the association strength
of a lexome with itself can be either left as is in the vector or set to zero (see Baayen et al.
2019 for a detailed discussion). Similarity between semantic vectors is typically evaluated with
the cosine similarity measure or the Pearson correlation between vectors. Just as for form-
to-lexome networks, activations, priors, and activation diversity measures can be calculated
for lexome-to-lexome networks. The lexomes that we use as cues or outcomes are labels for
semantic vectors – in the framework of programing, specifically data structures, labels are called
‘pointers’ to semantic networks. Since semantic vectors define points in a high-dimensional
collocational space, the lexomes of an NDL network are simply identifiers for these points.
Baayen et al. (2019) updated this approach by presenting a computational model in which the
lexomic pointers of NDL are replaced by semantic vectors.
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Cues Outcomes

1 T@ @s sm m6 6l ld dO Og gz zb ba ar rk k@ @t DOGS DOG PLURAL
2 THE SMALL DOGS BARK AT DOGS DOG PLURAL
3 THE SMALL DOGS BARK AT ld dO Og gz zb
4 THE SMALL DOGS BARK AT

T@ @s sm m6 6l ld dO Og gz zb ba ar rk k@ @t ld dO Og gz zb
5 THE SMALL DOGS BARK AT

T@ @s sm m6 6l ld dO Og gz zb ba ar rk k@ @t DOGS DOG PLURAL

Table 5
Possible cue–outcome configurations for the phrase the small dogs bark at the cat using a five-word window centered on dogs.
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complements the lexome cues with diphone cues. Model 5 also combines lexomes
and diphones as cues, but these are used to predict lexomic outcomes. Importantly,
these lexomes include the inflectional lexomes that are realized with S in English.
The pertinent lexome in the present example is the one for plural number
(PLURAL). Note that model 5 allows us to test the hypothesis that the support for
PLURAL is obtained not only from a word’s diphones but also from its collocates.

Models were trained by moving a given word window across the whole of the
Buckeye corpus.7 The window was moved across the corpus such that each word
token was in the center of the window once. Consequently, a given S word will
have occurred in each of the positions in the window. Each window provided a
learning event at which prediction accuracy was evaluated and connection weights
were recalibrated.

A wide variety of selections of cues and outcomes was investigated with
the aim of obtaining insight into which combinations of cues and outcomes,
under a discriminative learning regime, best predict S duration. Models with
lexomes as outcomes, specifically those for the morphological functions of the S
(CLITIC, GENITIVE PLURAL, GENITIVE SINGULAR, PLURAL NOUN, SINGULAR
NOUN, THIRD PERSON VERB, VERB, VERB PARTICIPLE, PAST-TENSE VERB,
and OTHER) address the possibility that it is the learnability of the inflectional
lexomes that drives the acoustic duration of S. Models that take diphones as
outcomes address the hypothesis that it is the learnability of diphones (i.e. of
context-sensitive phones) that is at issue.

In classical models of speech production, e.g. the WEAVER model of Levelt
et al. (1999) and the model of Dell (1986), the flow of processing goes from
conceptualization to articulation. Against this background, models in which
lexomes are predicted instead of being predictors are unexpected. Neverthe-
less, there are three reasons why it makes sense to include such models in
our survey.

First, for a survey, it is important to consider a wide range of possible combi-
nations, including ones that are at first sight counter-intuitive. This is essential for
allowing data to inform theory.

The second reason is technical in nature: NDL makes the simplifying assump-
tion that each outcome can be modeled independently from all other outcomes. It
is this assumption that motivates why NDL is referred to as naïve discriminative
learning. For discriminative learning to take place, multiple cues are required for
a given outcome so that over learning time it can become clear, due to cue com-
petition, which cues are informative and which are uninformative. Informative
cues obtain larger association strengths and uninformative cues obtain association
strengths close to zero. If the learnability of inflectional lexomes is what drives S
duration, then the NDL network must include inflectional lexomes as outcomes.

[7] The corpus contains 286,982 words. The learning rate αβ was set to 0.001 and λ was set
to 1.0; these are the default settings, and these parameters were never changed. The lexome
for morphological function of words without final S was marked as ‘other’.
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If we were to take these inflectional lexomes as cues and use them to predict
a diphone such as gz as outcome, the network would only learn the relative
frequencies with which the inflectional lexomes are paired with gz in the corpus
(cf. Ramscar et al. 2010).

Third, any production system must have some form of feedback control so
that the sensory consequences of speaking can be evaluated properly. Without
such feedback, which comprises sensory feedback from the articulators as well
as proprioceptive feedback from hearing one’s own speech, learning cannot take
place (see Hickok 2014 for a detailed discussion). For the error-driven learning
to be at all possible, distinct articulatory and acoustic targets must be set up
before articulation, against which the feedback from the articulatory and auditory
systems can be compared. In what follows, the diphone outcomes are a crude
approximation of the speaker’s acoustic targets, and the connections from the
diphones to the lexomes are part of the speech control loop. For a computational
model providing a more detailed proposal for resonance between the production
and comprehension systems, see Baayen et al. (2019).

4.4 NDL measures as predictors

Having trained the 38 networks, we then analyzed their performance using ran-
dom forests (as implemented in the party package for R), focusing on the variable
importance of the NDL measures derived from these networks. The optimal
network that emerged from this analysis is the one with a five-word window
and the structure of example 5 in Table 5. Critical lexomes, i.e. morphological
functions, were predicted from all lexomes and their diphones within a five-
word window centered on the target word. Given the literature on conditional
probabilities for upcoming (or preceding) information, such as the probability of
the current word, given the next word (Jurafsky et al. 2000, Pluymaekers et al.
2005b, Tremblay et al. 2011, Bell et al. 2009), we included in our survey of cue
and outcome structures windows of size three, with the target word in either first
or second position. The corresponding networks lacked precision compared to the
above network trained on learning events of five words.8 The latter network is also
sensitive to co-occurrence of the target word with the preceding and upcoming
word, but it is sensitive as well to co-occurrence with words further back and
further ahead in time.

[8] For instance, we compared statistical models using the NDL measures derived from the model
with a five-word window as predictors for S duration with statistical models with NDL measures
derived from models using three-word windows, with the target word either at the left or at
the right position. Statistical models with measures derived from the NDL networks based
on three-word windows performed worse, with larger ML scores (+ 23.31 /+ 83.16) than
the statistical model based on the network models trained with a five-word window. We also
tested the performance of a statistical model based on an NDL network trained with a five-word
window, but using only the diphones but not the words. The resulting statistical model yielded a
higher ML score as well (+ 160.16). These three alternative mixed models had as many degrees
of freedom as the five-word model (31), hence all these alternative models underperformed in
terms of goodness of fit.
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In the light of the literature on boundary strength and its consequences for
lexical processing (Seidenberg 1987, Weingarten, Weingarten & Will 2004, Hay
2002, 2003, Hay & Baayen 2002, Baayen et al. 2016b, 2019), we considered
separately the activation and activation diversity calculated for the diphone
straddling the boundary between stem and S, and the activation and activation
diversity calculated from all other remaining cues (lexomes and diphones). This
resulted in a total of five NDL measures as predictors of S duration:

1. PRIORMORPH: the prior for weights from a cue set to a word’s inflectional
lexome.

2. ACTFROMBOUNDARYDIPHONE: the activation of an inflectional lexome
by the boundary diphone.

3. ACTFROMREMAININGCUES: the activation of an inflectional lexome by all
other (lexome and diphone) cues.

4. ACTDIVFROMBOUNDARYDIPHONE: the activation diversity calculated
over the vector of activations over all inflectional lexomes of S, given the
boundary diphone as cue.

5. ACTDIVFROMREMAININGCUES: the activation diversity, again calculated
over the vector of activations of all inflectional lexomes, but now using the
remaining cues in the learning event.

There are nine values that PRIORMORPH can assume, one value for each of
the nine inflectional lexomes that we distinguished (CLITIC, GENITIVE PLURAL,
GENITIVE SINGULAR, PLURAL NOUN, SINGULAR NOUN, THIRD PERSON VERB,
VERB, VERB PARTICIPLE, PAST-TENSE VERB, and OTHER). The boundary
diphone will usually differ from word to word depending on the stem-final
consonant and the specific realization of the S. For any specific boundary
diphone, there are again nine possible values of ACTFROMBOUNDARYDIPHONE
and ACTDIVFROMBOUNDARYDIPHONE, one for each inflectional lexome.
For a given target word, e.g. dogs, we consider the activation and acti-
vation diversity, given [gz] as cue, for the corresponding inflectional out-
come, here NOUN PLURAL. The values of ACTFROMREMAININGCUES and
ACTDIVFROMREMAININGCUES depend on the words that happen to be in the
moving window, and hence their values vary from token to token. In this way,
each target word was associated with five measures for its inflectional lexome.

Although the prior, activation, and activation diversity measures have been
found to be useful across many studies, there is considerable uncertainty about
how they might predict the duration of English S.

With respect to PRIORMORPH, the general strong correlation of NDL priors
with word frequency would suggest, given the many studies reporting durational
shortening for increasing frequency (see, e.g. Zipf 1929, Jurafsky et al. 2001a,
Bell et al. 2003, Gahl 2008), that a greater PRIORMORPH correlates with
shorter S. However, recent findings emerging from production studies using
electromagnetic articulography suggest that a higher prior (or frequency of
occurrence) might predict increased rather than decreased S duration: Tomaschek
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et al. (2018c) observed that, other things being equal, greater frequency enables
speakers to execute articulatory gestures with more finesse, in parallel to the
general finding that motor skills improve with practice. It is also possible that
PRIORMORPH will not be predictive at all, as Tucker et al. (2019) did not observe
an effect of the prior for stem vowel duration.

For the activation measures (ACTFROMBOUNDARYDIPHONE and ACTFROM-
REMAININGCUES), our expectation is that a greater activation will afford
durational lengthening. Arnold et al. (2017) observed, using an auditory word
identification task, that a greater activation corresponded to higher recogni-
tion scores. Since a higher signal to noise ratio is expected to give rise to
improved recognition rates, the prediction follows for English S that when the
activation is higher, there must be more signal compared to noise, and this
higher signal to noise ratio is, for a fricative such as S, likely to be realized by
lengthening. This is indeed what Tucker et al. (2019) observed for vowel duration
in regular verbs: as activation increased, the duration of the stem vowel increased
likewise.

Turning to the activation diversity measure, here Tucker et al. (2019) observed
a strong effect, with larger activation diversity predicting shorter duration. This
result fits well with the finding of Arnold et al. (2017) that in auditory word iden-
tification, words with a low activation diversity elicited fast negative responses,
whereas words with higher activation diversity had higher recognition scores
that came with longer decision times. In fact, the activation diversity measure
can be understood as a measure of lexicality: a low lexicality is an index of
noise, whereas a high lexicality indicates that the speech signal is making contact
with possibly many different words. The other side of the same coin is that
discriminating the target lexome in a densely populated subspace of the lexicon
takes more time. For speech production, Tucker et al. (2019) argued that when
lexicality is high, the system is in a state of greater uncertainty as many lexomes
are co-activated with the targeted outcome. Importantly, if some part of the signal,
e.g. English S, contributes to greater uncertainty, it is disadvantageous for both
the listener and the speaker to extend its duration. All that extending its duration
accomplishes is that uncertainty is maintained for a longer period of time. It
makes more sense to reduce the duration of those parts of the signal that do
not contribute to discriminating the targeted outcome from its competitors. These
considerations led us to expect a negative correlation between activation diversity
and S duration.

5. RESULTS

We analyzed the log-transformed duration of S with a generalized additive mixed
model (GAMM, Wood 2006, 2011) with random intercepts for the speaker and
the word. In addition to the five measures derived from the NDL network, we
controlled for the manner of the preceding and following segment by means of
two factors, one for the preceding segment and one for the following segment
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(each with levels APPROXIMANT, FRICATIVE, NASAL, PLOSIVE, VOWEL, and
ABSENT). We included the average speaking rate of the speaker (INDIVIDUAL-
SPEAKINGRATE) and the local speaking rate (LOCALSPEAKINGRATE) as con-
trol covariates.

In a number of cases, the S-bearing word would be located in a phrase final
position and the last diphone cue would be s# or z#. These cues resulted in strong
outliers in the NDL measures, which is why these words were excluded from
analysis. A total of 27091 tokens was investigated with NDL measures; Table 6
shows the number of tokens depending on function and voicing.

Voiced Unvoiced

Clitic 1469 3812
Genitive plural 7 6
Genitive singular 81 31
Plural noun 3841 2115
Singular noun 224 1749
Third person verb 2326 968
Verb 1367 6095
Verb participle 72 88
Past-tense verb 2177 463
Other 2947 4299

Table 6
Number of S tokens in each morphological function split by voicing investigated

with NDL measures.

The model we report here is the result of exploratory data analysis in which the
initial model included all control predictors and the random effect factors but no
NDL measures. We then added in NDL measures step by step, testing for non-
linearities and interactions. Model criticism of the resulting generalized additive
mixed model (GAMM) revealed that the residuals deviated from normality. This
was corrected for by refitting the model with a GAMM that assumes that the
scaled residuals follow a t-distribution (Wood, Pya & Säfken 2016). The scaled
t-distribution adds two further parameters to the model, a scaling parameter σ
(estimated at 6.18) and a parameter for the degrees of freedom ν of the
t-distribution (estimated at 0.29). Thus, for the present data, the residual error is
characterized by ε/6.18∼ t(0.29). Table 7 and Figures 1–3 are based on this model.

As the present model is the result of exploratory data analysis, the p-values in
Table 7, which all provide strong support for model terms with NDL measures
as predictors, cannot be interpreted as the long-run probability of false positives.
One might apply a stringent Bonferroni correction, and we note here that the large
t-values for NDL model terms easily survive a correction for 1000 or even 10000
tests. However, we prefer to interpret the p-values simply as a measure of surprise
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A. Parametric coefficients Estimate Std. error t-Value p-Value

Intercept −2.9179 0.2294 −12.7173 <0.0001
Preceding = fricative −0.0962 0.0299 −3.2151 0.0013
Preceding = nasal −0.1335 0.0233 −5.7229 <0.0001
Preceding = plosive −0.1869 0.0150 −12.4229 <0.0001
Preceding = vowel 0.0106 0.0144 0.7318 0.4643
Following = approximant 0.2839 0.1470 1.9315 0.0534
Following = fricative 0.1036 0.1470 0.7048 0.4809
Following = nasal 0.1089 0.1474 0.7390 0.4599
Following = plosive 0.0850 0.1469 0.5785 0.5629
Following = vowel 0.1310 0.1469 0.8919 0.3725
LocalSpeakingRate −0.0463 0.0211 −2.1874 0.0287
IndividualSpeakingRate 2.3873 0.6633 3.5990 0.0003

B. Smooth terms edf Ref.df F-value p-Value

te(ActFromBoundaryDiphone,
ActDivFromBoundaryDiphone) 14.4458 16.9557 548.4375 <0.0001
te(ActFromRemainingCues,
ActDivFromRemainingCues,
LocalSpeakingRate) 24.7081 32.1035 170.9787 <0.0001
s(PriorMorph) 2.0235 2.3027 84.2267 <0.0001
Random intercepts speaker 37.1278 38.0000 2118.9174 <0.0001
Random intercepts word 458.5028 2280.0000 2190.5616 <0.0001

Table 7
Summary of parametric and smooth terms in the generalized additive mixed model fit to

the log-transformed acoustic duration of S as pronounced in the Buckeye corpus. The
reference level for the preceding and following manner of articulation is ‘absent’.

and an informal point measure of the relative degree of uncertainty about the
parameter estimates.

Figure 1 presents the partial effect of PRIORMORPH. Larger priors go together
with longer durations. This effect levels off slightly for larger priors. Apparently,
inflectional lexomes with a stronger baseline activation tend to be articulated with
longer durations. The 95% confidence interval (or more precisely, as GAMMs
are empirical Bayes, the 95% credible interval) is narrow, especially for predictor
values between 5 and 25, where most of the data points are concentrated.

Recall that PRIORMORPH has nine different values, one for each inflectional
function of S. It is noteworthy that when we replace PRIORMORPH by a factor
with the nine morphological functions as its levels, the model fit decreases (by 10
ML-score units), while at the same time the number of parameters increases by 7.
The NDL prior for the inflectional functions, just by itself, already provides more
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Figure 1
Partial effect of PRIORMORPH in the GAMM fit to S duration, with 95% confidence

(credible) interval.

precision for predicting the duration of English S. Further precision is gained by
also considering the activation and activation diversity measures.

Figure 2 presents the partial effect of the interaction of ACTFROMBOUNDARY-
DIPHONE and ACTDIVFROMBOUNDARYDIPHONE, which we modeled with
a tensor product smooth. The left panel presents the contour lines with 1SE
confidence intervals; the right panel shows the corresponding contour plot in color
to facilitate interpretation, with darker shades of blue indicating shorter S and
warmer yellow colors denoting longer S. The narrow confidence bands in the left

Figure 2
Partial effect in the GAMM fit to log-transformed S duration of the activation and

activation diversity of the boundary diphone. In the right plot, deeper shades of blue
indicate shorter acoustic durations and warmer shades of yellow denote longer durations.

The left plot presents contour lines with 1SE confidence bands.
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Figure 3
Tensor product smooth for the three-way interaction of ACTFROMREMAININGCUES by
ACTDIVFROMREMAININGCUES by local speaking rate. The regression surface for the
two activation measures is shown for deciles 0.1, 0.3, 0.5, 0.7, and 0.9 of local speaking

rate. Deeper shades of blue indicate shorter acoustic durations and warmer shades of
yellow denote longer durations.

panel indicate that there are real gradients in this regression surface, except for
the upper left corner of the plotting region. For all activation values, we find that
as the activation diversity increases, S duration decreases. Conversely, for most
values of activation diversity, increasing the activation leads to larger S duration.
Shortest S durations are found for larger (but not the largest) values of activation
and for activation diversities exceeding 0.2. The two boundary measures interact
insofar as S duration is strongly reduced for high DIVLASTDIPHONE in spite of
high ACTLASTDIPHONE, as can be seen by the lake-like blue dip in the upper
right quadrant of the plot. While smaller activation – and consequently reduced
support – for the morphological function of S should result in shorter S, it seems
as though greater certainty about the morphological function counterbalances the
trend, resulting in longer S (bottom left quadrant of the plot).

Figure 3 visualizes the three-way interaction of ACTFROMREMAININGCUES
by ACTDIVFROMREMAININGCUES by local speaking rate.9 The successive

[9] Software for plotting confidence bands for these complex interactions is not available.

147

https://doi.org/10.1017/S0022226719000203 Published online by Cambridge University Press

https://doi.org/10.1017/S0022226719000203


F. T O M A S C H E K , I . P L AG , M . E R N E S T U S & R . H A R A L D BA AY E N

panels of Figure 3 present the odd deciles of local speaking rate (0.1, 0.3, 0.5, 0.7,
and 0.9). The regression surface slowly morphs from one with long durations for
high ACTDIVFROMREMAININGCUES (left panel) to a surface with long dura-
tions only in the lower right corner. The general pattern for ACTDIVFROMRE-
MAININGCUES is that S duration decreases as ACTDIVFROMREMAININGCUES
increases. For the lowest two deciles of local speech rate, this effect is absent for
high values of ACTFROMREMAININGCUES. For ACTFROMREMAININGCUES,
we find that for lower values of ACTDIVFROMREMAININGCUES, durations
increase with activation. For higher activation diversities, this effect is U-shaped.
The interaction pattern between the two NDL measures mirrors the one found in
Figure 2.

6. DISCUSSION

6.1 Summary of the present results

Plag et al. (2017) reported that there are significant differences in the duration
of English S as a function of the inflectional function realized by this exponent
(see also Zimmermann 2016a, Seyfarth et al. 2018). Plag et al. (2017) observed
that these differences in acoustic duration challenge the dominant current theories
of morphology. These theories, which have their roots in post-Bloomfieldian
American structuralism, hold that the relation between form and meaning in
complex words is best understood in terms of a calculus in which rules operate
on bound and free morphemes as well as on phonological units such as syllables
and feet. However, the units of this theory, the configurations of these units, or the
rules operating on these units or ensembles thereof cannot explain the observed
differences in the duration of English S in an insightful way.

The present study explored whether the different durations of S can be under-
stood as following from the extent to which words’ phonological and collocational
properties can discriminate between the inflectional functions expressed by the S.
We quantified the discriminability of these inflectional functions with three
measures derived from a wide learning discrimination network that was trained on
the entire Buckeye corpus. The input features (cues) for this network were words’
lexomes in a five-word window centered on the S-bearing word and the diphones
in the phonological forms of these lexomes. The classes to be predicted from
these cues (the outcomes) were the inflectional functions (inflectional lexomes)
of the S.

Three measures derived from the network were predictive for the duration
of S. A greater activation of a word’s inflectional lexome (i.e. greater bottom-up
support) predicted longer durations. A higher lexomic prior (i.e. a higher baseline
activation or, equivalently, a higher degree of entrenchment in the network) also
predicted longer durations. Apparently, both the support for a word’s morpholog-
ical function that is provided by that word’s form and its collocational patterning
as well as the a priori baseline support for the word that accumulates over the
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course of learning give rise to a prolonged acoustic signal. In other words, stronger
support, both long-term and short-term, for a morphological function leads to an
enhanced signal.

This finding dovetails well with lengthening of interfixes in Dutch, enhance-
ment of English suffixes when they are paradigmatically more probable, and
enhancement of vowels in Russian in proportion to paradigmatic support
(Kuperman et al. 2007, Cohen 2014a, b, 2015). Signal enhancement as a function
of activation also replicates the findings of Tucker et al. (2019) for the stem vowel
of regular verbs in the Buckeye corpus.

The study by Tucker et al. (2019) reported an opposing force on the duration
of verbs’ stem vowels: the activation diversity. Activation diversity is a measure
of lexicality. It assumes high values when the cues in the input are linked to many
different outcomes. In such a case, the outcome is located in a dense lexico-
semantic subspace and it is more difficult to discriminate the targeted outcome
from its competitors. For auditory comprehension, we thus find that processing
is slowed when activation diversity is high (Arnold et al. 2017). The flip side of
the same coin is that in speech production, the prolonging part of the acoustic
signal, such as S, is dysfunctional when this signal increases the discrimination
problem. A signal that is not discriminable cannot be made more discriminable
by prolonging it. The prolongation will result only in lengthening a state of
uncertainty instead of contributing to resolving it. Importantly, a large activation
diversity is dysfunctional not only for the listener but also for the speaker. The
auditory image that the speaker projects and aims to realize through articulation
(Hickok 2014) feeds back through the control loop to the semantic system. As a
consequence, aspects of the speech signal that are problematic for the listener will
also be problematic for the speaker.

Considered together, the three NDL measures indicate that the speaker has to
balance two opposing forces. One force seeks to lengthen parts of the signal in the
presence of strong bottom-up support and long-term expectations. The other force
seeks to shorten parts of the signal that increase uncertainty. The NDL measures
enable us to probe these forces. More importantly, our model illustrates that
these two forces interact in an unexpected way. In case one force creates extreme
uncertainty about the morphological function of S, the other force is able to reduce
this uncertainty and S durations turn out to be long.

The framework of naïve discriminative learning accepts that the language
system is, to some degree, ‘chaotic’. Just as in weather systems, a butterfly
flapping its wings in the Amazon is claimed to be able to start a chain of events
that cause a rainstorm in London (Lorenz 1972), the cues that co-occur across
learning events with cues that go together with a target word can co-determine the
discriminability of that target word; see Mulder et al. (2014) for an interpretation
of the secondary family size effect along these lines.

Thus, the approach presented in the current study – training of an NDL network
that learns to discriminate linguistic outcomes on the basis of sublexical and
collocational properties and deriving NDL measures from this network to predict
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the acoustic properties of a linguistic item – can be adopted to investigate similar
phenomena in other languages. For example, we are currently investigating how
the different inflectional and derivational functions of final /s/ and final schwa in
Dutch affect their acoustic durations. The approach allows one to investigate the
lexical structure of not only morphological functions but maybe even semantic
contrasts. Given the present results as well as those by Tucker et al. (2019), this
approach is very promising.

6.2 Consequences for morphological theory

The question remains as to whether this ‘chaotic’ explanation of non-random
variation in S duration improves on an explanation that simply posits that different
morphological functions have different consequences for S duration. Rephrased
statistically, does the prediction accuracy increase when we replace a model
with a factor for morphological function (with nine levels) with a model in
which this factor is replaced with NDL measures? When we replace the factor
inflection type by just the NDL prior, a numeric variable with nine distinct values,
model fit indeed improves, while at the same time model complexity decreases.
Instead of needing eight parameters for inflectional function, only a single
parameter (the slope of the regression line) suffices. When the linearity assump-
tion for the prior is relaxed, the required effective degrees of freedom is still
well below 8.

What are the consequences of our findings for morphological theory and
theories of speech production? First, consider morphological theory. Here, we
are confronted with a range of different approaches that rest on very different
assumptions about the structure of words. Two major approaches are relevant in
the context of the S problem. On the one hand, we have post-Bloomfieldian item-
and-arrangement theories (IAA; Hockett 1954) and generative offshoots thereof
building on Chomsky & Halle (1968). On the other hand, we have realizational
theories such as word and paradigm morphology (WP) (Blevins 2006). Both
WP and IAA address how inflectional functions such as number and tense are
expressed in speech. IAA posits that this expression is mediated by morphemes,
i.e. the minimal units of a language that combine form and meaning. WP, on
the other hand, rejects the usefulness of the morpheme as a theoretical construct
(see also Matthews 1974, Beard 1977, Aronoff 1994, Blevins 2003). Instead of
constructing a calculus for building words out of morphemes, WP focuses on
the paradigmatic relations between words and holds that morphological system-
aticities are driven by certain paradigm-internal mechanisms, e.g. proportional
analogy. Naïve discriminative learning provides a computational modeling frame-
work that is deeply influenced by WP morphology, and the measures derived from
the model can be understood as gauging aspects of proportional analogies. The
specific implementation proposed in this study of English S extends proportional
analogy by including ‘collocational analogy’ along with phonological analogy.
For a detailed discussion of proportional analogy and discriminative learning, see
Baayen et al. (2019).
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It is less clear whether the present findings are compatible with IAA. Expla-
nations within IAA can attribute an effect to representations for units, to con-
figurations of such units, as well as to the combinatorial rules that give rise
to these configurations. Plag et al. (2017) showed that the observed differences
in the durations of English S cannot be explained in this way. However, IAA
can assign conditional probabilities to units and configurations of units and link
the likelihood of an effect to such probabilities (see, among others, Jurafsky
et al. 2000, Aylett & Turk 2004, Gahl 2008, Bell et al. 2009, Tremblay &
Tucker 2011, Cohen Priva 2015, Kleinschmidt & Jaeger 2015). We cannot rule
out that probabilities for inflectional functions that are properly conditioned
on collocational and phonological distributional patterns will also predict the
duration of English S. In the light of previous studies (Milin et al. 2017b,
Tucker et al. 2019), however, we anticipate that such measures will underperform
compared to discriminative measures. We note here that if measures such as, for
instance, the probability of a genitive plural conditioned on the two preceding and
following words are indeed found to be effective predictors of S duration, this
would imply that the fine-tuning of the duration of S takes place after morphemes
have been assembled into phrases. In other words, any fine-tuning of this kind
must, within the generative framework, take place post-lexically.

6.3 Implications for speech production

Having outlined the implications of our findings for theoretical morphology, we
next consider their implications for models of speech production. The literature
on speech production is dominated by two models, those of Dell (1986) and
Levelt et al. (1999). Both models take the framework of IAA as given and
propose mechanisms for assembling from morphemes and phonemes the form
representations posited to drive articulation.

Dell’s interactive activation model is set up in such a way that the activation
of morphemes can be influenced by other words in the phrase. The paradigmatic
effect of activation diversity, which we calculated for all inflectional functions
that can be realized as S, however, cannot be captured by this model, as in most
phrases only one, perhaps two, of these inflectional functions are relevant. It is also
unclear how effects of the NDL prior might be accounted for, as the model does
not implement baseline activation levels. Furthermore, the activation measure in
our learning model integrates evidence from all words in the five-word window
to the S, whereas in Dell’s model, inflectional morphemes receive activation only
from an inflectional concept node.

The WEAVER model by Levelt et al. implements a strictly modular architecture,
with a lemma layer separating morphemes from concepts. In this model, the
selection of the stem is handled by hard-wired links between lemmas’ word forms
one layer down in the model’s hierarchy. The selection of a specific inflectional
morpheme is driven by diacritical features associated with a word’s lemma.
Whether an inflectional suffix is selected depends on whether its corresponding
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diacritical feature is flagged as active. Since WEAVER explains frequency effects
at the word form level, it might be possible to interpret the inflectional priors from
the NDL network as the resting activation levels of the inflectional morphemes in
WEAVER’s form stratum. However, since the WEAVER model is not a learning
model, each of the nine values of the NDL prior unavoidably becomes free
parameters of the model. Furthermore, the way the priors are estimated in our
NDL model, namely, by evaluating entrenchment across all diphones and even the
words in the immediate context, is completely at odds with WEAVER’s modular
design. Since WEAVER’s design precludes the possibility of neighborhood simi-
larity effects – a prediction that has been shown to be incorrect (Vitevitch 2002,
Vitevitch & Stamer 2006, Vitevitch 2008, Scarborough 2004) – it is unlikely that
this model can be adapted to integrate discriminative information across the full
lexicon.

After all, we are predicting the amounts of support for inflectional diacritics,
and one could imagine that our effects could be captured by some decision process
selecting the proper diacritic that then drives standard weaver production. In fact,
the positive correlations of prior and activation with S duration run counter to the
predictions of information theoretic accounts and probabilistic theories building
on IAA models, according to which words and segments are realized shorter when
they are less informative (Aylett & Turk 2004, Jaeger 2010, Cohen Priva 2015).
However, our results dovetail well with the Paradigmatic Signal Enhancement
Hypothesis (Kuperman et al. 2007), which holds that the more probable an
exponent is in a given paradigm, the longer it will be articulated (see also Ernestus
& Baayen (2006) and Cohen (2014a)). Kuperman et al. observed that the duration
of an interfix in Dutch compounds was proportional to its probability within the
left constituent family of the compound. For English S, it is the set of inflectional
lexomes that S realizes that constitutes the paradigm within which both support
and uncertainty are evaluated.

6.4 NDL as a computational tool of speech production

This survey leaves us with the question of how to understand NDL as a com-
putational model and especially its status as a computational model of speech
production. After all, the network that we have found to predict S duration best
represents the comprehension part of an internal production–comprehension–
production feedback loop. To answer this question, we first note that NDL is
a computational tool, very similar to multiple regression (Evert & Arppe 2016,
Sering et al. 2018b), which helps us trace the consequences of low-level, implicit
statistical learning. It affords prediction precision that is not available to hand-
crafted architectures such as that found in the models of Dell and Levelt and
colleagues. Second, because NDL is a computational tool, it does not provide
a full model of either comprehension or production. Nevertheless, applied to
English S, this tool informs us that, surprisingly, it is the comprehension part
of the feedback loop that appears to be crucial for understanding the variance in S
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duration. Furthermore, if the way in which the model is set up, with lexomic and
phonological cues jointly predicting inflectional lexomes, is on the right track,
this challenges separation of processes into lexical and post-lexical. The reason
is that during learning, phonological and lexomic cues are in competition in a
fundamentally non-modular way.

A more complete, and unavoidably more modular, model for the mental
lexicon that integrates comprehension and production was recently proposed
by Baayen, Baayen & Blevins (2018) and Baayen et al. (2019). Their model,
linear discriminative learning (LDL), comprises several interacting networks, with
modality-specific numeric vectors for words’ forms and with semantic vectors
that replace the lexomic pointers that stand in for words’ meanings in naïve
discriminative learning. For inflected words, these semantic vectors are obtained
by summing the semantic vectors of the lexomes realized in that word. Thus, the
semantic vector for dogs,

−−→
dogs, is

−→
dog+

−−→
dogs. The production part of the LDL

model first maps a word’s semantic vector onto a numeric vector representing that
word’s form, using a straightforward linear transformation (i.e. a two-layer linear
network). The length of words’ form vectors is equal to the number of different
n-phones known to the model, and the values in these vectors specify the degree
to which the different n-phones are supported by the words’ semantic vectors.
Once a form vector has been obtained, the model calculates the set of ordered
sequences of overlapping n-phones (e.g. #do+dog+ogz+gz#) that are best
supported by the form vector. For each of the resulting candidates for production,
the model then calculates how well these candidates succeed in realizing the
intended meaning when presented to the model’s comprehension network. The
pertinent calculations again make use of a linear transformation but, now, one that
maps form vectors onto semantic vectors. The candidate with the semantic vector
closest to that of the original semantic vector targeted for production is selected
for articulation. Thus, in this model, there is an explicit feedback loop from form
to meaning. Measures based on this model that are expected to be predictive for S
duration are the amount of support from the semantics for the pertinent n-phones,
the angles and distances between the semantic vectors of inflectional lexomes, and
the angles or distances between these inflectional vectors and the semantic vectors
generated by the feedback loop. We leave the exploration of such measures for
further research, given that NDL provides simple yet effective measures gauging
the support of form for meaning.10

[10] We note here that neither NDL nor LDL provide fully specified, ‘mechanical’ models. In
particular, the mechanisms that are responsible for selection processes are not implemented.
As a consequence, we have to rely on generalized additive models to chart the details of the
interplay of the network support and decision processes.
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6.5 Conclusion

We conclude with placing the present findings in a broader perspective. Speak-
ers tend to smooth articulatory gestures across junctures, resulting in a variety
of forms of assimilation. Simplification of articulatory gestures can give rise to
substantial reduction of spoken words compared to dictionary norms (Ernestus
2000, Johnson 2004, Ernestus, Baayen & Schreuder 2002, Arnold et al. 2017).
How exactly words are realized in speech depends on the interplay of many
factors, including audience design (Lindblom 1990), minimization of effort (Zipf
1949), information density management (Aylett & Turk 2004, Jaeger 2010, Bell
et al. 2009), articulatory proficiency (Tomaschek et al. 2018c, a, 2019), speech
rhythm (Ernestus & Smith 2018), and paradigmatic enhancement (Kuperman
et al. 2007, Cohen 2014a). To this list, the present study adds ‘discrimination
management’ for inflectional functions (see also Tucker et al. 2019). When an
exponent such as S provides strong support for the targeted inflectional lexome
(gauged by NDL activations and priors), it is articulated with longer duration.
When S fails as a discriminative cue and instead creates uncertainty about the
intended inflectional function, its duration is decreased. Energy is not invested in
a signal that creates confusion instead of clarity.

The current study shows that the discriminative capability of single segments as
well as parts of the speech signal affect its acoustic characteristics. Discriminative
capability is similar to what Wedel, Kaplan & Jackson (2013b) call ‘functional
load’, i.e. the number of words a single segment discriminates. Using counts
of minimal pairs, Wedel and colleagues have shown that a high functional load
inhibits the loss of phonological contrasts (see also Wedel, Jackson & Kaplan
2013a). Hall et al. (2018) further argue that phonetic segments get enhanced
when there is a risk to misidentify one word as another one (e.g. the [p] in pill
is longer than that in pipe because it has to be contrasted more strongly from bill,
whereas there is no *bipe). This argumentation is consistent with our findings.
A greater activation for a morphological function indicates that the cues in the
context of the S-bearing word contrast the morphological function very well
from other morphological functions. A lower activation diversity indicates that
the morphological function can be well contrasted on the basis of the contextual
cues in the signal. In both cases, we observe an enhancement of the signal, namely
lengthening.

The measures derived from naïve discriminative learning offer the researcher
new tools that probe language structure at a much more fine-grained level than is
possible with minimal pairs. Thanks to these tools, we can now begin to further
improve our understanding of how discriminative capability modulates segment
duration.
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APPENDIX A. NDL: RESCORLA–WAGNER EQUATIONS

Technically, the Rescorla–Wagner equations are closely related to the perceptron
(Rosenblatt 1962) and adaptive learning in electrical engineering (Widrow &
Hoff 1960). The Rescorla–Wagner equations estimate the association strength,
henceforth weights W , between input units C, with C ∈ ck , k = 1, 2, . . . , K ,
henceforth cues, and a set of output units O, with O ∈ on , n = 1, 2, . . . , N ,
henceforth outcomes.

During learning, each outcome O j is defined by a set of cues, henceforth cue
set CS�. Usually, q equals j . Since j also represents the position of O in the
weight matrix, we use q as a pointer to the associated O j .

The size of the weight matrix increases incrementally during learning whenever
new subsets of cues and outcomes are encountered. After training, the Rescorla–
Wagner network will be defined by a K × N weight matrix, where K represents
the total number of unique cues encountered during learning and N represents the
total number of encountered unique outcomes during learning.

At a given learning event L t , t = 1, 2, . . . , T , weights are adapted on the
connections from the inputs present during the learning event t , henceforth the
cues Ct (Ct ⊆ C), to all of the outcomes O1,...,t that have been encountered at least
once during any of the learning events 1, 2, . . . , t − 1. The outcomes present at
learning event L t are denoted by Ot (Ot ⊆O). The weight between cue ci and
outcome o j at the end of the learning event t is given by

w
(t)
i j = w

(t−1)
i j +1w

(t−1)
i j , (A1)

1wt−1
i j is calculated by the Rescorla–Wagner equations:

1w
(t−1)
i j =



(a) 0 if ci /∈ ct ,

(b) αiβ j

(
λ−

∑
m

I[cm∈Ct ]w
(t−1)
mj

)
if ci ∈ Ct ∧ o j ∈O j ,

(c) αiβ j

(
0−

∑
m

I[cm∈Ct ]w
(t−1)
mj

)
if ci ∈ Ct ∧ o j /∈O j
∧ o j ∈O1,...,t−1,

(d) 0 otherwise.

(A2)

The Rescorla–Wagner equations define four conditions which define adaptation
strength 1w

(t−1)
i j on the efferent weights in learning event t . The maximum

learnability, λ, was set to 1.0 in all our calculations, while cue and outcome
salience, αi and β j , were set to 0.1. The four conditions in Equation (A2) define
the following states:

1. if the i th cue is not an element of the active cues Ct during the event L t ,
1w

(t−1)
i j is equal to zero and none of its efferent weights are adapted.
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2. If the i th cue is an element of the active cues in a learning event Ct , the
connection to o j is strengthened if o j is also present in the event t by
subtracting the sum of the weights across all cues in Ct from λ. As a result,
1wt−1

i j is inversely proportional to the number of present cues. I is the
indicator operator, which evaluates to 1 if its argument in square brackets
is true, and to zero otherwise. m indexes the cues in Ct .

3. If o j is not present but has been encountered during some previous learning
event, the strength of the connection between ci weight and o j is reduced by
subtracting the sum of the weights across all cues in Ct from 0. As a result,
1wt−1

i j is proportional to the number of present cues.

4. If none of the above three conditions is true,1w(t−1)
i j is equal to zero. This is

especially the case when an outcome is encountered which was not present
in any of the previous learning events.
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