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Abstract. A question of Igusa (from 1978) inquires about the singular behavior of the singular series,
determined by a polynomial mappingP:Kn→ Km,m 6 n, whereK is a local field of characteristic
zero. This paper describes in geometric terms the singularities of the singular series for two classes of
polynomial mapsP= (P1, P2):K

n → K2. The main result, which makes possible this description,
is a type of uniformization ofP by finitely many monomial mapsµ(x) = (xM1, xM2), such thatrank(M1
M2

) = 2. This is proved using resolution of singularities. Using this result, nontrivial estimates of
oscillatory integrals with phaseλ1P1+ λ2P2 are possible. These will be described elsewhere.
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Introduction

Mellin inversion overp-adic fields is the method used by Igusa to determine the
singular behavior of the local singular series determined by one polynomial. In
particular, forP ∈ Qp[x1, . . . , xn], this is the function

t = regular value ofP → F(t)

=def lim
e→∞p

−e(n−1) · #{ξ ∈ (Z/pe)n:P(ξ) ≡ t (pe)}.
It is a locally constant function in a neighborhood of a regular value ofP but has
nontrivial singular behavior ast converges to a critical value ofP . A standard
argument [I, pg. 83ff.] also shows that

F(t) =
∫
{P=t}∩Znp

|dx/dP |,

where|dx/dP | denotes a Borel measure on the fiber that is induced by the Leray
residue differential form.

The inverse Mellin transform [T] overQp expresses the local singular series
as an infinite trigonometric sum, each summand of which has a factor equal to
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26 BEN LICHTIN

the residue of a certain zeta function, or of its twist by one of an infinite set of
characters onUp =def Zp − pZp. The key to Igusa’s method is a finiteness result
[I, pg. 96], proved by applying (embedded) resolution of singularities to the divisor
{P = 0} in Qnp. This shows that only finitely many twists of the zeta function con-
tribute to the inverse Mellin transform. Thus, describing the asymptotic behavior
(as t converges to a critical value ofP ) of the local singular series reduces to a
problem that can be solved in terms of a finite set of numerical data, created by the
resolution of singularities.

Igusa’s principal motivation, however, was to estimate the asymptotic behavior
of the Fourier transform of the local singular series. For this, knowledge of the pre-
cise singular behavior of the singular series is an essential prerequisite. The value
of the Fourier transform at the argumenta/pr, (a, p) = 1, equals the generalized
Gaussian sum

G(a/pr) = p−rn
∑

ξ∈(Z/prZ)n
e

2πiaP(ξ)
pr .

The ability to obtain strong decay inp−r , for each primep, such asG(a/pr) =
O(p−rα) for someα > 2, when certain geometric properties were satisfied, was
an important consequence of his theory of ‘asymptotic expansions’ in onep-adic
variable.

Motivated by this work, Igusa asked in his book [I, pg. 32] how one could extend
his method to analyze the singularities of the local singular series, determined by a
polynomial mapP = (P1, . . . , Pk), k > 2, along the critical values ofP. As in the
one variable case, when eachPi is defined overQp, this is the function

t = (t1, . . . , tk)→ F(t)

=def lim
e→∞

#{ξ ∈ (Zp/pe)n:Pi(ξ) ≡ ti (pe)i = 1, . . . , k}
pe(n−k)

,

wheret is a regular value ofP. This function is also a fiber integral [Y]:

F(t) =
∫
{P=t}∩Znp

|dx1 · · · dxn/dP1 ∧ · · · ∧ dPk|,

where the measure is, again, induced by the Leray residue form on each smooth
fiber of dimensionn− k.

Typically, though not necessarily always, an effective estimate for the Fourier
transform ofF(t) is of interest. A standard argument [I, pg. 83] shows that the
transform determines a ‘generalized Gaussian sum’,

G(a1/p
r, . . . , ak/p

r) = p−rn
∑

x∈(Zp/pr )n
e

2πi
pr

∑
i aiPi(x),
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TOWARDS A THEORY OF SEVERAL VARIABLE ASYMPTOTIC EXPANSIONS I 27

when evaluated at a vector(a1/p
r, . . . , ak/p

r) such that gcd(p, a1, . . . , ak) = 1.
Estimating the sum for larger is a basic problem in the circle method.

Unfortunately, a multivariable extension of Igusa’s geometric method is not at
all immediate. Indeed, the proof of his finiteness theorem does not extend to treatk-
tuples of polynomials except in a very limited way. In attempting to discover such a
generalization, the most important problem seems to occur for pairs of polynomials
since a solution for pairs should indicate what one needs to do fork > 3 vectors.

The main result of this paper extends Igusa’s method to two classes of pairs of
polynomials, defined overQp. These are as follows

C`I =def all P:Q2
p → Q2

p satisfying the very mild hypothesis (1.5).
C`II =def all P:Qnp → Q2

p, n > 2, such that eachPi is homogeneous with at most
one singular point, and so that the singular locus SingP of P (as a map-
ping) is a curve with at most one singular point (see Sections 2,3).

For each pair, a finite amount of geometric data is shown to determine the
precise singular behavior of the corresponding local singular series. Further, this
data is created by a finite number of blowing up morphisms. Each morphism de-
termines an embedded resolution of singularities. Thus, each is a finite composition
of monoidal transformations with center a nonsingular variety. The same property
also holds if each polynomial is defined over any finite extension ofQp.

The first three sections of this paper are geometric in nature. Here one derives
all the needed ingredients for the local analysis of the singular series in Sections 5–
6. Section 4 contains the statement and proof of the main result of the paper,
Theorem 4.3. The essential new idea required to establish this is a type of local
uniformisation for a mapP by ‘goodP wedges’ (see (4.2)). That is, one shows that
a compact neighborhood of SingP can be decomposed into the union of finitely
many goodP wedges. This is not a difficult result for elements ofC`I . However,
for elements ofC`II , the underlying geometric argument is a bit intricate (see
sections 2,3). Work in progress intends to show that Theorem 4.3 is true in far
greater generality.

Igusa’s finiteness theorem extends easily within any goodP wedge. This is
shown in Proposition 5.3. The combination of (4.3) and (5.3) proves that the singu-
larities of the local singular series are determined by a finite amount of effectively
determined geometric data. This is shown in (5.7), (5.11), and (6.11). Section 6,
part ii also works out a complete description of the singular behavior from within
the image (byP) of any goodP wedge whenP1 is a linear form.

In the case of one polynomial, this geometric data takes the form of a finite set
of n+1 tuples of nonnegative integers, each determined by that polynomial. In the
case of pairsP, the data consists of a finite number of explicitly computed 3× n
matrices with nonnegative integer entries. However, unlike the one variable case,
a finite number of additional pairs of maps is needed to generate all the matrices.
A pair P, by itself, is incapable of generating all the data needed to describe the
singularities of the singular series ofP. It should also be noted that a convenient
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28 BEN LICHTIN

geometric encoding of this data produces a finite set of polygons (see (6.12)), in
terms of which one can describe certain essential features of the singular behavior
of the singular series ofP. This property is a simple consequence of Theorem 4.3.

Evidently, there needs to be a connection between each ancillary pair(F,G)

andP itself. The relation between the two pairs is described by a transformation
(F,G) → P that is called an ‘amelioration’ (or ‘improvement’) (see (1.2)). This
is a local notion that is defined in the image of the maps. So, it is a type of ‘base
change’ morphism.

The main observation of this paper is that local resolution data (in the domain)
can be used to construct all necessary ancillary pairs(F,G), as well as the maps
(F,G) → P (in the range). Establishing this principle is the key to extending
Theorem 4.3 to other classes of polynomial maps. The reader is encouraged to read
the introductory remarks of Section 3 where this is discussed more completely.

Theorem 4.3 applied toP ∈ C`I extends a result of Loeser [Lo, Thm. 1.4.3]
to a large class of nonfinite maps onQ2

p. However, since Loeser’s method does
not extend to treat pairs of polynomials in more than two variables, (4.3), applied
to C`II , is the first case known to the author in which an effective (and explicit)
description has been given of the singularities of the local singular series of a
mapping in which the number of variables exceeds the number of functions.

Since the first version of this paper was completed and circulated in the spring
of 1997, generalizations of the principal result have been found by Denef [De] in
thep-adic field case, and Lion–Rolin [L–R] in the real case. Abramovich and Karu
[Ab–K] also have found a generalization that applies (in the algebraic case) over
algebraically closed fields of characteristic zero. These papers imply very general
results on the singular behavior of a fiber integral, determined by integrating a
compactly supported differential form over the nonsingular fibers of a polynomial
(or analytic in [L–R]) map, as a critical value is approached.

What however is, so far, lacking with all three of these papers is the effectiveness
of the procedure by means of which this behavior can be described. Moreover,
one is limited to fairly general assertions about the form of the singularities, and
cannot, as yet, say anything very precise. As a result, it does not yet seem possible
to apply these results to estimate, in any useful sense, the Fourier transform of the
fiber integral. Since the ability to do just that is one of the principal motivations
for studying the singularities of a fiber integral in the first place, it would appear
to be very interesting to extend the more constructive methods of this paper. This
should make it possible to determine nontrivial estimates for the Fourier transform
of many classes of mappings.

Indeed, the article [Li-1] uses the purely geometric results of this paper to derive
a nontrivial decay estimate for|G(a1/p

r, a2/p
r)| (asr →∞) for P ∈ C`I ∪C`II ,

that is uniform in(a1, a2). The estimate is most conveniently described in terms of
the polygons, defined in (6.12). In particular, whenP1(x) = β · x, β ∈ Znp, andP2

has degreed2 > 2, a simple estimate for the rate of decay can explicitly be given
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and seen to be independent ofβ. This requires the data obtained in Section 6 part
ii.

In this way, for fixedβ, a nontrivial decay estimate is found for generalized
Kloosterman sums as follows

Su(p
r, β) =def p

rn
∑

a1,a2∈[1,pr )
a1a2≡1 mod(pr )

e
2πiua1
pr G(−1/pr, a2/p

r)

= Oε(p
r(n− n

d2
+1+ε)

), (0.1)

for any (sufficiently small)ε > 0. These sums have been intensively studied in
the cubic case in [H-B-1]. It has also been suggested in [H-B-2, pg. 152] that an
estimate for the averages

∑
{β∈Zn:|β|6B} |Su(pr, β)| is a needed ingredient to detect

rational points on{P2 = 0} whenP2 is of higher degree, in particular, of degree
4. Using very different methods than those developed in [Li-1], the article [Li-5]
was able to establish estimates on average that are comparable to (0.1). It would be
interesting to know if similar estimates could be found that use only the methods
from [op cit].

The methods of this paper, because they are purely geometric, also apply over
R andC (see Remark 6.13). Using them, problems in classical analysis can be ad-
dressed. OverR, the pairsC`I,C`II can be defined, and the asymptotic behavior of
the oscillatory integral with phaseλ1P1+λ2P2 can be analyzed for large|λ1|, |λ2|.
Although the techniques of integration are completely different than those of [Li-
1], the estimates obtained are entirely similar. The results are given in [Li-3]. These
too should be true in much greater generality.

In contrast to estimating oscillatory integrals, the works of Phong–Stein (e.g.
[P–S-1, 2, 3]) have emphasized the estimate of oscillatory integraloperatorson
variousLp spaces. A related problem is the ‘stability’ of oscillatory integral operat-
ors, or of integrals of the type

∫
B
|f |−s dx, whereB ⊂ Rn is a small box containing

a singularity of the polynomial/analytic functionf (see [P–S–St]). The proxim-
ity to the classical subject of oscillatory integrals suggests that algebro-geometric
methods based upon Singularity theory should exist to deal with such problems. So
far, this has proved elusive. It seems that one can attack such problems using the
existence of a several variable asymptotic expansion for appropriately defined fiber
integrals. The article [Li-6] shows that this is possible when the phase function is
homogeneous in two variables. To do this, the singular behavior of a three variable
fiber integral needs to be understood very precisely.

OverC, there is the problem of obtaining a good definition of residual current
(see [P]), using families of paths other than ‘admissible’ paths. This problem was
posed in [Be-Y, Thm. 5.23ff], and solved in the case of complete intersections in
[P–T-1,2]. It is not difficult to show, see [Li-4], that this question can also be un-
derstood in terms of the singularities of a fiber integral. It follows that the methods
of this paper also apply to this problem. As a result, for(P1, P2) ∈ C`I ∪C`II , one

https://doi.org/10.1023/A:1001743909924 Published online by Cambridge University Press

https://doi.org/10.1023/A:1001743909924


30 BEN LICHTIN

can analyze the limiting behavior of the integrals (whereϕ denotes a compactly
supported(n, n− 2) form)∫

{|P1|=t1}∩{|P2|=t2}
ϕ

P1P2
as t1, t2→ 0.

This is particularly of interest forC`I since such pairs need not define a complete
intersection.

To simplify the discussion, this paper has only treated the case ofQp. The
reader, who is assumed to be familiar with Igusa’s theory in 1 variable, for which
[I] is an excellent reference, will easily be able to make the needed changes for any
finite extensionK of Qp. For the reader who is not, it suffices to replaceZp resp.
the ideal(p)Zp by OK, the ring of elements of norm at most 1 resp. ideal(µ)OK ,
whereµ is a generator for the elements of norm strictly smaller than 1. Then, in
the expressions below, one replaces the numberp by pf = #O/(µ).

An initial version of this paper was prepared while the author was a visitor at
IHES, to which he expresses his appreciation for its support.

Section 1

Part i gives the two basic definitions that are used in the rest of the article. Part ii
treats the case ofC`I .

Part i. Good-Bad points
Let (f, g):U(p) ⊂ Qnp → Q2

p denote any pair of nonzerop-adic analyticfunctions,
defined on a compact open neighborhood of a pointp, and such thatf (p) =
g(p) = 0.

DEFINITION 1.1. p is a good point of(f, g) if there exist analytic coordinates
x = (x1, . . . , xn), defined onU(p) and centered atp, such that

f (x) =
n∏
i=1

x
Ni
i · u1, g(x) =

n∏
i=1

x
Mi

i · u2, u1, u2 analytic units onU(p),

rankA(p) =def

(
N1 · · · Nn

M1 · · · Mn

)
= 2.

p is a bad point if it is not good. 2
So, if each function has the form of monomial times a unit (in the same coordinate
system) but rankA(p) = 1, thenp is bad. As a second example, if at least one
function is singular atp but cannot be expressed as the product of a monomial and
unit, thenp is bad.
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Note. In this article, when a point and compact open neighborhood of the point
are given, one writes ‘coordinates on the neighborhood’ to mean a system ofp-adic
analytic coordinates defined on the neighborhood and centered at the point. If no
neighborhood is indicated, ‘coordinates at the point’ means a system of coordinates
defined on some unspecified compact open neighborhood of the point. Further,
units (on some neighborhood) are alwaysp-adic analytic functions that do not
vanish on the neighborhood. Given a pointy, the notationU(y) denotes a compact
open neighborhood ofy. 2
DEFINITION 1.2. Letp ∈ Qnp Let (f, g), (F,G) be two pairs of analytic functions
defined on someU(p). A permissible modificationis a map(F,G)→ (f, g) such
that (up to a permutation off, g)

f = cF δ and g = ψ(F)+GonU(p), (1.2.1)

and wherec 6= 0, δ ∈ N, andψ(τ) is ap-adic analytic function.
A permissible modification(F,G)→ (f, g) is anameliorationat p if p is bad

for (f, g) but good for(F,G). 2

Note. Given some neighborhoodU , the expression(F,G)→ (f, g) onU will
mean that equations of the form (1.2.1) hold between the two pairs of functions on
U . Unless greater precision is required, the neighborhoodU will not be written.

Part ii. The casen = 2
In this part,p always denotes a bad point of a map(f, g):U(p) ⊂ Q2

p → Q2
p. At

first, a simple criterion is given that ‘improves’ a map atp. Then, the definition of
C`I is presented, and one shows how to apply the criterion to improve any element
of C`I in a neighborhood of a bad point.

Suppose the following two properties hold in a neighborhoodW(p) (always up
to a permutation off, g, if needed)

(1.3a) There exist coordinatesz = (z1, z2) onW(p), nonnegative integers,Nj, j =
1,2, at least one of which is positive, and a unitu1 on W(p) such that
f (z) = zN1

1 z
N2
2 u1(z).

(1.3b) LetJf,g denote the Jacobian off, g in the z coordinates. There exist non-
negative integers,Aj , j = 1,2, at least one of which is positive, and a unit
u onW(p) such thatJf,g(z) = zA1

1 z
A2
2 u(z).

PROPOSITION 1.4. If (1.3a), (1.3b) are satisfied, then there exists an ameli-
oration (F,G) → (f, g) on some (possibly smaller) subneighborhoodU(p) of
W(p).

Proof.By permuting the coordinates, one may assume thatN1 > 0. By factoring
out from u1 the constant termu1(p), and shrinkingW(p) to a subneighborhood

https://doi.org/10.1023/A:1001743909924 Published online by Cambridge University Press

https://doi.org/10.1023/A:1001743909924


32 BEN LICHTIN

U(p), if needed, one may assume that the binomial series foru1(z)
1/N1 converges

for all z ∈ U(p) and that

w1 = z1 · (u1)
1/N1, w2 = z2

determine coordinates onU(p). One can then write

f (w) = u1(p)w
N1
1 w

N2
2 , Jf,g(w) = wA1

1 w
A2
2 u(w), (1.4.1)

whereu(w) is a unit onU(p).
Let the power series expansion inU(p) for g(w) be given by

g(w) =
∑

J 6=(0,0)
gJw

J , where wJ = wj11 w
j2
2 if J = (j1, j2).

For simplicity in the following, set|N; J | =
∣∣∣∣ N1 j1

N2 j2

∣∣∣∣.
A simple calculation then indicates that

Jf,g(w) = u1(p)w
N1−1
1 w

N2−1
2

∑
J 6=(0,0)

gJ |N; J |wJ if N2 > 0,

w2Jf,g(w) = u1(p)w
N1−1
1

∑
J 6=(0,0)

gJ |N; J |wJ if N2 = 0.
(1.4.2)

SinceJf,g(w) is given by (1.4.1), it follows thatNj −16 Aj, j = 1,2, if each
Nj > 0, andN1 − 16 A1 if N2 = 0. Set

(ε1, ε2) = (A1−N1+ 1, A2 −N2+ 1). (1.4.3)

Dividing both sides of (1.4.2) by the monomial factor written on the right side of
(1.4.2), one concludes∑

J 6=(0,0)
gJ |N; J |wJ = wε1

1 w
ε2
2 · u(w) whereu is a unit onU(p). (1.4.4)

Next, one writesg(w) = g1(w)+ g2(w), where

g1(w) =
∑
|N;J |=0

gJw
J and g2(w) =

∑
|N;J |6=0

gJw
J .

Now set

δ = gcd(N1, N2), n =def (n1, n2) = (N1/δ,N2/δ),

F = wn, G = g2(w).
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Since eachJ in the index set forg1 is an integral multiple ofn, setJ = {j :j n ∈
suppg1}. It follows thatg1 = ψ(F) whereψ(τ) =∑j∈J gjnτ

j .
It is then clear that(F,G) → (f, g) determines a permissible modification on

U(p). To show that it is an amelioration atp, one first notes thatG 6= 0, since
g = ψ(F) implies thatJf,g would be identically zero inU(p). In addition, it is
clear that

suppg2 =def {J :|N; J | 6= 0 and gJ 6= 0}

= supp(the function defined on the left side of(1.4.4)).

Thus, (1.4.4) impliesg2(w) = w
ε1
1 w

ε2
2 · (an analytic unit inU(p)). Since(ε1, ε2)

cannot be linearly dependent with(N1, N2) it follows that p is a good point for
(F,G). 2
Now let P = (P1, P2), whereP1, P2 are polynomial functions onQ2

p. Recall that
SingP denote the singular set of the mappingP. SetJP to equal the jacobian ofP
with respect to a fixed set of affine coordinates(x1, x2) onQ2

p.

DEFINITION 1.5. P ∈ C`I iff for any compact open neighborhoodU of a point
in SingP, P(U) has positive measure inQ2

p, andP(U − C`P) is dense inP(U). 2
Remark. This property avoids a certain degeneracy in the image ofP that can

arise when one works with a pair of polynomials. One wants the imageP(U) to
have positive Haar measure, so that, in particular, it does not lie on an analytic
curve, as would be the case ifP1, P2 satisfied an analytic relation onU . One also
wants to insure that any singular fiber ofP|U can be approached along nonsingular
fibers. 2
The main observation is the following.

THEOREM 1.6. LetP ∈ C`I andq ∈ SingP be a bad point forP− P(q).

(a) If at least onePi is nonsingular atq, andSingP is a normal crossing divisor
in a compact open neighborhoodU(q) of q, then there exists an amelioration
(F,G)→ P− P(q) at q.

(b) If (a) fails to hold atq, then there exist a compact open neighborhoodU(q) of
q, a nonsingularp-adic manifoldX, and a morphismη:X→ U(q) such that:

(i) η is the composition of finitely many point blowing ups,
(ii) the exceptional divisorE of η blows down toq,

(iii) each pointp onE is either good forP◦ η−P(q), or there exists an amel-
ioration (F,G)→ P ◦ η − P(q) at p.
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Proof of (a). By a permutation if necessary, one may assume there exist co-
ordinatesy = (y1, y2) such thatP1 − P1(q) = y1 andJP = ∂P2/∂y2 = yA1

1 y
A2
2 u,

whereu is a unit atq. Setting(f, g) = P− P(q), it follows that Proposition 1.4
applies immediately to finish the proof.

To prove (b), note first that in the ring of analytic germs atq, there exist distinct,
irreduciblesh1, . . . , hr 6= 0, each vanishing atq, and unitsu1, u2, u atq such that
for suitable nonnegative integersai, bi, ci, one has

P1− P1(q) = ha1
1 . . . h

aq
q · u1, P2− P2(q) = hb1

1 . . . h
bq
q · u2,

JP = hc11 . . . h
cq
q · u.

Notation. For a function germh at a pointq, one writes here and in the rest of
the articlehrd to denote the ‘reduced’ function germ, obtained by setting any pos-
itive exponent on the right side to 1. A similar notation is used for a representative
function defined in a neighborhood ofq. 2
Let U(q) denote a compact open neighborhood on which all these functions are
defined, and so that the above equations hold at each point.

Now observe that the hypothesis in (b) implies either (i)q is a singular point of
(P1 − P1(q))rd and(P2 − P2(q))rd , or (ii) both (P1 − P1(q))rd , (P2 − P2(q))rd
are nonsingular atq, and (JP)rd is singular atq, but does not define a normal
crossing divisor atq. It follows that the set of pointsq, satisfying the hypothesis
in (b), is a discrete subset since it is defined purely in terms of the underlying
reduced functions. Thus, by shrinkingU(q), if needed, one may assume that the
only singular point inU(q) not satisfying (a) is the pointq.

In either case, there exist finitely many point blow upsηi, i = 1, . . . , R, so that
the following hold

(1) the first blowing up,η1, blows upq;
(2) for eachi > 2,ηi blows up exactly one point in the exceptional divisor ofηi−1;
(3) definingη = η1 ◦ · · · ◦ ηR, andX = η−1U(q), the divisor

D =def {(P1− P1(q)) · (P2 − P2(q)) · JP ◦ η = 0} ∩X
is a locally normal crossing divisor.

Now setJP◦η to denote the jacobian ofP◦ η. Then, becausen = 2, one concludes:

JP◦η = (JP ◦ η) · (det dη). (1.6.1)

SinceJP ◦η and det dη are both locally the product of a monomial and unit at each
point of D , it follows from (1.6.1) that the same holds forJP◦η. Hence, one can
now apply Proposition 1.4 to the pair(f, g) = P ◦ η − P(q) at any bad pointp on
the exceptional divisor ofη.

To conclude the proof of (b), it suffices to observe that ify ∈ X ∩ {JP ◦ η = 0}
is a bad point forP ◦ η− P ◦ η(y), andη(y) 6= q, then (a) implies the existence of
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an amelioration aty. That is, no additional blowing up ofy is required. 2
Remark. The elementary argument that proves (1.6), it turns out, was first ob-

served in the work of Akbulut and King [A–K] on an entirely different problem
in topology. The author rediscovered the same idea in the course of work that led
to this paper. This should be another indication that a general method of ‘improv-
ing’ the singularities of mappings would find important applications in subjects far
removed from Singularity theory.

2. Local Normal Forms at Singular points for P∈ C`II

Convenient local forms are given in a neighborhood of a pointq ∈ SingP.
There are two cases. The first assumesq is not the unique singular point of eachPi ,
denoted subsequently as0̄. (2.2) gives a local form that is sufficient for this paper.
Here the neighborhoodU(q) will lie in the original affinen space on whichP is
defined. The rest of the section treats the case of a pointp on the exceptional divisor
of the blowing up of0̄ in Qnp. A system of affine coordinatesx = (x1, . . . , xn) for
Qnp is chosen and fixed throughout the discussion.

The assumptionP ∈ C`II easily is seen to imply the following.

LEMMA 2.1. There exist local coordinates(y1, . . . , yn) at q 6= 0̄ ∈ SingP, such
that

P1(y)− P1(q) = y1, P2(y)− P2(q) = ψq(y1)+ p2(y),

whereψq is a convergent power series withordy1ψq = 1, and so that

dy1 ∧ d(∂p2/∂y2) ∧ · · · ∧ d(∂p2/∂yn) 6= 0.

The standard proof of Morse’s Lemma [C–M, pg. 24] also applies in the ring of
germs ofp-adic analytic functions at the origin inQnp. Using this and the Prepar-
ation Theorem applied toP2 − P2(q), more explicit local forms forP1 − P1(q),
P2− P2(q) can be found.

LEMMA 2.2. There exist coordinates(Y1, . . . , Yn), defined on a compact open
neighborhoodU(q), such that

P1(Y )− P1(q) = Y1, (2.2.1)

P2(Y )− P2(q) = ψq(Y1)+
n∑
j=2

cjY
2
j +

∑
`>2

Y `1g`(Y2, . . . , Yn),

where eachcj 6= 0 andg`(0, . . . ,0) = 0 for each`.

https://doi.org/10.1023/A:1001743909924 Published online by Cambridge University Press

https://doi.org/10.1023/A:1001743909924


36 BEN LICHTIN

Remark. The ability to describe the functionP2 − P2(q) − ψq(Y1) with such
precision is a key ingredient to the arguments of Section 3. 2
To analyze what occurs at the origin, one blows it up. The following is used.

Notation. π :X → Qnp denotes the blowing up of̄0, whereX is covered byn
affine chartsXj , with coordinatesx(j) =def (x1j , . . . , xnj ) so that

π(x(j)) = (x1jxjj , . . . , xjj , . . . , xnj xjj ) = (x1, . . . , xn).

The exceptional divisorπ−1(0̄) is denotedD and one setsD ∩Xj = Dj for sim-
plicity. For eachj andp = (p1j , . . . , pnj ) ∈ Dj , setp(j) = (p1j , . . . , pj−1,j ,1,
pj+1,j , . . . , pnj ), thought of as a point in thex coordinate plane whereP is defined.
The strict transform of eachPi in any chartXj is writtenP̂i. The context will make
clear in which chart the strict transform is being considered. InXj, it follows that
P̂i = Pi(x1j , . . ., xj−1,j ,1, xj+1,j , . . . , xnj ). 2
It is then easy to see thatP ∈ C`II implies the following.

LEMMA 2.3.

(i) For eachi, j,Xj ∩ {P̂i = 0} is a nonsingular hypersurface;
(ii) For eachi, j,Xj ∩ {P̂i = 0} is transverse toDj .

Setdi = degPi, i = 1,2.

LEMMA 2.4. Supposep ∈ Dj ∩{P̂1 = P̂2 = 0} is a singular point of the mapping
P̂ =def (P̂1, P̂2):{xjj = 0} ⊂ Xj → Q2

p. Then

(i) p(j) is a singular point ofP;
(ii) If d1 = d2, then the singular locus of{P̂1 = P̂2 = 0} ∩ π−1(0̄) is a smooth

curve nearp.

Proof of (i). First, one notes thatPi(p(j)) = 0 for eachi. Secondly, Euler’s
identity implies that for eachi,

∂Pi

∂xj
(p(j)) = −

∑
k 6=j

pkj
∂Pi

∂xk
(p(j)). (2.4.1)

Now, for eachk 6= j, ∂Pi/∂xk(p(j)) = ∂P̂i/∂xkj (p). So, ifp singular for the map
P̂ , and somepkj 6= 0, then (2.3)(i) implies the rank of the Jacobian matrix of this
mapping is precisely 1, and the preceding equation implies the same holds for the
rank of the Jacobian ofP atp(j). If all pkj = 0, then∂Pi/∂xj (p(j)) = 0 for eachi
and (i) is immediate. This shows (i).
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To prove (ii), one shows thatn − 2 of the 2× 2 minors of the Jacobian matrix
of P̂ have linearly independent differentials atp. To do so, one first notes that
sincep ∈ C`II , there aren − 1 of the 2× 2 minors of the Jacobian matrix ofP
at p(j) whose differentials are linearly independent atp(j). Denote these ashe =
1ke,`e(P), e = 1, . . . , n − 1, whereke < `e denote the columns from which the
minor is formed. Setd to denote the common degree of eachPi . It follows that
eachhe is homogeneous of degree 2(d − 1), and, by (i) vanishes atp(j). Further,
Pi(p

(j)) = 0 for eachi.
Now, if j 6∈ {ke, `e}, for eache, then it is clear that

he|{xj=1} = 1ke,`e(P̂ ) =def

∣∣∣∣∣ ∂P̂1/∂xkej ∂P̂1/∂x`ej

∂P̂2/∂xkej ∂P̂2/∂x`ej

∣∣∣∣∣ .
It then follows that for anyu 6= j , ∂he/∂xu|{xj=1} = ∂1ke,`e (P̂ )/∂xuj . Forming

the matrixM =
(
∂he
∂xu

∣∣{xj=1}
)
, with 16 e 6 n − 1, u 6= j , it follows that a priori

its rank is at leastn− 2, provided one evaluates at a singular point ofP. However,
by Lemma 2.3, one can always choose local coordinates(x̃2, . . . , x̃n), centered at
p in Dj such thatP̂ = (x̃2, cx̃2 + ϕ̃(x̃2, . . . , x̃n)) for somec 6= 0. This implies
there exist at mostn − 2 minors of the Jacobian matrix of̂P in these coordinates
that can be nonzero. Since the rank ofM is independent of local coordinates, its
rank can not be more thann− 2. This shows (ii) in this case.

If, however,j ∈ {ke, `e} for somee, then one uses the following easily verified
formula, obtained by applying Euler’s formula. For any` such thatj < `,

1j,`(P) = d

xj

(
P1
∂P2

∂x`
− P2

∂P1

∂x`

)
−
∑
k<`

xk

xj
1k,`(P)+

∑
k>`

xk

xj
1`,k(P).

Sincep(j) is a singular point ofP at which eachPi vanishes, it follows that for any
r 6= j ,

∂1j,`(P)
∂xr

(p(j)) = −d
∑
k 6=j

εkpkj
∂1k,`(P)
∂xr

(p(j))

= −d
∑
k 6=j

εkpkj
∂1k,`(P̂ )

∂xrj
(p), (2.4.2)

whereεk = 1 if k < ` andεk = −1 if k > `.
Assumingpkj 6= 0, for somek, (2.4.2) then shows

rank

(
∂1i,`(P)
∂xr

(p(j))

)
r 6=j
= rank

(
∂1k,`(P)
∂xr

(p(j))

)
j 6∈{k,`}
r 6=j

= rank

(
∂1k,`(P̂ )

∂xrj
(p)

)
j 6∈{k,`}
r 6=j

.
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The matrix on the left includes all but one column of a matrix ofn columns whose
rank equalsn−1, which implies its rank is at leastn−2. Arguing exactly as above
shows that the rank of the matrix on the right is at mostn − 2. This verifies (ii),
assuming somepkj 6= 0.

On the other hand, ifpkj = 0 for eachk 6= j , then homogeneity of each
1j,`(P), and the fact that each1a,b(P)(p(j)) = 0 for all (a, b), implies thatp(j) is
a singular point of each1j,`(P). So, in that case, each row of the matrix on the left
in the preceding equation that contains the partials of1j,`(P) must be all zero. So
then it is clear that the rank of the matrix involving all other minors equalsn − 1,
which implies that the rank of the submatrix formed by deleting thej th column
must be at leastn − 2. Applying the prior argument then completes the proof of
(ii). 2
Using the prior results, one then deduces convenient local forms near any point on
the exceptional divisor in each chartXj .

LEMMA 2.5. Supposep ∈ Dj ∩ {P̂1 = P̂2 = 0}. Then

(i) If p is a nonsingular point of̂P , then there exist local coordinates(y1, . . . , yn)

on some compact openU(p), such that

P1 ◦ π = yd1
1 y2, P2 ◦ π = yd2

1 y3.

(ii) If d1 = d2 =def d, and p is a singular point ofP̂ , then there exist local
coordinates(y1, . . . , yn) on some compact openU(p) so that

P1 ◦ π = yd1y2,

P2 ◦ π = yd1

ψp(y2)+
∑
i>3

ciy
2
i +

∑
`>2

y`2g`(y3, . . . , yn)

 ,
whereψp and eachg` is analytic, ordy2ψp = 1, and eachg` vanishes at
(y3, . . . , yn) = (0, . . . ,0).

(iii) If d1 6= d2, andp is a singular point ofP̂ , then there exist local coordinates
(y1, . . . , yn) on some compact openU(p) so that

P1 ◦ π = yd1
1 y2, P2 ◦ π = yd2

1 [y2 + φp(y3, . . . , yn)][unit onU(p)],
where the norm of the unit factor is constant andφp is a p-adic analytic
function in(y3, . . . , yn) that vanishes at(0, . . . ,0).

Proof.(i) is evident. (ii) follows by applying Lemmas 2.2, 2.4 tôP . (iii) follows
from Lemma 2.3 and the Preparation Theorem. 2
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One concludes the section by considering points on the exceptional divisor ofπ

that are on fibers of̂P other thanP̂−1(0,0).

LEMMA 2.6. Supposep ∈ π−1(0̄) is such thatP̂1(p) 6= 0 and P̂2(p) = 0. Then
there exist local coordinates(y1, . . . , yn) on some compact openU(p) such that

P1 ◦ π = yd1
1 [P̂1(p)+ p1(y2, . . . , yn)], P2 ◦ π = yd2

1 y2,

wherep1 is analytic onU(p) and |p1(y)| < |P̂1(p)|.
Proof.This is clear from Lemma 2.3. 2

LEMMA 2.7. Supposep ∈ π−1(0̄) is such thatP̂1(p) · P̂2(p) 6= 0. Then there
exist local coordinates(y1, . . . , yn) on some compact openU(p) such that

P1 ◦ π = P̂1(p)y
d1
1 , P2 ◦ π = yd2

1 [P̂2(p)+ p2(y2, . . . , yn)],

wherep2 is analytic onU(p), p2(0, . . . ,0) = 0, |p2(y2, . . . , yn)| < |P̂2(p)|, and
p2 is nonsingular outside{p2 = 0} ∩ U(p) ∩ {y1 = 0}.

Proof.By assumption eachPi has the following form in the chartXj :

Pi ◦ π = xdijj P̂i , P̂i = P̂i(p)+ p̂i(x1j , . . . , xj−1,j , xj+1,j , . . . , xnj ),

wherep̂i vanishes atp.
One first restricts to a neighborhoodW1(p) on which the binomial series for

(1+ p̂1/P̂1(p))
1/d1 is ap-adic analytic function. InsideW1(p), there is a possibly

smaller open compactU(p) so thaty1 = xjj (1+ p̂1/P̂1(p))
1/d1 satisfies the condi-

tion |dy1/dxjj | = 1. Then(y1, . . . , yn) =def (y1, x1j , . . . , xj−1,j , xj+1,j , . . . , xnj )

are local coordinates centered atp onU(p) such that

P1 ◦ π = P̂1(p)y
d1
1 ,

P2 ◦ π = y
d2
1 [P̂2(p)+ p̂2(y2, . . . , yn)]

[
1+ p̂1(y2, . . . , yn)

P̂1(p)

]−d2/d1

.

One can now write[
1+ p̂1(y2, . . . , yn)

P̂1(p)

]−d2/d1

= 1+ µ(y2, . . . , yn) with µ(0, . . . ,0) = 0,

whereµ(y2, . . . , yn) is p-adic analytic, and setp2(y2, . . . , yn) = P̂2(p)µ + p̂2 +
p̂2µ. One then achieves the last property in the Lemma’s statement by shrinking
U(p)∩{y1 = 0}, if needed, so that the only critical value ofp2 can occur at 0. This
completes the proof of the Lemma.
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3. Finding Good Points for Elements ofC`II

By (1.1), it is clear that any pointp ∈ π−1(0̄) is a good point if the local form of
P ◦ π is given by (2.5)(i) or (2.6). Any other pointq 6= 0̄ ∈ SingP, whose local
form is given by (2.2), is bad for the mapP− P(q). Furthermore, anyp ∈ π−1(0̄)
with local form given by (2.5)(ii), (iii), or (2.7) is bad forP◦π . Part i of this section
treats (2.7), Part ii treats (2.5)(iii), Part iii treats (2.5)(ii), and Part iv treats (2.2).
This sequence is determined by increasing difficulty.

The goal in each part is to cover a compact open neighborhood of the pointq

resp.p with finitely many images of neighborhoods of good points by monoidal
transformations (i.e. blowing up morphisms with nonsingular centers). The good
points will be good for some pair, obtained fromP−P(q) resp.P◦π by combining
a permissible modification (see (1.2)) in the range and the composition of finitely
many blowing ups in the domain. As a result, it is essential to pay attention toall
the points on the exceptional divisor of any blowing up.

NOTATION. In the following, morphisms will be noted byη with sub or su-
perscripts appended when needed. A bold faced letterq denotes a point on the
exceptional divisor of someη that is mapped toq 6= 0̄ ∈ SingP at which the local
form is (2.2). A bold facedp denotes a point on the exceptional divisor of some
η that maps to a pointp ∈ π−1(0̄), at which the local form is given by (2.5) or
(2.7). Anyη is defined so that it maps onto some neighborhoodU(q) or U(p). If
the point and its image do not need to be stressed in the discussion, then one uses
x to denote the point on the exceptional divisor ofη. 2
The main problem that one meets can be illustrated by considering a pointx on the
exceptional divisor ofπ that is bad forP◦π . Let (P ′1, P

′
2) denote the pair obtained

by a permissible modification(P ′1, P
′
2) → P ◦ π . If x is good for(P ′1, P

′
2), then

one is finished with the local analysis atx, and proceeds to another point on the
exceptional divisor. If, however,x is bad for(P ′1, P

′
2) as well, then one applies a

second blowing upη′ of some nonsingular subvariety containingx. One then must
analyze the behavior of(P ′1, P

′
2) ◦ η′ at eachpoint of the exceptional divisor ofη′.

Some points will be good, but others might be bad. At each bad pointx′, a second
permissible transformation would be made(P ′′1 , P

′′
2 ) → (P ′1, P

′
2) and, if x′ is still

bad for (P ′′1 , P
′′
2 ), then another blowing upη′′ with smooth center containingx′

would need to be found, leading to the analysis of all the points on the exceptional
divisor ofη′′. Some would be good, others could be bad, and so forth and so on.

In principle, the combination of blowing up and permissible modification could
go on indefinitely. A priori, there is no reason that it should ever terminate, that is,
eachpoint of each exceptional divisor should be good for some pair of functions,
obtained by a combination of permissible modification in the range and blowing
up (with nonsingular center) in the domain.
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It turns out, however, that the procedurealways terminates in finitely many
steps. In the two simpler cases of parts i, ii, this requires a use of resolution of
singularities, applied to the original pair of functions, followed by at most one
permissible transformation. It is then easy to see that the latter is an amelioration.
Thus, there is no need to understand the singularities of the new pair.

In the more difficult cases studied in parts iii, iv, this is no longer the case. One
must keep track of the singularities of a new pair, whenever it is necessary to create
one at a bad point. The finiteness of the procedure described above is proved by
introducing the indicesM0,M1,M2 at each bad point treated in case iii (i.e. with
local form (2.5)(ii)). These are defined in (3.5)(4). The analogues for case iv (local
form (2.2)) are defined after the statement of (3.10).

These numbers can be thought of as numerical ways of measuring how bad
the point is. As indicated above, at each such point, the first step in the procedure
defines a blowing up morphism whose center contains the point. The choice of
morphism will be (more or less) evident in the discussion. This is primarily due to
the simplicity of the local forms derived in Section 2. The assumption thatP ∈ C`II

is evidently used here.
The main problem is to describe with sufficient precision how the strict trans-

form of the pair behaves under this morphism. The principal difficulty is to do this
for the function, denoted byP ′2 in (iii), (iv). One expects the generic point of the
exceptional divisor of the morphism to be good. For case iii, this is true. For case iv
this is true only after an additional permissible transformation, even at the generic
point of the exceptional divisor. At any exceptional point that is bad, one then needs
to measure how bad it is in terms of theMi . Thanks to theMi, it is possible to show
that it is not as bad as the original point was forP ′2. This implies that an iterative
procedure exists to improve points because a similar analysis can then be carried
out at each new bad point. Since there is always some improvement, this implies the
termination of the ‘infinitesimal improvement’ procedure in finitely many steps.

In more general cases, it is tempting to believe that analogues of theMi should
exist at any bad point of a mapping. It also seems quite reasonable to expect that
such invariants can be found by extending the methods of Bierstone–Milman [Bi-
M] to each point of an exceptional divisor, not just a point on the strict transform
of some variety.

Part i. The local form (2.7)

LEMMA 3.1. Assumep ∈ π−1(0̄) is a point at (2.7) occurs. Then there exists
a smoothp-adic varietyY and proper birational mapπ ′:Y → U(p) so that the
following properties hold

(i) π ′ is an isomorphism outside the singular locus of{p2,rd = 0};
(ii) If π ′(y) is not a singular point ofp2(y2, . . . , yn), then local coordinatesv =

(v1, . . . , vn) exist on a compact openV (y) so that
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P1 ◦ π ◦ π ′(v) = P̂1(p)v
d1
1 ,

P2 ◦ π ◦ π ′(v) = v
d2
1 [P̂2(p)+ p2(π

′(y))+ v2];
(iii) If π ′(p) is a singular point of{p2,rd = 0}, then local coordinatesv = (v1, . . . , vn)

exist on a compact openV (p) so that

P1 ◦ π ◦ π ′(v) = P̂1(p)v
d1
1 ,

P2 ◦ π ◦ π ′(v) = v
d2
1 [P̂2(p)+ vm2

2 · · · vmnn · u(v2, . . . , vn)],
whereu is a unit of constant norm onV (p).

Proof.This is just the embedded resolution theorem applied top2. 2
One concludes the following.

COROLLARY 3.2.

(i) Define the pair

(F,G) =def

{
(v1, v

d2
1 v2) if (3.1) (ii)holds,

(v1, v
d2
1 v

m2
2 · · · vmnn · up(v2, . . . , vn) if (3.1) (iii ) holds.

Then the map(F,G)→ P ◦ π ◦ π ′ is an amelioration atp.
(ii) There exist finitely manypi so that∪iπ ′(V (pi)) = U(p);
(iii) TheV (pi) can be made pairwise disjoint, andπ ′(V (pi)) ∩ π ′(V (p`)) is a

subset of the singular locus of{p2,rd = 0} insideD if pi 6= p`.

Proof. (iii) follows from (3.1)(i) and the total disconnectedness of thep-adic
topology onY . (ii) follows from the fact thatπ ′ is proper. (1.2) implies (i). 2
NOTATION 3.3. For purposes of Section 6 and [Li-1], it is useful to extend the
notation introduced in (1.1). Letη:X → Qnp be a morphism obtained by compos-
ing finitely many blowing ups along smooth subvarieties. Lety be a point on the
exceptional divisor ofη. Let f, g be analytic functions defined in a neighborhood
of y for which there exist local coordinatesw = (w1, . . . , wn) such that

f =
n∏
i=1

w
Ni
i · u1, g =

n∏
i=1

w
Li
i · u2, det dη =

n∏
i=1

w
µi−1
i · u,

whereu1, u2, u are units. Then, one defines a 3× n matrix

A(y) =


N1 N2 · · · Nn

L1 L2 · · · Ln

µ1− 1 µ2 − 1 · · · µn − 1

 .
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If, however, onlyR < n columns are nonzero, then one chooses the indexing
so that the firstR columns ofA(y) are the nonzero ones, and for simplicity in
presenting the data, the remainingn − R columns are not included as columns of
A(y). This notation will be used wheny = p or q (see the above Notation). To
coordinate with notation of [Li-1], ify is bad for(f, g) = P ◦ η − P ◦ η(y) but an
amelioration exists aty, then the matrix is writtenA#(y). No ‘#′ is written if y is
good for(f, g).

For example, if (3.1)(ii) resp. (3.1)(iii) holds atp, then, forη = π ◦ π ′, and the
pair of maps(F,G), the matrixA#(p) is given by

1 0

d2 1

n− 1 0

 resp.


1 0 . . . 0

d2 m2 . . . mn

n− 1 µ2− 1 . . . µn − 1

 .
Part ii. The local form (2.5)(iii)
The difficulty of this case is considerably less because the degrees ofP1, P2 are not
equal. Since the blow ups will be centered insidey1 = 0, the multiplicities along
this divisor remain unchanged throughout. This tends to promote the presence of
good points after a blowing up of the affine spacey1 = 0 along a smooth subvariety.

LEMMA 3.4. Suppose the local form is(2.5)(iii), andp ∈ Dj ∩{P̂1 = P̂2 = 0} is
a singular point of the mappinĝP . Then there exist a smoothp-adic varietyZ and
proper birational mapη:Z → U(p), obtained by composing finitely many point
blow ups, so that each pointp ∈ η−1(p) is good forP ◦ π ◦ η.

Proof. One first may assume thatU(p) is so small that the only singular value
of φp|U(p)∩{y1=y2=0} equals 0. Then, letη0:Z0→ U(p)∩{y1 = y2 = 0} be a proper
birational map, an isomorphism outside the singular locus of{φp,rd = 0}∩U(p)∩
{y1 = y2 = 0}, so thatφp ◦ η0 is locally the product of a monomial and unit in a
neighborhood of each point in the preimage of the singular locus byη0.

SetẐ0 = {|y1| 6 ε} × {|y2| 6 ε} × Z0 andη̂0 = id× η0:Ẑ0→ U(p).
It is clear that ifv0 /∈ (φp ◦ η0)

−1(0), thenv0 is good for(P1 ◦ π ◦ η̂0, P2 ◦
π ◦ η̂0). So, it suffices to assumev0 ∈ (φp ◦ η0)

−1(0). Thus, one may assume
local coordinates(y1, y2, z3, . . . , zn) are defined on a compact open neighborhood
U(v0) ⊂ Ẑ0 of v0 so that for somek ∈ [3, n] there existei > 0, i = 3, . . . , k, and
a nonzero constantc such that onU(v0) one has:

P1 ◦ π ◦ η̂0 = yd1
1 y2, P2 ◦ π ◦ η̂0 = yd2

1 [y2 + cze33 · · · zekk ] · (unit).

Remark. Since this is obtained by absorbing a local unit into one of the local
defining equations for an irreducible component ofφp ◦ η0 = 0 atv0, it follows,
a priori, that one may have to factor out somep-adic number that does not have a
root of any orderei in Qp. This is the explanation for the factorc. 2
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One now converts the bracketed expression into the product of a monomial and
analytic unit everywhere along{y1 = 0}. First blow up along the subvariety{y2 =
z3 = 0} in U(v0). Let η1:Z(1) → U(v0) denote this morphism, and setη(1) =
π ◦ η̂0 ◦ η1. ThenZ(1) = Z2(1) ∪ Z3(1) such that

P1 ◦ η(1)|Z2(1) = y
d1
1 z22,

P2 ◦ η(1)|Z2(1) = y
d2
1 z22(1+ cze3−1

22 z
e3
32 · · · zekk ) · (unit)

P1 ◦ η(1)|Z3(1) = y
d1
1 z23z33,

P2 ◦ η(1)|Z3(1) = y
d2
1 z33(z23+ cze3−1

33 z
e4
4 · · · zekk ) · (unit).

Thus,d1 6= d2 implies that any pointx on {y1 = z22 = 0} is necessarily a good
point. Additionally, atx, if e3 > 1, then

A(x) =


d1 1 0. . .

d2 1 0. . .

n− 1 µ2− 1 µ3 − 1 . . .

 ,
whereµ2, µ3, . . . are certain positive integers withµ2 > 2. If e3 = 1, however,
then ifx is a zero of(1+cze332 · · · zekk ), then by reindexing, if necessary, one replaces
the third column by(0,1, µ − 1), whereµ = µ`, and` is such thate` > 1. If x is
not a zero, then there is no change inA(x).

In the other chart it is evident that ifz23 6= 0, then(z23,0) is good. Further, if
k = 3 ande3 = 1, then even(0,0) is good. So, one is not yet finished only if
k > 4 or if e3 > 2. In either case, one again blows up along the subvariety{z23 =
z33 = 0} in a neighborhood of the origin, and repeats the preceding argument
e3 − 1 additional times before losing the factorz33 in the monomial. Doing so
produces the chain of blow upsZ(i) → Z(i − 1) → · · · → Z(1), where each
Z(j) = Z2(j)∪Z3(j), and exactly one point, the origin in the chartZ3(i), i 6 e3,
is bad. Letη(i):Z(i) → U(p), i 6 e3, denote the composition of these blow ups
with π ◦ η̂0. Then it is simple to check that

P1 ◦ η(e3)|Z2(e3) = y
d1
1 z

e3
22z

e3−1
32 ,

P2 ◦ η(e3)|Z2(e3) = y
d2
1 z

e3
22z

e3−1
32 (1+ cz32 · · · zekk2) · (unit)

P1 ◦ η(e3)|Z3(e3) = y
d1
1 z23z

e3
33,

P2 ◦ η(e3)|Z3(e3) = y
d2
1 z

e3
33(z23+ cze443 · · · zekk3) · (unit).

If k = 3, then one is finished, since it is clear that each point of the exceptional
divisor is a good point for the pair, precisely becaused1 6= d2. If howeverk > 3,
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then one needs to repeat the above reasoning. But now, the number of distinct
factors of the monomial inz43, . . . , zk3 has decreased by 1. So, an evident induction
onk then completes the proof of the Lemma.

Part iii. The local form (2.5)(ii)
Although the local forms (2.2), (2.5)(ii) are similar, the presence of the factoryd1
in the latter leads to a somewhat different argument. So, these require separate
attention.

Using the notation of (2.5)(ii), writeψp(y2) =∑i>1 γiy
i
2, and define

P ′2 = P2 ◦ π − γ1y
d
1y2 = P2 ◦ π − γ1(P1 ◦ π).

The map(P1◦π,P ′2)→ (P1◦π,P2◦π) is an example of a permissible transform-
ation (see (1.2)) that is not necessarily an amelioration.

The following will be used in addition to (3.3). Throughout, notation from
(2.5)(ii) is used.

NOTATION 3.5. (1) One choosesU(p) to be a polycylinder{|y1| 6 ε} × · · · ×
{|yn| 6 ε}, for someε > 0.

(2) Theith blowing up in the argument is denotedηi and will always have the
form

ηi = idy1 × η′i : Z(i) =def {|y1| 6 ε} × Z′(i)
→ Z(i − 1) =def {|y1| 6 ε} × Z′(i − 1),

whereZ′(0) = {|y2| 6 ε} × · · · × {|yn| 6 ε}. Thus, the blowing up will always be
done inside a space of dimensionn− 1.

If one blows up a point, then eachZ′(i) is the union ofn−1 open charts written
Z′j (i), j = 2, . . . , n with coordinatesz′(j) = (z2j , . . . , znj ) so that

η′i |Z′j (i)(z′(j)) = (z2jzjj , . . . , zj−1,j zjj , zjj , zj+1,j zjj , . . . , znj zjj ).

One setsZj (i) = {|y1| 6 ε} × Z′j (i) for eachj, i. The precise coordinates in the
range ofη′i will be clear from the discussion to follow. Similarly, the indexi will
not be included in the notation for the components ofη′i, since context will make
clear which blowing up one is considering. A similar notation is used if one blows
up a line.

One writesη(i) = η1 ◦ η2 ◦ · · · ◦ ηi.
(3) The rightmost column, with entries written as(0, ε,0), of any of the matrices
A#
i (p) (or A#

i (q) in part iv), always equals(0,1,0) resp.(0,0,0) if the point p
belongs resp. does not belong to the strict transform of the hypersurface, defined
by the second function in the pair with matrix of multiplicities equal toAi(p). The
use of # is needed since all points in this part and part iv will be bad for the original
pair P.
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(4) The form ofP ′2 is the subtle point and depends upon three integers. First, define

M0 =
{

degy2
(ψp − γ1y2) if ψp 6= γ1y2

0 if ψp = γ1y2.

Second, write
∑

`>2 y
`
2g` = p′1+ p′2 where

p′1 =
∑
`>2

y`2

∑
e>2

He,`, p′2 =
∑
`>2

y`2H1,`,

andHe,` = He,`(y3, . . . , yn) is homogeneous of degreee for each`. Then set

M1 =
{

mult(0,...,0) p′1 if p′1 6= 0

0 if p′1 = 0,

M2 =
{

mult(0,...,0) p′2 if p′2 6= 0

+∞ if p′2 = 0.

These numbers are multiplicitiesin Dj . It is also useful to define in the following

L = {`1 < `2 < · · ·} = {` > 2:H1,` 6= 0}.

LEMMA 3.6. Let p be a point at which(2.5)(ii ) holds, and letU(p) be the
neighborhood ofp in the statement of(2.5)(ii ). Then there exist a smoothp-adic
manifoldZ, and proper surjective birational mapη:Z → U(p), satisfying these
properties:

(i) η is an isomorphism outsideη−1(p);
(ii) For each pointp ∈ η−1(p) there exist local coordinates(z1, . . . , zn), defined

on a compact openW(p), so that

P1 ◦ π ◦ η(z) = zd1z
N2
2 · · · zNnn

P ′2 ◦ π ◦ η(z) = zd1z
L2
2 · · · zLnn · (unit),

rank

(
d N2 · · · Nn

d L2 · · · Ln

)
= 2.

Proof. The proof depends upon the three integers defined in (3.5.4). There are
four cases to consider.

(A) (M0,M2) = (0,+∞).
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Setη′1:Z′(1) → U(p) ∩ {y1 = 0} to be the blowing up of they2 axis. That
is, one blows up the line{y3 = y4 = . . . = yn = 0} in Dj , and restricts to the
preimage ofU(p) ∩ {y1 = 0}. Then in each chartZj(1), it is clear that

P1 ◦ π ◦ η1 = yd1y2, P ′2 ◦ η1 = yd1z2
jj

cj +∑
i 6=j

ciz
2
ij + zjj · (∗)

 ,
where(∗) is some analytic function. It follows that at any pointx on {y1 = zjj =
0}, the bracketed term is either nonzero or, if it is zero, then it crosses transversally
this divisor. Using the notation in (3.3), it is then clear that

A#
1(x) =


d 1 0 0

d 0 2 ε

n− 1 0 (n− 2) 0

 .
So, any suchx is good.

(B) M0 > 1,M1 > 1,M2 = +∞.
It follows thatM0 > 2, M1 > 4, but no termg` is linear iny3, . . . , yn. So,

one first blows up the origin inQn−1
p rather than they2 axis inQn−1

p . Denote the
intersection of the exceptional divisor ofη1 with the chartZj(1) by Dj . It follows
that in thej th chart one has:

(P1 ◦ π ◦ η1, P
′
2 ◦ η1)

=



(
yd1z22, y

d
1z

2
22

[∑
k>M0

γkz
k−2
22

+
∑
i>3

ciz
2
i2+ zM1−2

22 · (∗)
])
, if j = 2

(
yd1z2jzjj , y

d
1z

2
jj

[∑
k>M0

γkz
k
2jz

k−2
jj + cj

+
∑
i>3
i 6=j

ciz
2
ij + zM1−2

jj · (∗)
])
, if j 6= 2;

(3.7)

One then observes that the factor(∗) satisfies the property that the degree of each
of its monomials in the variableszij , i 6= 2, is always at least 2for each j .

Assume first thatM0 = 2. If p ∈ Dj does not belong to the strict transform
of {P ′2 = 0}, defined by the bracketed factor in (3.7), it is clear thatp is good. If
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it does belong to the strict transform, then, forj = 2, it belongs to the surface
{γ2 +∑i>3 ciz

2
i2 = 0}. So, it is clear thatD2 and the strict transform must cross

transversally atp. It is also clear that a similar property holds whenj 6= 2. Thus,
if p ∈ D2 resp.p ∈ Dj , j > 3, then

A#
1(p) =


d 1 0

d 2 ε

n− 1 n− 2 0

 resp.


d r 1 0

d 0 2 ε

n− 1 0 n− 2 0


wherer = 1 if z2j (p) = 0, r = 0 if not. This completes the proof of the Lemma in
Case B ifM0 = 2.

If M0 > 3, then the only point at which the strict transform of{P ′2 = 0} fails to
intersect transversally the exceptional divisor is the originζ ′(1) =def 0̄n−1 in the
chartZ′2(1) since the geometry is determined by that of the conic{∑i>3 ciz

2
i2 = 0}.

This is nonsingular except at0̄n−1. At any other pointp on the exceptional divisor,
the matrixA#

1(p) is the same as in the preceding paragraph, so thatp is a good
point for (P1 ◦ π ◦ η1, P

′
2 ◦ η1).

Thus, one only needs to deal further withζ ′(1) whenM0 > 3. To do so, one
must continue blowing it up. The preceding argument can then be repeated since
M2 = +∞ and the fact that the multiplicity atζ ′(1) of the term denoted by (*) is
at least 2. Indeed, writingM0 = 2δ1 + δ2, δ2 ∈ {0,1}, δ1 > 1, then one shows that
at mostδ1 + δ2 + 1 additional blow ups of nonsingular subvarieties in ann − 1
dimensional affine space are needed to insure that the strict transform of{P ′2 = 0}
intersects the exceptional locus transversally. To complete the proof in case (B), the
form of both functions along the exceptional locus needs to be made explicit. The
simplest way to do this is by induction on the number of blow ups. The preceding
paragraphs have given the first step of the induction.

One assumes that for somei ∈ [1, δ1 + δ2), i blow ups

Z′(i)→ Z′(i − 1)→ · · · → Z′(1)→ U(p)

have been constructed, so that for eachk 6 i − 1, exactly one pointζ ′(k) has been
blown up inZ′(k) to give η′k+1:Z′(k + 1) → Z′(k). This point one assumes to
be the origin in the chartZ′2(k). Further, along the exceptional locus ofη′k+1, one
assumes there is exactly one point of nonnormal crossing with the strict transform
of {P ′2 = 0}. This point one assumes to be the originζ ′(k+ 1) =def 0̄ ∈ Z′2(k+ 1).
At any pointp, other thanthis unique point, the rank of the matrixA#

k+1(p) equals
2. Moreover, ifp 6= ζ ′(k + 1) ∈ Z′2(k + 1) resp.p ∈ Z′j (k + 1) then one assumes

A#
k+1(p) =


d 1 0

d 2(k + 1) ε

n− 1 (k + 1)(n− 2) 0
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resp.


d r 1 0

d rk 2(k + 1) ε

n− 1 k(n− 2) (k + 1)(n− 2) 0

 ,
wherer = 1 if z2j (p) = 0, andr = 0 if not.

Finally, one assumes that in the coordinates(y1, z
′(2)) for Z2(i):

(P1 ◦ π ◦ η(i), P ′2 ◦ η(i))

=
yd1z22, y

d
1z

2i
22

∑
k>M0

γkz
k−2i
22 +

∑
k>3

ckz
2
k2+ zM1−2i

22 (∗)
 ,

where the termzM1−2i
22 (∗) has multiplicity at leastM1 at ζ ′(i) = (0, . . . ,0).

Assume now thatM0 = 2δ1 and thati = δ1 − 1. Then the blowing up ofζ ′(i)
suffices to finish the proof of the Lemma in this case. This follows because the
strict transform ofP ′2 in the chartZ2(i + 1) is given by

γM0 +
∑
k>M0

γkz
k−M0
22 +

∑
k>3

ckz
2
k2+ zM1−2i

22 (∗).

So, it is clear that any point of intersection of the strict transform with the excep-
tional divisor is transverse, and that the strict transform does not vanish at the origin
ζ ′(i + 1). A simple exercise shows that the same holds in the other charts, and that
A#
δ1
(p) is obtained by settingk + 1= δ1 in the preceding matrix.
If, on the other hand,M0 = 2δ1 + 1 andi = δ1, then the strict transform ofP ′2

in Z2(i) is given by

γM0z22+
∑
k>M0

γkz
k−2δ1
22 +

∑
j>3

cj z
2
j2+ zM1−2i

22 (∗).

When one now blows up the origin inZ′2(i), it follows that the strict transform of
{P ′2 = 0} in Z2(i + 1) is disjoint from the component of the exceptional divisor
{z22= 0} sincez22 is a factor of each monomialcjz2

j2. So, ifp ∈ {z22 = 0}, thenp
is good and

A#
δ1+1(p) =


d 1

d M0

n− 1 M0(n− 2)

 .
On the other hand, in every other chartZk(δ1+1), k 6= 2, all points in the subvariety
{z2k = zkk = 0} are not transverse to the strict transform of{P ′2 = 0} since in this
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chart

P ′2 ◦ η′δ1+1 = yd1z
M0−1
2k z

M0
kk

[
γM0z2k + ckzkk +

∑
j>3
j 6=k

cj zkkz
2
jk +

+
∑

`>M0+1

γ`z
`−M0+1
2k z

`−M0
kk + z2

kk(∗)
]
.

Now, blow up the subvariety{z2k = zkk = 0} in eachZ′k(δ1 + 1), k 6= 2, by
the mapη′δ1+2:Z′(δ1 + 2) → Z′(δ1 + 1). At any point of its exceptional divisor,
the total transform of{P ′2 = 0} is a normally crossing divisor. Ifp ∈ Zk(δ1 + 2),
k 6= 2, resp.p ∈ Z2(δ1+ 2) is any point on the exceptional divisor, then it is easily
seen that

A#
δ1+2(p) =


d 1 2 0

d M0− 1 2M0 ε

n− 1 δ1(n− 2) M0(n− 2)+ 1 0



resp.


d 2 1 0

d 2M0 M0 ε

n− 1 M0(n− 2)+ 1 (δ1+ 1)(n− 2) 0

 .
This completes the proof of the Lemma in case B.

(C) M0 = 0,M2 < +∞.
This case impliesp′2 6= 0.
Let 0̄n−1 denote the origin inU(p)∩ {y1 = 0}. Let η′1 denote the blowing up of

0̄n−1 inU(p)∩{y1 = 0}. One first notes that ifp′1 6= 0, thenM1 > 4. So, in the chart
Z′j (1) of η′1, the termz−2

jj p
′
1 ◦η′1 vanishes everywhere along the exceptional divisor

D ′j to order at least 2. It follows that only the strict transform ofp′2 determines
whether or not the strict transform of{P ′2 = 0} is transverse toD ′j .

On the other hand, the multiplicity of the strict transform ofp′2 behaves in a
more complicated manner. Forj > 3, the strict transform ofp′2 ◦ η′1 in Z′j (1)
equals

z−2
jj ·

∑
i>1

z
`i
2jz

1+`i
jj H ′1,`i (ẑjj ),

whereẑjj denotes the absence ofzjj in the expression. Thus,`1 > 2 implies that
the multiplicity of the strict transform ofp′1 is at least 2̀1 − 1 > 3 along the
subvariety{z2j = zjj = 0} of D ′j .

Now, if p ∈ {z2j = zjj = 0}, eitherp belongs to the strict transform of{P ′2 =
0}, or it does not. If it does not belong, then clearlyp is good. If it does belong,
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then necessarilycj +∑ i 6=j
i>3
cizij (p)2 = 0 implies zij (p) 6= 0 for somei 6= j ,

i > 3. Thus, the strict transform is transverse to the exceptional divisor atp. So,
one concludes thatp ∈ {z2j = zjj = 0} is always a good point and

A#
1(p) =


d 1 1 0

d 0 2 ε

n− 1 0 n− 2 0

 .
It therefore suffices to consider the behavior along the open subsets{z2j 6= 0} of
D ′j , j > 3.

By means of the identifications

zj2 = 1/z2j , zk2 = zkj/z2j ,

each of these subsets can be viewed as lying inD ′2 ⊂ Z′2(1). So, all the remaining
analysis in Case C can be done inZ′2(1). In this chart, it is clear thatz22 divides
z−2

22p
′
2 ◦ η′1 =

∑
i>1 z

`i−1
22 H1,`i (ẑ22) since`1 > 2. One now observes the following.

LEMMA 3.8. Supposep ∈ {z22= 0}, p 6= 0̄n−1. Then

A#
1(p) =


d 1 0

d 2 ε

n− 1 n− 2 0

 .
Proof.The quadratic form

∑
i>3 ciz

2
i2 has non zero gradient at any suchp since

eachci 6= 0. So, the strict transform of{P ′2 = 0} must be transverse toD ′2 at any
suchp. It follows thatA#

1(p) is as claimed. 2
Thus, only the pointp = 0̄n−1 ∈ Z′2(1) remains to be analyzed. At this point,
however, multpz

−2
22p

′
1 ◦ η′1 > M1, and this function has an expression∑

`>2

z`22G`(z32, . . . , zn2), mult(0,...,0)G` > 2 for each̀ ,

which is entirely similar to that ofp′1. This implies that if`1 > 3, then one can
repeat exactly the above reasoning until the lead exponent ofz22 in the strict
transform ofp′2 equals 1. This requires̀1 − 2 additional blow ups of the origin
in each of the chartsZ′2(i), i = 1,2, . . . , `1 − 2. Each pointp 6= 0̄n−1 ∈ Z′2(i)
resp.p ∈ {z2j = zjj = 0} ⊂ Z′j (i), j > 3 of the exceptional divisor is a good
point and a simple check shows that

A#
i (p) =


d 1 0

d 2i ε

n− 1 i(n− 2) 0
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resp.


d 1 1 0

d 2i 2(i + 1) ε

n− 1 (i − 1)(n− 2) i(n− 2) 0

 .
At the pointp = 0̄ ∈ Z′2(`1− 1), the local forms of the two functions are

P1 ◦ π ◦ η(`1−1) = yd1z22

P ′2 ◦ η(`1−1) = yd1z
2(`1−1)
22

[∑
i>3

ciz
2
i2+ z22H1,`1 +

+
∑
j>2

z
`j−`1+1
22 H1,`j + z−2(`1−1)

22 p′1 ◦ η(`1−1)

]
,

where the multiplicity ofz−2(`1−1)
22 p′1 ◦ η(`1−1) at p is at leastM1, andH1,`i =

H1,`i (ẑ22) for eachi > 1. The bracketed expression defines the strict transform of
P ′2 at p under the morphismη(`1−1).

Set for eachj > 1 andk > 3,

H1,`j (ẑ22) =
∑
k>3

ajkzk2, Zk =
∑
j>1

ajkz
`j−`1+1
22 .

Clearly,Zk is the factor ofzk2 in the sum of the second and third terms in the strict
transform ofP ′2. The (‘Tchirnhausen’) transformation

Z22 = z22, Zk2 = zk2+ 1

2ck
Zk, k > 3, (3.9)

determines a coordinate transformation atp, and a simple check now shows that
the strict transform ofP ′2 equals

Q(Z22)+
∑
i>3

ciZ
2
i2+

∑
`>2

Z`22G̃`(Z32, . . . , Zn2),

where the multiplicity at(0, . . . ,0) of eachG̃` is at least 2, and

Q(Z22) =
∑
k>3

−a2
1k/4ck

Z2
22+

∑
i>`2

c̃iZ
i
22, c̃i ∈ Qp.

So one sees that this transformation now reduces Case C to Case B ifQ(Z22) 6= 0
and to Case A ifQ ≡ 0. Following the procedure used in these two cases, it is
simple to verify (left to the reader) that (3.6) also holds in Case C.
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(D) M0 > 1,M2 < +∞.
It is convenient to split the argument into two cases. WritingM0 = 2δ1+δ2, δ2 ∈

{0,1}, these are

(i) M2 > δ1+ δ2, (ii) M2 6 δ1+ δ2.

The argument shows that it is possible to reduce to previous cases if either (i) or
(ii) holds.

Subcase (i): It is clear that the resolution procedure will be the same as Case B.
After δ1 + δ2 blow ups, first ofp, and then of the origin in each chartZ′2(i), i =
1, . . . , δ1+δ2−1, the expressions ofP1◦π ◦η(δ1+δ2) andP ′2◦η(δ1+δ2) in Z′2(δ1+δ2)

are as follows

P1 ◦ π ◦ η(δ1+δ2) = yd1z22

P ′2 ◦ η(δ1+δ2) = yd1z
M0
22

[∑
i>3

ciz
2
i2+ γM0 +

∑
k>1

γM0+kz
k
22+

+
∑
i>1

z
1+`i−δ1−δ2
22 H1,`i + z−M0

22 p′2 ◦ η(δ1+δ2)
]
.

In each of the chartsZ′j (i), j 6= 2, the strict transform ofP ′2 = 0 is transverse
to the exceptional divisor at each pointp of the divisor, and the matricesA#

i (p)
are precisely those given in Case (B). So, it suffices to consider the points on the
exceptional divisor inZ′2(δ1+ δ2).

SinceM2 > δ1+δ2, it follows that the strict transform intersects the exceptional
divisor at any pointp such thatγM0 +

∑
i>3 ciz

2
i2(p) = 0. At such a point, the

intersection is evidently transverse. On the other hand, the strict transform cannot
contain the origin ofZ′2(δ1 + δ2). Thus, sinceM0 > 1 actually impliesM0 > 2,
one concludes thatp is good and

A#
δ1+δ2(p) =


d 1 0

d M0 ε

n− 1 M0(n− 2) 0

 .
This completes the proof in subcase (i).

Subcase (ii): One blows up the originη′1:Z′(1) → U(p), and then blows up the
origin in the chartsZ′2(i), i 6 M2 − 2 times in succession. It then follows that at
the point0̄ ∈ Z′2(M2− 1),

P ′2 ◦ η(M2−1) = yd1z
2(M2−1)
22

{∑
j>M0

γjz
j−2(M2−1)
22 +

∑
i>3

ciz
2
i2+
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+
∑
i>1

z
`i−(M2−1)
22 H1,`i + z−2(M2−1)

22 p′2 ◦ η(M2−1)

}
.

Now, (ii) implies that

M0− 2(M2 − 1) > δ1+M2− 2(M2− 1) = δ1−M2 + 2.

Sinceδ1 > M2−δ2 > M2−1, it follows thatδ1−M2+2> 1. Thus, the smallest ex-
ponent of

∑
j>M0

γjz
j−2(M2−1)
22 is at least 1. This implies that the coordinate change

(zj2)→ (Zj2), j > 2, defined in (3.9), can be used. Then, in the coordinates(Zj2),
it follows that

P ′2 ◦ η(M2−1) = yd1Z2(M2−1)
22

∑
i>3

ciZ
2
i2+ Q̃(Z22)+ p

′
2 ◦ η(M2−1)

Z
2(M2−1)
22

 ,
where the quotient withZ2(M2−1)

22 has the form
∑

k>2Z
k
22G̃k(Ẑ22), and mult(0,...,0)

G̃k > 2 for eachk. So, once again, one has reduced to Case B ifQ̃ 6= 0 and to Case
A if Q̃ ≡ 0. The same verification, left to the reader at the end of case C, now shows
that only good points can be obtained at all points of each exceptional divisor,
created by any subsequent blowing up. This completes the proof of Lemma 3.6.

Part iv. The local form (2.2)
In the notation (2.2.1), define, for fixedq,

P ′1 = P1(Y )− P1(q), P ′2 = P2(Y )− P2(q)− ψq(Y1).

Although both functions depend uponq, this will not be emphasized in the nota-
tion. It is clear that the transformation(P ′1, P

′
2)|U(q)→ P−P(q)|U(q) is a permiss-

ible modification.

LEMMA 3.10. Given the pointq of (2.2), there exists a smoothp-adic manifold
Z and proper surjective birational mapηq :Z→ U(q) satisfying these properties

(a) ηq is an isomorphism outsideη−1
q (q);

(b) At each pointq ∈ η−1
q (q), there exist local coordinatesz = (z1, . . . , zn),

defined on a compact open neighborhoodW(q), such that either

P ′1 ◦ ηq = zN1
1 . . . zNnn , P ′2 ◦ ηq = zL1

1 . . . zLnn · (unit),

and rank A(q) =
(
N1 N2 . . .

L1 L2 . . .

)
= 2,

or there exists an amelioration(F,G)→ (P ′1 ◦ ηq, P ′2 ◦ ηq)|W(q) at q.
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Remark. In the latter case, the composition of the transformations(F,G) →
(P ′1 ◦ ηq , P ′2 ◦ ηq)→ P ◦ ηq − P(q) is also an amelioration. 2

Proof. SinceP ′2 =
∑

i>2 ciY
2
i +

∑
`>2Y

`
1g`(Y2, . . . , Yn), one essentially pro-

ceeds as in the proof of Lemma 3.6. The principal difference is that because there
is no common factor for the two functions, one cannot hope to obtain a good point
without additional terms being subtracted off fromP ′2 ◦ ηq . This explains why the
second possibility in (b) must be explicitly included in the statement of this Lemma
and not Lemma 3.6.

Definep1, p2 by setting
∑

`>2Y
`
1g`(Y2, . . . , Yn) = p1+ p2, where

p1 =
∑
`>2

Y `1

∑
e>2

He,`(Y2, . . . , Yn),

p2 =
∑
`>2

Y `1H1,`(Y2, . . . , Yn),

whereHe,` is homogeneous of degreee for eache > 1, ` > 2. Then set

M1 =
{

mult(0,...,0) p1 if p1 6= 0

0 if p1 = 0,

M2 =
{

mult(0,...,0) p2 if p2 6= 0

+∞ if p2 = 0.

As before, writeL = {`1 < `2 < . . .}.
The proof depends upon the possible values for(M1,M2).

(A): (M1,M2) = (0,+∞).
Let η1:Z(1) → U(q) denote the blowing up of theY1 axis inQnp, restricted to
U(q). ThenZ(1) = ∪j>2Zj (1). Each chartZj(1) has coordinates(z1j , . . . , znj )

so that

η1|Zj (1) = (z1j , z2j zjj , . . . , zjj , . . . , znj zjj ).

It is then clear that

P ′1 ◦ η1|Zj (1) = z1j , P ′2 ◦ η1|Zj (1) = z2
jj

cj +∑
i 6=j

ciz
2
ij

 .
So, anyq on the exceptional divisor is a good point, and

A#
1(q) =


1 0 0

0 2 ε

0 n− 1 0

 .
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This proves the Lemma in Case A.

(B): M1 > 0,M2 = +∞.
It follows that one can again blow up along theY1 axis viaη1. Then for eachj > 2,

P ′1 ◦ η1|Zj (1) = z1j

P ′2 ◦ η1|Zj (1) = z2
jj

cj +∑
i 6=j

ciz
2
ij + z−2

jj p2 ◦ η1

 .
SinceM1 > 4, the argument in Case B of (3.6) applies to show that ifq ∈ {z1j =
zjj = 0}, then the strict transform of{P ′2 = 0} is transverse to{zjj = 0} atq. Thus,
A#

1(q) is exactly the same as in case (A). This shows Case B.

(C): M1 = 0,M2 < +∞.
Let η1:Z(1)→ U(q) denote the blowing up ofq in U(q), with exceptional divisor
D1. In the chartZj(1), j > 2, one has:

P ′1 ◦ η1|Zj (1) = z1jzjj

P ′2 ◦ η1|Zj (1) = z2
jj

cj +∑
i 6=j

ciz
2
ij +

∑
`∈L

z`−1
jj H

′
1`

 ,
whereH ′1,` denotes the strict transform ofH1,`. Since` ∈ L implies ` > 2, it
follows that if q ∈ {z1j = zjj = 0}, andzkj (q) 6= 0, for somek > 2, then

A#
1(q) =


1 1 0

0 2 ε

0 n− 1 0

 .
Such a point is then good. On the other hand, ifz1j (q) 6= 0, thenq is identified to
a point inZ1(1) via the identification

zj1(q) = 1/z1j (q), zi1(q) = zij (q)/z1j (q).

So any such point can be analyzed within the chartZ1(1), in which

P ′1 ◦ η1|Z1(1) = z11,

P ′2 ◦ η1|Z1(1) = z2
11

∑
i>2

ciz
2
i1+

∑
`∈L

z`−1
11 H1`(ẑ11)

 .
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Now, if q 6= 0̄n ∈ D1 also lies on the strict transform of{P ′2 = 0}, then it is clear
that the strict transform is transverse toD1 atq, and

A#
1(q) =


1 0

2 1

n− 1 0

 . (3.10.1)

If, however,q 6= 0̄n and
∑

i>2 ciz
2
i1(q) 6= 0, then an amelioration atq can be

found. Indeed, letU(q) be a compact open neighborhood ofq on which
∑

i>2 ciz
2
i16= 0. OnU(q), define

G = P ′2 ◦ η1− z2
11

∑
i>2

ciz
2
i1(q)+

∑
`∈L

z`−1
11 H1`(z21(q), . . . , zn1(q))

 .
Since there existsk > 2 such thatzk1(q) 6= 0, this implies that{G = 0} is a normal
crossing divisor atq. DefiningF = z11|U(q), the permissible transformation on
U(q)

(F,G)→ (P ′1 ◦ η1, P
′
2 ◦ η1)|U(q)

determines an amelioration atq, and the matrix of multiplicities for(F,G) at q is
evidently the same as in (3.10.1).

Thus, only the origin inZ1(1) poses a difficulty. This remains true for`1 − 2
additional blow ups

Z(`1− 1)
η`1−1- Z(`1− 2)

η`1−2- · · · η2- Z(1)
η1- U(q).

Setη(j) = η1 ◦ · · · ◦ ηj , j 6 `1 − 1. For eachj ∈ [2, `1 − 2], there are two types
of points of interest. The first type consists of pointsq on the exceptional divisor
of η(j) in Z1(j) except the origin.At these points, eitherAj(q) has rank 2, or there
exists, as in the preceding paragraph, a simple amelioration(F,G) → (P ′1 ◦ η(j),
P ′2 ◦ η(j)). The second type consists of pointsq ∈ Zk(j), k 6= 1, such thatq ∈
{zkj = zjj = 0}. Then one checks easily that for points of the first resp. second
type:

A#
j (q) =


1 0

2j 1

j (n− 1) 0

 resp.


1 1 0

2(j − 1) 2j ε

(j − 1)(n− 1) j (n− 1) 0

 .
At 0̄n ∈ Z1(`1− 1), one has

P ′1 ◦ η(`1−1) = z11,

P ′2 ◦ η(`1−1) = z
2(`1−1)
11

∑
i>2

ciz
2
i1+

∑
k>1

z
`k−`1+1
11 H1,`k (ẑ11)

 .
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Now, define the coordinate transformation(z11, . . . , zn1)→ (Z11, . . . , Zn1) in the
same manner as done in (3.9) (here,Z11 = z11). One then shows in the same way
that

P ′2 ◦ η(`1−1) = Z2(`1−1)
11

∑
i>2

ciZ
2
i1+ Q̃(Z11)


whereQ̃ is ap-adically convergent power series. However, here, unlike the use
made of the transformation in the proof of Lemma 3.6, one can define a new
permissible modification by setting:

F = Z11, G = P ′2 ◦ η(`1−1) − Z2(`1−1)
11 Q̃(Z11).

Evidently, 0̄n is still a singularity for(F,G), but it is easy to deal with. It suffices
to blow up theZ11 axis inZ1(`1 − 1) via the mapη`1:Z(`1) → Z(`1 − 1). It is
then clear that for eachj = 2, . . . , n,

F ◦ η`1|Zj (`1) = Z11, G ◦ η`1|Zj (`1) = Z2(`1−1)
11 z2

jj

cj +∑
i 6=j

ciz
2
ij

 .
Thus, for anyj > 2 andq ∈ {zjj = 0}, the matrix of multiplicities of(F ◦ η`1,
G ◦ η`1) equals:

A#
`1
(q) =


1 0 0

2(`1− 1) 2 ε

(`1− 1)(n− 1) n− 2 0

 .
Thus,(F ◦ η`1, G ◦ η`1) → (P ′1 ◦ η(`1), P ′2 ◦ η(`1)) is an amelioration atq. This
completes the proof of the Lemma in Case C.

(D): M1 > 2,M2 < +∞.
As in the proof of Case C, one blows up a point`1−1 times by composing the maps
ηi:Z(i) → Z(i − 1), i 6 `1 − 1. Eachηi, i > 2, blows up the origin in the chart
Z2(i − 1), andη1 is the blowing up ofq. At all points of the exceptional divisor
of η(`1−1) exceptthe origin inZ2(`1− 1) the assertion in (3.10) holds. Indeed, any
such pointq is either a good point for(P ′1 ◦ η(`1−1), P ′2 ◦ η(`1−1)), or, as in the proof
of Case C, there is a simple amelioration(F,G) → (P ′1 ◦ η(`1−1), P ′2 ◦ η(`1−1)) at
q.

At 0̄n ∈ Z2(`1− 1),

P ′1 ◦ η(`1−1) = z11
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P ′2 ◦ η(`1−1)

= z2(`1−1)
11

∑
i>2

ciz
2
i1+

∑
`∈L

z
`−`1+1
11 H1,`(ẑ11)+ z−2(`1−1)

11 p2 ◦ η(`1−1)

 .
As in preceding cases whenM2 < +∞, one notes thatz−2(`1−1)

11 p2 ◦ η(`1−1) has the
same form asp2. That is, the factor of eachz11 only has terms of degree at least 2,
and each power ofz11 is at least 2. Then, defining the change of coordinates as in
(C) (the one first introduced in (3.9)), it follows that

P ′2 ◦ η(`1−1) = Z2(`1−1)
11

∑
i>2

ciZ
2
i1+ Q̃(Z11)+ Z−2(`1−1)

11 p2 ◦ η(`1−1)

 ,
whereQ̃ is a p-adically convergent power series inZ11. Thus, definingP ′′1 =
P ′1 ◦ η(`1−1) and

P ′′2 = P ′2 ◦ η(`1−1) − Z2(`1−1)
11 Q̃(Z11)

= Z
2(`1−1)
11

∑
i>2

ciZ
2
i1+ Z−2(`1−1)

11 p2 ◦ η(`1−1)

 ,
one sees that the transformation(P ′′1 , P

′′
2 )→ (P ′1◦η(`1−1),P ′2◦η(`1−1)) is a permiss-

ible modification in some compact open neighorhood of0̄n. Moreover,(P ′′1 , P
′′
2 )

now satisfies the property thatM2 = +∞. So, one has reduced to the situation
in Case B. The argument used there now completes the proof of the Lemma, as a
simple check, left to the reader, will verify. 2
Remark3.11. An important point for applications is the lack of precision impli-
cit in the entries of the matricesA#(p) resp.A(p) when p is a point treated by
Corollary 3.2 (i) resp. Lemma 3.4. For example, themi,µi from (3.2)(i) are not
easy to make more precise unless one has more information aboutP1, P2. This
is a problem that is concentrated on the set of singular points ofP1, P2 restricted
to then hyperplanes{xi = 1}. Except for these points, the entries of all other
matricesA#(y) have been explicitly calculated in the Lemmas of this Section.
There is one case, however, in which everything can be made explicit, that is, when
P1(x) = β · x, P2 is arbitrary, and(P1, P2) ∈ C`II , see Section 6 part ii.

4. Statement and Proof of Main Result

To formulate the main result, it is first necessary to define the following notions
of ‘good wedge’ and ‘good asymptotic wedge’ forP ∈ C`I ∪ C`II .
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DEFINITION 4.1. Letθ : X→ U ⊂ Qnp denote a proper birational mapping onto
a compact open neighborhoodU . Let x denote a point on the exceptional divisor
of θ , andU(x) a compact open neighborhood ofx. Then the imageθU(x) is called
ananalytic wedge. 2
If P ∈ C`I , let q ∈ SingP, and(f, g) denoteP− P(q). SetU(q) to be a neighbor-
hood ofq satisfying the property in (1.6)(a) or (b). IfP ∈ C`II , π is the blowing
up of 0̄ ∈ Qnp, andq ∈ SingP, set

(f, g) =
{

P− P(q), if q 6= 0̄,

P ◦ π, if q = 0̄.

Further, ifq 6= 0̄, thenU(q) denotes a neighborhood on which (2.2) holds.
One now specifies the morphismθ as follows. If P ∈ C`I , and q satisfies

(1.6)(b), thenθ denotes a morphism constructed in Theorem 1.6. IfP ∈ C`II ,
andq 6= 0̄, thenθ denotes a morphism constructed in Lemma 3.10. Ifq = 0̄,
one first chooses a pointp ∈ π−1(0̄) and neighborhoodU(p) in which one of the
Lemmas 2.4–2.7 holds. Then,θ denotes the composition withπ of the appropriate
morphism constructed in Lemma 3.1, 3.4, or 3.6 (the choice of which depends upon
the particular Lemma in Section 2 that applies top).

For either possibility, given a pointx in the exceptional divisor ofθ , it follows
thatx is a good point either for(f ◦ θ, g ◦ θ), or for a pair(F,G), obtained by a
permissible modification(F,G) → (f ◦ θ, g ◦ θ)|U(x), whereU(x) is a compact
open neighborhood ofx in some affine chart isomorphic toQnp.

DEFINITION 4.2. Using the notation from the preceding paragraph, the wedge
θU(x) is called agoodP wedge.Settingx = θ(x), the pair

(θU(x), (P ◦ θ)U(x)) = (θU(x),P(x)+ (f ◦ θ, g ◦ θ)U(x)),
is called a good asymptotic wedge forP. 2
The principal finiteness result of this paper now follows easily from the work in
the preceding three sections.

THEOREM 4.3. Let U be a compact neighborhood of a subset ofSingP for
P ∈ C`I ∪C`II . Then there exist finitely many good asymptotic wedgesWi =
(W1,i ,W2,i) for P satisfying the two properties:

(i) ∪iW1,i = U ;
(ii) For i 6= i′, the Haar measure ofW1,i ∩W1,i′ equals zero.

Proof. It suffices to give the proof forP ∈ C`II . The proof forC`I is similar,
and the simple modifications are left to the reader.
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Corollary 3.2 and Lemmas 3.4, 3.6, 3.10 have shown that for anyy ∈ U , there
exists an open compact neighborhoodU(y) and a finite set of good asymptotic
wedgesW(y) = (W1i(y),W2i (y)) satisfying the properties:

U(y) = ∪iW1i(y),

the Haar measure ofW1i(y) ∩W1i′(y) = 0 if i 6= i′.
To see why this is so, consider first the case analyzed by Lemma 3.10. Given the
data in the statement of (3.10), the total disconnectedness of thep-adic topology
implies that one can cover the compact setη−1

q (q) by finitely many pairwise dis-
joint compact open neighborhoodsW(qi ), so that for eachi, ηq(qi) = q, and part
(b) of (3.10) holds in eachW(qi). Settingθ = ηq in (4.2), eachηqW(qi) is a
goodP wedge and the pair(ηqW(qi),P(q)+ (P′ ◦ηq)W(qi )) is a good asymptotic
wedge forP. Moreover, sinceηq is an isomorphism outside SingP, it follows that
ηqW(qi )∩ηqW(qi′) ⊂ SingP, from which one concludes that the Haar measure of
the intersection is zero.

Now define the setAq = η−1
q U(q)−∪iW(qi ). It follows thatAq is a closed and

compact set disjoint fromη−1
q (q). Thus,q 6∈ ηq(Aq). Sinceηq(Aq) is closed and

compact, there exists an open compact neighborhoodU(q) ⊂ U(q) of q such that
U(q) ∩ ηq(Aq) = ∅. Thus,η−1

q U(q) ⊂ ∪iW(qi). Now setWq(qi) = ηqW(qi ) ∩
U(q). The good asymptotic wedges in question areWi (q) =def (Wq(qi),P(q) +
(P′ ◦ ηq)Wq(qi)). In this way, one has ‘uniformized’U(q) by the goodP wedges
Wq(qi).

An entirely similar argument applies for0̄. To each pointp onπ−1(0̄), there is a
neighborhoodU(p) that satisfies the properties stated in (3.2), (3.4), or (3.6). This
uniformizes some neighborhoodU(p) ⊂ U(p) by good wedges, using the same
argument as above. Then, by composing withπ and using compactness ofπ−1(0̄),
one argues, again as above, that some neighborhood of0̄ is a finite union of good
P wedges.

SinceU is compact, one can extract a finite subcover of open neighborhoods
U(qj ) of the covering{U(q)}q∈U , each of which satisfies the properties of being
uniformized by goodP wedges. Moreover, total disconnectedness of thep-adic
topology insures that one can always arrange the finite cover so thatU(qj ) ∩
U(qj ′) = ∅ if j 6= j ′. It then follows that the collection of good asymptotic wedges
{Wi(qj )}j,i is a finite set and satisfies properties (i), (ii), completing the proof.

5. Analysis Restricted to a Good Asymptotic Wedge

The same data and notations from the beginning of Section 4 are used in the
following.

Since Theorem 4.3 decomposes a compact neigborhood of SingP into a union
of finitely many goodP wedges, the next step is to extend Igusa’s finiteness the-
orem to such wedges. This is not difficult since the wedge comes equipped with a
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convenient parametrization (via the mapθ in (4.2)). Thus, one can always work in
a compact open neighborhood of a fixed good pointx for a pair(F,G), in which it
is straightforward to iterate Igusa’s one variable theory. The first part of Section 5
does this by verifying two needed analytical properties of a zeta function associated
to a goodP wedge. These properties are the natural two variable analogues of
results proved by Igusa in [I, ch. 3] overQp. Part ii introduces the fiber integral
associated to a good asymptotic wedge forP. A general expression is then given for
this fiber integral, using an iterated form of the inverse Mellin transform formula.
Both these notions apply only to the pair(F,G), not necessarilyto P◦θ−P◦θ(x).
Part iii relates the results to the fiber integral ofP.

Part i. Properties of a zeta function associated to a goodP wedgeθU(x)
One assumes that local coordinatesz = (z1, . . . , zn) are defined on a compact

openU(x) such that

F =
n∏
i=1

z
Ni
i · u1(z), G =

n∏
i=1

z
Mi

i · u2(z), detdθ =
n∏
i=1

z
µi−1
i · u(z).

Moreover, the rank of the matrixA(x) (see (1.2)) equals 2. By permuting coordin-
ates, define the integerR by the condition thati 6 R iff (Ni,Mi) 6= (0,0). Since
the exceptional divisor forθ is a subset of{F = G = 0}, it follows thatµi = 1 for
i > R.

Let χ = (χ1, χ2):U2
p → (S1)2 denote a pair of characters on the units and

s = (s1, s2) ∈ C2. Let ϕ denote a compactly supported locally constant function
onU(x) (i.e. ‘test function’). Define

Zx(χ , s, ϕ) =
∫
U(x)−{F ·G=0}

ϕχ1(acF )χ2(acG) · |F |s1|G|s2|θ∗ dµ|,

whereacy = y/|y| is the ‘angular component’ ofy, and the measure in the integral
is the pullback byθ of normalized Haar measure|dµ| onQnp. This function ofs is
called a local zeta function on the wedgeθU(x). Whenχ = (χ0, χ0), whereχ0 ≡
1, the zeta function is called the principal zeta function on the wedge. Otherwise it
is a ‘twist’ of this function.

The first of two needed properties is the following.

PROPOSITION 5.2.EachZx(χ , s, ϕ) is analytic if eachRe si > 0, and admits
an analytic continuation toC2 as a meromorphic function. Definingwi = p−si ,
i = 1,2, it is a rational function, which moduloC[w1, w2, w

−1
1 , w−1

2 ], has the
form

Zx(χ , s, ϕ) =
∑

I⊂{1,...,R}

uI (w,χ)

vI (w)
, (5.2.1)
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where

vI (w) =
∏
i∈I
(1− p−µiwNi1 w

Mi

2 ).

Proof.Define

I0(x) =
{
{i < j} ⊂ {1, . . . , R}:rank

(
Ni Nj

Mi Mj

)
= 2

}
. (5.2.2)

Givenι = {i < j} ∈ I0(x), set

1ι(x) =
∣∣∣∣ Ni Nj
Mi Mj

∣∣∣∣ , mι(x) = ord1ι(x), m0(x) = maxιmι(x).

By shrinkingU(x), if needed, one may assume that the coordinates(z1, . . . , zn)

identify U(x) with a subset of(pm0(x)+1)n. One then chooses an integere0 >
m0(x) + 1 so thatU(x) = ⊔[b + (pe0)n] is a disjoint union of cosets, on each
of which the following hold:

Fori = 1,2, |ui(z)|[b+(pe0)n] = |ui(b)|,and|u(z)|[b+(pe0)n] = |u(b)|. (5.2.3)

ui(z)|[b+(pe0)n]

= ui(b) ·
1+

∑
I :|I |>1

aI (i)z
I

 , and eachaI (i) ∈ Zp, (5.2.4)

ϕ|[b+(pe0)n] = ϕ(b). (5.2.5)

Given a characterχ onUp, define its conductoreχ = inf{e:χ |1+(p)e = 1}. With
e0 chosen as above, and for a fixed pair of charactersχ , definee = max{e0, eχ1,
eχ2}. Now decomposeU(x) modulope. Thus,U(x) = ⊔[b + b′ + (pe)n]. For
a fixed choice ofb, b′, setc = b + b′ = (c1, c2, . . . , cn). It follows that for Re
si > 0, i = 1,2, the integral definingZx converges absolutely, and by working
modpe, the value ofχi(ui) is constant (see [I, pg. 95]). Thus,

Zx(χ , s, ϕ) =
∑
c

ϕ(c)

(
2∏
i=1

|ui(c)|si · |u(c)|
)
×

×
2∏
i=1

χi

(
ac(1+

∑
I

aI (i)c
I )

)
×

×
R∏
i=1

∫
ci+(pe)

χ
Ni
1 χ

Mi

2 (aczi) · |zi|Nis1+Mis2+µi−1|dzi |. (5.2.6)
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One evaluates (5.2.6) by iterating the calculation in [I, p. 89]. It follows that the
integral overc + (pe)n equals 0 if for somei:

χ
Ni
1 χ

Mi

2 6= 1 andci ∈ (pe),
or χ

Ni
1 χ

Mi

2 |1+c−1
i (pe) 6= 1 and ci 6∈ (pe). (5.2.7)

On the other hand, if (5.2.7) does not hold, then one evaluates the integral over the
coset[c+ (pe)n] in (5.2.6) as follows. DefineM0(c) = {i ∈ [1, R]:ci 6∈ (pe)}, and
M1(c) = {1, . . . , R} −M0(c). SetMi(c) = #Mi (c), wi = p−si , i = 1,2. Then
the third line in (5.2.6) equals:

δ(c)

 ∏
i∈M0(c)

p−(µi−1) ordci χ
Ni
1 χ

Mi

2 (acci)w
Ni ordci
1 w

Mi ordci
2


 ∏
i∈M1(c)

p−eµiweNi1 w
eMi

2

1− p−µiwNi1 w
Mi

2

 ,
whereδ(c) = p−e(M0(c)+n−R)(1− p−1)M1(c).

It is then clear that this term has the form of a summand, indexed by the subset
I = M1(c) of {1, . . . , R}, as asserted by the Proposition, completing the proof of
(5.2).

The formulae in the proof of (5.2) are now used to prove the following extension
of Igusa’s finiteness theorem (see Introduction).

PROPOSITION 5.3.For all but a finite number ofχ ,Zx(χ, s, ϕ) = 0 for all ϕ.
Proof.Using the notations from (5.2), it follows that the integral over the coset

[c + (pe)n] is non zero iff

χ
Ni
1 χ

Mi

2 |1+c−1
i (pe) = 1 if i ∈M0(c), and

χ
Ni
1 χ

Mi

2 = 1 if i ∈M1(c). (5.3.1)

For eachι = {i < j} ∈ I0(x), there exist pairs of integers(α1(ι), β1(ι)),
(α2(ι), β2(ι)) such that

χ
Niα1(ι)+Njβ1(ι)

1 χ
Miα1(ι)+Mjβ1(ι)

2 = χ1ι(x)1 ,

χ
Niα2(ι)+Njβ2(ι)

1 χ
Miα2(ι)+Mjβ2(ι)

2 = χ1ι(x)2 .

The elementsi, j of ι are inM0(c) orM1(c), independently of one another. Sup-
pose first thati ∈M0(c) andj ∈M1(c). Then (5.3.1) impliesχ1ι(x)1 = χ1ι(x)2 = 1
on [1+ c−1

i (p
e)]. If i ∈M1(c), j ∈M0(c), then the same equation holds on[1+
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c−1
j (p

e)]. If i, j ∈M0(c), then the equation holds on[1+c−1
i (p

e)]∪[1+c−1
j (p

e)].
If i, j ∈M1(c), thenχ1ι(x)1 = χ1ι(x)2 = 1 onUp.

Since for eachk ∈ [1, R], ck ∈ pm0(x)+1, this implies(pe−m0(x)−1) ⊂ c−1
k (p

e)

for eachk. Hence, 1+ (pe−m0(x)−1) ⊂ 1+ c−1
k (p

e), for k ∈ M0(c). By (5.3.1), it
follows that for each̀ = 1,2,

χ
1ι(x)
` = 1 on the coset [1+ (pe−m0(x)−1)].

Using [I, Lemma 2.5, ch. 3], this implies that ife − m0(x) − 1 > m0(x), then for
each`, χ` = 1 on 1+1ι(x)(pe−m0(x)−1).

Suppose now that there exists` such thateχ` > e0 + m0(x). To fix notation,
assumè = 1. Further, one may assumeeχ1 > eχ2, so thate = eχ1. This implies

e −m0(x)− 1= eχ1 −m0(x)− 1> e0 > m0(x)+ 1,

by the choice ofe0 in the proof of (5.2). Hence,e −m0(x)− 1> m0(x).
By the definition ofm0(x), there existsr > 1 such that1ι(x)(pe−m0(x)−1) =

(pe−r ). One concludes thatχ1 = 1 on 1+ (peχ1−r ). This, however, violates the
definition ofeχ1. Thus, ifχ is some pair for which the integral, over some coset, in
the second line of (5.2.6) is non zero, then necessarilyeχ1, eχ2 6 e0+m0(x) < 2e0.

This implies the set ofχ for which Zx(χ, ·) 6= 0 can only be a finite set, and
completes the proof.

Part ii. The fiber integral for a good asymptotic wedge
Given the good asymptotic wedgeW(x) = (θU(x), (P◦θ) U(x)), the pair(F,G),
satisfying (5.1), and the test functionϕ, one starts with the following.

DEFINITION 5.4. The fiber integral forW(x) is the fiber integral along the
nonsingular fibers of(F,G) with respect to the measure|θ∗(dx1 · · · dxn)| onU(x).

In other words, lettingτ = (τ1, τ2) denote a regular value for(F,G), the fiber
integral is the function:

τ → Fx(ϕ, τ ) =def

∫
{(F,G)=τ }

ϕ|det dθ‖ω(F,G)|, (5.4.1)

whereω(F,G)|(F,G)=τ = dz1 dz2 · · · dzn/dF∧dG|(F,G)=τ is a globally definedn−2
differential form on the indicated fiber whose corresponding measure is denoted by
|ω(F,G)|. 2
The following Proposition shows that the Mellin transform ofFx yields theZx. Its
proof is an iteration of that in [I, ch. 3], and left to the reader.

PROPOSITION 5.5.If Re(si) > 0 for eachi, then

Zx(χ , s, ϕ) = (1− p−1)2
∫
(|τ1τ2|Fx(ϕ, τ))

2∏
i=1

χi(acτi)|τi |si |dτ1 dτ2|
|τ1τ2| ,

https://doi.org/10.1023/A:1001743909924 Published online by Cambridge University Press

https://doi.org/10.1023/A:1001743909924


66 BEN LICHTIN

where the integral is taken over the set of regular values of(F,G) in {τ1 · τ2 6= 0}.
Sincex is a good point for(F,G), this formula can be inverted to express

|τ1τ2|Fx in terms of theZx. This is possible, ifτ1, τ2 6= 0. Propositions 5.1, 5.3
imply by a straightforward iteration of the argument in [I, ch. 1], left to the reader,
the following.

PROPOSITION 5.6.For any regular valueτ of (F,G) such thatτ1τ2 6= 0, one
has that

|τ1 τ2|Fx(ϕ, τ ) =
∑
χ

(Resw1=0 Resw2=0Zx(χ , s, ϕ)w
−ordτ1−1
1 w

−ordτ2−1
2 )×

×χ−1
1 (acτ1)χ

−1
2 (acτ2). (5.6.1)

Extensions across{τ1 = 0} ∪ {τ2 = 0} are sometimes possible. This can
be inferred by means of the formula in (6.11). However, to estimate the Fourier
transform of the fiber integral, precise information about the behavior of the fiber
integral in the open set{τ1τ2 6= 0} suffices.

Part iii. Local to global
Evidently, one needs to connect theFx to the ‘global’ fiber integral determined by
P. Given a locally constant and compactly supported function8 onQnp, recall that
the fiber integral forP is defined at a nonsingular valuet of P to equalF(8, t) =∫
{P=t} 8 |ωP|, whereωP|P=t = dx1 · · · dxn/dP1 ∧ dP2|P=t. This globally defined
n− 2 differential form determines the measure, denoted by|ωP|P=t|. In particular,
when8 is the characteristic function ofZnp, the fiber integral equals the function
described in the Introduction.

Suppose that supp8 ⊂ U , whereU is compact and open. Applying (4.3) to
U , there exist finitely many good asymptotic wedgesWi = (W1,i ,W2,i), satisfying
(4.3)(i), (ii). This gives an expression forF(ϕ, t) as a sum of finitely many ‘local’
contributions to the fiber integral. Given one suchWi, for whichW1,i = θiU(xi),
the local contribution equals

Fxi (8, t) =def

∫
{P=t}∩θi U(xi )

8|ωP|

=
∫
{P◦θi=t}∩U(xi )

(8 ◦ θi)|det dθi||ωP◦θi |. (5.7)

The second equation follows sincet is a regular value ofP ◦ θi|U(x), and the fact
that as measures,|det dθi| · |ωP◦θi |P◦θi=t | = |(θi)∗ωP|P=t|. Thus, (4.3)(i), (ii) imply
F(ϕ, t) =∑i Fxi (8, t).

There are now two possibilities to consider. Eitherxi is a good point forP◦θi−
P ◦ θi(xi ), or it is a bad point. In either case, first definexi = θi(xi ). If xi is good,
then one sets in the preceding discussion

τ = t − P(xi), ϕ = (8 ◦ θi)|U(xi), (F,G) = P ◦ θi − P(xi),
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Fxi (8, τ + P(xi)) = Fxi (ϕ, τ ).

If xi is a bad point, one uses a transformation in the range of the two mappings.
According to (1.2), this is the mapping (up to a permutation of the coordinates in
the image) of the form:

ζxi :τ → t = P(xi)+ (u1(xi )τ δ1 , τ2+ ψ(τ1)). (5.8)

It is clear that the following holds.

LEMMA 5.9. Letζxi (τ ) = t. Then

(1) ζ−1
xi (t) is a finite set of at mostδ points;

(2) w ∈ U(xi) satisfies(F (w),G(w)) = τ iff P ◦ θi(w) = t + P(xi).

One next connects the differential formd(P1 ◦ θi) ∧ d(P2 ◦ θi) to dF ∧ dG.
Simple verifications show:

LEMMA 5.10.

(A) d(P1 ◦ θi) ∧ d(P2 ◦ θi) = δ · u1(xi ) · Fδ−1 · dF ∧ dG.
(B) Assume thatt is a regular value forP ◦ θi |U(xi). Then, anyτ ∈ ζ−1

xi (t) is a
regular value for(F,G).

(C) If φdz = φ dz1 · · · dzn is any analyticn-form defined onU(xi), then, as meas-
ures on the fibers, one has the following relation:

|φ dz/d(P1 ◦ θi) ∧ d(P2 ◦ θi)|U(xi)∩{P◦θi=P(xi)+t}|

= 1

δ|u1(xi)||τ1|δ−1
|φ dz/dF ∧ dG|U(xi )∩{(F,G)=τ }|.

Putting together these results, one now can relate the local contribution to the
fiber integral inθiU(xi ), and the fiber integral in the asymptotic wedgeWi. Given
the function8 as above, setϕ = 8 ◦ θi |U(xi).

PROPOSITION 5.11.If t is a regular value ofP ◦ θi − P(xi), then

Fxi (8, t + P(xi)) = 1

δ|u1(xi )|
∑

{τ :ζxi (τ )=t}

Fxi (ϕ, τ )

|τ1|δ−1
. (5.11.1)

6. Some Useful Refinements

The expression (5.6.1) is understood geometrically in part i of this section, using
a method of partial fraction decomposition appropriate for the denominatorsvI of
(5.2.1). The main result is given in Theorem 6.11. The analogues overR,C are
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sketched in (6.13). Part ii specializes the discussion to the case whenP1(x) = b ·x,
whereb is a fixed vector ofZnp. Here everything becomes very explicit.

Part i. A simple geometric interpretation of(5.6.1)
Substituting the expression (5.2.1) forZx into (5.6.1), and then summing over the
index setsI , an explicit determination of the iterated residue of the summand
indexed byI is not yet possible whenever three or more factors appear in the
factorization ofvI . By the form ofvI , this can only occur if|I | > 3. To get around
this difficulty, one needs a constructive method of partial fraction decomposition
of rational functions onKn,K any local field. A useful reference is [Lei]. The
discussion is adapted to the particular form of the factors of anyvI , which turns
out to be useful in interpreting the procedure in geometric terms. In the following,
oneI 6= ∅ with |I | > 3, is fixed. One then shows how to reduce the calculation of
the iterated residue to fractions with|I | = 2.

Using (5.1) and (5.2.1), define

I1(x) = {ι = {i < j} ⊂ {1, . . . , R}:rank

(
Ni Nj

Mi Mj

)
= 1}.

For ι ∈ I1(x), there exist relatively prime positive integersni, nj such that
ni(Ni,Mi) = nj (Nj ,Mj). Now set

I+1 = {ι ∈ I1(x):niµi = njµj , ni 6= nj}
and I−1 = I1(x)− I+1 − {ι ∈ I1(x):µi = µj }.

DefineSi = 1− p−µiwNi1 w
Mi

2 , i = 1, . . . , R. For eachi define the multiplicity
νi by the equation

vI (w) =
∏
i

S
νi
i .

The proofs of the following three lemmas are all simple and left to the reader.

LEMMA 6.1.

(1) {i < j} ∈ I−1 iff {Si = 0} ∩ {Sj = 0} = ∅.
(2) If {i < j} ∈ I+1 , then{Si = 0} = {Sj = 0}.
(3) {i < j} ∈ I0(x) (see (5.2.2)) iff{Si = 0} ∩ {Sj = 0} is a finite set of points.

LEMMA 6.2. Suppose{i < j} ∈ I−1 . Then there exist polynomialsfi(w), fj(w),
such thatfiSi + fjSj = 1.

LEMMA 6.3. Suppose{i < j} ∈ I+1 . Then there existsF 6= 0 ∈ Z[v1, v2] such
thatF(Si, Sj ) ≡ 0.
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Remark. Indeed, usingni, nj from the definition ofI+1 , one can useF =
(1− v1)

ni − (1− v2)
nj . 2

The last preliminary needed is the following:

LEMMA 6.4. Let {i < j} ∈ I0(x) and k 6∈ {i, j}. Suppose thatMi/Ni 6
Mk/Nk 6 Mj/Nj (at most one equality can then hold). Then, either:

(1) there exist polynomialsfi(w) such thatfiSi + fjSj + fkSk ≡ 1, or
(2) there exist polynomialsfi(w), fj (w), and finitely manyα` ∈ Q, ` = 2, . . . , N ,

such thatSk = fiSi + fjSj +∑N
`=2α`S

`
k .

Proof.There existni, nj , nk ∈ Z+ such that gcd(ni, nj , nk) = 1 and

ni(Ni,Mi)+ nj (Nj ,Mj) = nk(Nk,Mk).

Thus,(1−Si)ni ·(1−Sj )nj = c(i, j, k) (1−Sk)nk , wherec(i, j, k) = pnkµk−niµi−njµj .
This impliesF(Si, Sj , Sk) ≡ 0 whenF = (1−v1)

ni ·(1−v2)
nj−c(i, j, k) (1−v3)

nk .
If c(i, j, k) 6= 1, then one obtains a low order term in the algebraic relation between
the threeSa that is a nonzero constant. Dividing out by the constant one obtains the
identity in (1). On the other hand, ifc(i, j, k) = 1, thenv3 appears with a nonzero
coefficient inF . Dividing out by this coefficient and rearranging terms, one obtains
the identity in (2) withN = nk. 2
An immediate consequence follows.

COROLLARY 6.5.

(1) Suppose possibility(1) occurs in(6.4). Then there exist polynomialsgi, gj , gk
such that

1

SiSjSk
= gi

SjSk
+ gj

SiSk
+ gk

SiSj
.

(2) Suppose possibility(2) occurs in(6.4). Then there exist polynomialsgi, gj
such that

1

SiSjSk
= Sk

SiSjS
2
k

= gi

SjS
2
k

+ gj

SiS
2
k

+
nk∑
`=2

α`S
`
k

SiSj
.

Using Corollary 6.5, a simple induction argument shows the following.

COROLLARY 6.6. For each summand in(5.2.1),

uI

vI
=

∑
{i,j}∈I0(x){i,j}⊂I

hi,j

S
ki
i S

kj
j

+
∑
i,`
i∈I

hi,`

S`i
, (6.6.1)
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where each numerator in (6.6.1) is a polynomial, and` runs over a bounded set of
positive integers.

Remark6.7. To use (6.6) in order to estimate the Gaussian sums defined in the
Introduction, it will be necessary to have some additional information about the
exponentski, kj . In particular, this will be needed to eliminate the contribution of
the strict transform of eitherPi , whose effect is to give an exponent of decrease
equal to−1. One hopes to have exponents of decrease considerably smaller than
−1, if favorable geometric conditions hold (see [I, pg. 69, pg. 155ff]). Now, the
expression of anSi, corresponding to the strict transform ofP1 orP2, is 1−p−1w,
with w = w1 or w2. One then would need to insure that such a polynomial only
appears to order at most 1 in any denominator of the fractions in (6.6.1). However,
(6.6.1) indicates that the order of someSi can actually be larger than their multi-
plicity νi in ϕI . So, it is important to find a simple condition that insures that the
exponents of certainSi never increase beyondνi. This is the point of the following
discussion. 2
Setr = #{Mi/Ni :i ∈ [1, R]}, and denote the distinct ratios in this set by

α(x) = ρ1 < ρ2 < · · · < β(x) = ρr .
If someNi = 0, thenβ(x) = +∞. For eachk, setJ(k) = {i:Mi/Ni = ρk}.

For anya ∈ J(1), b ∈ J(r), define the lattice (i.e. a set closed under addition
and scalar multiplication by nonnegative integers)

C(x) =< (Na,Ma), (Nb,Mb) >Z+ .

One says that a vector(Ni,Mi) is extremalresp.interior if it belongs to the bound-
ary resp. interior ofC(x). The following is an easy consequence of (6.5) and
suffices for the purposes discussed in (6.7).

PROPOSITION 6.8.The following two properties hold for̀∈ {1, r}.

(A) Suppose thatJ(`) = {i}. Then the exponent ofSi in the denominator of any
term appearing in(6.6.1) is at most1.

(B) SupposeJ(`) = {i1, . . . , ik}, k > 2, is such that any doubleton{c, d} ⊂ J(`)
satisfies the property that eitherSc = Sd or {c, d} ∈ I−1 . Then for eachj ∈
{1, . . . , k}, the exponent ofSij , appearing in the denominator on the right side
of (6.6.1), is at most the multiplicityνij of Sij in the factorization ofvI .

Remark6.9. Since the vector(1,0) (or (0,1)) must be an extremal vector if it
belongs to the set{(Ni,Mi)}Ri=1, one will apply (6.8) in particular to any pointx
contained in the strict transform of somePi − Pi(x). The factor corresponding to
the strict transform,S = 1− p−1w1, has multiplicity 1. So, (6.8) implies that if no
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other vector(Ni,Mi) 6= (1,0) ∈ C(x) lies in the same direction as (1, 0), thenS
can only appear to order at most 1 in any summand of (6.6.1). On the other hand,
in looking at the matrices computed in Section 3, one notes that the hypothesis in
(A) need not always hold. However, it is then simple to verify that the hypothesis
in (B) must be satisfied. This leads to rates of decay for the|G(a1/p

r, a2/p
r)| that

are considerably better thanOε(p
r(−1+ε)), see [Li-1]. 2

Givenτ = (τ1, τ2), set ordτ = (ordτ1,ordτ2), acτ = (acτ1, acτ2).
Each nonzero summand of (6.6.1) can contribute to the asymptotic ofFx (5.4.1)

when ordτ is confined to a certain affine translate of a lattice, in the sense of the
above definition. Different summands will determine, in general, different trans-
lated lattices. The contribution of exactly one summand is simple to make expli-
cit since at most two terms appear in each denominator. To state the following
Proposition, one first introduces for eachi ∈ {1, . . . , R}, the line

Li(x) = {s∈ C2:Nis1+Mis2 = −µi}.

This is a component of the polar divisor ofZx(χ, s, ϕ). Further, for eachι =
{i, j} ∈ I0(x) set

{vι(x) =def (v1,ι(x), v2,ι(x))} = Li(x) ∩Lj (x),

s`(Li(x)) = s` axis intercept ofLi(x), ` = 1,2

Cι(x) = 〈(Ni,Mi), (Nj ,Mj )〉Z+ .

PROPOSITION 6.10.For any ι = {i, j} ∈ I0(x), positive integerski, kj , and
monomialwm1

1 w
m2
2 , there exists a polynomialHι(u1, u2) of degreeki − 1 in u1 and

kj − 1 in u2 such that for anyordτ ∈ (m1,m2)+ Cι(x),

Resw1=0 Resw2=0

(
w
m1
1 w

m2
2

S
ki
i S

kj
j

w
−ordτ1−1
1 w

−ordτ2−1
2

)

= Hι(log |τ1|, log |τ2|)|τ1|−v1,ι(x)|τ2|−v2,ι(x).

Further, the iterated residue equals 0 iford τ 6∈ (m1,m2)+ Cι(x).

Remark. Exactly the same conclusion holds if the denominator equalsSki . In
this case, one needs to restrict ordτ to (m1,m2)+ < (Ni,Mi) >N+ . It is clear that
the exponent in|τ1|, |τ2| then equals|τ1|−s1(Li (x)) = |τ2|−s2(Li (x)), provided the axis
intercepts exist. 2
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Proof.Write

w
m1
1 w

m2
2

S
ki
i S

kj
j

= 1

(ki − 1)!(kj − 1)! ×

×
∑

e1,e2>0

∑
k,`

kNi+`Nj=e1
kMi+`Mj=e2

(H(k, `) · p−µik−µj `)we1+m1
1 w

e2+m2
2 ,

whereH(k, `) =∏ki−1
q1=1

∏kj−1
q2=1(q1+k)(q2+`). Then, the coefficient ofwordτ1

1 w
ordτ2
2

can only be nonzero if(m1,m2)+ordτ ∈ Cι(x). If this occurs, then it is determined
by (k, `) so that

kNi + `Nj = ordτ1 −m1, kMi + `Mj = ordτ2−m2,

which, by assumption, consists of exactly one pair(k′, `′). One then expresses
(k′, `′) in terms ofvι(x). A straightforward calculation then shows

p−µik
′−µj `′ = pv1,ι(x)(ordτ1−m1)+v2,ι(x)(ordτ2−m2)

= C|τ1|−v1,ι(x)|τ2|−v2,ι(x),

whereC = C(m1,m2, i, j) is a constant independent of ordτ .
Moreover, since(k′, `′) = (α11 ord τ1+ α12 ordτ2, α21 ord τ1+ α22 ord τ2), for

certain constantsαa,b, it is clear thatH(k, `) is a polynomialHι of degreeki − 1
in ord τ1, and of degreekj − 1 in ord τ2. Since ordτ = − log |τ |, this completes
the proof. 2
Using the notations introduced above, one summarizes the preceding discussion as
follows. In the statement below, the notationC∗ι (x) will be used to denote either
the latticeCι(x) or any of the two sublattices〈Nk,Mk〉Z+ , k = i, j . The following
also suffices for purposes of [Li-1].

THEOREM 6.11.There exist

(i) finitely many monomials{M k},
(ii) finitely many polyomials{Hι(u1, u2)}ι∈I0(x), and finitely many locally constant

functions{Aχ } onU2
p,

such that for all sufficiently small and nonzeroτ1, τ2,

|τ1‖τ2|Fx(ϕ, τ ) =
∑
ι∈I0(x)

∑
k,χ

ξM k+C∗ι (x)(ordτ )Aχ (acτ )

×
×Hι(log |τ1|, log |τ2|)|τ1|−v1,ι(x)|τ2|−v2,ι(x),
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whereξM k+C∗ι (x) is the characteristic function ofM k + C∗i,j (x).

The polygons, referred to in the Introduction, are defined as follows.

DEFINITION 6.12. Givenx, at which Equations (5.1) hold, andι = {i, j} ∈ I0(x),
denote by0ι(x) the polygon whose sides are contained in the linesLi(x)∩R2 and
Lj (x) ∩ R2. For` = 1,2, s`,ι(x) denotes thes` axis intercept of0ι(x). 2
It is then clear from (4.3), and (6.11) that finitely many polygons suffice to de-
scribe two main features of the singularities of the local singular series of any
P ∈ C`I ∪ C`II . Each polygon evidently encodes both the ‘dominant monomial’
|τ1|−1−v1,ι(x)|τ2|−1−v1,ι(x) for Fx, and the slopes of the boundary of the coneCι(x).
The significance of the latter is that for ordτ1, ord τ2 both large, the fiber integral
Fx is defined at ordτ if ord τ2/ordτ1 is at least the smaller slope and at most the
larger slope of this cone. It follows that the0ι(x) determine both the dominant
monomial and the region in which a given monomial is dominant forFx.

Remark.Whenx is a bad point forP◦θ−P(x), Theorem 6.11 gives an explicit
development for the right side of (5.11.1). Thus, the local contribution of the fiber
integral forP at t + P(x) is a sum of monomials in|τ1|, |τ2| and log|τ1| log |τ2|,
evaluated at the finitely many distinct points in the fiber{ζx = t}. As a result,
cancellation can occur and a precise ‘dominant term’ is not obviously identifiable
from the sum over the points in the fiber. The question of obtaining a more explicit
description int for the local contributionFx is a problem that can be analyzed using
some other ideas from plane curve singularities, see [Li-2]. 2

Remark6.13. It is useful to describe the analogues of (5.2), (5.3), (6.11) over
R,C. A sketch will suffice overR since the details for both fields involve itera-
tions of standard one variable arguments. It is clear that the notions of permissible
transformation, amelioration, and goodP wedge apply equally well to polynomial
or analytic maps overR,C. The notation convention, introduced in the beginning
of Section 4, is also used here.

Let P: Rn→ R2 satisfy the properties for membership inC`I (if n = 2) orC`II .
Let θU(x) be a goodP wedge, where Equations (5.1) may be assumed to hold on
U(x) = ×ni=1{|zi| 6 1}. The local zeta functionZx can be defined for any pairχ
of characters on{±1}, and any smooth, compactly supported functionϕ onU(x).
Write s= σ + iw, σ ,w ∈ R2.

Forσ1, σ2� 1,Zx is analytic and absolutely convergent. A standard argument,
using the iteration of the regularization procedure in one variable of [G–S], shows
the existence of an analytic continuation ofZx to C2 as a meromorphic function.
For each integere > 0, set

Li(e) = {s∈ C2:Li(e, s) =def Nis1+Mis2+ µi + e = 0},
L+i (e) = {σ ∈ R2: Li(e, σ ) > 0}, 0x(e) = ∂(∩Ri=1L

+
i (e)).
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Each0x(e) is a polygon that separatesR2 into the parts above, below, or on it.
The analogue of (5.2) is:

Polx =def polar divisor ofZx ⊂
R⋃
i=1

∞⋃
e=0

Li(e). (6.13.1)

The analogue of (5.3) is a strong decay condition iniR2 as|w1|, |w2| → ∞. In
the following discussion,K denotes a compact subset ofR2 such thatK∩Polx = ∅.

CLAIM 6.13.2. For any monomialM = M(s) there existsC = C(M) such that
for anyK,

|M(s)Zx(s,χ , ϕ)| < C for anyssuch thatσ ∈ K.
Sketch of Proof.By reindexing, one may assume that for eachi > 3,(Ni,Mi) ∈<

(N1,M1), (N2,M2) >R+ andM1/N1 < M2/N2 6 +∞. It is convenient to set
Si = Nis1 + Mis2, for i = 1,2. Combining a repeated use of integration by
parts with the regularization procedure in each coordinate, the asserted estimate
is straightforward to verify in theS1, S2 variables, and so, in thes1, s2 variables.
In particular, this uses the fact thatϕ and all its derivatives vanish on∂U(x). The
estimate one shows is that for anyk1, k2 ∈ N, there existsC = C(k1, k2), such that
for anyK, one has:∣∣∣∣∣∣

k1∏
i=0

k2∏
j=0

(S1+ µ1+ i) · (S2+ µ2+ j)Zx(S1, S2,χ , ϕ)

∣∣∣∣∣∣
< C for any ReS1,ReS2 ∈ K. 2

The analogue of (6.11) is obtained by first applying a partial fraction decompos-
ition to Zx inside any tubeK + iR2. Using (6.13.1), for any suchK, there exists a
smallest vectore= (e, . . . , e) ∈ NR, such that

Nx,e(s,χ , ϕ)) =def

R∏
i=1

e∏
j=0

Li(j, s) · Zx(s,χ , ϕ)

is analytic inK + iR2. By (6.13.2), it follows thatNx,e is also bounded in the tube
overK.

Noting that in this discussion there is no need to introduce the index setI that
appears in (5.2.1), one adapts the expression (6.6.1) to the following fraction, using
the same partial fraction method from (6.1)ff:
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1∏R
i=1

∏e
j=0Li(j, s)

=
∑

{i,j}∈I0(x)
i,j∈[1,R]

e∑
m1=0

e∑
m2=0

hi,j,m1,m2

Li(m1, s)kiLj (m2, s)kj
+
∑
i,`

16i6R

e∑
j=0

hi,j,`(s)
Li(j, s)`

.

Here, theki, ` are certain positive integers, finite in number, that need not be
specified further. Also, the numerator of each fraction is a polynomial. Thus, in
K + iR2,

Zx =
∑

{i,j}∈I0(x)
16i,j6R

e∑
m1=0

e∑
m2=0

Fi,j,m1,m2(s)
Li(m1, s)kiLj (m2, s)kj

+
∑
i,`

16i6R

e∑
j=0

Gi,j,`(s)
Li(j, s)`

, (6.13.3)

where each numerator is analytic and satisfies the decay condition (6.13.2) inK +
iR2.

The definition (5.5.1) for the fiber integralFx(ϕ, τ ) extends to the real case
without difficulty. Iterating Mellin inversion onR2 (see [I, pg. 21] for the one
variable case) now shows that forc� 1,

τ1τ2Fx(ϕ, τ ) = 1

(2πi)2
∑
χ

χ1(acτ1)χ2(acτ2)×

×
∫
σ1=c

∫
σ2=c

Zx(s,χ , ϕ)|τ1|−s1|τ2|−s2ds1ds2. (6.13.4)

One then applies the discussion in [Li-7]. Starting at(c, c) and choosinge > 0,
one forms a rectangleR(e)with upper right corner at(c, c) such that the three other
corners lie below0x(e) and above0x(e+ 1). So, each corner is disjoint from Polx.
By making small modifications along its boundary, one can also assume that∂R(e)
contains no point of intersection of any two components of Polx. In the interior of
R(e), one fixes a simple pathξ :u → ξ(u) = σ , intersecting Polx transversally
at simple points only, along whichσ1, σ2 are both monotonically decreasing, and
ending at(c′, c′) = lower left corner ofR(e). Deleting fromR(e) the union of
small open discs centered at each of the finitely many points in Polx ∩ Im ξ , one
obtains a compact setK such thatNx,e · Zx is bounded and analytic inK + iR2.
ReplacingZx in (6.13.4) by the expression (6.13.3), one then transports the chain
of integration from(c, c) to (c′, c′) alongξ , and uses the Leray residue formula as
in [ibid] to rewrite the right side of (6.13.4) as a sum of iterated residues plus an
error term.

Each iterated residue has the following form:

H(log |τ1|, log |τ2|)|τ1|−v1|τ2|−v2, for someH ∈ R[u1, u2],
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where(v1, v2) is a point of intersection of a unique pair of (transversal) components
of Polx that lies in the interior ofR(e).

(6.13.2) now allowse to grow without bound. When this occurs, two properties
can be shown to hold. The first is that the error term goes to 0. The second is
that the coefficient of the iterated residue at the point(v1, v2) is multiplied by a
characteristic function for a ‘wedge’ in[0,∞)2 that can be described as follows.
There are exactly two components of the wedge’s boundary that contain (0,0).
Each component is a monomial curve. Moreover, each curve is determined by the
direction vector of one of the two lines in Polx that intersect at(v1, v2).

Dividing (6.13.4) by|τ1 · τ2|, the resulting infinite sum, obtained by lettinge→
+∞, is the analogue to (6.11) overR. An analogue overC is obtained by iterating
the discussion in [I, pgs. 24–32]. For additional discussion (and all details), see
[Li-3, 4].

Part ii. The case whenP1 is linear
For fixedβ ∈ Znp, setP1(x) = β · x andP2 a homogeneous polynomial of degree
d2 > 2, so thatP = (P1, P2) ∈ C`II . This part calculates the matricesA#(p)
resp.A(p) whenp is a point satisfying the properties in (3.2) resp. (3.4). Notations
introduced in Sections 2 and 3 are used here. The first ingredient is the following.

LEMMA 6.14. Letp ∈ π−1(0̄) at whichP̂1 · P̂2(p) 6= 0. ThenP̂2− P̂2(p) has at
most a nondegenerate singularity atp.

Proof. A simple argument uses a preliminary linear coordinate change inQnp
prior to any blowing up. By reindexing one may assumeβ1 6= 0. Then define the
coordinates

y1 = β · x, yi = xi, for any i > 2. (6.14.1)

In the (y) coordinates, it is clear that SingP is defined by then − 1 equations
∂P2/∂yi = 0, i > 2. Now apply the blowing upπ of 0̄. Clearly in the chartZ1(1),
P1 ◦ π(x11, . . . , xn1) = x11, andP2 ◦ π(x11, . . . , xn1) = x

d2
11P̂2. SinceP̂1 ≡ 1, it

suffices to show that̂P2 − P̂2(p) has at most a nondegenerate critical point at any
p ∈ D1 for which P̂2(p) 6= 0.

To show this, one first notes that for eachi > 2, ∂P̂2/∂xi1 (p) = ∂P2/∂yi(p
(1)).

Thus, if p is a singular point ofP̂2, thenp(1) ∈ SingP. Given thatp(1) ∈ SingP,
the homogeneity of each∂P2/∂yi and the fact thaty1(p

(1)) = 1, one concludes by
Euler’s relation that

∂ 2P2

∂y1∂yi
(p(1)) = −

∑
j>2

yj (p
(1))

∂ 2P2

∂yj∂yi
(p(1)).

So, the first column of the matrix(∂2P2/∂yi∂yj)i>1,j>2 is a linear combination of
the remainingn − 1 columns. SinceP ∈ C`II , it follows that this matrix has rank
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n−1. This implies the Hessian of̂P2 (with respect to the coordinatesx21, . . . , xn1)
has rankn− 1 atp.

In any chartZk(1), k 6= 1, P1 ◦ π(x1k, . . . , xnk) = x1kxkk. Thus, ifp ∈ Dk

satisfies the hypothesis of the Lemma, it follows thatx1k(p) 6= 0. Then, via the
identificationxk1 = x−1

1k , andxi1 = xik/x1k, i 6= 1, k, one can identifyp with
a point inD1, and the preceding discussion applies, completing the proof of the
Lemma. 2
One now evaluates themi,µi − 1 in (3.2).

COROLLARY 6.15. Assumep = (0, p′) ∈ D1 is a singular point ofP̂2. Set
π ′ = id× π1:Y → U(p) to be the blowing up ofp′ in Z1(1)∩D1. Then for anyp
in the exceptional divisor ofπ ′,

A#(p) =


1 0 0

d2 2 ε

n− 1 n− 2 0

 .
Thus,(m2, . . . , mn) = (2, ε,0, . . . ,0) and(µ2−1, . . . , µn−1) = (n−2,0, . . . ,0).

Next, consider a pointp ∈ {P̂1 = P̂2 = 0} ∩D that is a singular point of the
map(P̂1, P̂2) in n−1 variables (that is, local form (2.5)(iii)). Using the coordinates
from (6.14.1), it is clear thatp ∈ Zk(1) for somek > 2. Indeed, the hypothesis
implies

x1k(p) = ∂P̂2/∂xik(p) = 0 for eachi 6= 1, k. (6.16)

LEMMA 6.17.

(i) If p ∈ Dk satisfies (6.16), thenp(k) ∈ SingP.
(ii) If (i) holds, then there exist local coordinatesz = (z1, . . . , zn), defined

in a neighborhoodU(p) = ×i{|zi| 6 ε} ⊂ Zk(1), satisfyingU(p) ∩ Dk =
{z1 = 0}, such that

P1 ◦ π(z) = z1z2 · (unit),

P2 ◦ π(z) = zd2
1 [z2+Q(z3, . . . , zn)], (6.17.1)

whereQ =∑i>3 ciz
2
i , andci 6= 0 for eachi > 3.

Proof of (i). Combining the hypothesis with Euler’s relation applied toP2,
and the fact thatP2(p

(k)) = 0, one sees immediately that for eachi 6= 1, k,
∂P2/∂yi(p

(k)) = ∂P2/∂ yk(p
(k)) = 0. Thus,p(k) ∈ SingP.

Proof of (ii) . By (i), the rank of the matrix(∂2P2/∂yi∂yj (p
(k)))i>1,j>2 equals

n−1. By (6.16), it follows that thekth column is a linear combination of then−1
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other columns. Thus, the rank of the submatrix, formed by deleting thekth column
and the first column, must equaln− 2. This however is equivalent to saying that

rank

(
∂2P̂2

∂xik∂xjk
(p)

)
i,j>2
i,j 6=k

= n− 2.

Applying now Lemmas 2.2, 2.3 tôP2(x1k, . . . , xk−1,k, xk+1,k, . . . , xnk), (ii) implies
the existence of local coordinates(w1, . . . , wn) (centered atp) such that

P1 ◦ π = w1w2,

P2 ◦ π = w
d2
1 [φ(w2)+Q(w3, . . . , wn)+

∑
`>2

w`2H`(w3, . . . , wn)],

where degφ = 1,Q =∑i>3 ciw
2
i , and eachH` vanishes atp. It follows that local

coordinates exist (6.17.1) holds, finishing the proof of (ii). 2
Definep′ to be the point inDk whose coordinates equal those ofp except for
xkk(p) = 0. Letη′0:Z′(2)→ U(p)∩Dk denote the blowing up ofp′ in the ambient
spaceDk, using the coordinates in (6.17.1). SetZ(2) =def {|z1| 6 ε} × Z′(2) =
∪ni=2Zi(2), andη0 = id× η′0. From (6.17), the following is now a simple exercise,
left to the reader.

COROLLARY 6.18. The matricesA(p) in the proof of(3.4) are obtained as
follows(see(3.3) for the notation convention).

(i) Every pointp ∈ Zi(2) is a good point forP ◦ π ◦ η0 except for the origin̄0i in
each chartZi(2), i > 3. Further,

A1(p) =


1 1

d2 1

n− 1 n− 2

.
For eachi > 3, setZ′i(2) = Zi(2)∩ {z1 = 0}, andU ′(0̄i ) = U(0̄i)∩ {z1 = 0},
whereU(0̄i) denotes a compact open neighborhood of0̄i in Zi(2).

(ii) There exists a smooth subvarietyYi of codimension 2 inU ′(0̄i ), so that the
following holds. Letη′(i):Z′i (3) → U ′(0̄i ) denote the blowing up ofU ′(0̄i )
alongYi, Zi(3) = {|z1| 6 ε} ×Z′i (3), andη1(i) = id× η′(i). Then each point
p of the exceptional divisor ofη1(i) is a good point forP ◦ π ◦ η0 ◦ η1(i).
Further, for each suchp,
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A2(p) =


1 2 r 0

d2 2 r ε

n− 1 n− 1 r(n− 2) 0



or


1 2 r 0

d2 2 0 ε

n− 1 n− 1 0 0

 ,
wherer ∈ {0,1}.

Using (3.10) for the singular points other than0̄, and the preceding results for
any point onπ−1(0̄), one arrives at the following estimate of the position of any
polygon0ι(x) (see (6.12)), as a function ofn, d2, providedP1 is a linear function.

THEOREM 6.19.

(i) For any goodP wedge of the formθU(x), and anyι ∈ I0(x), eithers`,ι(x) =
−1 or s`,ι(x) 6 −n/d2 for ` = 1,2.

(ii) The multiplicity of{s` + 1 = 0}, as a component of the polar divisor of
Zx(χ, s, ϕ), is at most equal to 1, for anyχ , ϕ.

Thus, the only possible obstruction to any axis intercept of a polygon0ι(x)
being at most−n/d2 is that at least one of its sides lies on a lines` = −1. 2
7. An Extension of Theorem 4.3 to Some Pairs not inC`I ∪ C`II

This section is needed to estimate|∑β∈(Z/pr )n Su(pr,β)| for large r

(see [Li-1]). Usingβ, x to denote distinct variables onQnp, define the class

C`∗ = {P:Q2n
p → Q2

p:P1(β, x) = β · x,
P2 = P2(x) is homogeneous of degreed > 2 and nonsingular outsidē0}.

An elementary verification, left to the reader shows

LEMMA 7.1. If P ∈ C`∗, thenSingP = {(β,0):β ∈ Qnp}.
Next, setπ :Y → Q2n

p the blowing up of{(β,0)}. Thus,Y = ∪nj=1Yj and
π |Yj (β, w) = (β, w1wj, . . . , wj−1wj,wj ,wj+1wj, . . . , wnwj). Moreover,

P1 ◦ π |Yj = wj [βj +
∑
i 6=j

β iwi] =def wjP̂1, P2 ◦ π |Yj = wdj P̂2.

One now observes the following.
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LEMMA 7.2. If p = (β,w) satisfiesP̂1(p) = 0, P̂2(p) 6= 0 resp.P̂1(p) 6= 0,
P̂2(p) = 0 resp.P̂1(p) = P̂2(p) = 0, then

A(p) =


1 1

d 0

n− 1 0

 resp.

A(p) =


1 0

d 1

n− 1 0

 resp. A(p) =


1 1 0

d 0 1

n− 1 0 0

 . (7.2.1)

Proof. AssumeP̂1(p) = 0, P̂2(p) 6= 0. Since∂P̂1/∂βj (p) = 1, it follows,

by settingBj = P̂1, Bi = β i , i 6= j , that (B1, . . . , Bn,w) form a system of
coordinates atp so thatP1 ◦ π = w1Bj andP2 ◦ π = wdj · (unit). So,A(p) equals

the first matrix. IfP̂1(p) 6= 0, P̂2(p) = 0, then Lemma 2.3 impliesA(p) equals the
second matrix. Finally, ifP̂1(p) = P̂2(p) = 0, then it is clear, by combining the two
previous cases, thatwj and bothP̂1, P̂2 can be used as part of local coordinates at
p. Using these coordinates, it follows immediately thatA(p) equals the third matrix
in (7.2.1). 2
The next Lemma treats the remaining possibility.

LEMMA 7.3. AssumeP̂1(p), P̂2(p) 6= 0. Then there exist local coordinates(B,W)
centered atp so that

P1 ◦ π = P̂1(p)Wj , P2 ◦ π = Wd
j P̂2(B,W)

where∂P̂2/∂Bj(p) 6= 0. Thus, there exists an amelioration(F,G)→ P ◦ π , and
the matrix of multiplicities for(F,G) is given by:

A#(p) =


1 0

d 1

n− 1 0

 . (7.3.1)

Proof.For i = 1,2, setP̃i = (P̂i − P̂i(p))/P̂i(p), so thatPi ◦π = P̂i(p)wj [1+
P̃i]. Since∂P̂1/∂βj (p) = 1, there exists a neighborhoodU(p) so thatBj = P̃1,

Bi = β i , i 6= j , andWj = wj [1+ P̃1], Wi = wi − wi(p), i 6= j , has nonzero
jacobian onU(p). Thus,

P2 ◦ π(W) = P̂2(p)Wd
j [1+ P̃1]−d [1+ P̃2] = P̂2(p)Wd

j [1+ P̃1µ+ P̃2].
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By shrinkingU(p) if needed, one can insure thatµ|U(p) 6= 0, and∂(P̃1µ)/∂ βj (B,

W) 6= 0 for all (B,W) ∈ U(p). Since∂P̃2/∂βj ≡ 0, one concludes thatp is a

good point for the pair(F,G) =def (Wj , P̂2(p)Wd
j [P̃1µ+P̃2]). It is then immediate

that the matrixA#(p), computed for(F,G), is the matrix in (7.3.1). 2
Combining (7.2), (7.3), it follows that Theorem 4.3 applies to the pairs inC`∗.
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