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THE AVERAGE DISTANCE PROPERTY OF
CLASSICAL BANACH SPACES

AlCKE HlNRICHS

A Banach space X has the average distance property (ADP) if there exists a unique

real number r such that for each positive integer n and all x\,... ,xn in the unit

sphere of X there is some x in the unit sphere of X such that

i £ \\xk-x\\=r.

It is known that h and /<» have the ADP, whereas lp fails to have the ADP if 1 ̂  p < 2.
We show that lp also fails to have the ADP for 3 < p ^ oo. Our method seems to be
able to decide also the case 2 < p < 3, but the computational difficulties increase as
p comes closer to 2.

1. INTRODUCTION

A rendezvous number of a metric space (M, d) is a real number r with the property
that for each positive integer n and x\,... ,xn € M there exists x € M such that

A remarkable theorem of Gross [2] states that any compact connected metric space has
a unique rendezvous number. A nice survey of this subject is given in [1]. We say
that a (real or complex) Banach space X has the average distance property (ADP) if
its unit sphere S(X) has a unique rendezvous number. In this case, we say that this is
also the rendezvous number of X. The Gross theorem implies that a finite dimensional
(dimension ^ 2 if the scalars are real) Banach space has the ADP. Observe that 1 is the
unique rendezvous number of the unit ball of any Banach space, see [6].

Let K stand as a synonym for the scalar field R or C. For 1 ^ p ^ oo and d € N,
let ip(K) be Kd equipped with the usual p-norm. If a statement holds for both choices
of the scalar field we simply write I*. Since we want to deal with connected unit spheres
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120 A. Hinrichs [2]

only we always assume d ̂  2 in the real case. Further, let /P(K) be the space of all scalar
sequences with finite p-norm and let Lp = Lp[0,1] be the space of all (equivalence classes
of) scalar functions on the interval [0,1] with finite p-norm.

It is shown in [4, 6, 5] that

• I2 has the ADP with rendezvous number \ /2.

• looiR) and Z£,(R) have the ADP with rendezvous number 3/2.

• /p and Lp do not have the ADP if 1 ̂  p < 2.

Most of this article is devoted to the proof of the following theorem.

THEOREM 1 . 1 . For 3 ^ p < 00, lp and Lp do not have the ADP.

In section 7, we show that complex 1,^ has the ADP, more precisely we have

THEOREM 1 . 2 . /oo(<C) and l^(C) have the ADP with rendezvous number 1/3 +

2\/3/7r.

Both theorems answer questions raised in [5]. We were not able to decide whether lv and
Lp enjoy the ADP for 2 < p < 3, but our methods strongly suggest that they do not.
Our method traces the question back to the proof of some elementary inequalities. Nev-
ertheless, the computational difficulties, for example, the number of variables involved,
increases as p comes closer to 2. We comment on the situation in more detail in Section 6.

2. T H E AVERAGE DISTANCE PROPERTY OF lp FOR p > 2

For lp, 1 ^ p < 00, the next fact was observed in [5]. To keep this paper self-
contained, we give a proof covering both the sequence and the function space case.

PROPOSITI ON 2 . 1 . For 1 ^ p < 00, the only possible rendezvous number oflp

or Lp is 1/2.

P R O O F : Let X = lp or X = Lp. For 7^ e N to be chosen later, let xu ... , xN € S(X)
be disjointly supported vectors and choose a further vector x £ S(X). We show that, for

N

N large enough, JZ Ik* — X\\/N 1S arbitrarily close to $2 which proves the proposition.
*=i

Let A* be the support of Xk and denote o^ = \\x\&k\\. Since

we obtain from

\-ok ^ | |z-

that
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[3] The average distance property 121

where

These functions are continuous, so, given e > 0, we can choose S > 0 such that |<£±(tf) -
V2\ < e/2 provided that 0 < a ^ 5. Letting A = {k = 1 , . . . , N : ak > 6}, we obtain
from (1) that

N

By disjointness of A* and ||x|| = 1, we conclude that J2 &% ^ * which in turn implies

\A\ ^ 1/6P. Substituting this cardinality estimate into (2) yields

It is left to choose N large enough to ensure that

1 N

V2~e^-^\\xk-x\\^V2 + e.

0
The next proposition is a consequence of the well-known Borsuk-Ulam theorem. For

d € N, let Sd be the Euclidean unit sphere in Rd+1.

PROPOSITION 2 . 2 . Let X be a Banach space, n € N and x x , . . . ,xn e S(X).
For any subspace E of X with dimension at ieast n + 1 for reai scaiars and n/2 + 1 for
complex scalars, respectively, there exists x € S(E) such that \\xk - x\\ = \\xk + x\\ for
k = 1, . . . ,n.

PROOF: Define the function 4>: S{E) —> Rn by 0(x) = (||xfc - x||). Let t/> : Sd —>
S(E) be a homeomorphism such that tp(—t) = -tp(t) for t 6 Sd, where Sd is the Euclidian
unit sphere in Rd+1 . Then <j> o ip is a continuous map from Sd into Rn. Since d^ n, the
Borsuk-Ulam theorem tells us that there is t € Sd with <f> o i/)(—t) = cj> o r()(t). Letting
x = i>{t) yields <£(-x) = <j>{x) which is the claim of the proposition. D

The preceding proposition implies that it is always possible to arrange for an average
distance at least ^/2. More precisely, we have the following corollary.

COROLLARY 2 . 3 . Let 2 ^ p < oo, n € N and X = lporX = Lp. If the scalars
are real let m = n + 1, if the scalars are complex let m = n/2 + 1. For Xi, . . . , xn 6 X
and any subspace E of X of dimension at ieast m, there exists x € S(E) such that
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P R O O F : Proposition 2.2 gives us x 6 S(E) such that \\xk - x\\ = \\xk + x\\ for
k = 1 , . . . , n. So it is enough to verify that ||Vl + y2||" + ||i/i - 2/2||

p ^ 2(\\yi\\
p + \\y2\\

p)
for 2/1,2/2 G X. Since we are in lp or Lp, this follows easily from Clarkson's inequality
\u + v\p +\u- v\p ^ 2(\u\p + \v\") which is valid for all u,v G C. Indeed, by Holder's
inequality

|u + v\p + \u- v\p > 21-p/2(\u + v\2 + \u- v\2)p/2 = 2(\u\2 + \v\2)pl2 > 2{\u\p + \v\").

D
It is the purpose of the next sections to find, for p ^ 3 and X = lp or X = Lp,

vectors xi,... ,xn G S(X) such that

1
— ^ ||zfc -x\\><ft for all a

3. SHARPENING CLARKSON'S INEQUALITY

For the next two sections, let p > 2 be fixed and let X = lp or X = Lp. We
want to give good lower estimates for j|rzr + y\\ in terms of ||x||, \\y\\ and ||a; — y\\, where
x, y € X. These inequalities are used in the next section to play the question whether X
has the ADP down to the question whether a certain inequality for real numbers holds.
Nevertheless, they seem to be of some independent interest since they sharpen Clarkson's
inequality considerably.

Clarkson's inequality, as already used in the proof of Corollary 2.3, says that

(3) ||x + y\\" 2 211*11" + 2\\y\\p - \\x - y\\p whenever x,y € X.

Unfortunately, this inequality is not strong enough for our purposes. So we shall look for
a function 0 such that

(4) \\x + y\\p^4>(\\x\\p + \\y\\",\\x-y\\p) whenever x,y € X

which is better than (3). Observe that (3) corresponds to the affine function (j>(s,t) =
2s — t. It is natural to assume that <j> is homogeneous. The next proposition makes it
easy to identify such functions. Let us agree that 0 multiplied by something undefined is
again 0.

PROPOSITION 3 . 1 . Let f : [0,2?-1] -» [O^P"1] be a convex continuous func-
tion such that

(5) /(If - ill") ^ |f +1, |" for a l U , 77 G R with |£|" + \r,\p = 1.

Define <j> by <f>(s,t) = sf{t/s) forO^t^ 2'-1s. Then

(6) ||ar + 2/||p £ <f>(\\x\\p + \\y\\", \\x - y\f) whenever x, y G X.
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[5] The average distance property 123

P R O O F : Let us first check that (5) for all reals already ensures that the same is true
for all complex numbers f and 77. We may assume that |f | > \T]\. We can choose a, /? € R
such that \a\" + |/3|p = 1, a ^ |/?| and |f - 7?| = a - /3. Since we have (5) for a and /?,
it is enough to show that |f + 77I ^ a + /?. To this end, choose u 6 [—1,1] and v € [0,1]
such that

a = 7- , J3 = 7- , |f I = 7- and |7j| = —

Since the function ( l - u ) / ( l + |u|p) is decreasing in u € [—1,1], we infer from |f| —1?7| ^

<* - 0 ^ If I + \v\ that |u| < v. Since the function (l + |u | 2 ) / ( l + |M|P) is increasing in

|w| 6 [0,1], this implies a2 + 01 4, |f |2 + \T}\2. But then we indeed have

If + r?|2 = 2|f |2 + 2|r7|2 - |f - r)\2 = 2|f |2 + 2|7?|2 - (a - /3)2

= (a + p)2 + 2|f |2 + 2|r?|2 - 2a2 - 2£2 ^ (a + 0)2.

Now we are in a position to tackle the final statement of the proposition. Since tp is
continuous, it is enough to prove (6) for x, y with finite support if X — lp and x,y finitely
valued if X = Lp, respectively. So we alternatively may assume that x = (ft), y = (%) 6
lp for some n. Since tp is homogeneous, we can also assume that

Then we conclude from (5) for complex numbers and from the convexity of / that

Let us now define a function / which serves well for our purposes. Actually, it is
the best function which satisfies the conditions imposed in the previous proposition. For
0 ^ a ^ 2 p - \ there exists a unique u € [-1,1] such that a = (1 - u) p / ( l + Mp)- Then
we let f(a) - (1 + u)p / ( l + \u\"). Let us first check that / indeed satisfies (5). If f, r) e R
are such that |f |p + |7j|p = 1 and |f — T]\p = <T, and we additionally assume without loss of
generality that f > 0 and fp ^ 1/2, it is easily seen that

1 . u
( = 77- and n =

( H) 1 / p(i + Hp) (i + H p ) 1 / p

where u is determined by a as above. But then
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so we even have equality in (5). Continuity of / is clear from the definition. Let us finally
verify that / is also convex, so that the (j> obtained from this / indeed has property (6).
We use the parameterisation of the curve y = f(x) by u € [—1,1] from the definition

x(u) = r r - a nd y(u) = r-T~-
v 1 + \U\P

 w 1 + \u\f
Since the curve is symmetric about the line y = x, it is enough to prove that the curve is
convex in the parameter interval u e [0,1] and that the left derivative at the point (1,1)
corresponding to the parameter value u = 0 equals — 1. It is an elementary calculation
to show that, for u € [0,1],

dxKK >> x'(u) 1 - w P - 1 (l + u)"'1'

So we indeed have / '(I) = — 1. Moreover, it is one more exercise in elementary calculus
to show that the functions

. , . (1 + u)° , . , , (1 - u)°

^(u) = \ and Mu) =ua " v ' \-ua

are monotonically increasing and decreasing, respectively, in [0,1] for a > 1. Hence

— (x(u)) is monotonically increasing in u € [0,1]. Since x decreases as u increases, we
find that / is indeed convex.

COROLLARY 3 . 2 . Let f : [0,2""'] -> [O^"1] be the function defined above.
Define <j> by 4>{s,t) = sf(t/s) for 0 ^ t < 2""1s. Then

\\x + y\\p Z <t>(\\x\\» + \\y\\", \\x - y\\p) whenever x, y € X.

4. ESTIMATING MEAN DISTANCES

For n = 2 , 3 , . . . , let H)n = {e = (ei, •-.,€„) : £{ = ±1} be the set of all vectors
of n signs. Let x € X satisfy n||x||p = 1. Now we define , for each e € Dn, a vector
xe € S(X). If X — lp and x = (£,-), we let xe(n(j - 1) + i) = e^j for i = 1 , . . . , n and
j = 1,2, . . . , that is

If X = Lp, we let

x£{t) = n1/peix{nt - i + 1) for t € [(i - \)/n,i/n) and i = l,...,n.

Moreover, given y G X, we define vectors yu... , yn € X by the following rule. If X = lp

and y = (fy), we let yi(j) = Vn(j-i)+i- H X = Lp, we let y^t) = n-^"y((i - 1 + t)/n). In
either case, we obtain that

(7) IMI" = E IWI" and I K - y l l ^ ^ l l x - ^ H " .
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By symmetry, we conclude that

We are going to show that, for p ^ 3 there exists x € X with n||x||p = 1 such that this
expression is strictly bigger than f/2 for all y € S(X). In fact, for p ^ 3 even n = 2
works. This will prove Theorem 1.1.

To this end, we use the functions / and <j> as defined in the preceding section. Let
us write A ^ n to abbreviate A C { 1 , . . . , n}. Then we can estimate the average in (8)
using Corollary (3.2) together with the definition of <f> as follows.

(
„ \ UP / \ UP

t=l / A^.n \i€A if A }

/ \ UP

KieA i$A /

\UP

r. - 7/.IIP I

Let us set

Then we can further write

E (
ceUn \ t=l

Taking into account the already observed formula /(/(o1)) = a and the symmetry of
the last equation, we may assume that <TJ 6 [0,1] for i = 1 , . . . ,n. Let u; e [0,1] be the
corresponding parameter value in the definition of / , so that we have CTj = (1—Ui)
and f(oi) = (1 + Ui)p/(l + up). Then we arrive at the inequality

2 J ^ 1 + U

Let us now assume that y € S(X). Then we conclude from (7) and n | | i | | p = 1 that

(9) ±ai = l and i .< o j<i + i
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So we finally obtain from (8) that

(10) — 2_2 llx« ~ y\\ ^ ^/2mva.<j>p(a, u)

where

(11) Ma

and the minimum is taken over all u = (u\,... , un) € [0, l]n and a — (ct\,... , an) subject
to the condition (9). We have now traveled most of the way towards the next theorem.

THEOREM 4 . 1 . Let p > 2, n € N and X - Lp or X = lp. Let 4>p be defined as
in (11). Assume that <j>p{a, u) ^ 1 for all u € [0,1]" and ct = (a\,... , a n ) satisfying (9).
Moreover, assume that (f>p(a, u) = 1 if and only if u\ = ... = un = 0. Then

2"

for all x € X with n||:r||p = 1 and y € S(X), where the xs are defined as in the beginning

of this section. Equality can occur only if the support of x is (essentially) disjoint from

the support of all the j/j obtained from y as above. In this case X does not have the ADP.

P R O O F : It follows from the preceding considerations that the equality case

Ui = ... — un corresponds to the case when

| | ,r . i » , IIP M/*. A. IIP — I I T I I P - 1 - Wit 11^ fr\r 4 1 Tt

l |x T- y%\\ — \\x — c/tj| — ll^ll ' Ili/tll iQ* * — i , . . . , / i .

But this can only happen if the support of x is (essentially) disjoint from the support of
each of the j/j. By choosing an x with full support and concluding from \\y\\ = 1 that at
least one of the yt must have (essentially) non-vanishing support, we see that for each
y € S(X) there is strict inequality. But this means that -f/2 can not be a rendezvous
number of X, so that X can not have the ADP. D

5. VARYING p

That the assumption in Proposition 4.1 can not be satisfied for all p > 2 with a fixed
n can be easily seen by evaluating <j>p for ax = ... = an = \/n and ux = ... = un = \.
Indeed, we then have
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If the assumption in Proposition 4.1 were true for all p > 2 with a fixed n, we could take
the limit for p -* 2 to obtain

which is wrong for all n ^ 1.

Nevertheless, the next lemma shows, that if it is true for some n and po, it is also

true for all p > Po with the same n.

LEMMA 5 . 1 . For fixed u and a with (9), <j>p(at, u) G [0,1]" is an increasing func-
tion ofp > 2, unless U\ = ... — un = 0. In the latter case it is constant.

For the proof of this lemma we use the following more general result.

PROPOSITION 5 . 2 . Let <f>i,... ,<j)n • I -* K+ be continuously differentiate

functions on some interval / c R such that

(12) 0* (i) log & ( * K *<#(*) for t€l and i = l , . . . , n .

n

Let a; > 0 satisfy J2 ai = 1- Then the function

( n \ V

\~~* „ i /.\ I

t = l /

is non-decreasing in t e I- Moreover, if inequality (12) is strict for at least one i = 1 , . . . , n
at each t e I, then <j> is increasing.

P R O O F : Since 4>(t) > 0, the functions <f>'(t) and
->(t>'(t) od

are of the same sign. Hence <f>{t) is non-decreasing provided that

t2-(\og<t>(t)) = ti=± log53<*<&(*) > °-

t = l

So we shall show that

( n \ / n \ n

/ Qi4>i(t) I log I / cvj0j(t) I ^ t / oti(j>At) for t S / .
t = l / \«=1 / i = l

Since the function x i-» i log i is convex on R+ it is enough to verify that
n

ai0,(t) log0j(t) ^ tVJQ«0<(^) f°r * ^ •̂ i

1=1 1=1
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But this follows immediately from (12). The moreover part is obvious from the preceding
considerations. D

P R O O F OF LEMMA 5.1: For fixed e e Dn, we choose

What we have to do is to show that condition (12) holds for this choice. Hence it is
enough to prove the inequality

<p{p) log <j>(p) < p<j>'(p) for p > 0

where <f>(p) — (1 + s ) p / ( l + |s|p) for some s > —1, s / 0. It is elementary to check that
this inequality is equivalent to

| s | p log | s | p < ( l+ | s | p ) l og ( l + |s|p)

which is true for \s\ ^ 1 since the function x i-» x log a; is increasing for x > 1 and which
is true for 0 < \s\ < 1 since the left hand side is then negative whereas the right hand
side is positive. Observe that in the case when u\ = ... = un — 1, the functions <f>i(p) are
constant only if ej = . . . = £„ = —1, so that the moreover part is also shown. D

Finally, we want to get rid of a. To this end, fix u € [0, l ] n , a$,... , an and consider
varying c*i and 0:2- Since their sum a = ot\ + a2 is fixed by (9) we obtain that each of
the summands

has the form ^/a\S\ + (a — a\)s2 + t for some sx, s2, t ^ 0. It can be easily checked that
this is a concave function of «i , so it attains its minimum at one of the endpoints of
the interval in which it can vary. So the same is true for <f>p(a,u). Using this in an
induction process yields that, for fixed u 6 [0,1]", <j>p(a, u) attains its minimum at some
a for which all but one aj = l /2n and the remaining a* = 1/2 + l/2n. Thus we have
sharpened Theorem 4.1 as follows.

THEOREM 5 . 3 . Let q > p > 2, n e N and X = Lq or X = lg. Let 4>p : [0, l ] n -»

K+ be defined by

I 1 \ (i + £nUn)p\1/p

Assume that (j>p{u) ~£ 1 for all u € [0,1]". Moreover, assume that 4>p{u) = 1 if and only
ifui — ... — un = 0. Then
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for allx e X with n\\x\\q = 1 and y € S(X), where thexe are defined as in the beginning
of this section (with p replaced by q). Equality can occur only if the support of x is
(essentially) disjoint from the support of all the yi obtained from y as above. In this case
X does not have the ADP.

6. T H E CASE p = 3

In this section, we show that the assumption of Theorem 5.3 holds for n = 2 and

p — 3. This proves Theorem 1.1. What we have to show is the following lemma.

LEMMA 6 . 1 . The function

l(l+£u)3 3{l+6v)3\1/3, , 1 v - (\ (1

e,S=±l

satisfies the inequality <f>(u,v) ^ 1 for all u,v £ [0,1]. Moreover, equality holds only if
u = v = 0.

Despite of the fact that the graph of this function easily indicates the truth of the
lemma, we were not able to give a 'nice' proof. Our proof works as follows. We first show
by localisation that 0 satisfies the claimed inequality in a sufficiently large neighbourhood
of the point u = v — 0. In the remaining region we rely for the checking of the inequality
on interval arithmetics using the help of a computer. We only outline the proofs here
in a way that they should be easily comprehensible by the reader. A computer algebra
system would be of some help. All details of the computations are also to be found in
[3]. The following two lemmas carry out these two steps and provide the full proof of
Lemma 6.1.

LEMMA 6 . 2 . The above defined function <j> satisfies <j>(u, v) ^ 1 for all u, v €
[0,1/10]. Moreover, equality holds only ifu = v = 0.

PROOF: It is easily checked, that the expressions

(1 + eu)3 - (1 + u3)(l + ZEU + 3u2 - 2u3)

u3

are polynomials of degree 3 and 2 if e — 1 and e — — 1, respectively, which are positive
for u e [0,1/10]. Hence we have

3u2 - 2u3 for u e [0,1/10].

Moreover, it can also be checked that, with

t t1 5*3 t4

1 + +
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the expression ((1 + t) - g(<)3)/*4 is a polynomial of degree 8 which is positive for
t e [-2/5,2/5]. This implies that

\/\+t > q{t) for t e [-2/5,2/5].

Using this together with p(e, u) - 1 € [-2/5,2/5] for u € [0,1/10], we obtain that

The latter is a polynomial of total degree 12 in the two variables u and v of the form

3u2 3v2 u3 v3

1 + + +

where 31 of the a^ are negative. All these negative a^ satisfy the inequality -2ay- <
lO**-7"4 and can be divided into two groups of 16 and 15 members satisfying i ^ 2 and
j ^ 2, respectively. We then conclude from 0 ^ u, v ^ 1/10 that aijU

ivj ^ -u2/200
for the first group of ay and ay-u*uJ' ^ —>u2/200 for the second group. Consequently, we
arrive at

1 16 \ , / 3 1 15

; 20 200 y " io

This finishes the proof of the lemma. D

LEMMA 6 . 3 . The above defined function <f> satisfies <j>(u, v) > 1 for all (u, v) £
[0,l]2\[0,l/10]2.

PROOF: We partition the area (u, v) E [0,1]2 \ [0,1/10]2 into rectangles and show
for each rectangle R = [u0, Ui] x [v0, Vi] that <p(u, v) > 0 for (u, v) £ R- Since the function
(1 + eu)3/(l + u3) is increasing for e — 1 and decreasing for e = - 1 and u € [0,1], it is
enough to show that i>(u0,u\,vo,Vi) > 0 where ip is obtained from <j> replacing the term
(1 + EU)3/{\ + u3) with (1 + uo)3/(l + ug) if e = 1 and with (1 - ui)3/(l + u\) if e = - 1 ,
and similarly for the terms involving v.

We used a partition into 4542 rectangles, which have to become smaller near the
critical point (0,0). We checked with Maple and with a C-program that the value of t/j is
bigger than 1/1000 for each of these rectangles using a precision of at least 12 digits, thus
eliminating roundoff errors. A Maple-worksheet containing the calculations is available
from [3]. D

It should be clear from the preceding that it is possible, using n = 2, to show that
lp does not have the ADP for PiZpo for some po < 3. But, to come closer to p = 2, it is
necessary to increase the number of vectors involved, hence making the approach taken
here computationally intractable. We also want to remark here that it is much easier to
show Lemma 6.1 for p = 4 instead of p — 3.
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7. T H E RENDEZVOUS NUMBER OF COMPLEX !„

The purpose of this section is to prove Theorem 1.2. Observe that 5(/^,(C)) is
isometric to S(/2(R))- Hence the rendezvous number of /^(C) is 4/n as computed in [4].

Let us now assume that d — 2 , 3 , . . . , oo and set r = 1/3 + 2v
/3/7r. We first show

that for any xi,...,xn€ 5(Z^(C)) there exists </> 6 [0,2n] such that

j.
n

where e\ is the first unit vector. To achieve this, it is clearly enough to prove the following
lemma.

LEMMA 7 . 1 . For any x € S (^ (C) ) with d = 2 , 3 , . . . , oo,

2iT

— / ||i - r.

PROOF: Let £i = rexp(iT/i) be the first coordinate of x. Since

||x - exp(i<£)ei|| ^ maxj | ^ - exp(i</>)|, 1 \ = max j y/\ + r2 — 2rcos(0 — ip), 1 >,

we obtain by rotational invariance that

2ir 2ir

— / \\x - exp(i(j))ei \\d<t> ^ — / max < \J\ + r2 - 2r cos <j>, 1 \d(j>.

o o

Now we conclude from

1 + r2 - 2r cos <j> ^ 1 <=> 2 cos 0 ^ r <=> 1 + r2 - 2r cos <j> ^ 1 + r - 2 cos <f>

that
2JT ir/3 a-

||x-exp(i0)ei|| < T - / maxl^2-2cos<A, 1 } # = - / d</>+ - / J2-2cos<t>d<j> = r.
lit J I J 7T y 7T 7

0 0 */3 g

d

For 0, ̂  £ [0,27r], we let x^,^, = exp(i(j>)ei +exp(i^i) 53 ej- Analogously as Lemma

7.1 shows that we can always arrange for an average distance at most r, the next lemma
shows that we can also get an average distance at least r. Then Gross' Theorem tells us
that r is the unique rendezvous number of S(Z£,(C)) provided that d is finite. Moreover,
the intermediate value theorem shows that r is also a rendezvous number of 5(/oo(C)).
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LEMMA 7 . 2 . For any x € S(/£,(C)) with d = 2 , 3 , . . . , oo,

2TT 2ir

0 0

P R O O F : Let x = (£*)• If |£i| = li we may assume by rotational invariance that
£i = 1 and £2 = r with 0 ^ r ^ 1. Then

2TT 2TT 2TT 2ir

Iff, 1 / /"
4^^ J J 4n' J J

00 00

If |£x| < 1, we fix e > 0 and choose k ^ 2 such that 1 — e < |&| = s < 1. Again we may
assume by rotational invariance that & = s and fi = r with 0 < r < 1. Then

4 7 ^ 7 7 n ^ ~ ^ . v - i i ^ ^ ^ 4 ^ 2 / /
0 0

2JT 2TT

4̂ 2 / /

00 00
2n

0 0

Since £ > 0 was arbitrary, we obtain in any case, by interchanging the roles of <j> and
in the latter one, that

2ir 2ir

max{|l - exp(i^)|, |r —4^2 / / IIs ~ ^.V-ll^^ > o^l1! 4^2 y 7
0 00

= omin - j / / maxJ2sin((?!>/2),

/
00 00

00

For V S [0,7r] and r € [0,1], let us define a(r,ip) G [0,7r/2] by the equality
2sin(a(r, ip)/2) — y/\+r2 - 2rcos(ip). Then the inner integral in question evaluates
to

A max J2sin(0/2), y/l + r2 - 2rcos(^)}d(^ = 2 A

where

/ ( a ) = a sin a + cos a.
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Then the assertion of the lemma follows if we can prove that, for xp € [0, TT/2] and

r e [0,1],

F{r,i>) = / ( a ( r , V)/2) + f{a(r,n - tf)/2) ^ TT/6 + y/l.

Differentiating F with respect to tp yields after a short computation that

^(r xb) = r s i n d \ " ^ < * ( ' > * -
dxj)\ , V ) V [2sin(o(r,^)/2) 2sin(a(r,7r -

It can be easily checked that a{r, ip)/2sin(a(r, ip)/2) is increasing in ip S [0, TT] if r > 0.
Hence the expression in brackets can vanish at most at one value of rp, which happens at
ip = 7r/2. SO, for fixed r > 0, F(r, ip) attains its minimum at ip = 0 or ip = TT/2. Since
F(0, ip) does not depend on ip the same is true for r — 0. So we are left to check that
F{r, 0) ^ TT/6 + \/3 and F(r, 7r/2) ^ TT/6 + s/l for all r G [0,1]. In these cases we have

1 - r . 1 - r
—^— a r c s m —7T-

1 + r 1 + r v/3 - r2 + 2r \ /3 - r2 - 2r
+ +

and

F(r, TT/2) = 2 / arcsin

It takes another short computation to verify that both these functions are increasing in
r s [0,1], so that they attain their minimum at r = 0, which is indeed 7r/6 + \/3 as
wanted. D

To finish the proof of Theorem 1.2 it remains to check that r is the unique ren-
dezvous number of S(/oo(C)). To this end, define for some N = 1,2,... vectors
Zfc = e\p(2nik/N)ei for k = 1,... ,N. Let a; be a further vector in 5 (/«,(€;)). Since

|exp(i<£) - exp(27uA:/A0| ^ 2ir/N for <t> 6 [2n(k - l)/N,2nk/N],

we obtain from the triangle inequality that

N
x ~ o~ / '

2 7 r J2jr(k-l)/N

2?r

Averaging this over fc = 1 , . . . , Â  and taking into account Lemma 7.1 yields

1 ,, 2ir
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Since N was arbitrary, this shows that no rendezvous number of S(Zoo(<C)) can be bigger
than r. That no such number can be smaller than r can be analogously verified using
Lemma 7.2 instead of Lemma 7.1 and AT2 vectors

,k - exp(2nih/N)ei + exp(2nik/N)^2ei f o r h,k = l,... ,N
.7=2

instead of the N vectors Xk above. So our proof of Theorem 1.2 is completed.
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