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Ongoing development in electron detector technology, in the recent years, has enabled a new age of electron 

microscopy which facilitated easy accessibility of multi-dimensional data. The 4D Camera at Lawrence 

Berkeley National Laboratory [1], for example, is capable of generating enormous amounts of data (estimated 

~ 5 PBs of data each year) due to the development of high-speed electron detector technology. To make the 

data analysis of 4D Camera easy and accessible, tools such as the robust open-source python-based 4D-STEM 

(4D- Scanning Transmission Electron Microscope) analysis package (py4DSTEM) have been recently 

developed [2] . Despite the comprehensive and analysis strategy in many instances, there is a need for image 

analysis using cutting-edge machine learning (AI/ML) techniques to complement the existing relatively slow, 

complex and hyperparameter-dependent pipeline. To this end, we propose the design of a fully automated 

AI/ML python-based pipeline, which is fast, automated, and robust against experimental error and background 

noise. 
In this work, we present one of the targeted analysis pipelines, 4D >Crystal, an effort to generate a series of 

reduced crystalline diffraction vectors (Bragg vector map) from a given combination of STEM probe in 

vacuum with typical 4D-STEM diffraction dataset. Figure 1 presents the workflow of the analysis pipeline for 

4D >Crystal. The 4D >Crystal pipeline is composed of three main sub-tasks – 1) crystal selection and data 

scraping, 2) training data generation and 3) deep neural networks (DNNs) training and evaluation. To 

efficiently select the crystal structures for the training dataset, we use the python-based pymatgen package [3, 

4] and the Materials Project (MP) API to fetch crystal structures from more than 120,000 materials present in 

the MP database. Additionally, in order to systematically select a subset of the fetched crystal structures, we 

extract ~ 260 distinct structure prototypes from the AFLOW library of crystallographic prototype [5, 6], 

representing different types of crystals based on their structural similarity. We select a fraction of structures 

from the MP database, resembling each structure prototype, following the square-root distribution law. 

Following the crystal structure selection, we employ a supercell manipulation algorithm (Manipulatt [7]) to 

pre-process crystal unit cells to an oriented and tilted supercell. Finally, convergent beam electron diffraction 

(CBED) patterns and the measured potential for each of the manipulated supercells are simulated using the 

Multislice algorithm [8, 9]. Figure 2 presents a typical example of simulated data input and output labels for 

the deep learning network training. From a subset of 3082 selected crystals, we are able to generate a training 

dataset of ~6 million image quartets (inputs: probe + cbed, and outputs: potential (Vg) + out-of-plane tilt (qz)). 

To predict Bragg peak locations and their intensities, we implement a modified U-Net [10] type encoder-

decoder based deep learning network which employs a cross-correlation Fast Fourier Transform (FFT) layer 

before the U-net encoder stage. As a test case, we show the performance of the network trained on a small 

subset of the training dataset (~50,000 training images and 5,000 validation and test images). Use of a cross-

correlation layer and the non-linear activation function (Relu) are expected to be effective as they are able to 

capture the highly non-linear mapping between the input scattering (cbed) intensity and the output potentials 

(Vg). The ability to quantitively predict the output potentials (Vg) offers accurate in-plane orientation, robust 

strain mapping for thick samples and prediction of accurate out-of-plane tilt (qz) would be capable of estimating 

3-dimensional orientation and strain mapping for unknown polycrystalline samples in a robust and, critically, 

automated manner. 
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Figure 1. Fully automated AI/ML workflow for robust and accurate Bragg peak position and intensity 

detection from 4D STEM electron diffraction dataset. 

https://doi.org/10.1017/S1431927621009739 Published online by Cambridge University Press

https://doi.org/10.1017/S1431927621009739


2776  Microsc. Microanal. 27 (Suppl 1), 2021 

 

 

 
Figure 2. Example manipulation of perovskite (CaTiO3) unit cell (a) rotated along (111) zone axis, (b) rotated 

and high-tilted and their training quartets (input probe, diffraction image and output potential and out-of-plane 

tilt, qz) 
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