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Abstract

Let ν ∈ M1([0,∞[) be a fixed probability measure. For each dimension p ∈ N, let (Xp
n )n≥1 be independent

and identically distributed Rp-valued random variables with radially symmetric distributions and radial
distribution ν. We investigate the distribution of the Euclidean length of S p

n := Xp
1 + · · · + Xp

n for large
parameters n and p. Depending on the growth of the dimension p = pn we derive by the method of
moments two complementary central limit theorems (CLTs) for the functional ‖S p

n‖2 with normal limits,
namely for n/pn → ∞ and n/pn → 0. Moreover, we present a CLT for the case n/pn → c ∈ (0,∞).
Thereby we derive explicit formulas and asymptotic results for moments of radial distributed random
variables on Rp. All limit theorems are also considered for orthogonal invariant random walks on the
spaceMp,q(R) of p × q matrices instead of Rp for p→∞ and some fixed dimension q.

2010 Mathematics subject classification: primary 60F05; secondary 60F10, 60C05, 60B05, 60B12.

Keywords and phrases: radial random walks, central limit theorems, large dimensions, random walks on
topological structures, limit theorems.

1. Introduction
The results in this paper are motivated by the following problem: let ν ∈M1([0,∞[) be
a fixed probability measure. Then for each dimension p ∈ N there is a unique rotation
invariant probability measure νp ∈M

1(Rp) with ϕp(νp) = ν, where ϕp(x) := ‖x‖2 is the
norm mapping. For each p ∈ N consider independent and identically distributed Rp-
valued random variables Xp

k , k ∈ N, with law νp as well as the associated radial random
walks (

Sp
n :=

n∑
k=1

Xp
k

)
n≥0

on Rp. We are interested in finding central limit theorems (CLTs) for the [0,∞[-valued
random variables ‖Sp

n‖2 for n, p→∞ coupled in a suitable way. In this paper we derive
the following two associated CLTs under disjoint growth conditions for p = pn.

Theorem 1.1. Assume that ν ∈ M1([0,∞[) admits finite moments rk(ν) :=
∫ ∞

0 xk dν(x)
<∞ for k ≤ 4. Let (pn)n be a sequence of dimensions with limn→∞ pn =∞.

c© 2014 Australian Mathematical Publishing Association Inc. 1446-7887/2014 $16.00

212

https://doi.org/10.1017/S144678871400024X Published online by Cambridge University Press

https://doi.org/10.1017/S144678871400024X


[2] Limit theorems for radial random walks on Euclidean spaces of high dimensions 213

(1) If limn→∞ n/pn =∞, then
√

pn

n
(‖S pn

n ‖
2
2 − nr2(ν))

tends in distribution for n→∞ to the normal distribution N(0, 2r2(ν)2).
(2) If limn→∞ n/pn = c ∈ [0,∞[, then

1
√

n
(‖S pn

n ‖
2
2 − nr2(ν))

tends in distribution for n → ∞ to the normal distribution N(0, r4(ν) −
(1 − 2c)r2(ν)2).

Parts of this theorem were derived in [13] by using completely different methods.
More precisely, the CLTs above were proven for sequences (pn)n with some strong
restriction. The first CLT with the restriction n/p3

n →∞ was identified by M. Voit
as an obvious consequence of Berry–Esseen estimates on Rp with explicit constants
depending on the dimension p, which are due to Bentkus and Götze [1, 2]. The proof of
the second CLT with the restriction n2/pn→ 0 was derived in [13] as a consequence of
asymptotic properties of so-called Bessel convolutions (for a survey about the Bessel
convolutions we recommend [9]).

With the approach used in [13] one is not able to get rid of the strong conditions
on the growth of p = pn. In particular, the mixed case pn = c · n for some constant c,
which builds a bridge between the CLTs with n� pn and n� pn was stated there as
an open problem.

Other associated limit theorems such as laws of large numbers and large deviation
principle were studied in [10]. For example, it was proven there that

1
n
‖S pn

n ‖
2
2 −→

∫ ∞

0
x2 dν(x) P-a.s.

under the condition that pn grows fast enough.
Theorem 1.1 will appear as special case of an extension which concerns a matrix-

valued version. We consider the following geometric situation: for p, q ∈ N we will
denote by Mp,q the space of p × q-matrices over the field of real numbers R. Let Hq
be the space of symmetric q × q-matrices. Moreover, we will denote by Πq the cone
of positive semidefinite q × q matrices in Hq. We regardMp,q as a real vector space of
dimension pq, equipped with the Euclidean scalar product 〈x, y〉 := tr(x′y) and norm
‖x‖ =

√
tr(x′x) where x′ is the transpose of x and tr is the trace in Mq :=Mq,q. In the

square case p = q, ‖ · ‖ is just the Frobenius norm. The orthogonal group Op acts on
Mp,q by left multiplication,

Op ×Mp,q →Mp,q, (A, x) 7→ Ax. (1.1)

By uniqueness of the polar decomposition, two matrices x, y ∈ Mp,q belong to the
same Op-orbit if and only if x′x = y′y. Thus the space MOp

p,q of Op-orbits in Mp,q is
naturally parameterized by the cone Πq via the map

xOp 7→
√

x′x =: |x|, M
Op
p,q → Πq,
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where for r ∈ Πq, the matrix
√

r ∈ Πq denotes the unique positive semidefinite square
root of r. According to this, the map

ϕp :Mp,q → Πq, x 7→
√

x′x

will be regarded as the canonical projectionMp,q →M
Op
p,q.

In the case q = 1 we haveMp,1 � R
p, H1 = R, Π1 = [0,∞[ and ϕp is the usual norm

mapping ‖ · ‖2 : Rp → [0,∞[. Let us now fix a parameter q ∈ N. By taking images of
measures, ϕp induces a Banach space isomorphism between the spaceMOp

b (Mp,q) of
all bounded radial (that is,Op invariant) Borel measures onMp,q and the spaceMb(Πq)
of bounded Borel measures on the cone Πq. In particular, for each measure ν ∈M1(Πq)
and parameter p there is a unique radial probability measure νp := νp,q ∈ M

1(Mp,q)
with ϕp(νp) = ν.

Let ν ∈ M1(Πq) be a fixed probability measure and q ∈ N. As in the case q = 1, we
now consider for each ‘dimension’ p ∈ N the associated radial measures νp on Mp,q

and the radial random walks (Sp
n :=

∑n
k=1 Xp

k )n≥0, that is, Xp
k , k ∈ N are independent

νp-distributed random variables.
With this notation, we shall derive the following generalization of Theorem 1.1.

Theorem 1.2. Assume that ν ∈ M1(Πq) with
∫

Πq
‖s‖4 dν(s) < ∞. Let (pn)n∈N be a

sequence of dimensions with limn→∞ pn =∞.

(1) If limn→∞ n/pn =∞, then the Πq-valued random variable
√

pn

n

(
ϕ2

pn
(S pn

n ) − n
∫

Πq

s2 dν(s)
)

tends in distribution to some normal distributionN(0,T 2(ν)) on the vector space
Mq with some covariance matrix T 2(ν), which will be described precisely in
Theorem 3.1.

(2) If limn→∞ n/pn = c ∈ [0,∞[, then the Πq-valued random variable

1
√

n

(
ϕ2

pn
(S pn

n ) − n
∫

Πq

s2 dν(s)
)

tends in distribution to the normal distributionN(0,Σ2(ν) + cT 2(ν)) on the vector
spaceMq where Σ2(ν) is the covariance matrix of the Πq-valued random variable
ϕ2

pn
(Xpn

1 ). Note that Σ2(ν) depends only on ν and is independent of pn.

We shall derive Theorem 1.2 in this higher rank setting in Section 3. The proof will
rely on asymptotic results for moment functions of so-called radial distributed random
variables on Mp,q for p→∞ as well as on some identities for matrix variate normal
distributions.

The organization of the paper is as follows. In Section 2, some preliminaries
for the proof of the main result, Theorem 1.2, are presented. More precisely, in
Section 2.1, after recalling some basic facts about relevant matrix algebra we derive
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a generalization of the so-called permutation equivalence property for Kronecker
products. In 2.2 we generalize the multinomial theorem for noncommutative
operations. In Section 2.3, background on Bessel functions on the cone Πq is provided.
Sections 2.4–2.6 are devoted to the study of the moments of radial measures and
of matrix variate normal distributions respectively. In Section 3 our main result is
formulated and proved.

2. Preliminaries

2.1. Kronecker and Hadamard products. In this section we collect some known
facts about Kronecker and Hadamard products. The material is taken from [7].

Let ⊗ denote the Kronecker product over the field of real numbers R, that is, ⊗ is an
operation on two matrices of arbitrary size over R resulting in a block matrix. It gives
the matrix of the tensor product with respect to a standard choice of basis. With that
the Kronecker product of A = [ai j] ∈Mm,n and B = [bi j] ∈Mp,q is the block matrix

A ⊗ B := [ai jB] ∈Mmp, nq.

The Kronecker product is bilinear and associative but not commutative. However,
A ⊗ B and B ⊗ A are permutation equivalent, meaning that there exist permutation
matrices P and Q such that

A ⊗ B = P · (B ⊗ A) · Q. (2.1)

If A and B are square matrices, then A ⊗ B and B ⊗ A are even permutation similar,
meaning that we can take P = Q′. If A, B, C and D are matrices of such size that one
can form the matrix products A ·C and B · D, then

(A ⊗ B) · (C ⊗ D) = A ·C ⊗ B · D. (2.2)

This is called the mixed-product property, because it mixes the ordinary matrix product
and the Kronecker product. If two matrices P and Q are permutation, orthogonal or
positive definite matrices then so is the Kronecker product P ⊗ Q.

The kth Kronecker power A⊗k is defined inductively for all positive integers k by

A⊗1 = A and A⊗k = A ⊗ A⊗(k−1) for k = 2, 3, . . . .

This definition implies that for A ∈Mm,n, we have A⊗k ∈Mmk ,nk .
For a matrix X ∈Mm,n, vec(X) is the m · n × 1 vector defined as

vec(X) = (x′1, . . . , x
′
m)′ ∈Mm·n,1,

where xi, i = 1, . . . , n is the ith column of X.
We now derive a generalization of the permutation equivalence property, which will

be required for the proof of Theorem 3.1 below.

Lemma 2.1. Let Ai ∈Mpi,qi (i = 1, . . . , k), p := p1 · · · · · pk and q := q1 · · · · · qk. Then,
for each permutation σ ∈ Sym({1, . . . , k}) there exist permutation matrices Pσ ∈Mp,p
and Qσ ∈Mq,q such that

Aσ(1) ⊗ · · · ⊗ Aσ(k) = Pσ · (A1 ⊗ · · · ⊗ Ak) · Qσ.
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Proof. Without loss of generality we can assume that k = 4, for the Kronecker product
is associative. Since (1) ⊗ M = M = M ⊗ (1) for any matrices M, it suffices to show
that A1 ⊗ A3 ⊗ A2 ⊗ A4 is permutation equivalent to A1 ⊗ A2 ⊗ A3 ⊗ A4. For a matrix
M let IM and IM denote the identity matrices of such size that one can form the matrix
products IM · M and M · IM . By the property (2.1) there exist permutation matrices
P and Q with A3 ⊗ A2 = P(A2 ⊗ A3)Q. Therefore, using (2.2) we obtain by an easy
computation

A1 ⊗ A3 ⊗ A2 ⊗ A4 = (IA1 ⊗ P ⊗ IA4 ) · (A1 ⊗ A2 ⊗ A3 ⊗ A4) · (IA1 ⊗ Q ⊗ IA4 ).

Clearly, both IA1 ⊗ P ⊗ IA4 and IA1 ⊗ Q ⊗ IA4 are permutation matrices. This completes
the proof. �

In the following, let A = [ai j], B = [bi j] ∈ Mp,q be of the same dimensions. The
Hadamard product, also known as the entrywise product, of A and B is denoted by
A ◦ B and is defined to be the matrix

A ◦ B := [ai jbi j] ∈Mp,q.

The Hadamard product is commutative, associative and distributive with respect to
addition, and is a principal submatrix of the Kronecker product.

For a matrix M, let us denote by 1M the 1-matrix of the same dimension as M, that
is, 1M = (ci j)i j with ci j = 1 for all i, j. We will write it simply 1 when no confusion
will arise. It is clear that

A ⊗ B = (A ⊗ 1) ◦ (1 ⊗ B),
B ⊗ A = (1 ⊗ A) ◦ (B ⊗ 1).

Let P and Q be permutation matrices of such size that one can form the matrix products
P · A and A · Q. It is easy to check that

P(A ◦ B)Q = (PAQ) ◦ (PBQ).

2.2. Permutations on a multiset. In this section, we generalize the multinomial
theorem in terms of Kronecker product instead of the usual multiplication. In order to
do this, we first recall the notion of the permutation on a multiset from [11, Ch. 1].

Let u ∈ N and k ∈ N0. We denote by C0(k, u) the set of all u-compositions of k,
that is,

C0(k, u) =

{
λ ∈ Nu

0 : |λ| :=
u∑

i=1

λi = k
}
,

and write C(k, u) instead of C0(k, u) ∩ Nu. Moreover, we set Mu := {1, 2, . . . , u}. For a
λ ∈ C(k, u) a finite multiset Mult(λ) on the ordered set Mu is a set, where i is contained
with the multiplicity λi for all i ∈ Mu. One regards λi as the number of repetitions
of i. A permutation π = (π1π2 . . . πk) on Mult(λ) can be defined as a linear ordering
of the elements of Mult(λ), that is, an element i ∈ M appears exactly λi times in
the permutation π. The set of all permutations on Mult(λ) will be denoted by S(λ).
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A permutation π = (π1π2 · · · πk) on Mult(λ; M) can be regarded as a way to place k
distinguishable balls in u distinguishable boxes such that the ith box contains λi balls.
Indeed, if i (i = 1, . . . , u) appears in position j ∈ {1, . . . , k} of the permutation π, then
we put the ‘ball’ π j into the box i. For instance let u = 3, λ := (1, 3, 2) ∈ C(k, u) be
a 3-composition of k = 6 and π = (2 1 2 3 3 2) =: (π1 π2 . . . π6) be a permutation on
Mult(λ), then we put π2 in the first box, π1, π3, π6 in the second box and π4, π5 in the
third box. It is clear that

|S(λ)| =
(

k
λ1, . . . , λu

)
:=

k!
λ1! . . . λu!

.

Let mi ∈Mpi,qi (i = 1, . . . , u), λ ∈ C(k, u) and π = (π1, . . . , πk) ∈ S(λ). We will write
π(m1, . . . ,mu) instead of mπ1 ⊗ mπ2 ⊗ · · · ⊗ mπk . Moreover, we set

W(n, u) := {µ = (µ1, . . . , µu) ∈ {1, . . . , n}u : µ1 < µ2 < · · · < µu}.

In the following theorem, which will be used in Section 3 several times, we expand a
Kronecker power of a matrix sum in terms of powers of the terms in that sum.

Theorem 2.2. Let k ∈ N and x1, . . . , xn ∈Mp,q. Then( n∑
i=1

xi

)⊗,k
=

k∑
u=1

∑
λ∈C(k,u)

∑
µ∈W(n,u)

∑
π∈S(λ)

π(xµ1 , . . . , xµu ). (2.3)

For p = q = 1 the Kronecker product coincides with the usual multiplication on R
and, therefore, (2.3) generalizes the multinomial formula. For indices u ∈ {1, . . . , k},
µ = (µ1, . . . , µn) ∈ W(n, u), λ ∈ C(k, u) and π ∈ S(λ) let us consider the associated
summand

π(xµ1 , . . . , xµu ) = xµπ1
⊗ · · · ⊗ xµπk

(2.4)

from (2.3). It is clear that the different matrices xµ1 , . . . , xµu , the numbers of their
repetitions and their exact positions in the Kronecker product (2.4) are described
by µ = (µ1, . . . , µu) ∈ W(n, u), λ = (λ1, . . . , λu) ∈ C(k, u) and π = (π1, . . . , πk) ∈ S(λ)
respectively.

Proof. We proceed by induction on k. For k = 1 there is nothing to prove. Next
suppose as an induction hypothesis that (2.3) holds with k − 1 instead of k. It gives( n∑

i=1

xi

)⊗,k
=

k−1∑
u=1

∑
λ∈C(k−1,u)

∑
µ∈W(n,u)

∑
π∈S(λ)

π(xµ1 , . . . , xµu ) ⊗
n∑

j=1

x j

=

n∑
j=1

k−1∑
u=1

∑
λ∈C(k−1,u)

∑
µ∈W(n,u)

∑
π∈S(λ)

π(xµ1 , . . . , xµu ) ⊗ x j.

(2.5)

Consider a term π(xµ1 , . . . , xµu ) ⊗ x j of the sum above, that is, j ∈ {1, . . . , n},
u ∈ {1, . . . , k − 1}, λ ∈ C(k − 1, u), µ ∈ W(n, u) and π ∈ S(λ). If there is β ∈ {1, . . . , u}
with j = µβ then it corresponds to exactly one summand in (2.3) associated with
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indices ũ = u, λ̃ = (λ1, . . . , λβ−1, λβ + 1, λβ+1, . . . , λu), µ̃ = µ and π̃ = (π1, . . . , πk−1, β).
In the other case, that is, if j ∈ (µβ−1, µβ) for an β ∈ {1, . . . , u + 1} with the convention
µ0 := 0 and µu+1 = ∞ the term π(xµ1 , . . . , xµu ) ⊗ x j corresponds to a summand
in (2.3) associated with indices ũ = u + 1, λ̃ = (λ1, . . . , λβ−1, 1, λβ, . . . , λu), µ̃ =

(µ1, . . . , µβ−1, j, µβ, . . . , µu) and π̃ = (π1, . . . , πk−1, β). As the number of summands in
both (2.3) and (2.5) is equal to nk, the induction step follows. �

In the following we collect some known facts about multivariate Bessel functions
on the cone Πq, which will be needed later. The material is mainly taken from [9]. We
also refer to [4, 6].

2.3. Bessel functions on the cone Πq. Let Zλ denote the zonal polynomials, which
are indexed by partitions λ = (λ1 ≥ λ2 ≥ · · · ≥ λq) ∈ Nq

0 (we write λ ≥ 0 for short) and
normalized such that

tr(x)k =
∑
|λ|=k

Zλ(x) ∀k ∈ N0;

see [4] for the construction of Zλ and further details. It is well known that the Zλ
are homogeneous polynomials which are invariant under conjugation by Oq and thus
depend only on the eigenvalues of their argument. More precisely, for x ∈ Hq with
eigenvalues ξ = (ξ1, . . . , ξq) ∈ Rq, one has

Zλ(x) = Cα
λ (ξ) with α = 2

where the Cα
λ are the Jack polynomials of index α in a suitable normalization (see

[4, 9]). The Jack polynomials Cα
λ are homogeneous of degree |λ| and symmetric in

their arguments. Let α > 0 be a fixed parameter. For partitions λ = (λ1, . . . , λq) we
introduce the generalized Pochhammer symbol

(µ)αλ =

q∏
j=1

(
µ −

1
α

( j − 1)
)
λ j

(µ ∈ C),

where (·) j denotes the usual Pochhammer symbol. For an index µ ∈ C satisfying
(µ)αλ , 0 for all λ ≥ 0 the matrix Bessel functions associated with the cone Πq are
defined as 0F1-hypergeometric series in terms of the Zλ, namely

Jµ(x) =
∑
λ≥0

(−1)|λ|

(µ)d/2
λ |λ|!

Zλ(x). (2.6)

For a general background on matrix Bessel functions, the reader is referred to the
fundamental article [6]. If q = 1, then Πq = [0,∞[ and we have Jµ(x2/4) = jµ−1(x),
where jκ(z) = 0F1(κ + 1;−z2/4) is the modified Bessel function in one variable.

2.4. Polynomials onMp,q. Let p, q ∈ N. For κ = (κi j)i, j ∈ N
p×q
0 (a composition) we

set |κ| :=
∑

i, j κi j and Ri(κ) :=
∑q

j=1 κi j, i = 1, . . . , p. Moreover, we write zκ :=
∏

i, j zκi j

i j .
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Clearly, zκ is a monomial of degree |κ|. The spaces of polynomials and row-even
polynomials are defined by

P := span
{
xκ : κ ∈ Np×q

0
}
,

Pe := span
{
xκ : κ ∈ Np×q

0 ,∀i R(i) is even
}

respectively.
We shall need the following observation.

Lemma 2.3. Let r ∈ Πq, and κ ∈ Np×q
0 . Then

Ψr,κ :Mp,q → R, Ψr,κ(z) := ((zr)′(zr))κ

is an even polynomial of degree 2|κ|.

Proof. Since the product of two row-even polynomials is also a row-even polynomial,
the proof follows easily by induction on n = |κ|. �

2.5. Radial measures onMp,q and their moments. In this section we study radial
measures on the space Mp,q. In particular, we derive asymptotic results for their
moments as p→∞. These results will play a key role in the proof of Theorem 3.1.
We start with the definition of a radial measure onMp,q.

Definition 2.4. A measure νp onMp,q is called radial if

A(νp) = νp ∀A ∈ Op,

that is, if it is invariant under the action (1.1). In particular, for q = 1 a measure νp on
Rp is radial if it is invariant under rotations.

Remark 2.5. It is well known that for each probability measure ν ∈ M1(Πq) and a
dimension p ∈ N there is a unique radial probability measure νp ∈ M

1(Mp,q) with ν as
its radial part, that is, ϕp(νp) = ν.

In order to study radial measures on Mp,q and their moments we need an analogue
of a sphere in our higher rank setting. For an r ∈ Πq we define a sphere of radius r as
the set

Σr
p,q =

{
x ∈Mp,q :

√
x′x = r

}
.

Clearly, Σr
p,q is the orbit of the block matrix σr := (r 0)′ ∈ Mp,q according to the

operation (1.1). For simplicity of notation, we write Σp,q instead of Σ
Iq
p,q, where

Iq ∈ R
q×q denotes the identity matrix. In the case q = 1 we identify Σr

p,1 with the
Euclidean sphere of radius r ∈ [0,∞[. Moreover, let us denote by Ur

p the uniform
distribution on a sphere Σr

p,q.
One can easily show that a radial probability measure νp with its radial part

ν ∈ M1(Πq) enables the decomposition

νp(·) =

∫
Mp,q

Uϕp(x)
p (·) dνp(x) =

∫
Πq

Ur
p(·) dν(r) ∈ M1(Mp,q). (2.7)
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In the sense of Jewett [8], the formula above is an example of a decomposition of a
measure (here νp) according to so-called orbital morphism (here ϕp). More precisely,
ϕp is an orbital mapping, that is a proper and open continuous surjection from Mp,q

onto Πq. The mapping r 7→ Ur
p from Πq toM1(Mp,q) is a recomposition of ϕp, which

means that each Ur
p is a probability measure onMp,q with support equal to ϕ−1

p (r) (here

equal to Σr
p,q), and such that νp =

∫
Mp,q

Uϕp(x)
p dνp(x).

Definition 2.6. Let Z be an Mp,q-valued random variable with distribution µ ∈
M1(Mp,q). We say that µ ∈ M1(Mp,q) (or Z) admits a kth moment (k ∈ N0) if∫
Mp,q
‖z‖k dµ(z) <∞, and define in this case the kth moment of µ (or Z) by

Mk(µ) + Mk(Z) + E(Z⊗,k) ∈Mpk ,qk .

Let I = {(i1, j1), . . . , (ik, jk)} with iα ∈ {1, . . . , p} and jα ∈ {1, . . . , q} for α ∈ {1, . . . , k}.
Then the Ith component Mk(Z)I of Mk(Z) is given by

Mk(Z)I = E
(
Zi1, j1 · · · · · Zik , jk

)
.

Moreover, for a κ ∈ Np×q
0 with |κ| = k we set

mκ(µ) :=
∫
Mp,q

zκ dµ(z) ∈ R,

and also call mκ(µ) the κth moment of µ.

In the following, µ̂ denotes the characteristic function of a probability measure µ on
Mp,q, that is,

µ̂(x) =

∫
Mp,q

exp(i〈x, y〉) dµ(y).

Let k ∈ N0 and κ ∈ Np×q
0 with |κ| = k. If µ admits a kth moment then we have

mκ(µ) = (−i)|κ|Dκµ̂(x)|x=0, (2.8)

where Dκ is the differential operator (∂κi j/∂xκ11
11 )(∂κ12/∂xκ12

12 ) · · · (∂κpq/∂xκpq
pq ).

Here and subsequently, νp denotes a radial probability measure on Mp,q with the
corresponding radial part ν ∈ M1(Πq) and X is an Mp,q-valued random variable with
radial distribution νp.

In the next lemmas we explore the covariance structure of X and compute the
asymptotic behaviour of the moments of νp for large dimensions p.

Lemma 2.7. Let X = (Xi j)i, j be Mp,q-valued random variables with radial distribution
νp ∈ M

1(Mp,q). Then

E(X) = 0 and E(X jiXlk) = δ j,lE (X1iX1k) . (2.9)
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Proof. For r ∈ R \ {0} let M j,r and S i, j be p × p matrices produced by multiplying all
elements of row j of the identity matrix by r and by exchanging row i and row j of
the identity matrix respectively. As S i, j is a symmetric involution on Mp, we have
S i, j ∈ Op. For r = ±1 the matrix M j,r is also orthogonal. By assumption, X and AX are
identically distributed for any A ∈ Op. Therefore, we have

E(X)i j = E(M j,−1X)i j = −E(X)i j.

So the first equality in (2.9) holds.
Choose i, k ∈ {1, . . . , q} and j, l ∈ {1, . . . , p} with j , l. We conclude from

E(X jiXlk) = E((M j,−1X) ji(M j,−1X)lk) = −E(X jiXlk)

that E(X jiXlk) = 0. We now turn to the case j = l. The transformation Mp,q →Mp,q,
A 7→ S i, jA, switches all matrix elements on row i with their counterparts on row j.
Therefore, from radiality of PX = νp it follows that

E(X jiX jk) = E((S j,1X) ji(S j,1X) jk) = E(X1iX1k) for i, k ∈ {1, . . . , q}. �

Now let us denote by xi the ith row of X. According to the lemma above,

Cov(xi, x j) = δi, j · E(x1x′1) =: Tp ∈Mq.

Therefore,
Cov(X) := Cov(vec(X′)) = Ip ⊗ Tp ∈Mq·p.

Lemma 2.8. The characteristic function for the uniform distribution Ur
p on the sphere

Σr
p,q of radius r ∈ Πq is given by

Ûr
p(z) = Jµ

( 1
4 (zr)′(zr)

)
, (z ∈Mp,q) (2.10)

where µ = p/2 and Jµ is the Bessel function of index µ of (2.6).

Proof. Let r ∈ Πq. Consider the map

Tr : Σp,q → Σr
p,q, y 7→ yr.

Since Tr(U
Iq
p ) = Ur

p, we get by substitution formula

Ûr
p(z) =

∫
Mp,q

ei〈z,y〉 dUr
p(y) =

∫
Σp,q

ei〈z,yr〉 dU Iq
p (y).

On the other side, according to [4, Proposition XVI.2.3.] we have for x ∈ Mp,q the
identity ∫

Σp,q

ei〈y,x〉 dU Iq
p (y) = Jµ

(1
4

x′x
)
, dµ =

p
2
.

By taking the two identities above into account, (2.10) follows as claimed. �
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Lemma 2.9. Let κ ∈ Np×q
0 , l := |κ|/2 and µ = p/2. The κth moment mκ(Ur

p) of the uniform
distribution on Σr

p,q is given as follows.

(a) If Ri(κ) =
∑q

j=1 κi j is even for all i = 1, . . . , p, then l ∈ N0 and

mκ(Ur
p) =

1
4l|κ|!

∑
λ∈C0(l,q)

1

(µ)d/2
λ

Dκ(Zλ((zr)∗(zr)))|z=0. (2.11)

(b) If Ri(κ) is not even for some i = 1, . . . , p, then mκ(Ur
p) = 0.

Proof. By (2.8), the preceding lemma and (2.6) we have

mκ(Ur
p) = (−i)|κ|

∞∑
j=0

(−1) j

j!

∑
λ∈C0( j,q)

1

(µ)d/2
λ

Dκ

(
Zλ

(1
4

(zr)∗(zr)
))∣∣∣∣∣

z=0
. (2.12)

Let λ ∈ Nq
0 and pr : z 7→ Zλ((zr)∗(zr)). Since Zλ is a homogeneous polynomial of degree

|λ|, Lemma 2.3 shows that pr is a homogeneous, row-even polynomial of degree 2|λ|.
Therefore, each term on the right-hand side of (2.12) vanishes if κ ∈ Np×q

0 with Ri(κ) is
odd for some i ∈ {1, . . . , p} or if |κ| , 2|λ|. This proves the assertion. �

Theorem 2.10. Let κ ∈ N
p×q
0 , l := |κ|/2, ν ∈ M1(Πq) and νp ∈ M

1(Mp,q) be the
corresponding radial probability measure on Mp,q which admits a κth order moment.
Then the κth moment mκ(νp) of νp exists in R and has the following asymptotic as
p→∞.

(a) If Ri(κ) is even for all i = 1, . . . , p, then mκ(νp) = O(1/pl).
(b) If Ri(κ) is not even for some i = 1, . . . , p, then mκ(νp) = 0.

Proof. The existence of mκ(νp) is clear. By the decomposition (2.7) we obtain

mκ(νp) =

∫
Πq

mκ(Ur
p) dν(r),

where Ur
p is the uniform distribution on Σr

p,q. Therefore, the assertion (b) follows
immediately from Lemma 2.9(a). Now we turn to the case (a). Since the λth term in
the sum (2.11) is a homogeneous polynomial in the variable r11, r12, . . . , rqq of degree
2|λ|, which is also independent of p, Lemma 2.9(a) leads to

mκ(νp) =
∑

λ∈C0(l,q)

∫
Πq

O
( 1

pl

)
dν(r) = O

( 1
pl

)
. �

2.6. Matrix variate normal distribution and their moments. In this section we
derive some results concerning the class of matrix variate normal distribution on Mq,
to which the limiting distribution in our main result, Theorem 1.2, belongs.

Let Z = (zi j)1≤i, j≤q be a real matrix variate normal distributed variable with mean
matrix µ ∈Mq and symmetric covariance matrix

Σ = (Σ(i, j),(l,k))1≤i, j,l,k≤q = (Σ(l,k),(i, j))1≤i, j,l,k≤q ∈Mq2 �Mq ⊗Mq. (2.13)
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We write Z ∼ N(µ,Σ) for short. This means that vec(Z′) is N(vec(µ′),Σ)-distributed.
In order to prove some formulas for moments Mk(Z) = E(Z⊗k) of Z, which we
will use in Section 3, we need the following notation. Let u ∈ N, k := 2u, I =

((i1, j1), . . . , (ik, jk)) ∈ ({1, . . . , q}2)k, λ = (2, . . . , 2) ∈ C(k, u) and π = (π1, . . . , πk) ∈
S(λ). For a tuple v = (v1, . . . , vn) we will write {v} instead of the set {v1, . . . , vn}.
Consider the sets

π(I)i = {(iµ, jµ) ∈ {I} : πµ = i} (i = 1, . . . , u).

Obviously π(I)i (i = 1, . . . , u) forms a partition of {I} with |π(I)i| = 2. We define for π,
I and a symmetric covariance matrix Σ as in (2.13),

π(Σ)I :=
u∏

i=1

Σ(αi, βi), (γi, δi) where {(αi, βi), (γi, δi)} = π(I)i.

For instance let u = 2, I = {(2, 1), (2, 2), (3, 2), (2, 1)}, λ := (2, 2) ∈ C(4, 2) and π =

(1 2 1 2) =: (π1 . . . π4); then we have π(I)1 = {(2, 1), (3, 2)}, π(I)2 = {(2, 2), (2, 1)} and
π(Σ)I = Σ(2,1),(3,2) · Σ(2,2),(2,1).

The moment formulas Mk(Z) for multivariate normal distributed random vector
Z ∼ N(µ, Σ) are well studied in the literature (see [12] and [5]). In [12, Theorem
1] we find moment formulas for centred Gaussian distribution Z, which are derived in
a relatively fast and elegant way. This formula can be easily translated in our setting.
Namely, the Ith component of kth order moment of an N(0, Σ)-distributed random
matrix Z is given by

Mk(Z)I =


0 if k is odd,
1
u!

∑
π∈S(λ)

π(Σ)I if k = 2u, λ = (2, . . . , 2) ∈ C(k, u). (2.14)

In the most classical case q = 1, that is, Z is centred Gaussian distribution on R with
variance σ2 > 0, the identity (2.14) reduces to the well known formula

E(Zk) =

0 if k is odd,
σk(k − 1)(k − 3) · . . . · 3 · 1 if k is even.

The following two simple observations concerning the kth moment of a normal
distributed random matrix and a sum of two independent, normal distributed random
matrices respectively will be needed for the proof of Theorem 3.1.

Lemma 2.11. Let Z be an N(0, Σ)-distributed random variable and Z1, Z2, . . .
independent copies of Z. The kth order moment of Z is given by

Mk(Z) =


0 if k is odd,
1
u!

∑
π∈S(λ)

Eπ(Z1, . . . ,Zu) if k = 2u,

where λ = (2, . . . , 2) ∈ C(2u, u).
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Proof. Let k ∈ N and I = ((i1, j1), . . . , (ik, jk)) ∈ ({1, . . . , q}2)k. If k is odd, then it
follows by (2.14) that Mk(Z)I = 0. Suppose that k = 2u, (u ∈ N). For π ∈ S(λ),
λ = (2, . . . , 2) ∈ C(k, u) and I as above, we have π(Z1, . . . , Zu)I = (Zπ1 ⊗ · · · ⊗ Zπk )I .
Let {(αi, βi), (γi, δi)} = π(I)i, i = 1, . . . , u. By independence it follows that

Eπ(Z1, . . . ,Zu)I = E(Zπ1⊗ · · · ⊗Zπk )I =

u∏
i=1

E(Zi ⊗ Zi)(αi,βi),(γi,δi)

=

u∏
i=1

Σ(αi, βi), (γi, δi) = π(Σ)I .

The lemma is now a consequence of (2.14). �

Lemma 2.12. Let Zi (i = 1, 2) be independent random variables with distributions
N(0,Σi). Then

E((Z1 + Z2)⊗,k) =

k∑
l=0

∑
π∈S((l,k−l))

Eπ(Z1,1) ◦ Eπ(1,Z2).

Proof. By the definition of ◦-product and independence of Z1 and Z2,

E((Z1 + Z2)⊗,k) =

k∑
l=0

∑
π∈S((l,k−l))

Eπ(Z1,Z2)

=

k∑
l=0

∑
π∈S((l,k−l))

E(π(Z1,1) ◦ π(1,Z2))

=

k∑
l=0

∑
π∈S((l,k−l))

Eπ(Z1,1) ◦ Eπ(1,Z2). �

3. Radial limit theorems onMp,q for p→ ∞

Let ν ∈ M1(Πq) be a fixed probability measure such that
∫

Πq
‖x‖4 dν(x) <∞. Then

for each dimension p ∈ N there is a unique radial probability measure νp ∈ M
1(Mp,q)

with ν as its radial part, that is, ν = ϕp(νp). Let X = (xi j)i j be a νp distributed random
matrix onMp,q. We define

r2(ν) := E(ϕ2
p(X)) = p · Tp ∈ Πq,

Σ(ν) := Cov(ϕ2
p(X)) = Cov(vec(ϕ2

p(X)′)) ∈ Πq2 � Πq ⊗ Πq.

Clearly, r2(ν) and Σ(ν) are independent from p. Now, we consider for each p ∈ N
independent and identically distributedMp,q-valued random variables

Xk :=
(
X(i, j)

k
)
1≤i≤p, 1≤ j≤q, k ∈ N
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with law νp as well as the random variables

Ξ
p
n (ν) := ϕp(Sp

n )2 − nr2(ν), (3.1)

where Sp
n :=

∑n
k=1 Xk. Let (pn)n∈N ⊂ N be a sequence with limn→∞ pn = ∞. In this

section, we derive the following two complementary CLTs for Mq-valued random
variables Ξn(ν) := Ξ

pn
n (ν) under disjoint growth conditions for the dimensions pn.

Theorem 3.1. Assume that ν ∈ M1(Πq) admits finite fourth moment.

CLT I: If limn→∞ (n/pn) =∞, then (
√

pn/n) · Ξn(ν) tends in distribution to the centred
matrix variate normal distribution N(0, T (ν)) with covariance matrix T (ν) :=
T1(ν) + T2(ν) where

T1(ν)(i, j),(k,l) = r2(ν)i,kr2(ν) j,l and T2(ν)(i, j),(k,l) = r2(ν)i,lr2(ν) j,k. (3.2)

CLT II: If limn→∞ (n/pn) = c ∈ [0,∞[, then (1/
√

n) · Ξn(ν) tends in distribution to the
centred matrix variate normal distribution N(0, Σ(ν) + cT (ν)) (where T (ν) is
given as in CLT I).

Notice that for q = 1 we obviously have ν ∈ M1([0,∞[), r2(ν) =
∫ ∞

0 x2 dν(x),
T (ν) = 2r2(ν)2 and Σ(ν) =

∫ ∞
0 x4 dν(x) − r2(ν)2. Therefore, Theorem 3.1 completely

agrees with Theorem 1.1.
The proof of Theorem 3.1 will be divided into two main steps: in the first step we

prove a reduced form of Theorem 3.1 assuming that ν has a compact support. In the
second step we will show how to get rid of the support condition for ν. Both steps are
based on the decomposition of Ξn(ν) via

An(ν) :=
n∑

i=1

Ai with Ai := ϕpn (Xi)2 − r2(ν), (3.3)

and

Bn(ν) :=
pn∑

i=1

Bi with Bi :=
∑

α, β=1,..., n; α,β

[
X(i, j)
α X(i,l)

β

]
1≤ j,l≤q. (3.4)

We compute the covariance structure of An(ν) and Bn(ν) respectively: since the
random variables Ai (i = 1, 2, . . .) are independent and identically distributed, it is
easily seen that

E(Ak) = 0, Cov(Ai, A j) = δi, jΣ(ν). (3.5)

This gives
1
n
Cov(An(ν)) =

1
n

n∑
k=1

Cov(Ak) = Σ(ν).

By the independence of random variables Xk, k ∈ N, and Lemma 2.7 we obtain

E(Bk) = 0, Cov(Bi, B j) = δi, j
n(n − 1)

p2
n

T (ν).
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We thus get

lim
n→∞

pn

n2Cov(Bn(ν)) = lim
n→∞

pn

n2

pn∑
i=1

Cov(Bi) = T (ν).

In the following we will establish convergence in distribution of the random variables
An(ν) and Bn(ν) (after appropriate scaling) by the method of moments [3, Theorem
30.2], which can be easily adapted to our general situation. As we are sure that the
result is well known, we omit the proof.

Theorem 3.2 (Method of moments). Let Y,Y1,Y2, . . . beMp,q-valued random variables.
Suppose that the distribution of Y is determined by its moments Mk(Y) (k ∈ N), that
the Yn have moments Mk(Yn) of all orders, and that

lim
n→∞

Mk(Yn) = Mk(Y)

for k = 1, 2, . . . . Then the sequence (Yn)n converges to Y in distribution.

Remark 3.3. Each matrix variate normal distribution N(M,Σ) on Mp,q or distribution
with compact support is determined by its moments.

Definition 3.4. Let (Dn)n∈N, (dn)n∈N be sequences of matrices from Mq and positive
real numbers respectively. We write Dn = O(dn) as n→∞, if and only if ‖Dn‖∞ =

O(dn) as n→∞.

Proposition 3.5. Assume that ν ∈ M1(Πq) has compact support. Then the asymptotic
behaviour of An := An(ν) is given as follows:

(a) if n/pn → c ∈ [0,∞[ as n → ∞, then (1/
√

n)An tends in distribution to
N(0,Σ(ν));

(b) if n/pn →∞ as n→∞, then (
√

pn/n)An tends in distribution to δ0.

Proof. If we prove that for all k ∈ N0, the kth order moments

1
nk/2 E

(
A
⊗,k
n

)
and

pk/2
n

nk E
(
A
⊗,k
n

)
(3.6)

tend to the kth order moment of the corresponding limit distribution in the case (a)
and (b) respectively, the assertion follows by the method of moments, Theorem 3.2.
Therefore, we calculate (3.6) as n→∞. Since the random variables A j are identically
distributed, Theorem 2.2 shows that

E
(
A
⊗,k
n

)
=

k∑
u=1

∑
λ∈C(k,u)

(
n
u

) ∑
π∈S(λ)

Eπ
(
A1, . . . , Au

)
.

For u ∈ {1, . . . , k} and λ ∈ C(k, u) we consider

T (λ) :=
(
n
u

) ∑
π∈S(λ)

Eπ(A1, . . . , Au) ∈Mqk . (3.7)
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If λα = 1 for some α, that is Aα appears exactly once in π
(
A1, . . . , Au

)
, then each

summand in (3.7) vanishes, which is due to the facts that E(Aα) = 0 ∈Mq and that the
Ai are independent.

Suppose that λα ≥ 2 for each α and λα > 2 for some α. Then k > 2u, and since
T (λ) = O(nu) as n→∞, it follows that (1/nk/2) · T (λ) and (pk/2

n /nk) · T (λ) in the cases
n/pn → c ∈ [0,∞[ and n/pn →∞ respectively tend to zero as n→∞.

Now we turn to the case λ = (2, . . . , 2), in particular k = 2u. Let Z1, . . . , Zu be
independent and N(0, Σ2(ν)) distributed random variables. By Lemma 2.1, for any
π ∈ S(λ) there exist permutation matrices Pπ and Qπ with

PπE(π(A1, . . . , Au))Qπ = E(A1 ⊗ A1 ⊗ · · · ⊗ Au ⊗ Au) = Σ(ν) ⊗ · · · ⊗ Σ(ν)
= E(Z1 ⊗ Z1 ⊗ · · · ⊗ Zu ⊗ Zu) = PπE(π(Z1, . . . ,Zu))Qπ,

and hence
Eπ(A1, . . . , Au) = Eπ(Z1, . . . ,Zu) ∀ π ∈ S(λ).

Therefore, according to Lemma 2.11,

T (λ) =

(
n
u

) ∑
π∈S(λ)

E(π(Z1, . . . ,Zu)) =
n!

(n − u)!
Mk(Z1).

This proves that the moments in (3.6) converge to those of N(0,Σ2(ν)) and the Dirac
distribution δ0 respectively. �

Now we introduce some notation. Let k, n ∈ N and Ik,n be the set of all 2k-tuples
(i1, j1, . . . , ik, jk) of positive integers less than or equal to n such that iα , jα for all
α = 1, . . . , k. For an I ∈ Ik,n and π = (π1, . . . , πk) ∈ Nk we set

S (I, π) := [X(π1, α1)
i1

X(π1, β1)
j1

]1≤α1, β1≤q ⊗ · · · ⊗ [X(πk , αk)
ik

X(πk , βk)
jk

]1≤αk , βk≤q. (3.8)

Each entry of S (I, π) ∈Mqk is a product with k factors and corresponds to the tuple(
(i1, π1, α1), ( j1, π1, β1), . . . , (ik, πk, αk), ( jk, πk, βk)

)
. (3.9)

For (3.9) and two integers a, b we define

multI,π(a, b) = |{τ ∈ {1, . . . , k} : (iτ, πτ, ατ) = (a, b, ατ) or ( jτ, πτ, βτ) = (a, b, βτ)}|.

It is clear that multI,π(a, b) does not depend on the indices ατ and βτ. Therefore,
multI,π(a, b) is the number of factors in an arbitrary entry of the matrix S (I, π) which
are coming from the bth row of Xa. Moreover, we write d(I) for the number of distinct
elements in {I}. For an m ∈ {2, . . . , 2k} and M $ {1, . . . , n} with |M| ≤ k we consider
following subsets of Ik,n

Jm := {I ∈ Ik,n : d(I) = m},

J̃m := {I ∈ Jm : {I} = {1, . . . ,m}},

J∃k (M) := {I ∈ J2 ∪ · · · ∪ Jk : {I} ∩ M , ∅},

J∀k (M) := {I ∈ J2 ∪ · · · ∪ Jk : m ∈ {I} ∀m ∈ M},
Jo(π) := {I ∈ Ik,n : ∃a, b ∈ N : multI,π(a, b) is odd}.
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It is easily checked that for the cardinalities of Jm, J∃k (M) and J∀k (M)

|Jm| ≤ Cnm, |J∃k (M)| ≤ Cnk−1, |J∀k (M)| ≤ Cnk−|M| (3.10)

with some constant C = C(k).

Proposition 3.6. Assume that ν ∈ M1(Πq) has compact support. Then the asymptotic
behaviour of Bn := Bn(ν) is given as follows:

(a) if n/pn → 0 as n→∞, then (1/
√

n)Bn tends in distribution to δ0;
(b) if n/pn → c ∈ (0,∞) as n→ ∞, then (

√
pn/n)Bn tends in distribution to the

normal distribution N(0,T (ν)).

Proof. According to Theorem 3.2 it suffices to show that the kth moments of
(1/
√

n)Bn and (
√

pn/n)Bn tend to the corresponding ones of the limiting distributions
as n→∞. By using very similar arguments to those in the proof of Lemma 2.7 it is
easily seen that Bi (i = 1, 2, . . .) are identically distributed. From this and Theorem 2.2
we conclude

E(B⊗,kn ) =

k∑
v=1

∑
µ∈C(k,v)

(
pn

v

) ∑
π∈S(µ)

Eπ(B1, . . . , Bv).

For a v ∈ {1, . . . , k}, λ ∈ C(k, v) and π ∈ S(µ) we consider π(B1, . . . , Bv). The definition
of Ba (a ∈ Mv) in (3.4) enables us to write

π(B1, . . . , Bv) = Bπ1 ⊗ · · · ⊗ Bπk =
∑

I∈Ik,n

S (I, π), (3.11)

where each term S (I, π) with I = (i1, j1, . . . , ik, jk) is given by (3.8). For a selected
index a ∈ Mn, each entry of S (I, π) may be regarded as a monomial in the variables Xa

(that is, in X(α,β)
a with α, β ∈ N) while the random variables coming from other indices

are considered as constant. In this view, for any I ∈ Jo(π), each entry of S (I, π) is for
some a ∈ {1, . . . , n} and b ∈ {1, . . . , v} a monomial in the variable Xa which is not even
in row b. And hence Theorem 2.10 clearly forces

E(S (I, π)) = 0 ∀I ∈ Jo(π). (3.12)

Therefore, since Jm ⊂ J
o(π) for m > k, we conclude from (3.11) that

Eπ(B1, . . . , Bv) =

k∑
m=2

∑
I∈Jm

ES (I, π). (3.13)

By the definition of S (I, π) in (3.8) and Theorem 2.10, the terms in the last sum are
uniformly bounded by C · nm with a constant C > 0, that is,

sup
I∈Jm

‖ES (I, π)‖∞ = O(nm).
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Moreover, according to (3.10) we have |Jm| ≤ Cnm for a constant C > 0, and hence we
get

Eπ(B1, . . . , Bv) =
∑
I∈Jk

ES (I, π) + O
(nk−1

pk
n

)
= O

( nk

pk
n

)
. (3.14)

For v ∈ {1, . . . , k} and µ ∈ C(k, v) let us consider

T (µ) :=
(
pn

v

) ∑
π ∈S(µ)

Eπ(B1, . . . , Bv).

If µα = 1 for some α, that is, for any π ∈ S(µ) the factor Bα appears exactly once in
the product π

(
B1, . . . , Bv

)
, and therefore each I ∈ Ik,n from the representation (3.11) of

π
(
B1, . . . , Bv

)
is necessarily from Jo(π), and hence (3.12) gives T (µ) = 0.

Suppose that µα ≥ 2 for each α and µα > 2 for some α, that is, in particular k > 2v.
From (3.14) we conclude that n−k/2T (µ) = O(nk/2 pv−k

n ) and pk/2
n n−kT (µ) = O(pv−k/2

n )
tend to 0 as n→∞ in the case (a) n/pn → 0 and case (b) pn/n→ 0 respectively.

We now turn to the case µ = (2, . . . , 2), in particular k = 2v. By (3.14) it follows in
the case (a) that n−vT (µ) = O((n/pn)k−v) and hence that n−vT (µ) converges to zero as
n→∞.

Since X1, X2, . . . are independent and identically distributed, we have∑
I∈Jk

ES (I, π) =

(
n
k

) ∑
I∈J̃k

ES (I, π).

Therefore, by using (3.14),

T (µ) =
pn!

(pn − v)!
n!

(n − k)!
1
v!

∑
π∈S(µ)

1
pk

n

pk
n

k!

∑
I∈J̃k

ES (I, π) + O
(nk−1

pk−v
n

)
.

Let Z1, . . . , Zv be independent and N(0, T (ν)) distributed random variables. By
Lemma 3.7, which is proven below,

lim
n→∞

pv
n

nk T (µ) =
1
v!

∑
π∈S(µ)

Eπ(Z1, . . . ,Zv).

The required result then follows from Lemma 2.11 and the method of moments,
Theorem 3.2. �

Lemma 3.7. Let v ∈ N, k = 2v, µ = (2, . . . , 2) ∈ C(k, v), π ∈ S(µ) and Z1, . . . , Zv be
independent N(0,T (ν)) distributed random variables. Then

Eπ(Z1, . . . ,Zv) =
pk

n

k!

∑
I∈J̃k

ES (I, π) =: R(π).
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Proof. According to Lemma 2.1 there is no loss of generality in assuming that
π = (1, 1, 2, 2, . . . , v, v). We set

Jk,π := {(i1, j1, . . . , ik, jk) ∈ J̃k : {iα, jα} = {iβ, jβ} if πα = πβ}.

It is easy to check that J̃k \ Jk,π ⊂ Jo(π). Therefore, by (3.12),∑
I∈J̃k

ES (I, π) =
∑

I∈Jk,π

ES (I, π).

For a permutation σ ∈ S k := Sym({1, . . . , k}) and ε = (ε1, . . . , εu) ∈ Zv
2 we consider the

functions

ϕσ : Jk,π −→ Jk,π, (i1, j1, . . . , ik, jk) 7→ (σ(i1), σ( j1), . . . , σ(ik), σ( jk))

θε : Jk,π −→ Jk,π, (i1, j1, . . . , ik, jk) 7→ (r1, t1, . . . , rk, tk),

where (r1, t1, . . . , rk, tk) is defined as follows: for any α, β ∈ Mk with α < β and
πα = πβ ∈ {1, . . . , v} we have

(rα, tα, rβ, tβ) =

(iα, jα, iβ, jβ) if επα = 0,
(iα, jα, jβ, iβ) if επα = 1.

It is easily seen that ϕσ and θε are well defined. Let I0 := (1, 2, 1, 2, . . . , k − 1, k,
k − 1, k) ∈ Jk,π. By standard verification we obtain a one-to-one correspondence
between S k × Z

v
2 and Jk,π via the map Ψ : (σ, ε) 7→ ϕσ(θε(I0)). Since X1, X2, . . . are

independent identically distributed we have for all σ ∈ S k

ES (ϕσ(I), π) = ES (I, π) ∀ I ∈ Jk,π. (3.15)

For an ε ∈ Z2 we consider the algebraic operation

ε(a, b) =

a if ε = 0,
b if ε = 1.

By (3.15) it follows that

R(π) =
1
k!

∑
(σ,ε)∈S k×Z

v
2

pk
nES (Ψ(σ, ε), π) =

∑
ε∈Zv

2

pk
nES (Ψ(id, ε), π)

=
∑
ε∈Zv

2

ε1(T1,T2) ⊗ · · · ⊗ εv(T1,T2) = Eπ(Z1, . . . ,Zv),

where T1 := T1(ν) and T2 := T2(ν) are defined as in (3.2). �

Now, in order to prove Theorem 3.1 for sequences pn with pn/n→ c ∈ (0,∞) we
show that An := An(ν) and Bn := Bn(ν) are asymptotically independent.
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Proposition 3.8. Assume that ν ∈ M1(Πq) has compact support and that limn→∞ n/pn
=: c ∈ (0,∞). Then the random variables An and Bn are asymptotically independent,
that is, for all 0 ≤ l ≤ k and all σ ∈ S((l, k − l))

F(n;σ) :=
1

nk/2 [Eσ(An,1) ◦ Eσ(1,Bn) − Eσ(An,Bn)]

tends to zero as n→∞.

Proof. According to Lemma 2.1 there is no loss of generality in assuming that σ =

(1, . . . , 1, 2, . . . , 2). From Theorem 2.2, by using a symmetry argument, we conclude

F(n;σ) =
1

nk/2 (E(A⊗,ln ) ⊗ E(B⊗,k−l
n ) − E(A⊗,ln ⊗B

⊗,k−l
n ))

=
1

nk/2

l∑
u=1

k−l∑
v=1

∑
λ∈C(l,u)

∑
µ∈C(k−l,v)

(
n
u

)(
pn

v

) ∑
π∈S(λ)

∑
π′∈S(µ)

H(π, π′),

with
H(π, π′) = Eπ(A1, . . . , Au) ⊗ Eπ′(B1, . . . , Bv) − E(π(A1, . . . , Au) ⊗ π′(B1, . . . , Bv)).
If µα = 1 for some α ∈ {1, . . . , v}, then each entry of π′(B1, . . . , Bv) is not an even

polynomial and thus neither is π(A1, . . . , Au) ⊗ π′(B1, . . . , Bv). Therefore, H(π, π′) = 0
by Theorem 2.10.

Suppose that µα ≥ 2 for each α. By (3.13)

H(π, π′) =
∑

I∈J2∪···∪Jk−l

(Eπ(A1, . . . , Au) ⊗ ES (I, π′) − E(π(A1, . . . , Au) ⊗ S (I, π′))).

(3.16)
Let M := {1, . . . , u} and G := {α ∈ M : λα = 1}. We consider the Ith term in the sum
above, which will be denoted by T (I). If I < J∃k−l(M), that is, {I} ∩ M = ∅, then
A1, . . . , Au are independent from S (I, π′). This clearly forces T (I) = 0. If I < J∀k−l(G),
that is, there exists τ ∈ G with τ < {I}, then Aτ is independent from Ai (i ∈ M \ {τ}) and
S (I, π′). We thus get T (I) = 0 from (3.5).

Taking (3.10) into account, we see that the number of nonzero summands in (3.16)
is bounded above min(nk−l−1, nk−l−|G|). On the other side, Lemma 2.10 yields that
each of them is bounded above C/pk−l

n where C > 0 is a suitable global constant.
Summarized we get

‖H(π, π′)‖ ≤ C ·min(n−1, n−|G|). (3.17)
Since µ ∈C(k − l, v) with µα ≥ 2 for all α ∈ {1, . . . , v}we have that k − l ≥ 2v. Moreover,
since λ ∈ C(l, u) we get l ≥ 2u − |G|. And hence, by straightforward calculation using
n/pn → c ∈ (0,∞) we conclude from (3.17) that for suitable constants Ci,

‖F(n, σ)‖ ≤
C1

nk/2

l∑
u=1

k−l∑
v=1

∑
λ∈C(l,u)

∑
µ∈C(k−l,v)

(
n
u

)(
pn

v

)
min(n−1, n−|G|)

≤
C2

nk/2

l∑
u=1

k−l∑
v=1

∑
λ∈C(l,u)

nu+v min(n−1, n−|G|) ≤
C3
√

n
.

This completes the proof. �
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Proof of Theorem 3.1 for ν ∈ M1(Πq) with compact support. If n/pn → ∞ then

(
√

pn/n)An
d
→ δ0 and (

√
pnn)Bn

d
→N(0, T (ν)) according to Propositions 3.5 and 3.6.

This clearly forces (
√

pnn)Ξn(ν)
d
→ N(0, T (ν)) by Slutsky’s theorem. Suppose that

n/pn → 0. Then we get as above (1/
√

n)Ξn(ν)
d
→N(0,Σ(ν)). It only remains to check

the convergence in the case n/pn → c ∈ (0,∞). Let k ∈ N. By Theorem 2.2,

Mk(Ξn(ν)) = E((An +Bn)⊗k) =

k∑
l=0

∑
π∈S((l,k−l))

Eπ(An,Bn).

Therefore, by Proposition 3.8,

lim
n→∞

Mk

( 1
√

n
Ξn(ν)

)
= lim

n→∞

1
nk/2

k∑
l=0

∑
π∈S((l,k−l))

Eπ(An,1) ◦ Eπ(1,Bn).

Consider independent random variables Z1, Z2 and Z with distributions N(0, Σ(ν)),
N(0, cT (ν)) and N(0, Σ(ν) + cT (ν)) respectively. Propositions 3.5, 3.6 and Lemma
2.12 now lead to

lim
n→∞

Mk(Ξn(ν)) =

k∑
l=0

∑
π∈S((l,k−l))

Eπ(Z1,1) ◦ Eπ(1,Z2) = Mk(Z). �

In order to get rid of the assumption that supp(ν) is compact, we introduce for an
a > 0 the truncatedMpn,q-valued random variables

Xk,a :=

Xk if ‖ϕpn (Xk)‖ ≤ a,
0 otherwise,

k = 1, 2, . . . .

Let us denote by νa the distribution of ϕpn (X1,a) (which is not dependent on pn).
Obviously, the sequence Xk,a, k ∈ N, is independent and identically distributed with
the radial law νpn,a ∈ M(Mpn,q) which corresponds to νa. We define Ξn(νa), An(νa),
A j,a ( j = 1, . . . , n), Bn(νa) and B j,a ( j = 1, . . . , pn) according to (3.1), (3.3) and (3.4)
respectively, by taking Xk,a instead of Xk, k ∈ N. Clearly, we have Ξn(νa) = An(νa) +

Bn(νa).
In the following we show that Ξn(νa) is a ‘good’ approximation of Ξn(ν). To

formulate this exactly, we first fix some δ > 0 and a sequence (pn)n; we then introduce
the sequence (δn)n by

δn :=


δ ·
√

n if
n
pn
→ c ∈ [0,∞[,

δ ·
n
√

pn
if

n
pn
→∞.

(3.18)

In the next lemmas we show that the events

{‖An(νa) − An(ν)‖ > δn} and {‖Bn(νa) −Bn(ν)‖ > δn}

have arbitrary small probabilities for an a and n large enough.
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Lemma 3.9. For all ε > 0, δ > 0 there exist a0, n0 ∈ N such that for all n, a ∈ N with
a ≥ a0 and n ≥ n0

P(‖An(ν) − An(νa)‖ > δn) ≤ ε.

Proof. Let δ > 0 and (δn)n be a sequence as in (3.18). Since (Ai − Ai,a), (i = 1, 2, . . .)
are independent and identically distributed, it follows by the Chebychev inequality that

P(‖An(ν) − An(νa)‖ ≥ δn) ≤
n
δ2

n
E(‖A1 − A1,a‖

2). (3.19)

Using the triangle inequality we obtain

sup
a∈N
‖A1,a‖

2 ≤ (‖ϕ2
pn

(X1)‖ + ‖r2(ν)‖)2 ∈ L1(Ω).

Therefore, the set {‖A1,a‖
2 : a ∈ N} is uniformly integrable. On the other side, since the

random variable ‖A1‖ is almost surely finite, ‖A1,a‖
2 converges almost surely to ‖A1‖

2

as a→∞. We thus get
‖A1,a‖

2 −→ ‖A1‖
2 in L1. (3.20)

By taking (3.19) and (3.20) into account, the lemma follows. �

Lemma 3.10. For all ε > 0, δ > 0 there exist a0, n0 ∈ N such that for all n, a ∈ N with
a ≥ a0 and n ≥ n0

P(‖Bn(ν) −Bn(νa)‖ > δn) ≤ ε.

Proof. Let δ > 0 and (δn)n be a sequence as in (3.18). By the Chebychev inequality it
follows that

P(‖Bn(ν) −Bn(νa)‖ ≥ δn) ≤
1
δ2

n

pn∑
j,i=1

E(〈Bi − Bi,a, B j − B j,a〉). (3.21)

Using Lemma 2.7 one can easily compute that

E(〈Bi, B j〉) = δi j ·
n(n − 1)

p2
n

q∑
l,k=1

r2(ν)l,lr2(ν)k,k + r2(ν)l,kr2(ν)l,k

E(〈Bi,a, B j,a〉) = δi j ·
n(n − 1)

p2
n

q∑
l,k=1

r2(νa)l,lr2(νa)k,k + r2(νa)l,kr2(νa)l,k.

With the notation
r̃2(a; n) := (E(X(1,l)

1,a X(1,k)
1 ))1≤l,k≤q

we see at once that

E(〈Bi, B j,a〉) = δi jn(n − 1)
q∑

l,k=1

r̃2(a; n)l,lr̃2(a; n)k,k + r̃2(a; n)l,k r̃2(n; a)l,k.
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For l, k ∈ {1, . . . , q} we obtain

r̃2(a; n)l,k =
1
pn

r2(ν)l,k −

∫
{‖X1‖>a}

X(1,l)
1 X(1,k)

1 dP. (3.22)

By the Cauchy–Schwarz inequality and straightforward calculation we get

0 ≤
∣∣∣∣∣∫
{‖X1‖>a}

X(1,l)
1 X(1,k)

1 dP
∣∣∣∣∣ ≤ c

apn
, a→∞

uniformly in n with some constant c > 0. From this and (3.22) we deduce

pnr̃2(a; n) = r2(ν) + O
(1
a

)
and hence

∀ ε > 0 ∃ M > 0 ∀ n ≥ M, ∀ a ≥ M : 0 ≤
p2

n

n2 E(‖Bi − Bi,a‖) ≤ ε.

Finally, this and (3.21) lead to the claim. �

Corollary 3.11. For all ε > 0, δ > 0 there exist a0, n0 ∈ N such that for all n, a ∈ N
with a ≥ a0 and n ≥ n0

P(‖Ξn(ν) − Ξn(νa)‖ > δn) ≤ ε,

where δn = δ
√

n if n/pn → c ∈ [0,∞[ and δn = δ(n/
√

pn) if n/pn →∞.

Proof. For a δ > 0 we observe

P(‖Ξn(ν) − Ξn(νa)‖ > δn) ≤ P
(
‖An − An,a‖ >

δn

2

)
+ P

(
‖Bn −Bn,a‖ >

δn

2

)
.

Combining this with Lemmas 3.9 and 3.10, the corollary follows. �

Proof of Theorem 3.1. Let us first prove the CLT I. In this case the normalization is
given by

√
pn/n and for the growth of pn we have the condition n/pn →∞ as n→∞.

We set ξn := (
√

pn/n)Ξn(ν) and ξn,a = (
√

pn/n)Ξn(νa) and denote their distributions by
µn and µn,a respectively. Moreover, we write τν instead of N(0, T (ν)). Using the
triangle inequality, we deduce that∣∣∣∣ ∫ f dµn −

∫
f dτν

∣∣∣∣ ≤ ∣∣∣∣ ∫ f dµn −

∫
f dµn,a

∣∣∣∣
+

∣∣∣∣ ∫ f dµn,a −

∫
f dτνa

∣∣∣∣ +
∣∣∣∣ ∫ f dτνa −

∫
f dτν

∣∣∣∣.
(3.23)

Let ε > 0, f ∈ Cu
b(Πq) be a bounded uniformly continuous function on Πq and Aδ :=

{‖ξn − ξn,a‖ ≤ δ} (δ > 0). It follows that

∃ δ > 0 :
∫

Aδ
| f ◦ ξn − f ◦ ξn,a| dP ≤ ε.
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On the other hand, by Corollary 3.11,

∃a0, n0 > 0 :
∫

Ω\Aδ
| f ◦ ξn − f ◦ ξn,a|dP ≤ 2ε‖ f ‖∞ ∀a ≥ a0, n ≥ n0.

This gives us the following estimation for the first summand in (3.23):

∃a0, n0 > 0 :
∣∣∣∣ ∫ f dµn −

∫
f dµn,a

∣∣∣∣ ≤ ε(1 + 2‖ f ‖∞) ∀a ≥ a0, n ≥ n0. (3.24)

Since νa has a compact support, we conclude from Theorem 3.1 that µn,a weakly
converges to τνa (a > 0), hence that

∀a > 0 ∃n0 > 0 :
∣∣∣∣ ∫ f dµn,a −

∫
f dτνa

∣∣∣∣ ≤ ε ∀n ≥ n0. (3.25)

Finally, it is evident that

∃a0 > 0 :
∣∣∣∣ ∫ f dτνa −

∫
f dτν

∣∣∣∣ ≤ ε ∀a ≥ a0. (3.26)

Taking (3.24), (3.25) and (3.26) into account, we obtain

∃n0 > 0 :
∣∣∣∣ ∫ f dµn −

∫
f dτν

∣∣∣∣ ≤ ε(3 + 2‖ f ‖∞) ∀n ≥ n0,

which completes the proof of CLT I in Theorem 3.1. The same proof works for
CLT II. �
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