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1. The object of this paper is to derive, using a version of the large sieve for function
fields due to J. Johnsen [6], explicit lower bounds for the average number of distinct values
taken by a polynomial over a finite field.

Let k be the finite field with q elements, where q is a positive power of some prime p.
For a polynomial/(x) in k[x], define V(f) to be the number of distinct values/(a) as a varies
in k. For our purpose it is sufficient to consider only monic polynomials with zero constant
coefficient. Therefore, take/(x) to be the monic polynomial of degree n given by

/(x) = xn+"Xa1-xi («,«=*). (1)

When q is large, Birch and Swinnerton-Dyer [1, Theorem 2] have shown that V{f) depends
on a certain Galois group associated with / in a manner made explicit by the author in [4,
Theorem 2]. However, if some of the coefficients a( are allowed to vary in k, then the author
has also shown that, for large q, the average value of V(f) depends only on n. Specifically,
if the integer t satisfies 0 ^ t^ n — 2 and the t coefficients <*„_!,..., an_, in (1) are given,
define v(n, *)(= v(n, t\ <xn.u..., <*„_,)) by

i<n,0= E V(f)lq--1.
a fn-t-i ek

(Thus v(n, t) is the average value of V(f) over all monic polynomials (1) whose first *+l
coefficients are fixed.) Then Theorem 3 of [5] (see also (1.3) of [5]) implies that, if p > n or,
with a few exceptions, if 2 < p ^ n, then, for fixed n,

2), (2)

where

/in = l-(l/2!) + . . .+(-l)»-V/i! . (3)

Previously, S. Uchiyama [7] had shown that, if p > n, then v(n, 0) is given explicitly by

v(n,0) = b(q,n)q, (4)

Mwhere b{q, n) = £ I ( -1) ' ' ? '. In §2 below we provide a proof of (4) valid for all n

and q. Note that, if nn is given by (3), then, for fixed n, we have

b{q,n) = litt + O{q-i) (q-+«>). (5)

(In fact, Uchiyama [8] also proved that, for fixed n <p and t ^ 1,

v(n,t) = b(q,n)q + O(qt+1-Wt)) (1 g ( g n-1),
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an estimate which is nontrivial if t2 < n and, in view of (5), better than (2) if t(t+\) < n.)
Further, if n ̂  q, then obviously

b(q,n)=\-{l-q-i)'> (n ̂  q). (6)

It is evident that, as n and q both increase, b{q, n) converges extremely rapidly to 1 — e"1 =
0-632.... Since/(x) = g(x){mod x9 -x) implies V{f) = V(g), it is not hard to see that, when
n — t ^ q, we can supplement (4) with

v(n,t;an-l,...,«n-,) = v(n,Q) = b(q,n)q (n-t^q), (7)

where, since n ̂  q, b{q, n) is given by (6).
In general, we therefore expect v(n, t) to be approximately b(q, ri)q. For large q, this is

confirmed by (2) and (5). On the other hand, a lower bound for v(n, t) close to this expected
value for all n and q would seem to be of some interest. In this direction, L. Carlitz [3] proved
that, if /»>« > 1, then v(n,n-2)^q2l(2q-\)>$q, so that v(n,t)^q2l(2q-l) for all
/ ^ n — 2. Our purpose here is to prove the following theorem, which strengthens this result
forO^f < « - 2 .

THEOREM 1. IfO^t^n-2 and in = [$(n—t)] (in integral part notation), then

v(n,t;an.u...,c(n.,) ^ c(q,m)q, (8)

where

j JQ J \ (9)
Note that, since, for m^.q, we have c(q, m) = 1 —(1 — q'1)11, then (7) implies that, for

n — t^. 2q, we actually have equality in (8). Further, for fixed m,

!)}-1, as g->oo.

Hence, for increasing m and q, c(q, m) also converges rapidly to 1 -e~\ When t = n-2, (8)
is the inequality of Carlitz. For the next few even values of n — t, (8) yields

v(n,n-4) £ 3q2l(5q-2) > (3/5)<? (n ̂  4),

v(n, w-6) ^ q(\0q2-l lq)l(16q2-23q + 6) > (5/8)? (n^6,q^ 3),

v(n, n-8) > (41/65)? = (0-631...)? (n ̂  8, q ^ 4).

In what follows we shall denote the degree of a polynomial A by d(A) and put IA I =

2. For completeness we include a proof of (4) valid for all n and q. It is sufficient to
evaluate j(n), the number of monic polynomials of degree n in k[x] not divisible by a linear
factor, because evidently j(n) = q"-v(n, 0)?""1. For a full description of the simple zeta
function technique that we employ, see [2]. *
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For any non-zero A in k[x], let 8(A) = 1 if A has no linear factor; otherwise let 6(A) = 0.
If s(> 1) is real, then the zeta function

(where the sum and product in (10) are over all monic A in k[x] and all monic irreducibles P
in k[x], respectively) converges (to (1 —q1~s')~1) and hence so does

00

A n = 0 P
UP)>\

It follows that

n = 0 P
d(P)=l

On equating coefficients of q~ns in (11), we obtain

J(«)= t (-»'
r = 0

from which (4) follows at once.

3. We now cite a particular case of the large sieve inequality contained in the Corollary
to Theorem 5 of [6]. Let Sf be a set consisting of Z distinct polynomials of degree ^ N in
A:[JC], so that ZSqN+l- Let H' be a set of monic square-free polynomials of degree not
exceeding X = [\(N+1)] with the property that, to every monic irreducible P dividing a mem-
ber of W, there exists a set of w(P) (> 0) residue classes (mod P) such that all members of Sf
belong to one of these residue classes (mod P).

THEOREM 2 (Johnsen). Let S = £ [ ] ( | P \ - w(P))lw(P), where the product is over
F e W P \ F

all monic irreducibles dividing F. Then

4. Let n be a given positive integer and A, D, H be given polynomials in k[x], with
d(H) < n. Define J(n, A, D, H) to be the number of polynomials F with d{F) g n such that
F+A = D (mod H) and such that F+A has no linear factor in k[x]. We apply Theorem 2
to give an upper bound for J(n, A, D,H) from which we deduce Theorem 1.

THEOREM 3. Suppose that d(H) = h and that H has precisely I distinct linear factors in
k[x]. Then

where M = [±(n-h + \)].

Proof. If Z>! is the unique polynomial such that Dj = 0 or d(Dx) < h and such that
Dj = D-A (mod H), then clearly J(n, A, D, H) = /(«, 0, Du H). Hence we may assume
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that A = 0 and that D = 0 or d(D) < h. Further, since the result is trivial if D and H have a
common linear factor, we may also assume that this, in fact, is not the case. Let k' be the
set of q-I elements J? of k such that {x~P)XH. Then

J(n, 0, D, H) ^ J, = | {Fek[x]: d(F) g n, F=0(mod H) and F(J?) # 0V/3efc'} | .

Now to every F counted in / „ there exists a unique G in k[x] with d(G) ^ n — h such that
F = D+GH. Hence

/ : ^ | {C : </(G) ̂  n-/?, D + GH^ 0(modx-P)Vpek'} \

= \{G: d(G) < n-h, G(x) £ -(/)(/?)///(/?)) (mod x-/Q VjSe*'} \. (12)

We now apply Theorem 2 to the set of G counted by (12). Put # = n-h and let W be the
set of all square-free monic polynomials that are the products of not more than [$(n — h+l)] =
M (distinct) linear factors prime to H, so that w(x—ft) = q— 1 for all fiek'. Obviously the

(q-l\
number of polynomials in W of degree r (g M) is I I. Thus Theorem 2 yields J, g

s- z n (?-ir'= z
f6f(j-|»|F r=0

and the theorem is proved.
n l

Proof of Theorem 1. In the situation of Theorem 1, let A(x) = x" + ]T a,- A'. Then clearly
i = n l

n - l

by Theorem 3, where m = {\(n-t)\, and the theorem follows.

We remark finally that, by using different choices of A, D and H in Theorem 3, one
could derive similar expressions for the average value of V(f) over other sets of polynomials
(e.g., those with the first t+1 and last u (nonconstant) coefficients fixed).
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