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1. The object of this paper is to derive, using a version of the large sieve for function
fields due to J. Johnsen [6], explicit lower bounds for the average number of distinct values
taken by a polynomial over a finite field.

Let k be the finite field with g elements, where g is a positive power of some prime p.
For a polynomial f(x) in k[x], define V(f) to be the number of distinct values f(x) as « varies
in k. For our purpose it is sufficient to consider only monic polynomials with zero constant
coefficient. Therefore, take f(x) to be the monic polynomial of degree n given by

f(x)=x"+ nil ax'  (yek). €))
i=1

When ¢ is large, Birch and Swinnerton-Dyer [1, Theorem 2] have shown that V(f) depends
on a certain Galois group associated with f in a manner made explicit by the author in [4,
Theorem 2]. However, if some of the coefficients «; are allowed to vary in k, then the author
has also shown that, for large g, the average value of ¥(f) depends only on n. Specifically,
if the integer ¢ satisfies 0 £ ¢ < n—2 and the ¢ coefficients «,_,,..., «,_, in (1) are given,
define v(n, t)(=v(n, t;a,_,..., &,-,) by
u(n, 1) = > ) V(iNlg"~

{Thus v(n, t) is the average value of V(f) over all monic polynomials (1) whose first ¢+ 1
coefficients are fixed.) Then Theorem 3 of [5] (see also (1.3) of [5]) implies that, if p > n or,
with a few exceptions, if 2 < p < n, then, for fixed n,

o(n, 1) = u,q+0(q'?), )
where
o= 1=(1/2D)+...+(=1)""Y/nl. 3
Previously, S. Uchiyama [7] had shown that, if p > n, then v(n, 0) is given explicitly by

v(n,0) = b(g, n)q, )
where b(q,n) = 'Z":I (f)(—l)"‘q". In §2 below we provide a proof of (4) valid for all »n

and ¢g. Note that, if u, is given by (3), then, for fixed n, we have
b(g,n) =m+0(qg™") (g o). )

(In fact, Uchiyama [8] also proved that, for fixed n<pand t = 1,
o(n,1) = b(g, )y +0(¢g"** =) (1 Lt<n-1),
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an estimate which is nontrivial if 1> < n and, in view of (5), better than (2) if #(z+14) <n.)
Further, if n 2 g, then obviously

blg,m)=1-(1-q¢"")" (nzq) (6)

It is evident that, as n and g both increase, b(g, n) converges extremely rapidly to 1 —e™! =

0-632.... Since f(x) = g(x)(mod x?—Xx) implies V(f) = ¥(g), it is not hard to see that, when
n—t = g, we can supplement (4) with

U(n,t;an—l,' .o ,d"_,) = v(n,()) = b(q: n)q (n_t g q)’ (7)

where, since n 2 ¢, b(q, n) is given by (6).

In general, we therefore expect v(n, t) to be approximately b(q, n)q. For large g, this is
confirmed by (2) and (5). On the other hand, a lower bound for v(n, f) close to this expected
value for all n and ¢ would seem to be of some interest. In this direction, L. Carlitz [3] proved
that, if p>n>1, then v(n,n—2) 2¢*/(2q—1) > g, so that v(n,t) 24%*/(2g—1) for all
t £ n—2. Our purpose here is to prove the following theorem, which strengthens this result
forO=st<n-2.

THEOREM 1. IfQ <t < n—2 and m = [$(n—1)] (in integral part notation), then

U(, 38 gy e e Oeg) 2 (g, m)g, 8)

dg,m) =1~ { i(j’)(q—l)"}" . ©

Note that, since, for m = g, we have c(g, m) = 1 —(1 —g~1)%, then (7) implies that, for
n—t 2 2q, we actually have equality in (8). Further, for fixed m,

where

cg,m)—=>1={1+12)+ ... +(I/mD}~!, as g— oo.

Hence, for increasing m and ¢, c(q, m) also converges rapidly to 1—e~!. When ¢t = n—2, (8)
is the inequality of Carlitz. For the next few even values of n—¢, (8) yields

v(n, n—4) 2 3¢*/(59—2) > (3/5)q (n24),
o(n,n—6) 2 q(104> —11¢)/(169° ~23g+6) > (5/8) (126,92 3),
v(n,n—8) > (41/65)q = (0-631...)q (nz=8,g24).
d(A)In what follows we shall denote the degree of a polynomial 4 by d(A4) and put |A| =
g,

2. For completeness we include a proof of (4) valid for all » and ¢. It is sufficient to
evaluate j(n), the number of monic polynomials of degree n in k[x] not divisible by a linear
factor, because evidently j(n) = ¢"—wv(n, 0)¢"~'. For a full description of the simple zeta
function technique that we employ, see [2]. ’
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For any non-zero A in k[x], let 8(4) = 1 if 4 has no linear factor; otherwise let 6(4) = 0.
If s(> 1) is real, then the zeta function

(=2l417( = £ o) =Tla-|p| " (10

(where the sum and product in (10) are over all monic A in k[x] and all monic irreducibles P
in k[x], respectively) converges (to (1—q' ~%)~') and hence so does

S0y |Al*= % jema~= T (=[P
It follows that d(P)>1

Y img™™ =) [T A=|P|™=Us)1-g7) (s> 1) (an
n=0 d(PI)’=l
On equating coefficients of ¢~ in (11), we obtain

o= £ (%)

from which (4) follows at once.

3. We now cite a particular case of the large sieve inequality contained in the Corollary
to Theorem 5 of [6]. Let & be a set consisting of Z distinct polynomials of degree < N in
k[x], so that Z < q"*!. Let W be a set of monic square-free polynomials of degree not
exceeding X = [4(N 4 1)] with the property that, to every monic irreducible P dividing a mem-
ber of W, there exists a set of w(P) (> 0) residue classes (mod P) such that all members of ¥
belong to one of these residue classes (mod P).

THEOREM 2 (Johnsen). Let S= Y [ (|P|—w(P))/w(P), where the product is over
FeWP|F
all monic irreducibles dividing F. Then

yA § S_qu+1.

4. Let n be a given positive integer and A, D, H be given polynomials in k[x], with
d(H) < n. Define J(n, A, D, H) to be the number of polynomials F with d(F) < n such that
F+A = D (mod H) and such that F+ A4 has no linear factor in k[x]. We apply Theorem 2
to give an upper bound for J(n, A, D, H) from which we deduce Theorem 1.

THEOREM 3. Suppose that d(H) = h and that H has precisely [ distinct linear factors in
k[x]. Then

M q__l -1 «
J(nsAaDsH)§{Z < r )(q—l)_r} q"-h+la
where M = [4(n—h+1)]. e

Proof. If D, is the unique polynomial such that D, =0 or d(D,) < 4 and such that
D, = D— A (mod H), then clearly J(n, A, D, H)=J(n, 0, D;, H). Hence we may assume
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that 4 = 0 and that D = 0 or d(D) < h. Further, since the result is trivial if D and H have a
common linear factor, we may also assume that this, in fact, is not the case. Let k' be the
set of g—/ elements B of k such that (x—f) ¥ H. Then :

Jn,0,D, H) < J, = | {Fek[x]: d(F)< n, F= D(mod H) and F(f) # 0V fek'}|.
Now to every F counted in J,, there exists a unique G in k[x] with d(G) < n—h such that
F=D+GH. Hence
Jy £|{G:d(G) S n—h, D+GH % 0(mod x—B)V fek'}|

=|{G : d(G) £ n—h, G(x) # —(D(B)/H(B)) (mod x—P)V Bek'}|. (12)
We now apply Theorem 2 to the set of G counted by (12). Put N =n—h and let W be the
set of all square-free monic polynomials that are the products of not more than [{(n—h+1)} =
M (distinct) linear factors prime to H, so that w(x—f) =g—1 for all fek’. Obviously the
number of polynomials in W of degree r (£ M) is (q:l>' Thus Theorem 2 yields J, <
S™1g"h*1 where

-1 M q'_l - —-r
s=3% I @-D'= z( ; )(q—l) )

FeW (x—8)| F r=0
and the theorem is proved.

n-1
Proof of Theorem 1. In the situation of Theorem 1, let A(x) = x"+ ), o;x'. Thenclearly
i=n-t
m q -1
(50, gyt )" T =q" T = J(n—1—1,4,0,1) = q""{l-— [ Z ( )(q-—l)"] },
r=0 r

by Theorem 3, where m = [4(n—1)], and the theorem follows.

We remark finally that, by using different choices of 4, D and H in Theorem 3, one
could derive similar expressions for the average value of ¥(f) over other sets of polynomials
(e.g., those with the first 1+ 1 and last u (nonconstant) coefficients fixed).
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