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All extreme lattice-coverings of n-space by spheres are known for n :£ 4;
see for example [3]. Only one class of extreme covering is known for large n,
namely that corresponding to the quadratic form

(1.1) W i ) = n £ x? - 2 L xtxj',

this was first shown to be extreme for all n ^ 2 by Bleicher [2].
The object of this paper is to exhibit a new extreme lattice-covering for all

odd n 5; 5. The density of the covering is slightly larger than that corresponding
to <j)0, so that unfortunately no further information is provided on the density of
the most economical covering.

We use the notation and some results of Voronoi [5,6] and Barnes and
Dickson [1]; a brief description of these follows.

Let f(x) =f(x1)x2, •••,*,,) = x'Ax be positive definite, with determinant
d = d (/). Define the inhomogeneous minimum m(f) of/ by

(1.2) m(/) = max min/(x + a) (a real, x e T)
a x

(where T denotes the integral lattice) and define

(1.3) V

If A = P'P and A = {Px\ xeT}, then spheres of radius (m(/))* centred at the
points of A cover space minimally, and the density of the covering is

(1-4) 0(\) = JMf)f2,

where Jn is the volume of the unit sphere.
We say that / (and the corresponding covering) are extreme if /i(g) 2: /((/)

for all forms g sufficiently close to / ; if / is extreme, so of course is any
from equivalent to a multiple of/, and equivalent forms correspond to the same
lattice covering.
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TheVoronoi poly tope II corresponding t o / i s the set of points x satisfying

/ ( x ) £ / ( x - Q for all leT.

Afinite set + ' i , - " , + la of integral points suffices to define IT, which has therefore
a pairs of opposite parallel faces, with equations

f(x)=f(x±li) (i = l , . . . , f f ) .

A given I j± 0 belongs to this set iff

= min/(*)

taken over all integral x = l (mod 2r) and this minimum is attained only at
x = + I; we call these points the 'modulo 2F minima' of/. Always a g 2" — 1,
and in general a — 2" — 1, with one pair of faces for each class of F J2T other than
0; such a form we call an interior form From the convexity of IT, it follows
easily that

(1.5) m(J) = max/(x) = max/(i>)
xs n v

where the maximum is taken over all vertices v of IT. For an interior form, II is
primitive (i.e. each vertex lies on just n faces) and has (n + 1)! vertices. A vertex
v for which the maximum in (1.5) is attained is said to be maximal.

Twovertices of IT are congruent if they are congruent modulo F. Each vertex
»has n + 1 congruent vertices; specifically, if v lies on the n planes

(1.6) f(x) = f(x -I,) (i = l , - , n )

we say that v is determined by the simplex [io^i>""".'n] with vertices t0

= 0,lu •••,ln. Then, for each; = 0,1, •••, n, there is a congruent vertex Vj = v — lj
of II determined by the simplex

Moreover, / takes the same value at congruent vertices, so that all are maximal if
any one is.

If D is determined by the simplex [lo,h, •••,'„], let ico,clt •••,cH) be its bary-
centric coordinates with respect to this simplex, so that

(i.7) • = i ctilt i c, = i.
i = 0 i = 0

We then have (Barnes and Dickson [1]):

THEOREM 1. If fix) = x'Ax is an interior form and Fix) = x'A~xx is its
inverse, then f is extreme if and only if F is expressible in the form
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(1.8) F(x)= 2 A , [ £ cMx)2 - (v'x)2]
v L> = i J

where the outer sum is over all maximal vertices of IT,

(1.9) lv ^ 0 for all v,

and, for each v, the ct are defined by (1.7).
We note also the corollary, that in (1.8) it suffices to include in the sum only

one vertex v from any set of n + 1 congruent maximal vertices.
In §2 we describe the from 4>2(x) and prove that it is extreme for all odd

n S; 5. Finally in §3 we examine the density of the corresponding lattice-covering
of space, and outline the genesis of the form and its relation to Voronoi's dis-
section of the space of positive definite quadratic forms into polyhedral cones.

2

THEOREM 2. For odd n ^ 5, the form

(2.1) 4>2(x) = £ xf + 2 (x, - .x;)2 + by(x)
i=2 2gi<jgn

is extreme, where

n n

4y(x) = n(x\ + x\) + 4 £ x] + 2(n - 2)xtx2 - 4(xx + x2) 2 x,-,

and b = bn is the positive root of

(2.2) 3(n - 3)x2 + (n2 - 8n - 6)x - 4n(n + 1) = 0 .

It is convenient to transform the coordinates by

*i = .Vi + y2

x = Ty: x2 = yt - y2

xt = . V i - J'i ( 3 ^ / ^ M )

and consider the form

(2.3) g(y) = <f>2(Ty) = 2 (>' i -J ' y)2 + & £ j 'f ,

with

(2.4) d(g) = </(</)2)(detr)2 = ft(n + b)"'1 .

If A = T~T = {r~ x x | x e T}, then it is easily seen that y e A if and only if
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(2.5) 2yeT and 2yt = 2y2 = ••• = 2%, (mod 2).

Thus integral x correspond to points y satisfying (2.5).
The Voronoi polytope H^ under this transformation becomes T~1IT^2 — n ,

which is not to be confused with the polytope IT of the form g. The mod2F
minima of (f>2 become the mod 2A of g, that is, a given m ^ O belongs to the set
{ + m !,-•-,+ mff} of mod 2A minima of g if and only if g(m) = min g(y) taken
over all y = m (mod 2A) and this minimum is attained only at y = ± m.
Thus m = T~*l, where I is a mod2F minimum of <j>2.

LEMMA 1. Let et denote the ith unit vector and set m = \(n — 1). The set of
modlh minima of g consists of the points

(2.6) i(±«i±«2±-±O

(2.7) ±(eii + ei2 + -+eir) ( l S i , < i 2 - < U n , l ^ r ^ m ) .

PROOF. For points of the form (2.6) it is sufficient, after applying a suitable
permutation of coordinates, to consider a point of the form

m = K«i + - + er-er+1 en) = i(l, - , 1 , - 1 , - , - 0-

From (2.5), any point congruent to m mod2A is of the form

(2.8) y = i(l + 4alt-, 1 + 4ar, - 1 + 4ar+1,•••, - 1 + 4an)

or

(2.9) y = K - 1 + 4 f l l f - , - 1 + 4ar, 1 + 4ar+1,-, 1 h 4an),

with integral au ••-,«„. Over points of the form (2.8), T,yf attains its minimum
only when at = ••• = an = 0 and each (y; — yj)2 also takes its minimun value
there, so that g(y) attains its minimum only at m. Similarly, over points of the
form (2.9), g(y) attains its minimum only at — m. Thus all points (2.6) are mod2A
minima of g.

For points (2.7) it suffices to consider

m = el + ••• +er = ( l , - , l , 0 , - , 0 ) ,

where 1 ̂  r 5S m. From (2.5), any point congruent to m mod 2A is of the form

(2.10) y = (l+2ai,-,l +2ar,2ar+1,-,2an)

(2.11) y = ( 2 f l 1 , - , 2 a r , 2 a r + 1 - l , - , 2 a . - l ) ,

with integral au---,an. Points of the form (2.10) have yt - yj even if i ̂  r and
j; ^ r or i > r and j > r, and odd if i ̂  r and j > r; it is therefore easily seen that
£ {yt — yj)2 attains its minimum r(n — f) only when ai = ---=an = 0 or
ox = ••• = ap = — 1 and ar+1 = ••• = an = 0. E y\ also attains its minimum r at
these points and so g(y) attains its minimum r(n — r) + rb over points (2.10) only
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at +m. Similarly g(y) attains its minimum r(n — r) + (n — r)b over points (2.11)
only at +(0, •••0,1, •--, 1). Since l^r^±(n-l), r(n-r) + (n-r)b > r (n-r )
+ rb and so the minimum of g(y) over points congruent to m mod2A is attained
only at +m; hence points (2.7) are mod2A minima of g.

There are 2n~x pairs ± m of the form (2.6) and 2"~i - 1 pairs of the form (2.7),
each from a different class of A/2A. It follows that (2.6) and (2.7) give all the
mod 2A minima of g.

LEMMA 2. The set S

(2.12) + + cr (1 ^ r ^ m)

^ S ^ m),

of mod 2\ minima of g determines a vertex

1 (2b + 4m + 2m - 1,2b + 4(m -
4(n + 6)

(2.13)

2 m - l , -
4(n + b)

2b + 4 + 2m - 1,2m - 1,2m - 1 - 4 , •••,

2m - 1 - 4(m - l),2m - 1 - 4m - b)

of n , and every vertex of FI « equivalent to v or a vertex congruent to v.

PROOF. By / we denote the unit matrix and by K the matrix with components
kn = 0 (1 ^ i ^ n) and fey = 1 (1 ^ i,; ^ n, i 5^;), so that

• • b

al + bK =

a b
b a

- b
• b

b a

(2.14)

With this notation, the matrix A of g is (n — 1 + b)I — K and so

. , 1 -((1 + b)l + K).
b(n + b)

n is determined by the inequalities

g(y) ^ g(y - m) (meS),

that is 2m'Ay ^ g(m) (meS).

Setting, for convenience,

(2.15) z=Ay

then, since meS implies — meS, the inequalities are

2[ m'zl ^ g(m)
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that is

2 | zh + ••• + zir\ ^ r(n - r) + rb (1 g i t < ••• < ir ^ n, 1 ^ r g m)

(2.1.6)

I z, ± ••• + zH| ^ k(n — k)+ — b (k = number of minus signs).

b

The n faces of n determined by (2.12) are

2(z, + ••• + z,) = r(n — r) + rb (1 ^ r ^ m)
(2.17)

= (m + 1 - s) (m + 5) + — b (0 ^ s ^ m).

These intersect at the point

z = i ( 2 m + b,2m — 2 + b, ••• ,2 + b,0, — 2 , •••, — (2m — 2 ) , — 2 m — \ b ) ,

which is easily seen to satisfy the inequalities (2.16) with equality only in (2.17).
Hence 2 is a vertex of the region defined by (2.16), and v = j4- 1zis a vertex of n .

Since, by (2.15) and (2.14),

v = , , ((1 + b)I + K)z and I zt = ±(2m - l)b,
b(n + b) i = i

1

z, + 1t(2m-l)b)

fo(n + ft)

1
b(n + b)

1 ,

and the expression (2.13) results.
Permuting suffixes in (2.12) gives n! distinct vertices of II equivalent to v.

The n vertices congruent to v (other than v) are the points v — m with meS, which
are easily seen to be distinct from these. Hence we have (n + 1)! distinct vertices
of II and therefore all vertices of n .

PROOF OF THEOREM. We shall prove the equivalent result, that g(») is
extreme over A, by using the Theorem 1.

Writing, as in (1.7), v = Z"= 1 c^i, we deduce from (2.12) that

= vm + vn
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cm + i = - » m + 1 - vn

cm+J + i = vm+J - vm+j+1 ( 1 ^ 7 ^ m )

whence

(2-18) c = A< \^(4'---'4'2 + b,4 + b,4, - , 4 , 2 + b).
4(n + b)

Also write

My) = £ cMy)2 - (v'y)2

(2.19) ' '-1

Since all vertices are equivalent or congruent, all vertices are maximal and
the sum (1.8) is over all vertices. By the Corollary to Theorem 1 it suffices to sum
over all vertices equivalent to v, i.e. to sum over all permutations of coordinates
of e.

Summing (2.19) over all permutations of coordinates and counting the number
of times terms appear, we obtain

2 *GKJO) = (n - l)! ( £ O ( / i + ••• + yl)

+ 2(n - 2)! ( £ j

(2.20) i<J

= 2(n - 2)! {|(n -

We note that

so that

(2.21) 2 I « y = ^ ( l , - ,

Hence, from (2.20), Z otyiy)) has matrix

Substituting (2.13) and (2.18) into (2.19) gives

48(n + b)2il>(l,—, 1) = b2(12m2 + 3) + fo(32m3 + 24m2 + 16m + 6)

+ 16m4 + 32m3 + 32m2 + 16m + 3,
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n

C = 48(n + b)2 S au = b2(l2m + 3) + b(4Sm2 + 36m + 6)
i = l

+ 40m3 + 60m2 + 26m + 3,
and, by (2.21),

2D = 4 8 ( n + b)22(a12 + ••• + *n_Un)

= b2(l2m2 - 12m) + b(32m3 - 24m2 - 20m) + 16m4 - 8m3 - 28m2 - 10m,

so that B is a multiple of mCI + DK.
If mC = (1 + b)D then B is a multiple of (1 + b)l + K and so by (2.14) is a

muitipJe of A ~2 .Thus positive constants

24(n^±l
v ~ (n-2)\Db

can be chosen so that (1.8), with the sum taken over one vertex from each con-
gruence class, is satisfied, and the theorem is proved.

The relation mC = (1 + b)D reduces to

b3(6m - 6) + b2(16m2 - 18m - 19) + b(Sm3 - 36m2 - 62m - 21)

- (32m3 + 64m2 + 40m + 8) = 0,

that is,

(2.22) (b + 2m + I)(b2(6m - 6) + b(4m2 - 12m - 13) - (16m2 + 24m + 8)) = 0.

b is the positive root of (2.2), which can be written in terms of m = \{n — 1) as

x2(6m - 6) + x(4m2 - 12m - 13) - (16m2 + 24m + 8) = 0,

and so the relation (2.22) is satisfied.

Since all vertices of n are maximal, m(y2) = g(v), where v is given by (2.13);
a staightforward computation yields

(3.1) m{<f2) = . . . 1 ,. {(32m3 + 48m2 + 16m) + (36m2 + 36m + 3)b
4o(n + b)

+ (12m + 3)b2}.

From (2.4), d{<p2) = b(n + b)"-1 so that n((p2)/d
l'"((p2) may now be calculated.

We append a short table, in which we list for comparison the value of fi for the
'principal form' 930 denned in (1.1), namely
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n

5

7

9

11

and f.

K
6.552

4.896

4.390

4.162

1
12

0.7093

0.8981

1.0797

1.2578

n.

0.6956

0.8832

1.0655

1.2447

As n-» oo, bn

The polyhedral cone (see [6], [ l ,p . 117]), which we denote by A2, of which
<p2 is (apart from multiples) the unique extreme form, has the property that every
interior form / has

(i) the set of mod 2 minima specified in Lemma 1;
(ii) a polytope IT(/) all of whose vertices are determined by the same

simplices as those of U((p2) (as specified by Lemma 2). It may be shown that,
explicitly, A2 is the set of forms f(x) expressible as

KJ

with

A y ^ 0 ( l g i < / ^ n ) , Hi^O, v ^ O ( l g i ^ n ) ;

where

ZiO0 = £ y ) - y \ , a>,(y)= £ y? + yf
; = i 7 = 1

and the variables x, y are related by the transformation T of §2.
The group of automorphisms of A2 is the full symmetric group Sfn, induced

by all permutations of the variables y!,•••,yn; and the forms of A2 which are
invariant under this group are those of the shape

(3.2) A S (yt - yj)2 + a £ y) .

According to the theorem of Dickson [4J, an interior form / of A2 is extreme if
and only if if it is of the shape (3.2) (with X > 0, a > 0), and maximizes n{f) over
the set of such forms. It was this result which led to the consideration of a form
of the type (2.3) and the determination of the equation (2.2) satisfied by bn.

The cone A2 is also of independent interest in providing the first example
of a Voronoi cone with more than \n(n + 1) edges.
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