A CLASS OF EXTREME LATTICE-COVERINGS OF n-SPACE BY SPHERES

(Received, 16 December 1970)
E. S. BARNES and D. W. TRENERRY

Communicated by G. E. Wall

1

All extreme lattice-coverings of n-space by spheres are known for $n \leqq 4$; see for example [3]. Only one class of extreme covering is known for large n, namely that corresponding to the quadratic form

$$
\begin{equation*}
\phi_{0}(x)=n \sum_{i=1}^{n} x_{i}^{2}-2 \sum_{i<j} x_{i} x_{j} ; \tag{1.1}
\end{equation*}
$$

this was first shown to be extreme for all $n \geqq 2$ by Bleicher [2].
The object of this paper is to exhibit a new extreme lattice-covering for all odd $n \geqq 5$. The density of the covering is slightly larger than that corresponding to ϕ_{0}, so that unfortunately no further information is provided on the density of the most economical covering.

We use the notation and some results of Voronoi [5,6] and Barnes and Dickson [1]; a brief description of these follows.

Let $f(\boldsymbol{x})=f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\boldsymbol{x}^{\prime} A \boldsymbol{x}$ be positive definite, with determinant $d=d(f)$. Define the inhomogeneous minimum $m(f)$ of f by

$$
\begin{equation*}
m(f)=\max _{\alpha} \min _{\boldsymbol{x}} f(\boldsymbol{x}+\alpha) \quad(\alpha \text { real, } x \in \Gamma) \tag{1.2}
\end{equation*}
$$

(where Γ denotes the integral lattice) and define

$$
\begin{equation*}
\mu(f)=m(f) / d^{1 / n} . \tag{1.3}
\end{equation*}
$$

If $A=P^{\prime} P$ and $\Lambda=\{P \boldsymbol{x} \mid \boldsymbol{x} \in \Gamma\}$, then spheres of radius $(m(f))^{\frac{1}{2}}$ centred at the points of Λ cover space minimally, and the density of the covering is

$$
\begin{equation*}
\theta(\Lambda)=J_{n}(\mu(f))^{n / 2}, \tag{1.4}
\end{equation*}
$$

where J_{n} is the volume of the unit sphere.
We say that f (and the corresponding covering) are extreme if $\mu(g) \geqq \mu(f)$ for all forms g sufficiently close to f; if f is extreme, so of course is any from equivalent to a multiple of f, and equivalent forms correspond to the same lattice covering.

The Voronoi polytope Π corresponding to f is the set of points \boldsymbol{x} satisfying

$$
f(\boldsymbol{x}) \leqq f(\boldsymbol{x}-\boldsymbol{l}) \quad \text { for all } \quad l \in \Gamma
$$

A finite set $\pm \boldsymbol{l}_{1}, \cdots, \pm \boldsymbol{l}_{\sigma}$ of integral points suffices to define Π, which has therefore σ pairs of opposite parallel faces, with equations

$$
f(x)=f\left(x \pm l_{i}\right) \quad(i=1, \cdots, \sigma)
$$

A given $\boldsymbol{l} \neq \mathbf{0}$ belongs to this set iff

$$
f(l)=\min f(x)
$$

taken over all integral $\boldsymbol{x} \equiv \boldsymbol{l}(\bmod 2 \Gamma)$ and this minimum is attained only at $\boldsymbol{x}= \pm \boldsymbol{l}$; we call these points the 'modulo 2Γ minima' of f. Always $\sigma \leqq 2^{n}-1$, and in general $\sigma=2^{n}-1$, with one pair of faces for each class of $\Gamma / 2 \Gamma$ other than 0 ; such a form we call an interior form From the convexity of Π, it follows easily that

$$
\begin{equation*}
m(f)=\max _{\boldsymbol{x} \in \Pi} f(\boldsymbol{x})=\max _{\mathbf{v}} f(\boldsymbol{v}) \tag{1.5}
\end{equation*}
$$

where the maximum is taken over all vertices v of Π. For an interior form, Π is primitive (i.e. each vertex lies on just n faces) and has $(n+1)$! vertices. A vertex v for which the maximum in (1.5) is attained is said to be maximal.

Two vertices of Π are congruent if they are congruent modulo Γ. Each vertex v has $n+1$ congruent vertices; specifically, if v lies on the n planes

$$
\begin{equation*}
f(x)=f\left(x-l_{i}\right) \quad(i=1, \cdots, n) \tag{1.6}
\end{equation*}
$$

we say that \boldsymbol{v} is determined by the simplex $\left[\boldsymbol{l}_{0}, \boldsymbol{l}_{1}, \cdots, \boldsymbol{l}_{n}\right]$ with vertices \boldsymbol{l}_{0} $=0, \boldsymbol{l}_{1}, \cdots, \boldsymbol{l}_{n}$. Then, for each $j=0,1, \cdots, n$, there is a congruent vertex $\boldsymbol{v}_{j}=\boldsymbol{v}-\boldsymbol{l}_{\boldsymbol{j}}$ of Π determined by the simplex

$$
\left[l_{0}-l_{j}, l_{1}-l_{j}, \cdots, l_{i}-l_{j}\right]
$$

Moreover, f takes the same value at congruent vertices, so that all are maximal if any one is.

If \boldsymbol{v} is determined by the simplex $\left[\boldsymbol{l}_{0}, \boldsymbol{l}_{1}, \cdots, \boldsymbol{l}_{n}\right]$, let $\left(c_{0}, c_{1}, \cdots, c_{n}\right)$ be its barycentric coordinates with respect to this simplex, so that

$$
\begin{equation*}
v=\sum_{i=0}^{n} c_{i} l_{i}, \quad \sum_{i=0}^{n} c_{i}=1 \tag{1.7}
\end{equation*}
$$

We then have (Barnes and Dickson [1]):
Theorem 1. If $f(\boldsymbol{x})=\boldsymbol{x}^{\prime} \boldsymbol{A x}$ is an interior form and $\boldsymbol{F}(\boldsymbol{x})=\boldsymbol{x}^{\prime} A^{-1} \boldsymbol{x}$ is its inverse, then f is extreme if and only if F is expressible in the form

$$
\begin{equation*}
F(x)=\sum_{v} \lambda_{v}\left[\sum_{i=1}^{n} c_{i}\left(l_{i}^{\prime} x\right)^{2}-\left(v^{\prime} x\right)^{2}\right] \tag{1.8}
\end{equation*}
$$

where the outer sum is over all maximal vertices of Π,

$$
\begin{equation*}
\lambda_{v} \geqq 0 \quad \text { for all } \quad v, \tag{1.9}
\end{equation*}
$$

and, for each \boldsymbol{v}, the c_{i} are defined by (1.7).
We note also the corollary, that in (1.8) it suffices to include in the sum only one vertex v from any set of $n+1$ congruent maximal vertices.

In $\S 2$ we describe the from $\phi_{2}(x)$ and prove that it is extreme for all odd $n \geqq 5$. Finally in $\S 3$ we examine the density of the corresponding lattice-covering of space, and outline the genesis of the form and its relation to Voronoi's dissection of the space of positive definite quadratic forms into polyhedral cones.

2

Theorem 2. For odd $n \geqq 5$, the form

$$
\begin{equation*}
\phi_{2}(x)=\sum_{i=2}^{n} x_{i}^{2}+\sum_{2 \leqq i<j \leqq n}\left(x_{i}-x_{j}\right)^{2}+b \gamma(x) \tag{2.1}
\end{equation*}
$$

is extreme, where

$$
4 \gamma(x)=n\left(x_{1}^{2}+x_{2}^{2}\right)+4 \sum_{i=3}^{n} x_{i}^{2}+2(n-2) x_{1} x_{2}-4\left(x_{1}+x_{2}\right) \sum_{j=3}^{n} x_{j}
$$

and $b=b_{n}$ is the positive root of

$$
\begin{equation*}
3(n-3) x^{2}+\left(n^{2}-8 n-6\right) x-4 n(n+1)=0 \tag{2.2}
\end{equation*}
$$

It is convenient to transform the coordinates by

$$
x=T \boldsymbol{y}: \quad \begin{aligned}
& x_{1}=y_{1}+y_{2} \\
& x_{2}=y_{1}-y_{2} \\
& x_{i}=y_{1}-y_{i} \quad(3 \leqq i \leqq n)
\end{aligned}
$$

and consider the form

$$
\begin{equation*}
g(y)=\phi_{2}(T y)=\sum_{1 \leqq i<j \leqq n}\left(y_{i}-y_{j}\right)^{2}+b \sum_{i=1}^{n} y_{i}^{2}, \tag{2.3}
\end{equation*}
$$

with

$$
\begin{equation*}
d(g)=d\left(\phi_{2}\right)(\operatorname{det} T)^{2}=b(n+b)^{n-1} \tag{2.4}
\end{equation*}
$$

If $\Lambda=T^{-1} \Gamma=\left\{T^{-1} x \mid x \in \Gamma\right\}$, then it is easily seen that $y \in \Lambda$ if and only if

$$
\begin{equation*}
2 \boldsymbol{y} \in \Gamma \quad \text { and } \quad 2 y_{1} \equiv 2 y_{2} \equiv \cdots \equiv 2 y_{n}(\bmod 2) \tag{2.5}
\end{equation*}
$$

Thus integral \boldsymbol{x} correspond to points \boldsymbol{y} satisfying (2.5).
The Voronoi polytope $\Pi_{\phi_{2}}$ under this transformation becomes $T^{-1} \Pi_{\phi_{2}}=\Pi$, which is not to be confused with the polytope Π of the form g. The $\bmod 2 \Gamma$ minima of ϕ_{2} become the $\bmod 2 \Lambda$ of g, that is, a given $\boldsymbol{m} \neq \boldsymbol{0}$ belongs to the set $\left\{ \pm \boldsymbol{m}_{1}, \cdots, \pm \boldsymbol{m}_{\sigma}\right\}$ of $\bmod 2 \Lambda$ minima of g if and only if $g(\boldsymbol{m})=\min g(\boldsymbol{y})$ taken over all $\boldsymbol{y} \equiv \boldsymbol{m}(\bmod 2 \Lambda)$ and this minimum is attained only at $\boldsymbol{y}= \pm \boldsymbol{m}$. Thus $\boldsymbol{m}=T^{-1} \boldsymbol{l}$, where \boldsymbol{l} is a $\bmod 2 \Gamma$ minimum of ϕ_{2}.

Lemma 1. Let e_{1} denote the i th unit vector and set $m=\frac{1}{2}(n-1)$. The set of $\bmod 2 \Lambda$ minima of g consists of the points

$$
\begin{gather*}
\quad \frac{1}{2}\left(\pm e_{1} \pm e_{2} \pm \cdots \pm e_{n}\right) \tag{2.6}\\
\pm\left(e_{i_{1}}+e_{i_{2}}+\cdots+e_{i_{r}}\right) \quad\left(1 \leqq i_{1}<i_{2} \cdots<i_{r} \leqq n, 1 \leqq r \leqq m\right) \tag{2.7}
\end{gather*}
$$

Proof. For points of the form (2.6) it is sufficient, after applying a suitable permutation of coordinates, to consider a point of the form

$$
\boldsymbol{m}=\frac{1}{2}\left(e_{1}+\cdots+e_{r}-e_{r+1}-\cdots-e_{n}\right)=\frac{1}{2}(1, \cdots, 1,-1, \cdots,-1)
$$

From (2.5), any point congruent to $m \bmod 2 \Lambda$ is of the form

$$
\begin{equation*}
y=\frac{1}{2}\left(1+4 a_{1}, \cdots, 1+4 a_{r},-1+4 a_{r+1}, \cdots,-1+4 a_{n}\right) \tag{2.8}
\end{equation*}
$$

or

$$
\begin{equation*}
y=\frac{1}{2}\left(-1+4 a_{1}, \cdots,-1+4 a_{r}, 1+4 a_{r+1}, \cdots, 1+4 a_{n}\right), \tag{2.9}
\end{equation*}
$$

with integral a_{1}, \cdots, a_{n}. Over points of the form (2.8), Σy_{i}^{2} attains its minimum only when $a_{1}=\cdots=a_{n}=0$ and each $\left(y_{i}-y_{j}\right)^{2}$ also takes its minimun value there, so that $g(y)$ attains its minimum only at \boldsymbol{m}. Similarly, over points of the form (2.9), $g(y)$ attains its minimum only at $-m$. Thus all points (2.6) are $\bmod 2 \Lambda$ minima of g.

For points (2.7) it suffices to consider

$$
m=e_{1}+\cdots+e_{r}=(1, \cdots, 1,0, \cdots, 0)
$$

where $1 \leqq r \leqq m$. From (2.5), any point congruent to $m \bmod 2 \Lambda$ is of the form

$$
\begin{align*}
& y=\left(1+2 a_{1}, \cdots, 1+2 a_{r}, 2 a_{r+1}, \cdots, 2 a_{n}\right) \tag{2.10}\\
& \boldsymbol{y}=\left(2 a_{1}, \cdots, 2 a_{r}, 2 a_{r+1}-1, \cdots, 2 a_{n}-1\right) \tag{2.11}
\end{align*}
$$

with integral a_{1}, \cdots, a_{n}. Points of the form (2.10) have $y_{i}-y_{j}$ even if $i \leqq r$ and $j \leqq r$ or $i>r$ and $j>r$, and odd if $i \leqq r$ and $j>r$; it is therefore easily seen that $\Sigma\left(y_{i}-y_{j}\right)^{2}$ attains its minimum $r(n-r)$ only when $a_{1}=\cdots=a_{n}=0$ or $a_{1}=\cdots=a_{r}=-1$ and $a_{r+1}=\cdots=a_{n}=0 . \sum y_{i}^{2}$ also attains its minimum r at these points and so $g(y)$ attains its minimum $r(n-r)+r b$ over points (2.10) only
at $\pm \boldsymbol{m}$. Similarly $g(y)$ attains its minimum $r(n-r)+(n-r) b$ over points (2.11) only at $\pm(0, \cdots 0,1, \cdots, 1)$. Since $1 \leqq r \leqq \frac{1}{2}(n-1), r(n-r)+(n-r) b>r(n-r)$ $+r b$ and so the minimum of $g(y)$ over points congruent to $m \bmod 2 \Lambda$ is attained only at $\pm \boldsymbol{m}$; hence points (2.7) are $\bmod 2 \Lambda$ minima of g.

There are 2^{n-1} pairs $\pm m$ of the form (2.6) and $2^{n-1}-1$ pairs of the form (2.7), each from a different class of $\Lambda / 2 \Lambda$. It follows that (2.6) and (2.7) give all the $\bmod 2 \Lambda$ minima of g.

Lemma 2. The set S

$$
\begin{gather*}
\boldsymbol{e}_{1}+\cdots+\boldsymbol{e}_{r} \quad(1 \leqq r \leqq m) \tag{2.12}\\
\frac{1}{2}\left(\boldsymbol{e}_{1}+\cdots+\boldsymbol{e}_{m}+\boldsymbol{e}_{m+1}+\cdots+\boldsymbol{e}_{m+s}-\boldsymbol{e}_{m+s+1}-\cdots-\boldsymbol{e}_{n}\right) \quad(0 \leqq s \leqq m)
\end{gather*}
$$

of mod 2Λ minima of g determines a vertex

$$
v=\frac{1}{4(n+b)}(2 b+4 m+2 m-1,2 b+4(m-1)+2 m-1, \cdots
$$

$$
\begin{align*}
& 2 b+4+2 m-1,2 m-1,2 m-1-4, \cdots \tag{2.13}\\
& 2 m-1-4(m-1), 2 m-1-4 m-b)
\end{align*}
$$

of Π, and every vertex of Π is equivalent to v or a vertex congruent to v.
Proof. By I we denote the unit matrix and by K the matrix with components $k_{i i}=0(1 \leqq i \leqq n)$ and $k_{i j}=1(1 \leqq i, j \leqq n, i \neq j)$, so that

$$
a I+b K=\left[\begin{array}{cccccc}
a & b & \cdot & \cdot & \cdot & b \\
b & a & & & & \cdot \\
\cdot & & \cdot & & & \cdot \\
\cdot & & & \cdot & & \cdot \\
\cdot & & & & b \\
b & \cdot & \cdot & \cdot & b & a
\end{array}\right]
$$

With this notation, the matrix A of g is $(n-1+b) I-K$ and so

$$
\begin{equation*}
A^{-1}=\frac{1}{b(n+b)}((1+b) I+K) \tag{2.14}
\end{equation*}
$$

Π is determined by the inequalities
that is

$$
\begin{array}{ll}
g(y) \leqq g(y-m) & (m \in S) \\
2 m^{\prime} A y \leqq g(m) & (m \in S)
\end{array}
$$

Setting, for convenience,

$$
\begin{equation*}
z=A y \tag{2.15}
\end{equation*}
$$

then, since $\boldsymbol{m} \in S$ implies $-\boldsymbol{m} \in S$, the inequalities are

$$
2\left|m^{\prime} z\right| \leqq g(m) \quad(m \in S)
$$

that is

$$
\begin{equation*}
2\left|z_{i_{1}}+\cdots+z_{i r}\right| \leqq r(n-r)+r b \quad\left(1 \leqq i_{1}<\cdots<i_{r} \leqq n, 1 \leqq r \leqq m\right) \tag{2.16}
\end{equation*}
$$

$$
\left|z_{1} \pm \cdots \pm z_{n}\right| \leqq k(n-k)+\frac{n}{b} b \quad(k=\text { number of minus signs }) .
$$

The n faces of Π determined by (2.12) are

$$
\begin{align*}
& 2\left(z_{1}+\cdots+z_{r}\right)=r(n-r)+r b \quad(1 \leqq r \leqq m) \tag{2.17}\\
& \begin{aligned}
&\left(z_{1}+\cdots+z_{m}+\cdots+z_{m+s}-z_{m+s+1}-\cdots-z_{n}\right) \\
&=(m+1-s)(m+s)+\frac{n}{4} b \quad(0 \leqq s \leqq m)
\end{aligned}
\end{align*}
$$

These intersect at the point

$$
z=\frac{1}{2}\left(2 m+b, 2 m-2+b, \cdots, 2+b, 0,-2, \cdots,-(2 m-2),-2 m-\frac{1}{2} b\right)
$$

which is easily seen to satisfy the inequalities (2.16) with equality only in (2.17). Hence z is a vertex of the region defined by (2.16), and $v=A^{-1} z$ is a vertex of Π.

Since, by (2.15) and (2.14),

$$
\begin{aligned}
v & =\frac{1}{b(n+b)}((1+b) I+K) z \quad \text { and } \quad \sum_{i=1}^{n} z_{i}=\frac{1}{4}(2 m-1) b, \\
v_{i} & =\frac{1}{b(n+b)}\left(b z_{i}+z_{1}+\cdots+z_{n}\right) \\
& =\frac{1}{b(n+b)}\left(b z_{i}+\frac{1}{4}(2 m-1) b\right) \\
& =\frac{1}{n+b}\left(z_{i}+\frac{1}{4}(2 m-1)\right),
\end{aligned}
$$

and the expression (2.13) results.
Permuting suffixes in (2.12) gives $n!$ distinct vertices of Π equivalent to \boldsymbol{v}. The n vertices congruent to v (other than v) are the points $v-\boldsymbol{m}$ with $\boldsymbol{m} \in S$, which are easily seen to be distinct from these. Hence we have $(n+1)$! distinct vertices of Π and therefore all vertices of Π.

Proof of Theorem. We shall prove the equivalent result, that $g(v)$ is extreme over Λ, by using the Theorem 1.

Writing, as in (1.7), $v=\sum_{i=1}^{n} c_{i} \boldsymbol{m}_{i}$, we deduce from (2.12) that

$$
\begin{aligned}
c_{i} & =v_{i}-v_{i+1} \\
c_{m} & =v_{m}+v_{n}
\end{aligned} \quad(1 \leqq i \leqq m-1)
$$

$$
\begin{aligned}
c_{m+1} & =-v_{m+1}-v_{n} \\
c_{m+j+1} & =v_{m+j}-v_{m+j+1} \quad(1 \leqq j \leqq m)
\end{aligned}
$$

whence

$$
\begin{equation*}
c=\frac{1}{4(n+b)}(4, \cdots, 4,2+b, 4+b, 4, \cdots, 4,2+b) . \tag{2.18}
\end{equation*}
$$

Also write

$$
\begin{gather*}
\psi(y)=\sum_{i=1}^{n} c_{i}\left(m_{i}^{\prime} y\right)^{2}-\left(v^{\prime} y\right)^{2} \tag{2.19}\\
=\alpha_{11} y_{1}^{2}+\cdots+\alpha_{n n} y_{n}^{2}+2 \alpha_{12} y_{1} y_{2}+\cdots+2 \alpha_{n-1, n} y_{n-1} y_{n} .
\end{gather*}
$$

Since all vertices are equivalent or congruent, all vertices are maximal and the sum (1.8) is over all vertices. By the Corollary to Theorem 1 it suffices to sum over all vertices equivalent to v, i.e. to sum over all permutations of coordinates of v.

Summing (2.19) over all permutations of coordinates and counting the number of times terms appear, we obtain

$$
\begin{align*}
& \sum_{\sigma \in S_{n}} \sigma(\psi(y))=(n-1)!\left(\sum_{i=1}^{n} \alpha_{i i}\right)\left(y_{1}^{2}+\cdots+y_{n}^{2}\right) \\
& +2(n-2)!\left(\sum_{i<j} \alpha_{i j}\right)\left(2 y_{1} y_{2}+\cdots+2 y_{n-1} y_{n}\right) \tag{2.20}\\
& \quad=2(n-2)!\left\{\frac{1}{2}(n-1)\left(\sum_{i} \alpha_{i i}\right)\left(y_{1}^{2}+\cdots+y_{n}^{2}\right)\right. \\
& \left.+\left(\sum_{i<j} \alpha_{i j}\right)\left(2 y_{1} y_{2}+\cdots+2 y_{n-1} y_{n}\right)\right\} .
\end{align*}
$$

We note that

$$
\psi(1, \cdots, 1)=\sum_{i} \alpha_{i i}+2 \sum_{i<j} \alpha_{i j}
$$

so that

$$
\begin{equation*}
2 \sum_{i<j} \alpha_{i j}=\psi(1, \cdots, 1)-\sum_{i} \alpha_{i i} \tag{2.21}
\end{equation*}
$$

Hence, from (2.20), $\sum_{\sigma \in S_{n}} \sigma(\psi(y))$ has matrix

$$
B=2(n-2)!\left\{\frac{1}{2}(n-1)\left(\sum_{i} \alpha_{i i}\right) I+\frac{1}{2}\left(\psi(1, \cdots, 1)-\sum_{i} \alpha_{i i}\right) K\right\}
$$

Substituting (2.13) and (2.18) into (2.19) gives

$$
\begin{array}{r}
48(n+b)^{2} \psi(1, \cdots, 1)=b^{2}\left(12 m^{2}+3\right)+b\left(32 m^{3}+24 m^{2}+16 m+6\right) \\
+16 m^{4}+32 m^{3}+32 m^{2}+16 m+3
\end{array}
$$

$$
\begin{aligned}
C=48(n+b)^{2} \sum_{i=1}^{n} \alpha_{i i}= & b^{2}(12 m+3)+b\left(48 m^{2}+36 m+6\right) \\
& +40 m^{3}+60 m^{2}+26 m+3
\end{aligned}
$$

and, by (2.21),

$$
\begin{aligned}
2 D & =48(n+b)^{2} 2\left(\alpha_{12}+\cdots+\alpha_{n-1, n}\right) \\
& =b^{2}\left(12 m^{2}-12 m\right)+b\left(32 m^{3}-24 m^{2}-20 m\right)+16 m^{4}-8 m^{3}-28 m^{2}-10 m
\end{aligned}
$$ so that B is a multiple of $m C I+D K$.

If $m C=(1+b) D$ then B is a multiple of $(1+b) I+K$ and so by (2.14) is a multiple of A^{-1}.Thus positive constants

$$
\lambda_{v}=\frac{24(n+b)}{(n-2)!D}
$$

can be chosen so that (1.8), with the sum taken over one vertex from each congruence class, is satisfied, and the theorem is proved.

The relation $m C=(1+b) D$ reduces to

$$
\begin{aligned}
b^{3}(6 m-6)+b^{2}\left(16 m^{2}-18 m\right. & -19)+b\left(8 m^{3}-36 m^{2}-62 m-21\right) \\
& -\left(32 m^{3}+64 m^{2}+40 m+8\right)=0
\end{aligned}
$$

that is,
$(2.22)(b+2 m+1)\left(b^{2}(6 m-6)+b\left(4 m^{2}-12 m-13\right)-\left(16 m^{2}+24 m+8\right)\right)=0$. b is the positive root of (2.2), which can be written in terms of $m=\frac{1}{2}(n-1)$ as

$$
x^{2}(6 m-6)+x\left(4 m^{2}-12 m-13\right)-\left(16 m^{2}+24 m+8\right)=0
$$

and so the relation (2.22) is satisfied.

3

Since all vertices of Π are maximal, $m\left(\varphi_{2}\right)=g(\boldsymbol{v})$, where \boldsymbol{v} is given by (2.13); a staightforward computation yields
(3.1) $m\left(\varphi_{2}\right)=\frac{1}{48(n+b)}\left\{\left(32 m^{3}+48 m^{2}+16 m\right)+\left(36 m^{2}+36 m+3\right) b\right.$

$$
\left.+(12 m+3) b^{2}\right\}
$$

From (2.4), $d\left(\varphi_{2}\right)=b(n+b)^{n-1}$ so that $\mu\left(\varphi_{2}\right) / d^{1 / n}\left(\varphi_{2}\right)$ may now be calculated. We append a short table, in which we list for comparison the value of μ for the 'principal form' φ_{0} defined in (1.1), namely

$$
\mu\left(\varphi_{0}\right)=\frac{1}{12} n(n+2)(n+1)^{-1+1 / n} .
$$

n	b_{n}	$\mu\left(\varphi_{2}\right)$	$\mu\left(\varphi_{0}\right)$
5	6.552	0.7093	0.6956
7	4.896	0.8981	0.8832
9	4.390	1.0797	1.0655
11	4.162	1.2578	1.2447

As $n \rightarrow \infty, b_{n} \rightarrow 4$ and $\mu\left(\varphi_{2}\right) \sim \frac{1}{12} n$.
The polyhedral cone (see [6], [1, p. 117]), which we denote by Δ_{2}, of which φ_{2} is (apart from multiples) the unique extreme form, has the property that every interior form f has
(i) the set of $\bmod 2$ minima specified in Lemma 1;
(ii) a polytope $\Pi(f)$ all of whose vertices are determined by the same simplices as those of $\Pi\left(\varphi_{2}\right)$ (as specified by Lemma 2). It may be shown that, explicitly, $\Delta_{\mathbf{2}}$ is the set of forms $f(\boldsymbol{x})$ expressible as

$$
\sum_{i<j} \lambda_{i j}\left(y_{i}-y_{j}\right)^{2}+\sum_{i} \mu_{i} \chi_{i}(y)+\sum_{i} v_{i} \omega_{i}(y),
$$

with

$$
\lambda_{i j} \geqq 0 \quad(1 \leqq i<j \leqq n), \quad \mu_{i} \geqq 0, \quad v_{i} \geqq 0 \quad(1 \leqq i \leqq n)
$$

where

$$
\chi_{i}(y)=\sum_{j=1}^{n} y_{j}^{2}-y_{i}^{2}, \quad \omega_{i}(y)=\sum_{j=1}^{n} y_{j}^{2}+y_{i}^{2}
$$

and the variables $\boldsymbol{x}, \boldsymbol{y}$ are related by the transformation T of $\S 2$.
The group of automorphisms of Δ_{2} is the full symmetric group \mathscr{S}_{n}, induced by all permutations of the variables y_{1}, \cdots, y_{n}; and the forms of Δ_{2} which are invariant under this group are those of the shape

$$
\begin{equation*}
\lambda \sum_{i<j}\left(y_{i}-y_{j}\right)^{2}+\alpha \sum_{i} y_{i}^{2} . \tag{3.2}
\end{equation*}
$$

According to the theorem of Dickson [4], an interior form f of Δ_{2} is extreme if and only if if it is of the shape (3.2) (with $\lambda>0, \alpha>0$), and maximizes $\mu(f)$ over the set of such forms. It was this result which led to the consideration of a form of the type (2.3) and the determination of the equation (2.2) satisfied by b_{n}.

The cone Δ_{2} is also of independent interest in providing the first example of a Voronoi cone with more than $\frac{1}{2} n(n+1)$ edges.

References

[1] E. S. Barnes and T. J. Dickson, 'Extreme coverings of n-space by spheres', J. Aust. Math. Soc. 7 (1967), 115-127. Corrigendum, ibid 8 (1968), 638-640.
[2] M. N. Bleicher, 'Lattice coverings of n-space by spheres’, Can. J. Math. 14 (1962), 632-650.
[3] T. J. Dickson, 'The extreme coverings of 4 -space by spheres', J. Aust. Math. Soc. 7 (1967), 490-496.
[4] T. J. Dickson, 'A sufficient condition for an extreme covering of n-space by spheres', J. Aust. Math. Soc. 8 (1968), 56-62.
[5] G. Voronoi, 'Recherches sur les paralléloèdres primitifs' (Part 1), J. reine angew. Math. 134 (1908), 198-287.
[6] G. Voronoi, 'Recherches sur les paralléloèdres primitifs' (Part 2), J. reine angew. Math. 136 (1909), 67-181.

Mathematics Department
 University of Adelaide
 Australia

