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Functions Universal for all Translation
Operators in Several Complex Variables

Frédéric Bayart and Paul M Gauthier

Abstract. We prove the existence of a (in fact many) holomorphic function f in Cd such that, for
any a /= 0, its translations f ( ⋅ + na) are dense in H(Cd).

1 Introduction

_e roots of this paper go back to an old paper of Birkhoò [3] in which he proves
that, for any a /= 0, there exists an entire function f such that its translates f ( ⋅ + na)
are dense in the space of all entire functions H(C) endowed with the compact-open
topology. In modern terms, this means that the operators τa ∶H(C) → H(C), f ↦
f ( ⋅ + a) are hypercyclic, and we shall denote by HC(τa) the set of hypercyclic func-
tions with respect to τa , namely the set of functions whose translates by na, n =
1, 2, . . . , are dense. Since Birkhoò ’s theorem, the theory of hypercyclic operators has
grown, and we refer the reader to the books [2, 5] for more on this subject.

Regarding hypercyclicity of translations, amajor breakthrough was made by Cos-
takis and Sambarino in [4]. _ey were able to show that one can choose the
same hypercyclic function for all non-zero translation operators. In other words,
⋂a/=0 HC(τa) is non empty. In Tsirivas’ subsequent works (see [7–9]) as well as in
a paper by the ûrst author [1], the authors were interested in considering common
universal functions for sequences of translations τλn a . In particular, in [1], one is
interested in translation operators acting on H(Cd) with d ≥ 2. It is shown that
⋂a∈Rd

/{0}HC(τa) is a residual subset of H(Cd). _ere are two main diõculties for
going from Costakis and Sambarino’s results to this last one:

(a) _e method of [4] is one-dimensional and works very well for one-
dimensional families of operators. _en an algebraic trick allows one to go fromR to
C. It was not clear how to go further, especially on Cd .

(b) Polynomial approximation is more diõcult in H(Cd), d ≥ 2, than in H(C).
In particular, there is no satisfactory Runge or Mergelyan theorem in H(Cd), and
one has to work with the delicate notion of polynomially convex sets. _at is why the
result of [1] was for translations by real elements even though we are working in Cd .
In this paper, we overcome this last diõculty, and we are able to prove the following
result.
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_eorem 1.1 _e set ⋂a∈Cd
/{0}HC(τa) is a residual subset of H(Cd).

Ourmethod ofproofuses arithmetical tools from [1], in particular the forthcoming
Lemma 2.5. It allows us to obtain a redundant net in any compact subset ofCd , for any
dimension d. We then use classical results on polynomially convex sets ofCd to show
that we can do a polynomial approximation of any holomorphic function deûned on
a union of suõciently disjoint hypercubes.

2 Tools for the Construction

2.1 Polynomial Convexity

Let C, R, and N denote the complex, real, and natural numbers, respectively, and let
N0 = {0, 1, 2, . . .}. For a compact subset K of Cd , we denote by K̂ the polynomially
convex hull of K ∶

K̂ = { z ∈ Cd ; for every polynomial p, ∣p(z)∣ ≤ max
w∈K

∣p(w)∣} .

A compact setK ⊂ Cd is said to be polynomially convex if it is equal to its polynomially
convex hull; that is, if K = K̂ . For example, compact convex sets are polynomially
convex and a compact subset ofC is polynomially convex if and only if its complement
is connected.

Runge’s Polynomial Approximation _eorem states that if a compact subset K of
C has connected complement, then every function holomorphic on (a neighborhood
of) K can be uniformly approximated by polynomials. _e following extension of the
Runge_eorem to higher dimensions is known as the Oka–Weil _eorem (see [6]).

_eorem 2.1 Let K be a polynomially convex compact subset of Cd . _en, for every
function f holomorphic on K and for every є > 0, there exists a polynomial p such that

∣p(z) − f (z)∣ < є, for all z ∈ K .

An important tool in constructing polynomially convex sets is the following Sep-
aration Lemma by Eva Kallin (see [6]).

Lemma 2.2 Let X and Y be two polynomially convex compact subsets ofCd . If there
exists a polynomial pwhich separates X and Y in the sense that p̂(X) ∩ p̂(Y) = ∅, then
the union X ∪ Y of X and Y is also polynomially convex.

We identifyCd withR2d bymeans of either of the two natural complex structures
on R2d , and henceforth ∣x∣ denotes the ℓ∞-norm on R2d . For x = (x(1) , . . . , x(2d)) ∈
R2d we denote by Q(x , R) the closed hypercube

Q(x , R) = Q((x(1) , . . . , x(2d)), R) = {y ∈ R2d ∶ ∣x − y∣ ≤ R},
whichmay also be considered as the closed ball of center x and radiusRwith respect to
thenorm ∣ ⋅ ∣. If z ∈ Cd corresponds to the point x ∈ R2d ,we shall, by abuse ofnotation,
writeQ(z, R) tomean the subset ofCd identiûedwith the hypercubeQ(x , R) inR2d .
Whenwe say that a subset K ofR2d is polynomially convex,wemean that, as a subset
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ofCd , it is polynomially convex. Since compact convex sets are polynomially convex,
it follows that hypercubes are polynomially convex.

We need to prove that several sets are polynomially convex.

Lemma 2.3 Let K , L be two compact polynomially convex subsets of R2d . Assume
that there exists a ∈ R such that x(1) < a < y(1) for all (x , y) ∈ K × L. _en K ∪ L is
polynomially convex.

Proof Let z(1) be a complex coordinate generated by the real coordinate x(1) . _e
polynomial f (z) = z(1) separates K and L, and so byKallin’s Separation Lemma, K∪L
is polynomially convex.

Lemma 2.4 Let R > 0. For every 1 ≤ ℓ ≤ 2d, let (y(ℓ)j )0≤ j≤Ω l be a ûnite family of
points in R such that, for all j /= j′, ∣y(ℓ)j − y(ℓ)j′ ∣ > 2R. _en

⋃
j1 , . . . , j2d

Q((y(1)j1 , . . . , y
(2d)
j2d ), R)

is polynomially convex.

Proof For simplicity, let us write

X = ⋃
j1 , . . . , j2d

Q((y(1)j1 , . . . , y
(2d)
j2d ), R) .

Recalling the identiûcation R2d = Cd and denoting by X(n) the projection of X on
the complex coordinate z(n) , n = 1, . . . , d , we have X = ∏d

n=1 X(n) , because of the
separation hypotheses. Since each X(n) is a disjoint (again by the separation hypoth-
esis) union of closed squares, it is polynomially convex (here, we are just working in
C) and since a product of polynomially convex sets is again polynomially convex, it
follows that X is polynomially convex.

2.2 Construction of Sequences of Integers

We will need the following lemma about the construction of sequences of integers
having some redundant properties. _e following Lemma is [1, Corollary 2.8] applied
to the whole sequence of integers.

Lemma 2.5 For all d ≥ 1 and all A > 0, there exist ρ > 1 and an increasing sequence of
integers (µn) such that µn+1 ≥ ρµn for any n ≥ 1 and, for all P > 0, we can ûnd s1 ∈ N,
ûnite subsets Er of Nr−1 for r = 2, . . . , 2d + 1, maps sr ∶ Er → N for r = 2, . . . , 2d and a
one-to-onemap ϕ∶ E2d+1 → N such that the following hold.
● For any r = 2, . . . , 2d + 1,

Er = {(k1 , . . . , kr−1) ∈ Nr−1
0 ∶ k1 < s1 , k2 < s2(k1), . . . , kr−1 ≤ sr−1(k1 , . . . , kr−2)} .

● For every r = 1, . . . , 2d, for every (k1 , . . . , kr−1) ∈ Er , where E1 = ∅,
sr(k1 , . . . ,kr−1)

∑
j=1

1
µϕ(k1 , . . . ,kr−1 , j,0, . . . ,0)

≥ A
µϕ(k1 , . . . ,kr−1 ,0, . . . ,0)

.
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● ϕ(0, . . . , 0) ≥ P.
● If (k1 , . . . , k2d) > (k′1 , . . . , k′2d) in the lexicographical order, then

ϕ(k1 , . . . , k2d) > ϕ(k′1 , . . . , k′2d).

When r = 1, the second point of the lemma simply means that
s1
∑
j=1

1
µϕ( j,0, . . . ,0)

≥ A
µϕ(0, . . . ,0)

.

3 The Construction

Lemma 3.1 Let K be a compact subset of (0,+∞)2d . Assume that for all ε > 0 and
all R > 0, we can ûnd N ≥ 1, a ûnite increasing sequence of integers (λn)n=1, . . . ,N , and a
ûnite number (xn ,k)1≤n≤N , 1≤k≤pn of elements of K satisfying the following:
(i) _e hypercubes Q(λnxn ,k , R), 1 ≤ n ≤ N , 1 ≤ k ≤ pn , are pairwise disjoint and

are disjoint from Q(0, R).
(ii) _e compact set Q(0, R) ∪⋃1≤n≤N , 1≤k≤pn Q(λnxn ,k , R) is polynomially convex.
(iii) For every x ∈ K, there exist n,m ∈ {1, . . . ,N} and k ∈ {1, . . . , pn} such that

∣λmx − λnxn ,k ∣ < ε.
_en ⋂a∈K HC(τa) is a residual subset of H(Cd).

Proof Let U ,V be nonempty open subsets of H(Cd). It is suõcient to show that

U ∩ { f ∈ H(Cd); ∀x ∈ K , ∃m ∈ N, τmx f ∈ V}

is nonempty (see for instance [2, Proposition 7.4]). Let δ, ρ > 0 and g , h ∈ H(Cd) be
such that

U ⊃ { f ∈ H(Cd); ∥ f − g∥C(Q(0,ρ)) < 2δ}
V ⊃ { f ∈ H(Cd); ∥ f − h∥C(Q(0,ρ)) < 2δ} ,

where ∥ ⋅ ∥C(Q(0,ρ)) denotes the sup-norm for C(Q(0, ρ)).We set R = 2ρ. By uniform
continuity of h on Q(0, 2ρ), there exists η ∈ (0, ρ) such that

∥h( ⋅ − z0) − h∥C(Q(0,ρ)) < δ
provided ∣z0∣ < η. We set ε = min(δ, η), and the assumptions of the lemma give us
sequences (λn) and (xn ,k). By (i) and (ii), there exists an entire function f ∈ H(Cd)
such that ∥ f − g∥C(Q(0,ρ)) < ε < 2δ and

∥ f ( ⋅ + λnxn ,k) − h∥C(Q(0,R)) < δ
for any n, k. Now let x ∈ K and let n,m and k be such that (iii) holds. _en for any
z ∈ Q(0, ρ), observing that z + λmx − λnxn ,k belongs to Q(0, R), we get

∣τλmx f (z) − h(z)∣ ≤ ∣ f (z + λmx − λnxn ,k + λnxn ,k) − h(z + λmx − λnxn ,k)∣
+ ∣h(z + λmx − λnxn ,k) − h(z)∣ < 2δ,

which concludes the proof.
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Wewill use a version of the previous lemma for special K and restrict the covering
property to compact subsets of K.

Lemma 3.2 Let K be a compact subset of (0,+∞)2d of the form K = ∏2d
ℓ=1[aℓ , a′ℓ].

Assume that, for all ε > 0, for all R > 0, there exists γ > 0 such that for every compact
hypercube L ⊂ K with diameter less than γ, for every M ∈ N, we can ûnd N ≥ M, a
ûnite increasing sequence of integers (λn)n=M , . . . ,N with λM ≥ M, and a ûnite number
(xn ,k)M≤n≤N , 1≤k≤pn of elements of L satisfying the following:
(i) _e hypercubes Q(λnxn ,k , R),M ≤ n ≤ N , 1 ≤ k ≤ pn , are pairwise disjoint.
(ii) _e compact set ⋃M≤n≤N , 1≤k≤pn Q(λnxn ,k , R) is polynomially convex.
(iii) For every x ∈ L, there exist n,m ∈ {M , . . . ,N} and k ∈ {1, . . . , pn} such that

∣λmx − λnxn ,k ∣ < ε.

_en ⋂a∈K HC(τa) is a residual subset of H(Cd).

Proof We show that the assumptions of Lemma 3.1 are automatically satisûed. Put
a = min aℓ > 0 and a′ = max a′ℓ . A positive real number γ > 0 being ûxed, K may be
decomposed as K = L1∪⋅ ⋅ ⋅∪LJ ,where each L j is a compact hypercubewith diameter
less than γ. We set N0 = 0, λ0 = 1, p0 = 0, and we construct inductively sequences
(λn) and (xn ,k) as in Lemma 3.1. Assume that the construction has been done until
step j − 1 (1 ≤ j ≤ J) and let us do it for step j. Let M j be suõciently large such that
M j > N j−1 ,M ja − λN j−1a′ − 2R > 0. We then apply the assumptions of Lemma 3.2 to
L = L j and M = M j to get N j ≥ M j and sequences (λn), M j ≤ n ≤ N j and elements
(xn ,k) of LJ , M j ≤ n ≤ N j , 1 ≤ k ≤ pn .

We claim that the union of the sequences (λn), M j ≤ n ≤ NJ and (xn ,k), M j ≤
n ≤ NJ , 1 ≤ k ≤ pn , for j = 1, . . . , J, satisûes the hypotheses and hence the conclusion
of Lemma 3.1. Notice that the sequence (λn) is increasing, since N j−1 < M j . _e
covering property (iii) of Lemma 3.1 clearly follows from Lemma 3.2(iii).

We then show that all the hypercubes Q(λnxn ,k , R) are pairwise disjoint, even if
they are constructed at diòerent steps.
First of all, for ûxed j, and n ∈ {M j , . . . ,N j}, the ûnite sequence xn ,k was

chosen according to the hypothesis of Lemma 3.2, so we have that the hypercubes
Q(λnxn ,k , R) are indeed pairwise disjoint.
For n andm coming from diòerent j′s, the crucial point is to observe that, for any

x ∈ L j−1 and any y ∈ L j , for any n ∈ {M j−1 , . . . ,N j−1}, for any m ∈ {M j , . . . ,N j},

(3.1) λnx(1) + R ≤ λN j−1a
′ + R < λM ja − R ≤ λm y(1) − R.

_e way we choose to initialize the construction (with M1a > 2R) guarantees that
Q(0, R) is also disjoint from all these hypercubes, and so our construction satisûes
Lemma 3.1(i).
For each j = 1, . . . , J , the set

X j =
N j

⋃
n=M j

pn

⋃
k=1

Q(λnxn ,k , R)

https://doi.org/10.4153/CMB-2016-069-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2016-069-4


Functions Universal for all Translation Operators 467

is polynomially convex, and an easy induction based on Lemma 2.3 and (3.1) ensures
that

Q(0, R) ∪
J
⋃
j=1

N j

⋃
n=M j

pn

⋃
k=1

Q(λnxn ,k , R) = Q(0, R) ∪
J
⋃
j=1

X j

is polynomially convex. We have veriûed (i), (ii), and (iii) of Lemma 3.1. _is con-
cludes the proof.

Proposition 3.3 Let K be a compact subset of (0,+∞)2d . _en ⋂a∈K HC(τa) is a
residual subset of H(Cd).

Proof Without loss of generality, we can assume that K = ∏2d
ℓ=1[aℓ , a′ℓ]. We intend

to apply Lemma 3.2. _us, let R, ε > 0. We ûrst apply Lemma 2.5 to A = 4R/ε to get
some ρ > 1 and some sequence of integers (µn) with µn+1 ≥ ρµn . We then deûne
γ > 0 as any positive real number such that, given any x ∈ K, ρx(ℓ) − x(ℓ) − γ > 0 for
all ℓ = 1, . . . , 2d. Now let L be a compact hypercube in K with diameter less than γ
and let M ∈ N. Without loss of generality, we can assume that L = ∏2d

ℓ=1[bℓ , bℓ + γ].
We then apply Lemma 2.5 with P ≥ M such that

µP inf
ℓ=1, . . . ,2d

(ρbℓ − bℓ − γ) > 2R.

We get maps s1 , . . . , s2d and ϕ. We can now deûne our covering of L. Bearing in mind
that the domain of ϕ is ûnite, we set

n0 = min
(k1 , . . . ,k2d)

ϕ(k1 , . . . , k2d) ≥ M , N = max
(k1 , . . . ,k2d)

ϕ(k1 , . . . , k2d)

and let n ∈ {n0 , . . . ,N}. _en either n is not a ϕ(k1 , . . . , k2d), in which case we set
pn = 0, that is,we do nothing; or n is equal to ϕ(k1 , . . . , k2d) for a (necessarily) unique
(k1 , . . . , k2d). We then deûne the set {xn ,k}1≤k≤pn as

L ∩ {(b1 +
4Rα1

µϕ(0, . . . ,0)
+ ε

µϕ(1,0, . . . ,0)
+ ⋅ ⋅ ⋅ + ε

µϕ(k1 ,0, . . . ,0)
,

b2 +
4Rα2

µϕ(k1 ,0, . . . ,0)
+ ε

µϕ(k1 ,1,0, . . . ,0)
+ ⋅ ⋅ ⋅ + ε

µϕ(k1 ,k2 , . . . ,0)
,

⋮

b2d +
4Rα2d

µϕ(k1 , . . . ,k2d−1 ,0)
+ ε

µϕ(k1 , . . . ,k2d−1 ,1)
+ ⋅ ⋅ ⋅ + ε

µϕ(k1 , . . . ,k2d)
)

α1 , . . . , α2d ∈ N0} .

We also set λn = µϕ(k1 , . . . ,k2d) and we show that the assumptions of Lemma 3.2 are
satisûed. First of all, the hypercubes Q(λnxn ,k , R) are pairwise disjoint. Indeed, let
(n, k) /= (m, j). _en we have two cases:
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● n /= m: for instance, n < m. In this case, looking at the ûrst coordinate of λnxn ,k
and λmxm , j , we get, using the fact that ϕ(k1 , . . . , k2d) ≥ P:

∣λmxm , j − λnxn ,k ∣ ≥ λmb1 − λn(b1 + γ) ≥ ρλnb1 − λn(b1 + γ)(3.2)
≥ µP(ρb1 − b1 − γ) > 2R.

● n = m: _en xn ,k and xn , j may be written as above, with two diòerent sequences
(α1 , . . . , α2d) and (β1 , . . . , β2d). Let ℓ ∈ {1, . . . , 2d} be such that βℓ /= αℓ . Looking
now at this coordinate, we get

(3.3) ∣λnxn ,k − λnxn , j ∣ ≥
4Rλn

µϕ(k1 , . . . ,kℓ−1 ,0, . . . )
> 2R,

since λn = µϕ(k1 , . . . ,k2d) ≥ µϕ(k1 , . . . ,kℓ−1 ,0, . . . ).
_e covering property is also easy to verify using the construction of (xn)n ,k . Let

x ∈ L. _ere exists α1 ∈ N0 such that

b1 +
4Rα1

µϕ(0, . . . ,0)
≤ x(1) ≤ b1 +

4R(α1 + 1)
µϕ(0, . . . ,0)

.

Now, by construction of ϕ, using Lemma 2.5 (recall that A = 4R/ε), there exists k1 < s1
such that

b1 +
4Rα1

µϕ(0, . . . ,0)
+ ε

µϕ(1,0, . . . ,0)
+ ⋅ ⋅ ⋅ + ε

µϕ(k1 ,0, . . . ,0)

≤ x(1)

≤ b1 +
4Rα1

µϕ(0, . . . ,0)
+ ε

µϕ(1,0, . . . ,0)
+ ⋅ ⋅ ⋅ + ε

µϕ(k1+1,0, . . . ,0)
.

_is k1 being ûxed, there exists α2 ≥ 0 such that

b2 +
4Rα2

µϕ(k1 ,0, . . . ,0)
≤ x(2) ≤ b2 +

4R(α2 + 1)
µϕ(k1 ,0, . . . ,0)

.

Iterating this construction, we ûnd α1 , . . . , α2d ≥ 0 and k1 , . . . , k2d such that, for all
ℓ = 1, . . . , 2d,

bℓ +
4Rαℓ

µϕ(k1 , . . . ,kℓ−1 ,0, . . . ,0)
+ ε

µϕ(k1 , . . . ,kℓ−1 ,1,0, . . . ,0)
+ ⋅ ⋅ ⋅ + ε

µϕ(k1 , . . . ,kℓ−1 ,kℓ ,0, . . . ,0)
≤ x(ℓ) ≤

bℓ +
4Rαℓ

µϕ(k1 , . . . ,kℓ−1 ,0, . . . ,0)
+ ε

µϕ(k1 , . . . ,kℓ−1 ,1,0, . . . ,0)
+ ⋅ ⋅ ⋅ + ε

µϕ(k1 , . . . ,kℓ−1 ,kℓ+1,0, . . . ,0)
.

Let n = ϕ(k1 , . . . , k2d) and let xn ,k correspond to these values of α1 , . . . , α2d . _en,

∣λnx − λnxn ,k ∣ ≤ µϕ(k1 , . . . ,k2d) × sup
ℓ=1, . . . ,2d

ε
µϕ(k1 , . . . ,kℓ+1,0, . . . ,0)

≤ ε.

It remains to be shown that ⋃M≤n≤N , 1≤k≤pn Q(λnxn ,k , R) is polynomially con-
vex, bearing in mind that we are only taking n ≥ n0 . For such M ≤ n ≤ N , n =
ϕ(k1 , . . . , k2d), we set Hn = ⋃1≤k≤pn Q(λnxn ,k , R), and we ûrst show that Hn is poly-
nomially convex. For ℓ = 1, . . . , 2d, let Ωℓ ≥ 0 be the greatest integer such that

bℓ +
4RΩℓ

µϕ(k1 , . . . ,kℓ−1 ,0, . . . ,0)
+ ε

µϕ(k1 , . . . ,kℓ−1 ,1,0, . . . ,0)
+ ⋅ ⋅ ⋅ + ε

µϕ(k1 , . . . ,kℓ−1 ,kℓ+1,0, . . . ,0)
≤ bℓ + γ.
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For 0 ≤ j ≤ Ωℓ , we also set

y(ℓ)j = bℓ +
4R j

µϕ(k1 , . . . ,kℓ−1 ,0, . . . ,0)
+ ε

µϕ(k1 , . . . ,kℓ−1 ,1,0, . . . ,0)
+ ⋅ ⋅ ⋅ + ε

µϕ(k1 , . . . ,kℓ−1 ,kℓ+1,0, . . . ,0)

so that

{xn ,k ; 1 ≤ k ≤ pn} = {( y(1)j1 , . . . , y
(2d)
j2d ) ; 0 ≤ jℓ ≤ Ωℓ , ℓ = 1, . . . , 2d} .

Since, as observed above (see (3.3)), ∣y(l)j l − y(l)j′l
∣ > 2R if jℓ /= j′ℓ , it follows from

Lemma 2.4 that Hn is polynomially convex. Bearing in mind that Hn = ∅, for n < n0 ,
we then conclude that HM ∪⋅ ⋅ ⋅∪HN is polynomially convex by an easy induction us-
ing either Lemma 2.3 or Lemma 2.4. Indeed, for n = n0 , . . . ,m0− 1, for any 1 ≤ k ≤ pn
and any 1 ≤ j ≤ pm ,

(3.4) λnx(1)n ,k + R ≤ λn(b1 + γ) + R < λn+1b1 − R ≤ λn+1x(1)n+1, j − R.

Proof of_eorem 1.1 So far, we have shown that if K is a compact subset of
(0,+∞)2d , then ⋂a∈K HC(τa) is a residual subset of H(Cd). _is property remains
true if K = K1 × ⋅ ⋅ ⋅ × K2d where each K i is either a subset of (0,+∞); or a subset of
(−∞, 0); or K i = {0} and at least one K i , say K i0 , is diòerent from {0}. _e con-
struction is exactly similar except that, on each coordinate such that K i = {0}, we
do nothing (we ûx x(i)n ,k = 0) and, wherever we need a separation property (see for
instance (3.1), (3.2), (3.4)), we look at the i0-th coordinate. Moreover, in this case,
the hypercubes K and L will have lower dimension. We ûnally conclude by writing
R2d/{0} as a countable union of such compact sets.
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