Canad. Math. Bull. Vol. 60 (3), 2017 pp. 462–469 http://dx.doi.org/10.4153/CMB-2016-069-4 © Canadian Mathematical Society 2017

Functions Universal for all Translation Operators in Several Complex Variables

Frédéric Bayart and Paul M Gauthier

Abstract. We prove the existence of a (in fact many) holomorphic function f in \mathbb{C}^d such that, for any $a \neq 0$, its translations $f(\cdot + na)$ are dense in $H(\mathbb{C}^d)$.

1 Introduction

The roots of this paper go back to an old paper of Birkhoff [3] in which he proves that, for any $a \neq 0$, there exists an entire function f such that its translates $f(\cdot + na)$ are dense in the space of all entire functions $H(\mathbb{C})$ endowed with the compact-open topology. In modern terms, this means that the operators $\tau_a: H(\mathbb{C}) \to H(\mathbb{C}), f \mapsto$ $f(\cdot + a)$ are hypercyclic, and we shall denote by $HC(\tau_a)$ the set of hypercyclic functions with respect to τ_a , namely the set of functions whose translates by na, n =1, 2, ..., are dense. Since Birkhoff's theorem, the theory of hypercyclic operators has grown, and we refer the reader to the books [2, 5] for more on this subject.

Regarding hypercyclicity of translations, a major breakthrough was made by Costakis and Sambarino in [4]. They were able to show that one can choose the same hypercyclic function for all non-zero translation operators. In other words, $\bigcap_{a\neq 0} HC(\tau_a)$ is non empty. In Tsirivas' subsequent works (see [7–9]) as well as in a paper by the first author [1], the authors were interested in considering common universal functions for sequences of translations $\tau_{\lambda_n a}$. In particular, in [1], one is interested in translation operators acting on $H(\mathbb{C}^d)$ with $d \ge 2$. It is shown that $\bigcap_{a \in \mathbb{R}^d \setminus \{0\}} HC(\tau_a)$ is a residual subset of $H(\mathbb{C}^d)$. There are two main difficulties for going from Costakis and Sambarino's results to this last one:

(a) The method of [4] is one-dimensional and works very well for onedimensional families of operators. Then an algebraic trick allows one to go from \mathbb{R} to \mathbb{C} . It was not clear how to go further, especially on \mathbb{C}^d .

(b) Polynomial approximation is more difficult in $H(\mathbb{C}^d)$, $d \ge 2$, than in $H(\mathbb{C})$. In particular, there is no satisfactory Runge or Mergelyan theorem in $H(\mathbb{C}^d)$, and one has to work with the delicate notion of polynomially convex sets. That is why the result of [1] was for translations by real elements even though we are working in \mathbb{C}^d . In this paper, we overcome this last difficulty, and we are able to prove the following result.

Received by the editors July 6, 2016; revised October 6, 2016.

Published electronically May 26, 2017.

AMS subject classification: 47A16, 32E20.

Keywords: hypercyclic operator, translation operator.

Functions Universal for all Translation Operators

Theorem 1.1 The set $\bigcap_{a \in \mathbb{C}^d \setminus \{0\}} HC(\tau_a)$ is a residual subset of $H(\mathbb{C}^d)$.

Our method of proof uses arithmetical tools from [1], in particular the forthcoming Lemma 2.5. It allows us to obtain a redundant net in any compact subset of \mathbb{C}^d , for any dimension *d*. We then use classical results on polynomially convex sets of \mathbb{C}^d to show that we can do a polynomial approximation of any holomorphic function defined on a union of sufficiently disjoint hypercubes.

2 Tools for the Construction

2.1 Polynomial Convexity

Let \mathbb{C} , \mathbb{R} , and \mathbb{N} denote the complex, real, and natural numbers, respectively, and let $\mathbb{N}_0 = \{0, 1, 2, ...\}$. For a compact subset *K* of \mathbb{C}^d , we denote by \widehat{K} the polynomially convex hull of *K* :

 $\widehat{K} = \left\{ z \in \mathbb{C}^d ; \text{ for every polynomial } p, |p(z)| \le \max_{w \in V} |p(w)| \right\}.$

A compact set $K \subset \mathbb{C}^d$ is said to be *polynomially convex* if it is equal to its polynomially convex hull; that is, if $K = \widehat{K}$. For example, compact convex sets are polynomially convex and a compact subset of \mathbb{C} is polynomially convex if and only if its complement is connected.

Runge's Polynomial Approximation Theorem states that if a compact subset *K* of \mathbb{C} has connected complement, then every function holomorphic on (a neighborhood of) *K* can be uniformly approximated by polynomials. The following extension of the Runge Theorem to higher dimensions is known as the Oka–Weil Theorem (see [6]).

Theorem 2.1 Let K be a polynomially convex compact subset of \mathbb{C}^d . Then, for every function f holomorphic on K and for every $\epsilon > 0$, there exists a polynomial p such that

$$|p(z) - f(z)| < \epsilon$$
, for all $z \in K$.

An important tool in constructing polynomially convex sets is the following Separation Lemma by Eva Kallin (see [6]).

Lemma 2.2 Let X and Y be two polynomially convex compact subsets of \mathbb{C}^d . If there exists a polynomial p which separates X and Y in the sense that $\overline{p(X)} \cap \overline{p(Y)} = \emptyset$, then the union $X \cup Y$ of X and Y is also polynomially convex.

We identify \mathbb{C}^d with \mathbb{R}^{2d} by means of either of the two natural complex structures on \mathbb{R}^{2d} , and henceforth |x| denotes the ℓ_{∞} -norm on \mathbb{R}^{2d} . For $x = (x^{(1)}, \ldots, x^{(2d)}) \in \mathbb{R}^{2d}$ we denote by Q(x, R) the closed hypercube

$$Q(x,R) = Q((x^{(1)},...,x^{(2d)}),R) = \{y \in \mathbb{R}^{2d} : |x-y| \le R\},\$$

which may also be considered as the closed ball of center *x* and radius *R* with respect to the norm $|\cdot|$. If $z \in \mathbb{C}^d$ corresponds to the point $x \in \mathbb{R}^{2d}$, we shall, by abuse of notation, write Q(z, R) to mean the subset of \mathbb{C}^d identified with the hypercube Q(x, R) in \mathbb{R}^{2d} . When we say that a subset *K* of \mathbb{R}^{2d} is polynomially convex, we mean that, as a subset

of \mathbb{C}^d , it is polynomially convex. Since compact convex sets are polynomially convex, it follows that hypercubes are polynomially convex.

We need to prove that several sets are polynomially convex.

Lemma 2.3 Let K, L be two compact polynomially convex subsets of \mathbb{R}^{2d} . Assume that there exists $a \in \mathbb{R}$ such that $x^{(1)} < a < y^{(1)}$ for all $(x, y) \in K \times L$. Then $K \cup L$ is polynomially convex.

Proof Let $z^{(1)}$ be a complex coordinate generated by the real coordinate $x^{(1)}$. The polynomial $f(z) = z^{(1)}$ separates *K* and *L*, and so by Kallin's Separation Lemma, $K \cup L$ is polynomially convex.

Lemma 2.4 Let R > 0. For every $1 \le \ell \le 2d$, let $(y_j^{(\ell)})_{0 \le j \le \Omega_l}$ be a finite family of points in \mathbb{R} such that, for all $j \ne j'$, $|y_j^{(\ell)} - y_{j'}^{(\ell)}| > 2R$. Then

$$\bigcup_{j_1,...,j_{2d}} Q((y_{j_1}^{(1)},\ldots,y_{j_{2d}}^{(2d)}),R)$$

is polynomially convex.

Proof For simplicity, let us write

$$X = \bigcup_{j_1, \dots, j_{2d}} Q((y_{j_1}^{(1)}, \dots, y_{j_{2d}}^{(2d)}), R)$$

Recalling the identification $\mathbb{R}^{2d} = \mathbb{C}^d$ and denoting by $X^{(n)}$ the projection of X on the complex coordinate $z^{(n)}$, n = 1, ..., d, we have $X = \prod_{n=1}^{d} X^{(n)}$, because of the separation hypotheses. Since each $X^{(n)}$ is a disjoint (again by the separation hypothesis) union of closed squares, it is polynomially convex (here, we are just working in \mathbb{C}) and since a product of polynomially convex sets is again polynomially convex, it follows that X is polynomially convex.

2.2 Construction of Sequences of Integers

We will need the following lemma about the construction of sequences of integers having some redundant properties. The following Lemma is [1, Corollary 2.8] applied to the whole sequence of integers.

Lemma 2.5 For all $d \ge 1$ and all A > 0, there exist $\rho > 1$ and an increasing sequence of integers (μ_n) such that $\mu_{n+1} \ge \rho \mu_n$ for any $n \ge 1$ and, for all P > 0, we can find $s_1 \in \mathbb{N}$, finite subsets E_r of \mathbb{N}^{r-1} for r = 2, ..., 2d + 1, maps $s_r: E_r \to \mathbb{N}$ for r = 2, ..., 2d and a one-to-one map $\phi: E_{2d+1} \to \mathbb{N}$ such that the following hold.

• For any r = 2, ..., 2d + 1,

$$E_r = \left\{ (k_1, \dots, k_{r-1}) \in \mathbb{N}_0^{r-1} : k_1 < s_1, k_2 < s_2(k_1), \dots, k_{r-1} \le s_{r-1}(k_1, \dots, k_{r-2}) \right\}$$

• For every r = 1, ..., 2d, for every $(k_1, ..., k_{r-1}) \in E_r$, where $E_1 = \emptyset$,

$$\sum_{j=1}^{s_r(k_1,\dots,k_{r-1})} \frac{1}{\mu_{\phi(k_1,\dots,k_{r-1},j,0,\dots,0)}} \ge \frac{A}{\mu_{\phi(k_1,\dots,k_{r-1},0,\dots,0)}}$$

Functions Universal for all Translation Operators

- $\phi(0,\ldots,0) \geq P$.
- If $(k_1, \ldots, k_{2d}) > (k'_1, \ldots, k'_{2d})$ in the lexicographical order, then

$$\phi(k_1,\ldots,k_{2d}) > \phi(k'_1,\ldots,k'_{2d})$$

When r = 1, the second point of the lemma simply means that

$$\sum_{j=1}^{s_1} \frac{1}{\mu_{\phi(j,0,\ldots,0)}} \ge \frac{A}{\mu_{\phi(0,\ldots,0)}}.$$

3 The Construction

Lemma 3.1 Let K be a compact subset of $(0, +\infty)^{2d}$. Assume that for all $\varepsilon > 0$ and all R > 0, we can find $N \ge 1$, a finite increasing sequence of integers $(\lambda_n)_{n=1,...,N}$, and a finite number $(x_{n,k})_{1\le n\le N, \ 1\le k\le p_n}$ of elements of K satisfying the following:

- (i) The hypercubes $Q(\lambda_n x_{n,k}, R)$, $1 \le n \le N$, $1 \le k \le p_n$, are pairwise disjoint and are disjoint from Q(0, R).
- (ii) The compact set $Q(0, R) \cup \bigcup_{1 \le n \le N, \ 1 \le k \le p_n} Q(\lambda_n x_{n,k}, R)$ is polynomially convex.
- (iii) For every $x \in K$, there exist $n, m \in \{1, ..., N\}$ and $k \in \{1, ..., p_n\}$ such that $|\lambda_m x \lambda_n x_{n,k}| < \varepsilon$.

Then $\bigcap_{a \in K} HC(\tau_a)$ is a residual subset of $H(\mathbb{C}^d)$.

Proof Let *U*, *V* be nonempty open subsets of $H(\mathbb{C}^d)$. It is sufficient to show that

 $U \cap \left\{ f \in H(\mathbb{C}^d); \forall x \in K, \exists m \in \mathbb{N}, \tau_{mx} f \in V \right\}$

is nonempty (see for instance [2, Proposition 7.4]). Let $\delta, \rho > 0$ and $g, h \in H(\mathbb{C}^d)$ be such that

$$U \supset \left\{ f \in H(\mathbb{C}^d); \| f - g \|_{\mathcal{C}(Q(0,\rho))} < 2\delta \right\}$$
$$V \supset \left\{ f \in H(\mathbb{C}^d); \| f - h \|_{\mathcal{C}(Q(0,\rho))} < 2\delta \right\},$$

where $\|\cdot\|_{\mathcal{C}(Q(0,\rho))}$ denotes the sup-norm for $\mathcal{C}(Q(0,\rho))$. We set $R = 2\rho$. By uniform continuity of *h* on $Q(0, 2\rho)$, there exists $\eta \in (0, \rho)$ such that

 $\|h(\cdot - z_0) - h\|_{\mathcal{C}(Q(0,\rho))} < \delta$

provided $|z_0| < \eta$. We set $\varepsilon = \min(\delta, \eta)$, and the assumptions of the lemma give us sequences (λ_n) and $(x_{n,k})$. By (i) and (ii), there exists an entire function $f \in H(\mathbb{C}^d)$ such that $||f - g||_{\mathcal{C}(Q(0,\rho))} < \varepsilon < 2\delta$ and

$$\|f(\cdot + \lambda_n x_{n,k}) - h\|_{\mathcal{C}(Q(0,R))} < \delta$$

for any *n*, *k*. Now let $x \in K$ and let *n*, *m* and *k* be such that (iii) holds. Then for any $z \in Q(0, \rho)$, observing that $z + \lambda_m x - \lambda_n x_{n,k}$ belongs to Q(0, R), we get

$$\begin{aligned} |\tau_{\lambda_m x} f(z) - h(z)| &\leq \left| f(z + \lambda_m x - \lambda_n x_{n,k} + \lambda_n x_{n,k}) - h(z + \lambda_m x - \lambda_n x_{n,k}) \right| \\ &+ \left| h(z + \lambda_m x - \lambda_n x_{n,k}) - h(z) \right| < 2\delta \end{aligned}$$

which concludes the proof.

We will use a version of the previous lemma for special *K* and restrict the covering property to compact subsets of *K*.

Lemma 3.2 Let K be a compact subset of $(0, +\infty)^{2d}$ of the form $K = \prod_{\ell=1}^{2d} [a_{\ell}, a'_{\ell}]$. Assume that, for all $\varepsilon > 0$, for all R > 0, there exists $\gamma > 0$ such that for every compact hypercube $L \subset K$ with diameter less than γ , for every $M \in \mathbb{N}$, we can find $N \ge M$, a finite increasing sequence of integers $(\lambda_n)_{n=M,...,N}$ with $\lambda_M \ge M$, and a finite number $(x_{n,k})_{M \le n \le N, 1 \le k \le p_n}$ of elements of L satisfying the following:

- (i) The hypercubes $Q(\lambda_n x_{n,k}, R)$, $M \le n \le N$, $1 \le k \le p_n$, are pairwise disjoint.
- (ii) The compact set $\bigcup_{M \le n \le N, \ 1 \le k \le p_n} Q(\lambda_n x_{n,k}, R)$ is polynomially convex.
- (iii) For every $x \in L$, there exist $n, m \in \{M, ..., N\}$ and $k \in \{1, ..., p_n\}$ such that

 $|\lambda_m x - \lambda_n x_{n,k}| < \varepsilon.$

Then $\bigcap_{a \in K} HC(\tau_a)$ is a residual subset of $H(\mathbb{C}^d)$.

Proof We show that the assumptions of Lemma 3.1 are automatically satisfied. Put $a = \min a_{\ell} > 0$ and $a' = \max a'_{\ell}$. A positive real number $\gamma > 0$ being fixed, *K* may be decomposed as $K = L_1 \cup \cdots \cup L_j$, where each L_j is a compact hypercube with diameter less than γ . We set $N_0 = 0$, $\lambda_0 = 1$, $p_0 = 0$, and we construct inductively sequences (λ_n) and $(x_{n,k})$ as in Lemma 3.1. Assume that the construction has been done until step j - 1 ($1 \le j \le J$) and let us do it for step j. Let M_j be sufficiently large such that $M_j > N_{j-1}, M_j a - \lambda_{N_{j-1}} a' - 2R > 0$. We then apply the assumptions of Lemma 3.2 to $L = L_j$ and $M = M_j$ to get $N_j \ge M_j$ and sequences $(\lambda_n), M_j \le n \le N_j$ and elements $(x_{n,k})$ of $L_J, M_j \le n \le N_j, 1 \le k \le p_n$.

We claim that the union of the sequences (λ_n) , $M_j \le n \le N_J$ and $(x_{n,k})$, $M_j \le n \le N_J$, $1 \le k \le p_n$, for j = 1, ..., J, satisfies the hypotheses and hence the conclusion of Lemma 3.1. Notice that the sequence (λ_n) is increasing, since $N_{j-1} < M_j$. The covering property (iii) of Lemma 3.1 clearly follows from Lemma 3.2(iii).

We then show that all the hypercubes $Q(\lambda_n x_{n,k}, R)$ are pairwise disjoint, even if they are constructed at different steps.

First of all, for fixed j, and $n \in \{M_j, ..., N_j\}$, the finite sequence $x_{n,k}$ was chosen according to the hypothesis of Lemma 3.2, so we have that the hypercubes $Q(\lambda_n x_{n,k}, R)$ are indeed pairwise disjoint.

For *n* and *m* coming from different *j*'s, the crucial point is to observe that, for any $x \in L_{j-1}$ and any $y \in L_j$, for any $n \in \{M_{j-1}, \ldots, N_{j-1}\}$, for any $m \in \{M_j, \ldots, N_j\}$,

(3.1)
$$\lambda_n x^{(1)} + R \le \lambda_{N_{i-1}} a' + R < \lambda_{M_i} a - R \le \lambda_m y^{(1)} - R.$$

The way we choose to initialize the construction (with $M_1a > 2R$) guarantees that Q(0, R) is also disjoint from all these hypercubes, and so our construction satisfies Lemma 3.1(i).

For each $j = 1, \ldots, J$, the set

$$X_j = \bigcup_{n=M_j}^{N_j} \bigcup_{k=1}^{p_n} Q(\lambda_n x_{n,k}, R)$$

is polynomially convex, and an easy induction based on Lemma 2.3 and (3.1) ensures that

$$Q(0,R) \cup \bigcup_{j=1}^{J} \bigcup_{n=M_j}^{N_j} \bigcup_{k=1}^{p_n} Q(\lambda_n x_{n,k}, R) = Q(0,R) \cup \bigcup_{j=1}^{J} X_j$$

is polynomially convex. We have verified (i), (ii), and (iii) of Lemma 3.1. This concludes the proof.

Proposition 3.3 Let K be a compact subset of $(0, +\infty)^{2d}$. Then $\bigcap_{a \in K} HC(\tau_a)$ is a residual subset of $H(\mathbb{C}^d)$.

Proof Without loss of generality, we can assume that $K = \prod_{\ell=1}^{2d} [a_{\ell}, a'_{\ell}]$. We intend to apply Lemma 3.2. Thus, let $R, \varepsilon > 0$. We first apply Lemma 2.5 to $A = 4R/\varepsilon$ to get some $\rho > 1$ and some sequence of integers (μ_n) with $\mu_{n+1} \ge \rho\mu_n$. We then define $\gamma > 0$ as any positive real number such that, given any $x \in K$, $\rho x^{(\ell)} - x^{(\ell)} - \gamma > 0$ for all $\ell = 1, \ldots, 2d$. Now let *L* be a compact hypercube in *K* with diameter less than γ and let $M \in \mathbb{N}$. Without loss of generality, we can assume that $L = \prod_{\ell=1}^{2d} [b_{\ell}, b_{\ell} + \gamma]$. We then apply Lemma 2.5 with $P \ge M$ such that

$$\mu_P \inf_{\ell=1,\ldots,2d} (\rho b_{\ell} - b_{\ell} - \gamma) > 2R.$$

We get maps s_1, \ldots, s_{2d} and ϕ . We can now define our covering of *L*. Bearing in mind that the domain of ϕ is finite, we set

$$n_0 = \min_{(k_1,\ldots,k_{2d})} \phi(k_1,\ldots,k_{2d}) \ge M, \ N = \max_{(k_1,\ldots,k_{2d})} \phi(k_1,\ldots,k_{2d})$$

and let $n \in \{n_0, ..., N\}$. Then either *n* is not a $\phi(k_1, ..., k_{2d})$, in which case we set $p_n = 0$, that is, we do nothing; or *n* is equal to $\phi(k_1, ..., k_{2d})$ for a (necessarily) unique $(k_1, ..., k_{2d})$. We then define the set $\{x_{n,k}\}_{1 \le k \le p_n}$ as

$$L \cap \left\{ \left(b_1 + \frac{4R\alpha_1}{\mu_{\phi(0,\dots,0)}} + \frac{\varepsilon}{\mu_{\phi(1,0,\dots,0)}} + \dots + \frac{\varepsilon}{\mu_{\phi(k_1,0,\dots,0)}}, \\ b_2 + \frac{4R\alpha_2}{\mu_{\phi(k_1,0,\dots,0)}} + \frac{\varepsilon}{\mu_{\phi(k_1,1,0,\dots,0)}} + \dots + \frac{\varepsilon}{\mu_{\phi(k_1,k_2,\dots,0)}}, \\ \vdots \\ b_{2d} + \frac{4R\alpha_{2d}}{\mu_{\phi(k_1,\dots,k_{2d-1},0)}} + \frac{\varepsilon}{\mu_{\phi(k_1,\dots,k_{2d-1},1)}} + \dots + \frac{\varepsilon}{\mu_{\phi(k_1,\dots,k_{2d})}} \\ \alpha_1,\dots,\alpha_{2d} \in \mathbb{N}_0 \right\}.$$

We also set $\lambda_n = \mu_{\phi(k_1,...,k_{2d})}$ and we show that the assumptions of Lemma 3.2 are satisfied. First of all, the hypercubes $Q(\lambda_n x_{n,k}, R)$ are pairwise disjoint. Indeed, let $(n, k) \neq (m, j)$. Then we have two cases:

• $n \neq m$: for instance, n < m. In this case, looking at the first coordinate of $\lambda_n x_{n,k}$ and $\lambda_m x_{m,j}$, we get, using the fact that $\phi(k_1, \ldots, k_{2d}) \ge P$:

(3.2)
$$|\lambda_m x_{m,j} - \lambda_n x_{n,k}| \ge \lambda_m b_1 - \lambda_n (b_1 + \gamma) \ge \rho \lambda_n b_1 - \lambda_n (b_1 + \gamma)$$
$$\ge \mu_P (\rho b_1 - b_1 - \gamma) > 2R.$$

• n = m: Then $x_{n,k}$ and $x_{n,j}$ may be written as above, with two different sequences $(\alpha_1, \ldots, \alpha_{2d})$ and $(\beta_1, \ldots, \beta_{2d})$. Let $\ell \in \{1, \ldots, 2d\}$ be such that $\beta_\ell \neq \alpha_\ell$. Looking now at this coordinate, we get

(3.3)
$$|\lambda_n x_{n,k} - \lambda_n x_{n,j}| \ge \frac{4R\lambda_n}{\mu_{\phi(k_1,\dots,k_{\ell-1},0,\dots)}} > 2R,$$

since $\lambda_n = \mu_{\phi(k_1,...,k_{2d})} \ge \mu_{\phi(k_1,...,k_{\ell-1},0,...)}$.

The covering property is also easy to verify using the construction of $(x_n)_{n,k}$. Let $x \in L$. There exists $\alpha_1 \in \mathbb{N}_0$ such that

$$b_1 + \frac{4R\alpha_1}{\mu_{\phi(0,...,0)}} \le x^{(1)} \le b_1 + \frac{4R(\alpha_1+1)}{\mu_{\phi(0,...,0)}}$$

Now, by construction of ϕ , using Lemma 2.5 (recall that $A = 4R/\varepsilon$), there exists $k_1 < s_1$ such that

$$b_{1} + \frac{4R\alpha_{1}}{\mu_{\phi(0,...,0)}} + \frac{\varepsilon}{\mu_{\phi(1,0,...,0)}} + \dots + \frac{\varepsilon}{\mu_{\phi(k_{1},0,...,0)}}$$

$$\leq x^{(1)}$$

$$\leq b_{1} + \frac{4R\alpha_{1}}{\mu_{\phi(0,...,0)}} + \frac{\varepsilon}{\mu_{\phi(1,0,...,0)}} + \dots + \frac{\varepsilon}{\mu_{\phi(k_{1}+1,0,...,0)}}$$

This k_1 being fixed, there exists $\alpha_2 \ge 0$ such that

. .

$$b_2 + \frac{4R\alpha_2}{\mu_{\phi(k_1,0,\ldots,0)}} \le x^{(2)} \le b_2 + \frac{4R(\alpha_2+1)}{\mu_{\phi(k_1,0,\ldots,0)}}.$$

Iterating this construction, we find $\alpha_1, \ldots, \alpha_{2d} \ge 0$ and k_1, \ldots, k_{2d} such that, for all $\ell = 1, \ldots, 2d$,

$$b_{\ell} + \frac{4R\alpha_{\ell}}{\mu_{\phi(k_{1},...,k_{\ell-1},0,...,0)}} + \frac{\varepsilon}{\mu_{\phi(k_{1},...,k_{\ell-1},1,0,...,0)}} + \dots + \frac{\varepsilon}{\mu_{\phi(k_{1},...,k_{\ell-1},k_{\ell},0,...,0)}} \le x^{(\ell)} \le b_{\ell} + \frac{4R\alpha_{\ell}}{\mu_{\phi(k_{1},...,k_{\ell-1},0,...,0)}} + \frac{\varepsilon}{\mu_{\phi(k_{1},...,k_{\ell-1},1,0,...,0)}} + \dots + \frac{\varepsilon}{\mu_{\phi(k_{1},...,k_{\ell-1},k_{\ell}+1,0,...,0)}}.$$

Let $n = \phi(k_1, ..., k_{2d})$ and let $x_{n,k}$ correspond to these values of $\alpha_1, ..., \alpha_{2d}$. Then,

$$|\lambda_n x - \lambda_n x_{n,k}| \le \mu_{\phi(k_1,\ldots,k_{2d})} \times \sup_{\ell=1,\ldots,2d} \frac{\varepsilon}{\mu_{\phi(k_1,\ldots,k_\ell+1,0,\ldots,0)}} \le \varepsilon$$

It remains to be shown that $\bigcup_{M \le n \le N, \ 1 \le k \le p_n} Q(\lambda_n x_{n,k}, R)$ is polynomially convex, bearing in mind that we are only taking $n \ge n_0$. For such $M \le n \le N$, $n = \phi(k_1, \ldots, k_{2d})$, we set $H_n = \bigcup_{1 \le k \le p_n} Q(\lambda_n x_{n,k}, R)$, and we first show that H_n is polynomially convex. For $\ell = 1, \ldots, 2d$, let $\Omega_\ell \ge 0$ be the greatest integer such that

$$b_{\ell} + \frac{4R\Omega_{\ell}}{\mu_{\phi(k_1,...,k_{\ell-1},0,...,0)}} + \frac{\varepsilon}{\mu_{\phi(k_1,...,k_{\ell-1},1,0,...,0)}} + \cdots + \frac{\varepsilon}{\mu_{\phi(k_1,...,k_{\ell-1},k_{\ell}+1,0,...,0)}} \le b_{\ell} + \gamma.$$

For $0 \le j \le \Omega_{\ell}$, we also set

$$y_j^{(\ell)} = b_{\ell} + \frac{4Rj}{\mu_{\phi(k_1,\dots,k_{\ell-1},0,\dots,0)}} + \frac{\varepsilon}{\mu_{\phi(k_1,\dots,k_{\ell-1},1,0,\dots,0)}} + \dots + \frac{\varepsilon}{\mu_{\phi(k_1,\dots,k_{\ell-1},k_{\ell}+1,0,\dots,0)}}$$

so that

$$\{x_{n,k}; 1 \le k \le p_n\} = \left\{ \left(y_{j_1}^{(1)}, \dots, y_{j_{2d}}^{(2d)} \right); 0 \le j_{\ell} \le \Omega_{\ell}, \ \ell = 1, \dots, 2d \right\}.$$

Since, as observed above (see (3.3)), $|y_{j_l}^{(1)} - y_{j'_l}^{(1)}| > 2R$ if $j_\ell \neq j'_\ell$, it follows from Lemma 2.4 that H_n is polynomially convex. Bearing in mind that $H_n = \emptyset$, for $n < n_0$, we then conclude that $H_M \cup \cdots \cup H_N$ is polynomially convex by an easy induction using either Lemma 2.3 or Lemma 2.4. Indeed, for $n = n_0, \ldots, m_0 - 1$, for any $1 \le k \le p_n$ and any $1 \le j \le p_m$,

(3.4)
$$\lambda_n x_{n,k}^{(1)} + R \le \lambda_n (b_1 + \gamma) + R < \lambda_{n+1} b_1 - R \le \lambda_{n+1} x_{n+1,j}^{(1)} - R.$$

Proof of Theorem 1.1 So far, we have shown that if K is a compact subset of $(0, +\infty)^{2d}$, then $\bigcap_{a \in K} HC(\tau_a)$ is a residual subset of $H(\mathbb{C}^d)$. This property remains true if $K = K_1 \times \cdots \times K_{2d}$ where each K_i is either a subset of $(0, +\infty)$; or a subset of $(-\infty, 0)$; or $K_i = \{0\}$ and at least one K_i , say K_{i_0} , is different from $\{0\}$. The construction is exactly similar except that, on each coordinate such that $K_i = \{0\}$, we do nothing (we fix $x_{n,k}^{(i)} = 0$) and, wherever we need a separation property (see for instance (3.1), (3.2), (3.4)), we look at the i_0 -th coordinate. Moreover, in this case, the hypercubes K and L will have lower dimension. We finally conclude by writing $\mathbb{R}^{2d} \setminus \{0\}$ as a countable union of such compact sets.

References

- F. Bayart, Common hypercyclic vectors for high dimensional families of operators. Int. Math. Res. Not. IMRN 2016, no. 21, 6512–6552. http://dx.doi.org/10.1093/imrn/rnv354
- [2] F. Bayart and É. Matheron, Dynamics of linear operators. Cambridge Tracts in Mathematics, 179, Cambridge University Press, Cambridge, 2009. http://dx.doi.org/10.1017/CBO9780511581113
- [3] G. D. Birkhoff, Démonstration d'un théorème élémentaire sur les fonctions entières. C. R. Acad. Sci. Paris 189(1929), 473-475.
- [4] G. Costakis and M. Sambarino, Genericity of wild holomorphic functions and common hypercyclic vectors. Adv. Math. 182(2004), 278–306. http://dx.doi.org/10.1016/S0001-8708(03)00079-3
- K.-G. Grosse-Erdmann and A. Peris, *Linear chaos*. Universitext, Springer, London 2011. http://dx.doi.org/10.1007/978-1-4471-2170-1
- [6] E. L. Stout, *Polynomial convexity*. Progress in Mathematics, 261, Birkhäuser Boston, Inc., Boston, MA, 2007.
- [7] N. Tsirivas, Common hypercyclic functions for translation operators with large gaps. J. Funct. Anal. 272(2017), 2726–2751. http://dx.doi.org/10.1016/j.jfa.2016.11.010
- [8] _____, Common hypercyclic functions for translation operators with large gaps. II. arxiv:1412.1963
- [9] _____, Existence of common hypercyclic vectors for translation operators. arxiv:1411.7815

Université Clermont Auvergne, CNRS, LMBP, F-63000 Clermont-Ferrand, France e-mail: frederic.bayart@uca.fr

Département de mathématiques et de statistique, Université de Montréal, CP-6128A Centreville, Montréal, QC, H3C3J7, Canada

e-mail: gauthier@dms.umontreal.ca