# Functions Universal for all Translation Operators in Several Complex Variables 

Frédéric Bayart and Paul M Gauthier

Abstract. We prove the existence of a (in fact many) holomorphic function $f$ in $\mathbb{C}^{d}$ such that, for any $a \neq 0$, its translations $f(\cdot+n a)$ are dense in $H\left(\mathbb{C}^{d}\right)$.

## 1 Introduction

The roots of this paper go back to an old paper of Birkhoff [3] in which he proves that, for any $a \neq 0$, there exists an entire function $f$ such that its translates $f(\cdot+n a)$ are dense in the space of all entire functions $H(\mathbb{C})$ endowed with the compact-open topology. In modern terms, this means that the operators $\tau_{a}: H(\mathbb{C}) \rightarrow H(\mathbb{C}), f \mapsto$ $f(\cdot+a)$ are hypercyclic, and we shall denote by $H C\left(\tau_{a}\right)$ the set of hypercyclic functions with respect to $\tau_{a}$, namely the set of functions whose translates by $n a, n=$ $1,2, \ldots$, are dense. Since Birkhoff's theorem, the theory of hypercyclic operators has grown, and we refer the reader to the books $[2,5]$ for more on this subject.

Regarding hypercyclicity of translations, a major breakthrough was made by Costakis and Sambarino in [4]. They were able to show that one can choose the same hypercyclic function for all non-zero translation operators. In other words, $\bigcap_{a \neq 0} H C\left(\tau_{a}\right)$ is non empty. In Tsirivas' subsequent works (see [7-9]) as well as in a paper by the first author [1], the authors were interested in considering common universal functions for sequences of translations $\tau_{\lambda_{n} a}$. In particular, in [1], one is interested in translation operators acting on $H\left(\mathbb{C}^{d}\right)$ with $d \geq 2$. It is shown that $\bigcap_{a \in \mathbb{R}^{d} \backslash\{0\}} H C\left(\tau_{a}\right)$ is a residual subset of $H\left(\mathbb{C}^{d}\right)$. There are two main difficulties for going from Costakis and Sambarino's results to this last one:
(a) The method of [4] is one-dimensional and works very well for onedimensional families of operators. Then an algebraic trick allows one to go from $\mathbb{R}$ to $\mathbb{C}$. It was not clear how to go further, especially on $\mathbb{C}^{d}$.
(b) Polynomial approximation is more difficult in $H\left(\mathbb{C}^{d}\right), d \geq 2$, than in $H(\mathbb{C})$. In particular, there is no satisfactory Runge or Mergelyan theorem in $H\left(\mathbb{C}^{d}\right)$, and one has to work with the delicate notion of polynomially convex sets. That is why the result of [1] was for translations by real elements even though we are working in $\mathbb{C}^{d}$. In this paper, we overcome this last difficulty, and we are able to prove the following result.

[^0]Theorem 1.1 The set $\bigcap_{a \in \mathbb{C}^{d} \backslash\{0\}} H C\left(\tau_{a}\right)$ is a residual subset of $H\left(\mathbb{C}^{d}\right)$.
Our method of proof uses arithmetical tools from [1], in particular the forthcoming Lemma 2.5. It allows us to obtain a redundant net in any compact subset of $\mathbb{C}^{d}$, for any dimension $d$. We then use classical results on polynomially convex sets of $\mathbb{C}^{d}$ to show that we can do a polynomial approximation of any holomorphic function defined on a union of sufficiently disjoint hypercubes.

## 2 Tools for the Construction

### 2.1 Polynomial Convexity

Let $\mathbb{C}, \mathbb{R}$, and $\mathbb{N}$ denote the complex, real, and natural numbers, respectively, and let $\mathbb{N}_{0}=\{0,1,2, \ldots\}$. For a compact subset $K$ of $\mathbb{C}^{d}$, we denote by $\widehat{K}$ the polynomially convex hull of $K$ :

$$
\widehat{K}=\left\{z \in \mathbb{C}^{d} ; \text { for every polynomial } p,|p(z)| \leq \max _{w \in K}|p(w)|\right\} .
$$

A compact set $K \subset \mathbb{C}^{d}$ is said to be polynomially convex if it is equal to its polynomially convex hull; that is, if $K=\widehat{K}$. For example, compact convex sets are polynomially convex and a compact subset of $\mathbb{C}$ is polynomially convex if and only if its complement is connected.

Runge's Polynomial Approximation Theorem states that if a compact subset $K$ of $\mathbb{C}$ has connected complement, then every function holomorphic on (a neighborhood of) $K$ can be uniformly approximated by polynomials. The following extension of the Runge Theorem to higher dimensions is known as the Oka-Weil Theorem (see [6]).

Theorem 2.1 Let $K$ be a polynomially convex compact subset of $\mathbb{C}^{d}$. Then, for every function $f$ holomorphic on $K$ and for every $\epsilon>0$, there exists a polynomial $p$ such that

$$
|p(z)-f(z)|<\epsilon, \quad \text { for all } \quad z \in K
$$

An important tool in constructing polynomially convex sets is the following Separation Lemma by Eva Kallin (see [6]).

Lemma 2.2 Let $X$ and $Y$ be two polynomially convex compact subsets of $\mathbb{C}^{d}$. If there exists a polynomial $p$ which separates $X$ and $Y$ in the sense that $\overline{p(X)} \cap \overline{p(Y)}=\varnothing$, then the union $X \cup Y$ of $X$ and $Y$ is also polynomially convex.

We identify $\mathbb{C}^{d}$ with $\mathbb{R}^{2 d}$ by means of either of the two natural complex structures on $\mathbb{R}^{2 d}$, and henceforth $|x|$ denotes the $\ell_{\infty}$-norm on $\mathbb{R}^{2 d}$. For $x=\left(x^{(1)}, \ldots, x^{(2 d)}\right) \in$ $\mathbb{R}^{2 d}$ we denote by $Q(x, R)$ the closed hypercube

$$
Q(x, R)=Q\left(\left(x^{(1)}, \ldots, x^{(2 d)}\right), R\right)=\left\{y \in \mathbb{R}^{2 d}:|x-y| \leq R\right\}
$$

which may also be considered as the closed ball of center $x$ and radius $R$ with respect to the norm $|\cdot|$. If $z \in \mathbb{C}^{d}$ corresponds to the point $x \in \mathbb{R}^{2 d}$, we shall, by abuse of notation, write $Q(z, R)$ to mean the subset of $\mathbb{C}^{d}$ identified with the hypercube $Q(x, R)$ in $\mathbb{R}^{2 d}$. When we say that a subset $K$ of $\mathbb{R}^{2 d}$ is polynomially convex, we mean that, as a subset
of $\mathbb{C}^{d}$, it is polynomially convex. Since compact convex sets are polynomially convex, it follows that hypercubes are polynomially convex.

We need to prove that several sets are polynomially convex.
Lemma 2.3 Let $K, L$ be two compact polynomially convex subsets of $\mathbb{R}^{2 d}$. Assume that there exists $a \in \mathbb{R}$ such that $x^{(1)}<a<y^{(1)}$ for all $(x, y) \in K \times L$. Then $K \cup L$ is polynomially convex.

Proof Let $z^{(1)}$ be a complex coordinate generated by the real coordinate $x^{(1)}$. The polynomial $f(z)=z^{(1)}$ separates $K$ and $L$, and so by Kallin's Separation Lemma, $K \cup L$ is polynomially convex.

Lemma 2.4 Let $R>0$. For every $1 \leq \ell \leq 2 d$, let $\left(y_{j}^{(\ell)}\right)_{0 \leq j \leq \Omega_{l}}$ be a finite family of points in $\mathbb{R}$ such that, for all $j \neq j^{\prime},\left|y_{j}^{(\ell)}-y_{j^{\prime}}^{(\ell)}\right|>2 R$. Then

$$
\bigcup_{j_{1}, \ldots, j_{2 d}} Q\left(\left(y_{j_{1}}^{(1)}, \ldots, y_{j_{2 d}}^{(2 d)}\right), R\right)
$$

is polynomially convex.
Proof For simplicity, let us write

$$
X=\cup_{j_{1}, \ldots, j_{2 d}} Q\left(\left(y_{j_{1}}^{(1)}, \ldots, y_{j_{2 d}}^{(2 d)}\right), R\right)
$$

Recalling the identification $\mathbb{R}^{2 d}=\mathbb{C}^{d}$ and denoting by $X^{(n)}$ the projection of $X$ on the complex coordinate $z^{(n)}, n=1, \ldots, d$, we have $X=\prod_{n=1}^{d} X^{(n)}$, because of the separation hypotheses. Since each $X^{(n)}$ is a disjoint (again by the separation hypothesis) union of closed squares, it is polynomially convex (here, we are just working in $\mathbb{C}$ ) and since a product of polynomially convex sets is again polynomially convex, it follows that $X$ is polynomially convex.

### 2.2 Construction of Sequences of Integers

We will need the following lemma about the construction of sequences of integers having some redundant properties. The following Lemma is [1, Corollary 2.8] applied to the whole sequence of integers.

Lemma 2.5 For all $d \geq 1$ and all $A>0$, there exist $\rho>1$ and an increasing sequence of integers $\left(\mu_{n}\right)$ such that $\mu_{n+1} \geq \rho \mu_{n}$ for any $n \geq 1$ and, for all $P>0$, we can find $s_{1} \in \mathbb{N}$, finite subsets $E_{r}$ of $\mathbb{N}^{r-1}$ for $r=2, \ldots, 2 d+1$, maps $s_{r}: E_{r} \rightarrow \mathbb{N}$ for $r=2, \ldots, 2 d$ and $a$ one-to-one map $\phi: E_{2 d+1} \rightarrow \mathbb{N}$ such that the following hold.

- For any $r=2, \ldots, 2 d+1$,

$$
E_{r}=\left\{\left(k_{1}, \ldots, k_{r-1}\right) \in \mathbb{N}_{0}^{r-1}: k_{1}<s_{1}, k_{2}<s_{2}\left(k_{1}\right), \ldots, k_{r-1} \leq s_{r-1}\left(k_{1}, \ldots, k_{r-2}\right)\right\}
$$

- For every $r=1, \ldots, 2 d$, for every $\left(k_{1}, \ldots, k_{r-1}\right) \in E_{r}$, where $E_{1}=\varnothing$,

$$
\sum_{j=1}^{s_{r}\left(k_{1}, \ldots, k_{r-1}\right)} \frac{1}{\mu_{\phi\left(k_{1}, \ldots, k_{r-1}, j, 0, \ldots, 0\right)}} \geq \frac{A}{\mu_{\phi\left(k_{1}, \ldots, k_{r-1}, 0, \ldots, 0\right)}} .
$$

- $\phi(0, \ldots, 0) \geq P$.
- If $\left(k_{1}, \ldots, k_{2 d}\right)>\left(k_{1}^{\prime}, \ldots, k_{2 d}^{\prime}\right)$ in the lexicographical order, then

$$
\phi\left(k_{1}, \ldots, k_{2 d}\right)>\phi\left(k_{1}^{\prime}, \ldots, k_{2 d}^{\prime}\right) .
$$

When $r=1$, the second point of the lemma simply means that

$$
\sum_{j=1}^{s_{1}} \frac{1}{\mu_{\phi(j, 0, \ldots, 0)}} \geq \frac{A}{\mu_{\phi(0, \ldots, 0)}} .
$$

## 3 The Construction

Lemma 3.1 Let $K$ be a compact subset of $(0,+\infty)^{2 d}$. Assume that for all $\varepsilon>0$ and all $R>0$, we can find $N \geq 1$, a finite increasing sequence of integers $\left(\lambda_{n}\right)_{n=1, \ldots, N}$, and a finite number $\left(x_{n, k}\right)_{1 \leq n \leq N, 1 \leq k \leq p_{n}}$ of elements of $K$ satisfying the following:
(i) The hypercubes $Q\left(\lambda_{n} x_{n, k}, R\right), 1 \leq n \leq N, 1 \leq k \leq p_{n}$, are pairwise disjoint and are disjoint from $Q(0, R)$.
(ii) The compact set $Q(0, R) \cup \bigcup_{1 \leq n \leq N, 1 \leq k \leq p_{n}} Q\left(\lambda_{n} x_{n, k}, R\right)$ is polynomially convex.
(iii) For every $x \in K$, there exist $n, m \in\{1, \ldots, N\}$ and $k \in\left\{1, \ldots, p_{n}\right\}$ such that $\left|\lambda_{m} x-\lambda_{n} x_{n, k}\right|<\varepsilon$.
Then $\bigcap_{a \in K} H C\left(\tau_{a}\right)$ is a residual subset of $H\left(\mathbb{C}^{d}\right)$.
Proof Let $U, V$ be nonempty open subsets of $H\left(\mathbb{C}^{d}\right)$. It is sufficient to show that

$$
U \cap\left\{f \in H\left(\mathbb{C}^{d}\right) ; \forall x \in K, \exists m \in \mathbb{N}, \tau_{m x} f \in V\right\}
$$

is nonempty (see for instance [2, Proposition 7.4]). Let $\delta, \rho>0$ and $g, h \in H\left(\mathbb{C}^{d}\right)$ be such that

$$
\begin{aligned}
& U \supset\left\{f \in H\left(\mathbb{C}^{d}\right) ;\|f-g\|_{\mathcal{C}(Q(0, \rho))}<2 \delta\right\} \\
& V \supset\left\{f \in H\left(\mathbb{C}^{d}\right) ;\|f-h\|_{\mathcal{C}(Q(0, \rho))}<2 \delta\right\},
\end{aligned}
$$

where $\|\cdot\|_{\mathcal{C}(Q(0, \rho))}$ denotes the sup-norm for $\mathcal{C}(Q(0, \rho))$. We set $R=2 \rho$. By uniform continuity of $h$ on $Q(0,2 \rho)$, there exists $\eta \in(0, \rho)$ such that

$$
\left\|h\left(\cdot-z_{0}\right)-h\right\|_{\mathcal{C}(Q(0, \rho))}<\delta
$$

provided $\left|z_{0}\right|<\eta$. We set $\varepsilon=\min (\delta, \eta)$, and the assumptions of the lemma give us sequences $\left(\lambda_{n}\right)$ and $\left(x_{n, k}\right)$. By (i) and (ii), there exists an entire function $f \in H\left(\mathbb{C}^{d}\right)$ such that $\|f-g\|_{\mathcal{E}_{(Q(0, \rho))}}<\varepsilon<2 \delta$ and

$$
\left\|f\left(\cdot+\lambda_{n} x_{n, k}\right)-h\right\|_{\mathcal{C}(Q(0, R))}<\delta
$$

for any $n, k$. Now let $x \in K$ and let $n, m$ and $k$ be such that (iii) holds. Then for any $z \in Q(0, \rho)$, observing that $z+\lambda_{m} x-\lambda_{n} x_{n, k}$ belongs to $Q(0, R)$, we get

$$
\begin{aligned}
\left|\tau_{\lambda_{m} x} f(z)-h(z)\right| \leq \mid f\left(z+\lambda_{m} x-\lambda_{n} x_{n, k}\right. & \left.+\lambda_{n} x_{n, k}\right)-h\left(z+\lambda_{m} x-\lambda_{n} x_{n, k}\right) \mid \\
& +\left|h\left(z+\lambda_{m} x-\lambda_{n} x_{n, k}\right)-h(z)\right|<2 \delta
\end{aligned}
$$

which concludes the proof.

We will use a version of the previous lemma for special $K$ and restrict the covering property to compact subsets of $K$.

Lemma 3.2 Let $K$ be a compact subset of $(0,+\infty)^{2 d}$ of the form $K=\prod_{\ell=1}^{2 d}\left[a_{\ell}, a_{\ell}^{\prime}\right]$. Assume that, for all $\varepsilon>0$, for all $R>0$, there exists $\gamma>0$ such that for every compact hypercube $L \subset K$ with diameter less than $\gamma$, for every $M \in \mathbb{N}$, we can find $N \geq M$, a finite increasing sequence of integers $\left(\lambda_{n}\right)_{n=M, \ldots, N}$ with $\lambda_{M} \geq M$, and a finite number $\left(x_{n, k}\right)_{M \leq n \leq N, 1 \leq k \leq p_{n}}$ of elements of $L$ satisfying the following:
(i) The hypercubes $Q\left(\lambda_{n} x_{n, k}, R\right), M \leq n \leq N, 1 \leq k \leq p_{n}$, are pairwise disjoint.
(ii) The compact set $\bigcup_{M \leq n \leq N, 1 \leq k \leq p_{n}} Q\left(\lambda_{n} x_{n, k}, R\right)$ is polynomially convex.
(iii) For every $x \in L$, there exist $n, m \in\{M, \ldots, N\}$ and $k \in\left\{1, \ldots, p_{n}\right\}$ such that

$$
\left|\lambda_{m} x-\lambda_{n} x_{n, k}\right|<\varepsilon
$$

Then $\bigcap_{a \in K} H C\left(\tau_{a}\right)$ is a residual subset of $H\left(\mathbb{C}^{d}\right)$.
Proof We show that the assumptions of Lemma 3.1 are automatically satisfied. Put $a=\min a_{\ell}>0$ and $a^{\prime}=\max a_{\ell}^{\prime}$. A positive real number $\gamma>0$ being fixed, $K$ may be decomposed as $K=L_{1} \cup \cdots \cup L_{J}$, where each $L_{j}$ is a compact hypercube with diameter less than $\gamma$. We set $N_{0}=0, \lambda_{0}=1, p_{0}=0$, and we construct inductively sequences $\left(\lambda_{n}\right)$ and $\left(x_{n, k}\right)$ as in Lemma 3.1. Assume that the construction has been done until step $j-1(1 \leq j \leq J)$ and let us do it for step $j$. Let $M_{j}$ be sufficiently large such that $M_{j}>N_{j-1}, M_{j} a-\lambda_{N_{j-1}} a^{\prime}-2 R>0$. We then apply the assumptions of Lemma 3.2 to $L=L_{j}$ and $M=M_{j}$ to get $N_{j} \geq M_{j}$ and sequences $\left(\lambda_{n}\right), M_{j} \leq n \leq N_{j}$ and elements $\left(x_{n, k}\right)$ of $L_{J}, M_{j} \leq n \leq N_{j}, 1 \leq k \leq p_{n}$.

We claim that the union of the sequences $\left(\lambda_{n}\right), M_{j} \leq n \leq N_{J}$ and $\left(x_{n, k}\right), M_{j} \leq$ $n \leq N_{J}, 1 \leq k \leq p_{n}$, for $j=1, \ldots, J$, satisfies the hypotheses and hence the conclusion of Lemma 3.1. Notice that the sequence $\left(\lambda_{n}\right)$ is increasing, since $N_{j-1}<M_{j}$. The covering property (iii) of Lemma 3.1 clearly follows from Lemma 3.2(iii).

We then show that all the hypercubes $Q\left(\lambda_{n} x_{n, k}, R\right)$ are pairwise disjoint, even if they are constructed at different steps.

First of all, for fixed $j$, and $n \in\left\{M_{j}, \ldots, N_{j}\right\}$, the finite sequence $x_{n, k}$ was chosen according to the hypothesis of Lemma 3.2, so we have that the hypercubes $Q\left(\lambda_{n} x_{n, k}, R\right)$ are indeed pairwise disjoint.

For $n$ and $m$ coming from different $j^{\prime} s$, the crucial point is to observe that, for any $x \in L_{j-1}$ and any $y \in L_{j}$, for any $n \in\left\{M_{j-1}, \ldots, N_{j-1}\right\}$, for any $m \in\left\{M_{j}, \ldots, N_{j}\right\}$,

$$
\begin{equation*}
\lambda_{n} x^{(1)}+R \leq \lambda_{N_{j-1}} a^{\prime}+R<\lambda_{M_{j}} a-R \leq \lambda_{m} y^{(1)}-R \tag{3.1}
\end{equation*}
$$

The way we choose to initialize the construction (with $M_{1} a>2 R$ ) guarantees that $Q(0, R)$ is also disjoint from all these hypercubes, and so our construction satisfies Lemma 3.1(i).

For each $j=1, \ldots, J$, the set

$$
X_{j}=\bigcup_{n=M_{j}}^{N_{j}} \bigcup_{k=1}^{p_{n}} Q\left(\lambda_{n} x_{n, k}, R\right)
$$

is polynomially convex, and an easy induction based on Lemma 2.3 and (3.1) ensures that

$$
Q(0, R) \cup \bigcup_{j=1}^{J} \bigcup_{n=M_{j}}^{N_{j}} \bigcup_{k=1}^{p_{n}} Q\left(\lambda_{n} x_{n, k}, R\right)=Q(0, R) \cup \bigcup_{j=1}^{J} X_{j}
$$

is polynomially convex. We have verified (i), (ii), and (iii) of Lemma 3.1. This concludes the proof.

Proposition 3.3 Let $K$ be a compact subset of $(0,+\infty)^{2 d}$. Then $\bigcap_{a \in K} H C\left(\tau_{a}\right)$ is a residual subset of $H\left(\mathbb{C}^{d}\right)$.

Proof Without loss of generality, we can assume that $K=\prod_{\ell=1}^{2 d}\left[a_{\ell}, a_{\ell}^{\prime}\right]$. We intend to apply Lemma 3.2. Thus, let $R, \varepsilon>0$. We first apply Lemma 2.5 to $A=4 R / \varepsilon$ to get some $\rho>1$ and some sequence of integers $\left(\mu_{n}\right)$ with $\mu_{n+1} \geq \rho \mu_{n}$. We then define $\gamma>0$ as any positive real number such that, given any $x \in K, \rho x^{(\ell)}-x^{(\ell)}-\gamma>0$ for all $\ell=1, \ldots, 2 d$. Now let $L$ be a compact hypercube in $K$ with diameter less than $\gamma$ and let $M \in \mathbb{N}$. Without loss of generality, we can assume that $L=\prod_{\ell=1}^{2 d}\left[b_{\ell}, b_{\ell}+\gamma\right]$. We then apply Lemma 2.5 with $P \geq M$ such that

$$
\mu_{P} \inf _{\ell=1, \ldots, 2 d}\left(\rho b_{\ell}-b_{\ell}-\gamma\right)>2 R
$$

We get maps $s_{1}, \ldots, s_{2 d}$ and $\phi$. We can now define our covering of $L$. Bearing in mind that the domain of $\phi$ is finite, we set

$$
n_{0}=\min _{\left(k_{1}, \ldots, k_{2 d}\right)} \phi\left(k_{1}, \ldots, k_{2 d}\right) \geq M, N=\max _{\left(k_{1}, \ldots, k_{2 d}\right)} \phi\left(k_{1}, \ldots, k_{2 d}\right)
$$

and let $n \in\left\{n_{0}, \ldots, N\right\}$. Then either $n$ is not a $\phi\left(k_{1}, \ldots, k_{2 d}\right)$, in which case we set $p_{n}=0$, that is, we do nothing; or $n$ is equal to $\phi\left(k_{1}, \ldots, k_{2 d}\right)$ for a (necessarily) unique $\left(k_{1}, \ldots, k_{2 d}\right)$. We then define the set $\left\{x_{n, k}\right\}_{1 \leq k \leq p_{n}}$ as

$$
\begin{aligned}
& L \cap\left\{\left(b_{1}+\frac{4 R \alpha_{1}}{\mu_{\phi(0, \ldots, 0)}}+\frac{\varepsilon}{\mu_{\phi(1,0, \ldots, 0)}}+\cdots+\frac{\varepsilon}{\mu_{\phi\left(k_{1}, 0, \ldots, 0\right)}},\right.\right. \\
& b_{2}+\frac{4 R \alpha_{2}}{\mu_{\phi\left(k_{1}, 0, \ldots, 0\right)}}+\frac{\varepsilon}{\mu_{\phi\left(k_{1}, 1,0, \ldots, 0\right)}}+\cdots+\frac{\varepsilon}{\mu_{\phi\left(k_{1}, k_{2}, \ldots, 0\right)}}, \\
& \vdots \\
& \left.b_{2 d}+\frac{4 R \alpha_{2 d}}{\mu_{\phi\left(k_{1}, \ldots, k_{2 d-1}, 0\right)}}+\frac{\varepsilon}{\mu_{\phi\left(k_{1}, \ldots, k_{2 d-1}, 1\right)}}+\cdots+\frac{\varepsilon}{\mu_{\phi\left(k_{1}, \ldots, k_{2 d}\right)}}\right) \\
& \left.\alpha_{1}, \ldots, \alpha_{2 d} \in \mathbb{N}_{0}\right\}
\end{aligned}
$$

We also set $\lambda_{n}=\mu_{\phi\left(k_{1}, \ldots, k_{2 d}\right)}$ and we show that the assumptions of Lemma 3.2 are satisfied. First of all, the hypercubes $Q\left(\lambda_{n} x_{n, k}, R\right)$ are pairwise disjoint. Indeed, let $(n, k) \neq(m, j)$. Then we have two cases:

- $n \neq m$ : for instance, $n<m$. In this case, looking at the first coordinate of $\lambda_{n} x_{n, k}$ and $\lambda_{m} x_{m, j}$, we get, using the fact that $\phi\left(k_{1}, \ldots, k_{2 d}\right) \geq P$ :

$$
\begin{align*}
\left|\lambda_{m} x_{m, j}-\lambda_{n} x_{n, k}\right| & \geq \lambda_{m} b_{1}-\lambda_{n}\left(b_{1}+\gamma\right) \geq \rho \lambda_{n} b_{1}-\lambda_{n}\left(b_{1}+\gamma\right)  \tag{3.2}\\
& \geq \mu_{P}\left(\rho b_{1}-b_{1}-\gamma\right)>2 R .
\end{align*}
$$

- $n=m$ : Then $x_{n, k}$ and $x_{n, j}$ may be written as above, with two different sequences $\left(\alpha_{1}, \ldots, \alpha_{2 d}\right)$ and $\left(\beta_{1}, \ldots, \beta_{2 d}\right)$. Let $\ell \in\{1, \ldots, 2 d\}$ be such that $\beta_{\ell} \neq \alpha_{\ell}$. Looking now at this coordinate, we get

$$
\begin{equation*}
\left|\lambda_{n} x_{n, k}-\lambda_{n} x_{n, j}\right| \geq \frac{4 R \lambda_{n}}{\mu_{\phi\left(k_{1}, \ldots, k_{\ell-1}, 0, \ldots\right)}}>2 R \tag{3.3}
\end{equation*}
$$

since $\lambda_{n}=\mu_{\phi\left(k_{1}, \ldots, k_{2 d}\right)} \geq \mu_{\phi\left(k_{1}, \ldots, k_{\ell-1}, 0, \ldots\right)}$.
The covering property is also easy to verify using the construction of $\left(x_{n}\right)_{n, k}$. Let $x \in L$. There exists $\alpha_{1} \in \mathbb{N}_{0}$ such that

$$
b_{1}+\frac{4 R \alpha_{1}}{\mu_{\phi(0, \ldots, 0)}} \leq x^{(1)} \leq b_{1}+\frac{4 R\left(\alpha_{1}+1\right)}{\mu_{\phi(0, \ldots, 0)}} .
$$

Now, by construction of $\phi$, using Lemma 2.5 (recall that $A=4 R / \varepsilon$ ), there exists $k_{1}<s_{1}$ such that

$$
\begin{aligned}
b_{1} & +\frac{4 R \alpha_{1}}{\mu_{\phi(0, \ldots, 0)}}+\frac{\varepsilon}{\mu_{\phi(1,0, \ldots, 0)}}+\cdots+\frac{\varepsilon}{\mu_{\phi\left(k_{1}, 0, \ldots, 0\right)}} \\
& \leq x^{(1)} \\
& \leq b_{1}+\frac{4 R \alpha_{1}}{\mu_{\phi(0, \ldots, 0)}}+\frac{\varepsilon}{\mu_{\phi(1,0, \ldots, 0)}}+\cdots+\frac{\varepsilon}{\mu_{\phi\left(k_{1}+1,0, \ldots, 0\right)}} .
\end{aligned}
$$

This $k_{1}$ being fixed, there exists $\alpha_{2} \geq 0$ such that

$$
b_{2}+\frac{4 R \alpha_{2}}{\mu_{\phi\left(k_{1}, 0, \ldots, 0\right)}} \leq x^{(2)} \leq b_{2}+\frac{4 R\left(\alpha_{2}+1\right)}{\mu_{\phi\left(k_{1}, 0, \ldots, 0\right)}}
$$

Iterating this construction, we find $\alpha_{1}, \ldots, \alpha_{2 d} \geq 0$ and $k_{1}, \ldots, k_{2 d}$ such that, for all $\ell=1, \ldots, 2 d$,

$$
\begin{gathered}
b_{\ell}+\frac{4 R \alpha_{\ell}}{\mu_{\phi\left(k_{1}, \ldots, k_{\ell-1}, 0, \ldots, 0\right)}}+\frac{\varepsilon}{\mu_{\phi\left(k_{1}, \ldots, k_{\ell-1}, 1,0, \ldots, 0\right)}}+\cdots+\frac{\varepsilon}{\mu_{\phi\left(k_{1}, \ldots, k_{\ell-1}, k_{\ell}, 0, \ldots, 0\right)} \leq x^{(\ell)} \leq} \\
b_{\ell}+\frac{4 R \alpha_{\ell}}{\mu_{\phi\left(k_{1}, \ldots, k_{\ell-1}, 0, \ldots, 0\right)}}+\frac{\varepsilon}{\mu_{\phi\left(k_{1}, \ldots, k_{\ell-1}, 1,0, \ldots, 0\right)}}+\cdots+\frac{\varepsilon}{\mu_{\phi\left(k_{1}, \ldots, k_{\ell-1}, k_{\ell}+1,0, \ldots, 0\right)}}
\end{gathered}
$$

Let $n=\phi\left(k_{1}, \ldots, k_{2 d}\right)$ and let $x_{n, k}$ correspond to these values of $\alpha_{1}, \ldots, \alpha_{2 d}$. Then,

$$
\left|\lambda_{n} x-\lambda_{n} x_{n, k}\right| \leq \mu_{\phi\left(k_{1}, \ldots, k_{2 d}\right)} \times \sup _{\ell=1, \ldots, 2 d} \frac{\varepsilon}{\mu_{\phi\left(k_{1}, \ldots, k_{\ell}+1,0, \ldots, 0\right)}} \leq \varepsilon
$$

It remains to be shown that $\bigcup_{M \leq n \leq N, 1 \leq k \leq p_{n}} Q\left(\lambda_{n} x_{n, k}, R\right)$ is polynomially convex, bearing in mind that we are only taking $n \geq n_{0}$. For such $M \leq n \leq N, n=$ $\phi\left(k_{1}, \ldots, k_{2 d}\right)$, we set $H_{n}=\bigcup_{1 \leq k \leq p_{n}} Q\left(\lambda_{n} x_{n, k}, R\right)$, and we first show that $H_{n}$ is polynomially convex. For $\ell=1, \ldots, 2 d$, let $\Omega_{\ell} \geq 0$ be the greatest integer such that

$$
b_{\ell}+\frac{4 R \Omega_{\ell}}{\mu_{\phi\left(k_{1}, \ldots, k_{\ell-1}, 0, \ldots, 0\right)}}+\frac{\varepsilon}{\mu_{\phi\left(k_{1}, \ldots, k_{\ell-1}, 1,0, \ldots, 0\right)}}+\cdots+\frac{\varepsilon}{\mu_{\phi\left(k_{1}, \ldots, k_{\ell-1}, k_{\ell}+1,0, \ldots, 0\right)}} \leq b_{\ell}+\gamma
$$

For $0 \leq j \leq \Omega_{\ell}$, we also set

$$
y_{j}^{(\ell)}=b_{\ell}+\frac{4 R j}{\mu_{\phi\left(k_{1}, \ldots, k_{\ell-1}, 0, \ldots, 0\right)}}+\frac{\varepsilon}{\mu_{\phi\left(k_{1}, \ldots, k_{\ell-1}, 1,0, \ldots, 0\right)}}+\cdots+\frac{\varepsilon}{\mu_{\phi\left(k_{1}, \ldots, k_{\ell-1}, k_{\ell}+1,0, \ldots, 0\right)}}
$$

so that

$$
\left\{x_{n, k} ; 1 \leq k \leq p_{n}\right\}=\left\{\left(y_{j_{1}}^{(1)}, \ldots, y_{j_{2 d}}^{(2 d)}\right) ; 0 \leq j_{\ell} \leq \Omega_{\ell}, \ell=1, \ldots, 2 d\right\} .
$$

Since, as observed above (see (3.3)), $\left|y_{j_{l}}^{(l)}-y_{j_{l}^{\prime}}^{(l)}\right|>2 R$ if $j_{\ell} \neq j_{\ell}^{\prime}$, it follows from Lemma 2.4 that $H_{n}$ is polynomially convex. Bearing in mind that $H_{n}=\varnothing$, for $n<n_{0}$, we then conclude that $H_{M} \cup \cdots \cup H_{N}$ is polynomially convex by an easy induction using either Lemma 2.3 or Lemma 2.4. Indeed, for $n=n_{0}, \ldots, m_{0}-1$, for any $1 \leq k \leq p_{n}$ and any $1 \leq j \leq p_{m}$,

$$
\begin{equation*}
\lambda_{n} x_{n, k}^{(1)}+R \leq \lambda_{n}\left(b_{1}+\gamma\right)+R<\lambda_{n+1} b_{1}-R \leq \lambda_{n+1} x_{n+1, j}^{(1)}-R . \tag{3.4}
\end{equation*}
$$

Proof of Theorem 1.1 So far, we have shown that if $K$ is a compact subset of $(0,+\infty)^{2 d}$, then $\bigcap_{a \in K} H C\left(\tau_{a}\right)$ is a residual subset of $H\left(\mathbb{C}^{d}\right)$. This property remains true if $K=K_{1} \times \cdots \times K_{2 d}$ where each $K_{i}$ is either a subset of $(0,+\infty)$; or a subset of $(-\infty, 0)$; or $K_{i}=\{0\}$ and at least one $K_{i}$, say $K_{i_{0}}$, is different from $\{0\}$. The construction is exactly similar except that, on each coordinate such that $K_{i}=\{0\}$, we do nothing (we fix $x_{n, k}^{(i)}=0$ ) and, wherever we need a separation property (see for instance (3.1), (3.2), (3.4)), we look at the $i_{0}$-th coordinate. Moreover, in this case, the hypercubes $K$ and $L$ will have lower dimension. We finally conclude by writing $\mathbb{R}^{2 d} \backslash\{0\}$ as a countable union of such compact sets.

## References

[1] F. Bayart, Common hypercyclic vectors for high dimensional families of operators. Int. Math. Res. Not. IMRN 2016, no. 21, 6512-6552. http://dx.doi.org/10.1093/imrn/rnv354
[2] F. Bayart and É. Matheron, Dynamics of linear operators. Cambridge Tracts in Mathematics, 179, Cambridge University Press, Cambridge, 2009. http://dx.doi.org/10.1017/CBO9780511581113
[3] G. D. Birkhoff, Démonstration d'un théorème élémentaire sur les fonctions entières. C. R. Acad. Sci. Paris 189(1929), 473-475.
[4] G. Costakis and M. Sambarino, Genericity of wild holomorphic functions and common hypercyclic vectors. Adv. Math. 182(2004), 278-306. http://dx.doi.org/10.1016/S0001-8708(03)00079-3
[5] K.-G. Grosse-Erdmann and A. Peris, Linear chaos. Universitext, Springer, London 2011. http://dx.doi.org/10.1007/978-1-4471-2170-1
[6] E. L. Stout, Polynomial convexity. Progress in Mathematics, 261, Birkhäuser Boston, Inc., Boston, MA, 2007.
[7] N. Tsirivas, Common hypercyclic functions for translation operators with large gaps. J. Funct. Anal. 272(2017), 2726-2751. http://dx.doi.org/10.1016/j.jfa.2016.11.010
[8] ——, Common hypercyclic functions for translation operators with large gaps. II. arxiv:1412.1963
[9] —— Existence of common hypercyclic vectors for translation operators. arxiv:1411.7815
Université Clermont Auvergne, CNRS, LMBP, F-63000 Clermont-Ferrand, France
e-mail: frederic.bayart@uca.fr
Département de mathématiques et de statistique, Université de Montréal, CP-6128A Centreville, Montréal, QC, H3C3J7, Canada
e-mail: gauthier@dms.umontreal.ca


[^0]:    Received by the editors July 6, 2016; revised October 6, 2016.
    Published electronically May 26, 2017.
    AMS subject classification: 47A16, 32E20.
    Keywords: hypercyclic operator, translation operator.

