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We investigate suspensions of non-Brownian, millimetric monodisperse spherical particles
floating at quasi-two-dimensional fluid interfaces, from dilute to dense concentrations.
Building upon the phase diagram in the capillary number (Ca) and areal fraction (φ)
constructed by Shin & Coletti (2024 J. Fluid Mech. 984, R7), we analyse the dynamics of
both aggregation and dispersion. In the capillary-driven clustering regime (Ca < 1), strong
inter-particle bonds yield large, fractal-like clusters that grow by hit-and-stick collisions.
In the drag-driven break-up regime (Ca > 1, φ < 0.4), turbulent fluctuations overcome
capillarity and result in particles moving similarly to passive tracers and forming clusters
by random adjacency. In the lubrication-driven clustering regime (Ca > 1, φ > 0.4), the
close inter-particle proximity amplifies lubrication forces and results in large, crystal-like
clusters. Above a threshold concentration that depends on Ca, self-similar percolating
clusters span the entire domain. The particle transport exhibits a classic ballistic-to-
diffusive transition, with the long-time diffusivity hindered by the reduced fluctuating
energy at high concentrations. Nearby particles separate at initially slow rates due to
strong capillary attraction, and then follow a super-diffusive dispersion regime. In dense
suspensions, the process is characterised by the time scale associated with inter-particle
collisions and by the energy dissipation rate defined by the lubrication force between
adjacent particles. Our results provide a framework for predicting particle aggregation
in interfacial suspensions such as froth flotation and pollutant dispersion, and may inform
the design of advanced materials through controlled colloidal self-assembly.
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1. Introduction
Dense turbulent suspensions play a pivotal role in a wide range of industrial applications
and natural phenomena such as pneumatic conveying, debris flow, sediment transport and
snow avalanches. Here, we term a suspension ‘dense’ when inter-particle interactions are
frequent compared with the typical response time of the particles, and ‘dilute’ otherwise
(Clift, Grace & Weber 2005). Despite their prevalence, understanding these complex
systems remains elusive due to the intricate interplay of multiple physical mechanisms
across different scales. Traditionally, research studies have focused on either dense, viscous
suspensions (Guazzelli, Morris & Pic 2011) or dilute, turbulent ones (Balachandar &
Eaton 2010). The study of dense turbulent suspensions has been thwarted by the physical
complexities that arise when both inertial effects and inter-particle interactions are
combined, and by the difficulty of both measuring and simulating the system behaviour.
Recent advances in experimental methods (e.g. refractive index matching and medical
imaging) and numerical models (such as particle-resolved simulations) have enabled the
investigation of transitional and turbulent dense suspensions, for example in pipe flows
(Matas, Morris & Guazzelli 2003; Hogendoorn & Poelma 2018; Agrawal, Choueiri & Hof
2019; Hogendoorn et al. 2023), channel flows (Picano, Breugem & Brandt 2015; Wang
et al. 2016; Zade et al. 2018; Olivieri et al. 2020; Fong & Coletti 2022), boundary layers
(Baker & Coletti 2019), decaying turbulence (Zhang & Rival 2018) and sediment transport
(Vowinckel et al. 2023). The nature of the methodologies, however, entails limitations on
the accessible regimes, specifically on the particle properties and concentration, and on the
system scale. Thus, while progress is fast, the area can still be considered in its infancy.

An additional layer of complexity arises when particles are confined at fluid interfaces,
where their dynamics differs substantially from that in the bulk (Singh & Joseph 2005;
Madivala, Fransaer & Vermant 2009; Magnaudet & Mercier 2020). Previous studies
exploring the behaviour of particles at interfaces have mostly focused on low-inertia or
microscopic colloidal systems (Hoekstra et al. 2003; Fuller & Vermant 2012; Garbin 2019).
On the other hand, dense turbulent interfacial suspensions are present in both industrial
and natural settings, for example froth flotation in process engineering and in patches of
marine plastics. Multiple mechanisms may then superpose; for example, particle clustering
may manifest itself due to hydrodynamic interactions (Brown & Jaeger 2014), inertial
effects (Brandt & Coletti 2022) and capillarity (Protière 2023).

In our prior work (Shin & Coletti 2024), we examined the interactions of non-
Brownian, monodisperse spherical particles at the interface of quasi-two-dimensional
(Q2-D) turbulent liquid layers. By systematically varying parameters such as turbulence
intensity, interfacial tension, particle size and concentration, we investigated the clustering
propensity, cluster size and the particles’ mean kinetic energy, all influenced by the
interplay of capillarity, drag and lubrication forces. The balance of these forces was
quantified by two key non-dimensional parameters: the capillary number (Ca) and the
areal fraction (φ). The former is the ratio between the drag force pulling nearby particles
apart and the capillary attraction keeping them together. The latter is related to the ratio
between the footprint of all particles in the domain and the area of the same domain. We
proposed a phase diagram identifying three distinct regimes in the Ca − φ space, each
associated with a different clustering behaviour and kinetic energy of the particles.

Building on this foundation, the present study explores in detail the individual and
collective particle dynamics within these regimes. By analysing the spatio-temporal scales
and structure of clusters as well as the Lagrangian particle motion, we elucidate the
underlying mechanisms governing the aggregation and dispersion in the various regimes.
The paper is organised as follows. Section 2 presents the experimental set-up, defines
the physical parameters and describes the measurement approach and data processing.
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Label ρp

[g cm−3]
dp [mm] dp/η Re Reα φ Ca St Bo

SL 1.0 1.09 ± 0.07 0.99−2.14 566−1747 4.7−14.2 0.01−0.43 0.09−0.29 0.03−0.09 3.3 × 10−3

DL1 1.0 1.09 ± 0.07 0.57−2.10 229−1035 5.8−21.8 0.14−0.44 0.41−1.84 0.01−0.06 6.9 × 10−3

DL2 0.96 1.84 ± 0.17 0.97−3.54 192−1047 4.9−22.2 0.08−0.71 0.33−2.69 0.03−0.15 2.9 × 10−2

Table 1. Summary of the experimental parameters.

Section 3 discusses the results in terms of cluster properties (3.1) and particle motion (3.2).
Section 4 draws conclusions and offers an outlook for future work.

2. Methods
We use a conductive fluid consisting of a 10 % CuSO4 aqueous solution by mass,
with density ρ f = 1.08 g ml−1 and kinematic viscosity ν = 1.0 × 10−6 m2 s−1 . The
conductive fluid is contained in a 320 × 320 mm2 tray, placed above an 8 × 8 magnet
array arranged in a checkerboard pattern with alternating polarities. The flow is induced
by applying DC current through copper electrodes at opposite sides of the tray, generating
Lorentz forces in the horizontal direction. The magnets are spaced at a centre-to-centre
distance of 35 mm, defining the forcing scale L F . This set-up aligns with configurations
frequently employed in prior Q2-D turbulence studies, and was detailed extensively in our
previous study (Shin, Coletti & Conlin 2023).

We employ two distinct fluid layer set-ups and two sizes of polyethylene
spheres (Cospheric WPMS-1.00, CPB-0.96). The set-ups include: a single-layer (SL)
configuration, where spheres are placed at the free surface of a 7 mm-deep conductive
layer: and double-layer (DL) configurations (DL1 and DL2), with a 2 mm-thick mineral
oil layer on top of an 8 mm-thick conductive layer, where the spheres are at the liquid–
liquid interface. In DL1 and DL2 the fluid layers are identical, but different particle
sizes are used. Particles are introduced in varying quantities to adjust the areal fraction
φ ≡ Np(πd2

p/4)/AF OV , where Np is the time-averaged number of particles in the field
of view of area AF OV , and dp is the particle diameter. To explore the full range of
concentrations from fully dilute to fully dense, we vary φ from 1 % to 71 %.

To ensure consistency across experiments, we verify that the Bond number (Bo) and the
Stokes number (St) are both much smaller than 1 in all cases. The small Bond number,
Bo ≡ (ρ f − ρp)gd2

p/(4γ ), with ρp the particle density, g is the gravitational acceleration
and γ the interfacial tension, indicates that interfacial distortion due to buoyancy is
negligible. The small Stokes number, St ≡ τpurms, f /L F , where τp = ρpd2

p/(18μ) is the
particle response time, μ is the dynamic viscosity of the carrying fluid (or simply fluid
viscosity) and urms, f is the root-mean-square velocity of the flow urms, f = 〈u(x, t) ·
u(x, t)〉1/2

x,t , indicates that particle inertia is insignificant in comparison with the energetic
flow scales, justifying the assumption of a Stokesian dynamics. The capillary number is
defined as Ca ≡ 6

√
2πd6

purms/(ΘL F ), where Θ = 12γ h2
qpd3

p/μ, with γ the interfacial
tension and hqp the amplitude of the quadrupole mode of the interfacial distortion, whose
measurement was discussed in our previous study (Shin & Coletti 2024). Note that our
formulation of Ca is based on an average extensional strain rate evaluated at a characteris-
tic particle separation; therefore, an increase in Ca indicates that, on average, viscous (or
turbulent) drag increasingly overcomes capillary forces, resulting in diminished particle
cohesion. Further details of the experimental parameters are provided in table 1.
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Figure 1. Choice of a searching radius. (a) Distance to the nearest neighbour dN N sorted in descending order.
The dashed line represents the mean particle diameter (dp), and the dash-dot line indicates the cutoff distance
used to identify clustered neighbours. (b) An example of cluster detection from the corresponding experiment
at Ca = 0.33 and φ = 0.44. Particles within the same cluster are indicated with the same colour.

We use a Phantom VEO 640 CMOS camera to record 100-second sequences at rates of
100–240 frames per second, ensuring that inter-frame particle displacements are confined
to approximately 5 pixels or ∼ 1 mm. The imaging focuses on the central zone of the
tray, approximately L F away from its boundaries, to minimise edge effects. The field of
view captures a spatially and temporally homogeneous system of particles, with temporal
fluctuations in the number of imaged particles typically smaller than 1 % of the mean.
Particle centroids are tracked with sub-pixel accuracy using an in-house code, allowing
us to reconstruct their Lagrangian trajectories. We define clusters as groups of adjacent
particles. For their identification we employ the Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) algorithm (Ester et al. 1996), setting a search radius
around each particle centroid to determine adjacency, with a minimum requirement
of four neighbours. This is preferred to cluster identification strategies as the Voronoi
tessellation (Baker et al. 2017; Liu et al. 2020) requires defining a threshold dependent
on the system concentration and excluded volume effects. The search radius εdp, where ε
is the contact distance between centroids of adjacent pairs of particles normalised by the
mean particle diameter, is determined by analysing a low-Ca case where tightly bound
clusters and a few single particles coexist. We then plot the nearest-neighbour distance for
each particle in ascending order and identify the transition point where the distribution
flattens (figure 1a). The results are only weakly dependent on the precise value of ε. This
corresponds to an inter-particle gap much smaller than dp and comparable to the expected
thickness of a lubrication layer between capillarity-bonded particles.

Figure 1(b) displays a resulting example of cluster detection at Ca = 0.33 and φ = 0.44
based on ε = 1.20, our choice for this particle type based on the nearest-neighbour distance
distribution. We apply the same value of ε to all cases with the same type of particles: a
search radius of 1.25dp is used for SL and DL1 and 1.20dp for DL2.

To assess turbulence intensity under different electromagnetic forcing, we perform
separate particle image velocimetry (PIV) experiments where the fluid is exclusively laden
with polyethylene microspheres as tracers (dp = 75 − 90 µm, Cospheric UVPMS-BG-
1.00). These stay at the free surface (SL) or at the liquid–liquid interface (DL), similarly to
the millimetric particles. We calculate the Reynolds number Re ≡ urms, f L F/ν based on
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Figure 2. (a) Range of Reynolds numbers Re and Reα for the SL (black) and DL (red) configurations in
this study. (b) Normalised third-order longitudinal structure function, 〈δu3

L 〉/u3
rms, f ), and (c) energy spectrum,

〈E(k)〉, at varying levels of forcing for the DL configuration.

urms, f , which is varied by adjusting the electrical current from 0.09 to 1.00 A. The level
of forcing falls within the turbulent regime (Shin et al. 2023), with Kolmogorov scales
η comparable to dp (table 1). The outer-scale Reynolds number Reα = urms, f /(αL F ),
where α is the friction coefficient, equals or exceeds the approximate threshold Reα ≈ 5
(figure 2a) which ensures fully developed 2-D turbulence (Shin et al. 2023). The scaling
of the third-order longitudinal structure function 〈δu3

L〉 exhibits the expected transition
from ∼ r3 to ∼ r for separations r ≈ L F (figure 2b), while the energy spectrum is
consistent with the scaling E ∼ k−3 in the wavenumber range k > kF , where kF = 2π/L F
(figure 2c); see Boffetta & Ecke (2012). The limited size of the system does not allow to
ascertain the expected scaling E ∼ k−5/3 for k < kF .

To provide a baseline for comparing the effects of particle–particle and particle–fluid
interactions, we use random sequential adsorption (RSA) to virtually distribute non-
overlapping circles in the two-dimensional (2-D) domain (Evans 1993). The circle sizes are
drawn from a normal distribution matching the particle size distribution in our experiments
(approximately Gaussian with standard deviation listed in table 1). We generate random
configurations up to φ = 0.54, close to the saturation coverage of 0.547 (Hinrichsen,
Feder & Jøssang 1990). This RSA approach mimics a scenario devoid of any forcing
length scale and inter-particle interactions (except for the excluded volume). Note that our
DBSCAN clustering criterion – using the same threshold ε and a minimum requirement
of four neighbours – is applied consistently to the RSA-generated configurations.
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Figure 3. (a) Schematic of the three distinct clustering/break-up regimes within the Ca − φ phase space,
adapted from Shin & Coletti (2024). (b) Examples of detected clusters from each regime. Particles within
the same cluster are indicated with the same colour.

3. Results
As we demonstrated in Shin & Coletti (2024), the behaviour of the particles at the fluid
interface is governed by the interplay of capillary, drag and lubrication forces. The ratio
between those defines a Ca − φ phase space that captures different regimes of clustering
and particle kinetic energy. Capillarity act as a cohesive mechanism between particles, and
it is counteracted by viscous drag which disrupts cluster formation, especially in turbulent
flows with locally high strain rates. For large Ca, the drag dominates promoting cluster
break-up, particularly at relatively low (henceforth, moderately dense) concentrations.
Conversely, when both φ and Ca are large, lubrication prevents particles from separating,
allowing for large and stable clusters that move relatively slowly. Quantitatively, we
identify three distinct regimes in the Ca − φ space: (i) capillary-driven clustering for
Ca < 1, (ii) drag-driven break-up for Ca > 1 and φ < 0.40 and (iii) lubrication-driven
clustering for Ca > 1 and φ > 0.40 (figure 3).

3.1. Cluster properties

3.1.1. Clustering fraction and length scale
The fraction of particles forming clusters, denoted as χcl , is a key metric for understanding
how the tendency to aggregating evolves across different flow regimes. This is defined
as the number of particles contained in clusters, normalised by the total particle count.
Figure 4(a) depicts χcl as a function of Ca at various φ. As already discussed in Shin &
Coletti (2024), χcl increases with decreasing Ca (as capillarity prevails over drag) and
increasing φ (as lubrication prevails over drag). Moreover, for increasing Ca at a given
φ, χcl approaches the level obtained in the synthetic data by RSA (dotted line). This
implies that, when the fluid turbulence is sufficiently high, the statistical proximity of
non-overlapping particles is largely responsible for the observed trend.

Figure 4(b) shows how the mean cluster length scale depends on Ca and φ. To avoid
biases induced by the large number of small clusters, we define the weighted-average
radius as

〈Rg〉w ≡
∑

i n p,i Rg,i∑
i n p,i

, (3.1)

where Rg,i is the radius of gyration of the i th cluster and n p,i is the number of particles
forming it. At low Ca, particles are heavily influenced by strong attractive capillary forces
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Figure 4. (a) Clustered particle fraction (χcl ) as a function of areal fraction (φ) across different capillary
numbers (Ca). (b) Normalised cluster size (〈2Rg〉w/dp) as a function of φ at various Ca levels. In each case,
the dotted line represents the clustering fractions from random configurations for the respective φ values,
established through RSA up to φ = 0.54.
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Figure 5. Probability density functions (PDFs) of the cluster size, Rg , normalised by the exponential decay
length, (lexp): (a) RSA-generated random configurations at φ = 0.27, 0.44 and 0.53. The corresponding values
of lexp/dp are 0.20, 0.33 and 0.87, respectively. (b) The PDFs at φ = 0.27 for various experimental capillary
numbers: Ca = 0.16 , 0.23, 0.29, 0.87, 1.22, 1.51, 1.82, 2.10, 2.49 and 2.69, with the corresponding values of
lexp/dp = 5.66 , 4.16, 3.76, 0.41, 0.37, 0.33, 0.29, 0.32, 0.25 and 0.21, respectively. (c) The PDFs at φ = 0.53
for Ca = 0.59, 0.87, 1.22, 1.51, 1.82, 2.10, 2.49 and 2.69 with the corresponding values of lexp = 1.17 , 1.00,
1.00, 0.95, 0.88, 0.83, 0.79 and 0.74. The black dashed line in each panel represents an exponential decay,
exp(−Rg/ lexp).

exceeding the disruptive effect of drag, leading to extended clusters. These can grow larger
than a typical eddy size L F , comprising hundreds of particles. With increasing Ca, these
objects have higher chance of being exposed to extensional strain exceeding the capillarity,
leading to more frequent break-up and thus smaller aggregates. Again, with increasing Ca
the radius obtained by RSA is approached. Overall, both χcl and 〈Rg〉w indicate that, when
the turbulent forcing is intense and Ca � 1, the clustering is increasingly governed by the
stochastic adjacency of particles, rather than inter-particle interactions.

The PDFs of Rg offer further insight into how the clustering dynamics changes
across regimes. Figure 5(a) shows that clusters formed by RSA exhibit an exponential
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distribution, independently of φ. An exponential fit of the probability p(Rg)∼
exp(−Rg/ lexp), applied to the RSA data as well as to experimental data that exhibit
exponential decay, defines a characteristic length lexp used to normalise the distributions
in the different scenarios. Moderately dense systems (figure 5b) exhibit a transition
with varying Ca: in the capillary-driven clustering regime (Ca < 1) the cluster radius
PDFs possess long tails, with significant probability of large aggregates spanning the
entire domain; while in the drag-driven break-up regime (Ca > 1, φ < 0.40) drag disrupts
the large clusters and the distribution gradually approaches the RSA behaviour. This
observation supports the view that the clustering dynamics in moderately dilute systems
is predominantly influenced by the random proximity of particles.

The scenario is different for denser systems (figure 5c). Here, both in the capillarity-
driven regime (Ca < 1) and in the lubrication-driven clustering regime (Ca > 1, φ >
0.40), the decay of the PDFs is much slower compared with RSA. This implies that
the formation of very large clusters cannot be explained by excluded volume effect
at high concentration, and are instead sustained by lubrication forces. At even higher
concentrations, few large clusters percolate through the whole system. This scenario is
discussed in the next section.

3.1.2. Cluster percolation and self-similarity
Dense particle systems are known to exhibit sharp transitions to a percolating state when
their concentration increases above a threshold. In such a state, exceptionally large clusters
are formed that span the entire domain. The threshold is system-dependent: for example,
Shen, O’Hern & Shattuck (2012) found a critical area fraction φ∗ = 0.549 by simulating
periodic 2-D layers of frictionless particles under compression, while the experiments of
Alicke, Stricker & Vermant (2023) found φ∗ = 0.3 − 0.36 for particle layers under shear
and compression.

The present system also exhibits a transition to a percolating state. This is illustrated in
figures 6(a) and 6(b), where instantaneous realisations are shown for two representative
cases at Ca = 0.33. While both have comparable concentrations φ = 0.44 and 0.53, only
the latter displays percolating clusters. The transition is quantified in figure 6(c), plotting
the percolation fraction χp (number of imaging frames featuring at least one cluster
percolating through the whole field of view, divided by the total number of acquired
frames) as a function of φ, for a representative value of Ca = 0.33. While we do not vary
φ finely enough to identify a precise threshold φ∗, the transition appears relatively sharp.
Visual inspection also confirms that the formation of a percolation cluster is hindered by
increasing Ca, which favours more homogeneous patterns (figure 6d).

The trend across the parameter space is summarised in figure 6(e). For Ca 
 1,
we estimate φ∗ ∼ 0.4 − 0.5, comparable to classic configurations of compressed/sheared
particle layers (Alicke et al. 2023). On the other hand, for Ca � 1, the threshold is
significantly higher, φ∗ ∼ 0.55 − 0.6. This is consistent with the notion that percolation
naturally emerges in self-similar systems, where the influence of a preferential scale
characterising the pattern is weak or absent (Aharony & Stauffer 2003). At large Ca,
the flow increasingly imposes the forcing length scale L F that disrupts system-spanning
clusters, and percolation can only be attained at the largest concentrations. In particular, as
we showed in Shin & Coletti (2024), for Ca > 1, the typical cluster size exceeds L F only
for areal fractions above φ ∼ 0.55 (which we now identify as the approximate percolation
threshold in this regime).

The dominant role of the forcing scale, as opposed to the larger scales where
energy accumulates in Q2-D turbulence, was already stressed in studies of Lagrangian
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Figure 6. Snapshots with identified clusters at the same Ca = 0.33 but different areal fractions: (a) φ = 0.44,
and (b) φ = 0.53. Particles within the same cluster are indicated with the same colour. (c) Fraction of frames
χp where a system-spanning cluster is present as a function of φ at fixed Ca = 0.33. (d) Examples of cluster
morphology for systems with φ ≈ 0.44 at different capillary numbers: Ca = 0.29, 0.59 and 1.82 (from left
to right). At this φ, Ca 
 1 entails the formation of a percolating structure, while higher Ca results in non-
connected structures. (e) Value of χp in the Ca − φ space. Panels (a) and (b) correspond to the points inside
the red solid rectangle, and panel (d) corresponds to cases inside the red dotted rectangle.

dispersion (Xia et al. 2013, 2019). For both particle clustering and dispersion, such a
role is likely rooted in the persistent nature of eddies of size L F (see discussion in
Xia et al. 2013). On the other hand, when inter-particle attraction becomes dominant,
cohesive clusters much larger than L F appear. One may hypothesise that those might be
related to commensurately large-scale fluid motions, either due to the inverse cascade or
engendered by the influence of the clusters themselves on the flow. To investigate this
possibility, we define the Eulerian velocity autocorrelation ΓE (r)= 〈u(x0, t) · u(x0 +
r, t)〉x0,t/〈u(x0, t) · u(x0, t)〉x0,t and compare it for both particles and tracers. This is
shown in figure 7 for the representative case Ca = 2.69 and φ = 0.62. It highlights how,
even when particles form large percolating clusters, the correlation scale of their motion
matches that of the fluid flow (approximately 0.5L F , see Shin et al. 2023). We deduce that
the emergence of system-spanning clusters is not related to fluid motions at scales larger
than L F .

In order to further characterise the present system within the percolation framework,
we analyse the cluster size distributions. Unlike in sub-§ 3.1.1 where we focused on a
geometric scale, here, we focus on the size, intended as the number of particles n p
contained in each cluster. In particular, we evaluate the cluster number density f (n p),
namely the number density of clusters of size n p per unit area. In 2-D self-similar particle
systems (e.g. patterns of droplets condensing on surfaces (Stricker et al. 2022), we expect
f (n p)∼ (n p/n p,max )

−ξ (n p,max Ap)
−θ , where n p,max is the size of the largest cluster in

the distribution, ξ is the so-called polydispersity exponent characterising the scaling range,
Ap = πd2

p/4 is the projected area of a particle and θ is a trivial exponent depending on
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Figure 7. Examples of the Eulerian velocity autocorrelation for the DL configuration. The dashed line
represents tracers (Re = 1047), while the red line corresponds to a dense suspension of particles at the same
level of forcing (Ca = 2.69 and φ = 0.62), where they form a large, system-spanning cluster.
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Figure 8. (a) Cluster size distributions for a particle area fraction φ ≈ 0.44 at different capillary numbers Ca.
Here, n p is the number of particles within a cluster, characterising the cluster size and f (n p) is the areal number
density of clusters of size n p . Dashed lines denote experiments in the SL configuration, while solid lines are
from the DL2 set-up. (b) Normalised form of the same data, where n p,max is the size of the largest cluster,
Ap = πd2

p/4 is the projected area of a particle and θ = 1 is a trivial exponent from dimensional analysis. Two
limiting values of the polydispersity exponents, ξ = 2.05 (dash-dot) and ξ = 5/2 (dotted), which correspond to
the predicted Fisher’s exponent (Fisher 1967), are indicated.

the dimensionality of the system, which has here the value of 1 to guarantee dimensional
consistency.

Figure 8(a) reports f (n p) for cases of comparable areal fraction, φ ∼ 0.44, displaying
self-similar scaling ranges with a polydispersity exponent that varies with Ca (considering
comparable or higher concentrations, not shown for brevity, leads to analogous
conclusions). To extract the polydispersity exponents, we rescale f (n p) in figure 8 to have
f (n p)(n p,max Ap)

θ , which is expected to scale as (n p/n p,max )
−ξ .

For Ca < 1, the scaling range is broad and ξ is somewhat smaller than but comparable
to the value of 2.05 characterising 2-D percolation, as observed in randomly generated
clusters on regular lattices (Stauffer 1979). The discrepancy may be attributed to finite
size effects.

This indicates that, in the capillary-driven clustering regime, the present system shares
similarities (at least topologically) with classic percolating particle systems. For large
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Figure 9. Fractal dimension d f rac obtained via the box-counting method. (a) An example of normalised box
count as a function of box side length for a cluster (inset), (b) d f rac mapped in the Ca − φ space and (c) d f rac
as a function of the mean cluster size. The red dotted line indicates the mean d f rac from varying φ values
obtained via RSA.

capillary numbers Ca > 1, on the other hand, the scaling range is narrower as the forcing
hinders the formation of self-similar structures. Over approximately a decade, however, the
size distribution is consistent with a polydispersity exponent ξ = 5/2. This corresponds to
the well-known prediction derived by Fisher (1967) for a coagulation process under the
assumption that each agglomerate has equal probability of interacting with any other.
Such a condition is typically not satisfied in standard percolation processes, leading
to shallower exponents (Hoshent et al. 1979; Stauffer 1979). We therefore hypothesise
that, in the present configuration, the forcing by the underlying turbulence contributes
to randomising the system, effectively restoring the validity of Fisher’s assumption. We
remark that this is the first observation of a percolation transition in turbulent particle
suspensions, and its detailed properties deserve further investigation.

3.1.3. Clusters’ internal structure
The different mechanisms at play in the Ca − φ space can affect not only the clusters’
size but also their internal structure. Even though particle patterns may not be strictly self-
similar, an operational definition of fractal dimension d f rac can be useful to quantify the
compactness and complexity of their geometry. To estimate it, we select in each frame
the cluster containing the largest number of particles, and we reconstruct its binary image
based on the centroids and diameter of its particles. We then apply to it the box-counting
method (Monchaux, Bourgoin & Cartellier 2012; Baker et al. 2017), with L the box size
(figure 9a). The data are normalised by the maximum count Nb,max obtained from the
smallest box size (L = O(dp)) yielding a plot of Nb/Nb,max as a function of L , where Nb
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is the number of boxes that cover the binarised cluster. The normalised curves from all
analysed clusters are averaged to extract d f rac by linear fitting in logarithmic scale.

Figure 9(b) maps the fractal dimension in the Ca − φ space. Similarly to χcl and 〈Rg〉w
previously discussed, d f rac drops sharply in moderately dense suspensions (φ < 0.40)
within a narrow range of Ca < 1. Further increasing Ca leads to d f rac flattening around
1.5, close to the baseline value of 1.52 ± 0.2 from RSA which exhibits negligible φ
dependence. When Ca > 1, the contour lines become largely horizontal, signalling a major
role of φ. The lubrication-driven clusters are indeed compact, the particles filling the open
spaces in their internal structure.

We now consider how d f rac varies with 〈Rg〉w (figure 9c). While small clusters (up
to 〈Rg〉w/dp = O(10)) exhibit values of d f rac similar to those generated by RSA, for
larger ones d f rac increases with size, tending to (although never reaching) the value of
2 characteristic of round (non-fractal) objects. For large 〈Rg〉w/dp = O(102), d f rac is
significantly lower for Ca < 1. This indicates a convoluted structure, which can be the
result of hit-and-stick collisions, frequent when the capillary forces are too strong to be
overcome by drag. In contrast, clusters at Ca > 1 have a more dynamic composition, with
particles continuously joining and leaving the aggregate due to relatively weaker cohesive
forces. Thus, we can draw an analogy between the cluster formation at low Ca and the
diffusion-limited cluster aggregation (DLCA) which is known to result in more open (less
compact) clusters (Meakin 1983; Lazzari et al. 2016). Notably, unlike DLCA of colloids
driven by Brownian diffusion, our system employs non-Brownian particles driven by the
underlying turbulent flow. In systems exhibiting aggregation of particles in turbulence, the
fractal dimension of the aggregates has been evaluated both experimentally (e.g. Maggi,
Mietta & Winterwerp 2007) and numerically (e.g. Zhao et al. 2021). In particular, Zhao
et al. (2021) provided empirical scaling for d f rac as a function of the key non-dimensional
parameters. The present results qualitatively agree with their model, e.g. concerning the
increase of d f rac with larger cluster size. A quantitative comparison, however, is hindered
by the fact that the present configuration is quasi-two-dimensional.

A natural metric to assess the degree of ordering/packing inside clusters is the hexatic
order parameter ψ6, which measures the local ordering based on the orientation of the
particle’s six nearest neighbours. For the particle j , it is defined as

ψ6, j = 1
6

∣∣∣∣∣
6∑

k=1

exp(i6θ jk)

∣∣∣∣∣ , (3.2)

where k is an index for the six nearest neighbouring particles, θ jk is the angle between
the reference direction and the line connecting the particle j and its neighbouring
particle k.

We assess ψ6 for all individual clustered particles, ranging between 0 (dislocations and
disclinations) and 1 (hexagonal crystal). Figure 10(a) compares the PDFs of ψ6 for the
same φ = 0.44 and two different Ca. It is clear that lower Ca yields higher probabilities
of large ψ6 values. Increasing Ca pushes the PDF towards lower ψ6 values, approaching
the distribution obtained by RSA at the corresponding area fraction.

We further consider the average hexatic order parameter over all clustered particles,
〈ψ6〉, in the Ca − φ space (figure 10b). This displays a similar trend to previously
discussed metrics: it diminishes as the system transitions from the capillary-driven
clustering to drag-driven regime, and increases transitioning to lubrication-driven
clustering. Plotting 〈ψ6〉 as a function of φ (figure 10c) indicates how the high-Ca cases
follow closely the values obtained by RSA. This indicates again that clusters formed under
strong turbulence forcing tend to resemble those formed by a random process.
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Figure 10. Hexatic order parameter (ψ6) of the clustered particles. (a) The PDFs ofψ6 at φ = 0.44 but different
Ca values: 0.09 (red) and 2.69 (blue). The black dashed line represents values from RSA for comparison. (b)
Value of 〈ψ6〉 mapped in the Ca − φ space. (c) Value of 〈ψ6〉 as a function of φ across varying Ca. The black
dashed line represents values obtained from RSA.

3.1.4. Cluster lifetime
The observation that clusters formed at low Ca are more compact than those at high Ca
suggests that the former may also be longer lived. Verifying this hypothesis, and in general
understanding the temporal dynamics of particle clusters within turbulent flows, requires
estimating a cluster’s lifetime. The challenge, however, is represented by the dynamic
nature of such entities where particles continuously join and escape.

Following Liu et al. (2020), we regard clusters in successive time steps as the same
entity if they share the majority of their particles. This method mirrors the philosophical
inquiry of the Ship of Theseus (see, e.g. Rea 1995). For example, consider two clusters
A and B in two successive time steps. The fraction of forward-in-time connection is
defined as the number of particles shared by A and B divided by the total number of
particles in A; while the fraction of backward-in-time connection is the number of shared
particles divided by the total number of particles in B. Clusters A and B are considered
continuous manifestations of the same cluster if their fraction of forward- and backward-
in-time connections both exceed 0.5, and their lifetime is the time during which such a
condition is continuously verified. We then estimate the weighted-averaged cluster lifetime
〈τcl〉w as

〈τcl〉w ≡
∑

i n p,iτcl,i∑
i n p,i

, (3.3)

where τcl,i is the lifetime of the i th cluster.
To compare among different cases, the cluster lifetime is to be normalised by a time

scale that reflects the particle–fluid dynamics. A natural choice is the eddy turnover
time of the underlying flow, L F/urms, f . This is verified by analysing the dispersion
and stretching of the group of particles that initially belong to a cluster. We use
singular value decomposition (Baker et al. 2017; Petersen, Baker & Coletti 2019), which
identifies the first principal axis along the main direction of spread, the second axis
being orthogonal to it. The corresponding singular values, s1 and s2, are proportional
to the spread of particle centroids along these axes. Figure 11(a) shows a representative
example of temporal evolution of the normalised length scale 〈Rg(t)/Rg,0〉 and anisotropy
[s2(t)/s1(t)]/[s2,0/s1,0], where the subscript 0 indicates the time when the cluster is first
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Figure 11. (a) Temporal evolution of the cluster size 〈Rg(t)/Rg,0〉 and cluster anisotropy
〈[s2(t)/s1(t)]/[s2,0/s1,0]〉 for an example case with Ca = 2.49 and φ = 0.44. (b) Contour map of the
weighted average cluster lifetime 〈τcl 〉w normalised by the flow turnover time L F/urms, f across the Ca − φ

space.

identified. The trend confirms that sizeable changes to the spatial organisation occur within
a time O(L F/urms, f ).

For a given eddy turnover time, however, the cluster lifetime can be significantly larger
or smaller depending on the balance of the forces at play. Figure 11(b) displays a contour
map of the normalised cluster lifetime in the Ca − φ space. As expected, clusters have
longer lifetimes for lower Ca, where cohesive capillary forces dominate. As Ca increases,
particularly in the moderately dense regime (φ < 0.4), clusters can live for just a fraction
of the eddy turnover time before getting disrupted by the high strain rate of the intensely
turbulent flow. On the other hand, in the denser regimes (φ > 0.4) the cluster lifetimes can
far exceed L F/urms, f irrespective of Ca. This is due to large clusters being brought about
by excluded volume effects and kept together by lubrication. The particle dynamics within
these large clusters, however, does vary substantially depending on Ca, as we show in the
next section.

3.2. Particle dynamics

3.2.1. Single-particle dispersion
In Shin & Coletti (2024), we demonstrated how Eulerian properties of the particle motion,
in particular their fluctuating kinetic energy, vary within the Ca − φ space. Here we
focus on Lagrangian transport, which we first characterise in terms of the single-particle
dispersion. It is worth remarking that the peculiar properties of 2-D turbulent flows impact
the Lagrangian dispersion. In particular, as shown by Xia et al. (2013) and confirmed by
Shin et al. (2023), the length scale that determines the dispersion process is the forcing
scale L F . This is at odds with the behaviour of 3-D turbulence, where dispersion is driven
by the range of scales in which most energy reside. This characteristic was confirmed also
in the transport of finite-size particles in Q2-D turbulence (Xia et al. 2019).

In the following, we consider the displacement r i of the i th particle from an initial
position at time t0, and calculate the mean squared displacement (MSD) by averaging over
all particles and initial times

〈
r2(t)

〉 = 〈|xi (t0 + t)− xi (t0)|2
〉
i,t0
, (3.4)
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Figure 12. An example of (a) the Lagrangian velocity autocorrelation function (VACF) and (b) the MSD
of particles for the case Ca = 0.87 and φ = 0.27. The blue dotted line and red dash-dot line represent the
short-term ballistic and long-term diffusive predictions, respectively, based on an exponentially decaying
VACF with characteristic time scale tL ,p . The time is normalised by tL ,p , and the MSD is normalised by
L2

p = (urms,ptL ,p)
2.

where xi represents the centroid position of the i th particle. As the Lagrangian
velocity autocorrelation ΓL(t)= 〈ui (t0) · ui (t0 + t)〉i,t0/〈ui (t0) · ui (t0)〉i,t0 approximates
an exponential decay of characteristic time tL , one expects the classic scaling 〈r2(t)〉 ≈
u2

rmst2 for t 
 tL , and 〈r2(t)〉 ≈ 2u2
rmstL t for t � tL , where urms is the root-mean-

squared velocity. The approximately exponential decay of ΓL for the turbulent flow was
demonstrated in Shin et al. (2023) over a Lagrangian time scale of the flow that we term
tL , f . For the particles, ΓL is shown by figure 12(a) in the example case Ca = 0.87 and
φ = 0.26. The characteristic time of the Lagrangian particle motion, tL ,p, is taken as
the e-fold decay time of ΓL and found to be comparable to the turnover time of the
particle motion, L F/urms,p. Figure 12(b) plots the MSD for the particles, confirming
the expected short-time and long-time behaviours with a ballistic-to-diffusive transition
around t ∼ tL ,p.

The diffusive behaviour allows us to evaluate the long-term diffusivity associated with
the particle motion as (Taylor 1922; Davidson 2015)

K p = 1
2

d
〈
r2(t)

〉
dt

≈ urms,p L p = u2
rms,ptL ,p, (3.5)

where L p = urms,ptL ,p is a characteristic length scale of the particle motion. This is
compared with the turbulent diffusivity of the fluid flow K f , defining the normalised
particle diffusivity

K p

K f
= u2

rms,ptL ,p

u2
rms, f tL , f

= 〈Ek,p〉
〈Ek, f 〉

tL ,p

tL , f
, (3.6)

where 〈Ek,p〉 and 〈Ek, f 〉 are the mean kinetic energies of particles and fluid, respectively.
Figures 13(a) and 13(b) map in the Ca − φ space the two factors: the particle-to-fluid
ratio of fluctuating energy 〈Ek,p〉/〈Ek, f 〉, and the particle-to-fluid ratio of Lagrangian
time scales tL ,p/tL , f , respectively. Figure 13(a) reflects the observations made by Shin &
Coletti (2024). In the capillary-driven clustering regime (Ca < 1) clusters can grow larger
than the typical eddy size L F , thus their motion is hindered as they filter out the energy of
the smaller flow scales. In the drag-driven break-up regime (Ca > 1, φ < 0.4), where the
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Figure 13. Contour maps in the Ca − φ space of (a) the ratio of Lagrangian time scales tL ,p/tL , f ,
(b) the ratio of particle to fluid kinetic energy 〈Ek,p〉/〈Ek, f 〉 and (c) the normalised particle turbulence
diffusivity K p/K f .

tendency to clustering is reduced, individual particles and small clusters have little inertia
and thus possess a fluctuating energy comparable to the tracers. In the lubrication-driven
clustering regime (Ca > 1, φ > 0.4), the particle kinetic energy is largely dissipated by
the interaction with adjacent particles. Figure 13(b) shows how, if a particle belongs to
a large compact cluster, it exhibits a long-time-correlated motion as it moves collectively
with other members of the cluster. This results in tL ,p/tL , f exceeding unity for dense
concentrations, in particular in the lubrication-driven clustering regime. The particle
diffusivity in figure 13(c) is the result of both competing trends: reduced energy and longer
time correlation for large/compact clusters, and vice versa. Quantitatively, the trend of the
fluctuating energy prevails, and the map of K p/K f in the Ca − φ space closely resembles
that of 〈Ek,p〉/〈Ek, f 〉. In conclusion, the clustering fostered by capillarity and lubrication
reduces the particles’ ability to diffuse through the system.

3.2.2. Velocity structure functions
Pair statistics are a classic tool to reveal how particles move relatively to each other. In
order to highlight the dynamics of the aggregates, we restrict our attention to pairs of
particles belonging to the same clusters, although this does not change the trend with
respect to the unconditioned data analysis. We begin by considering the longitudinal and
transverse second-order velocity structure functions, defined respectively as

SL
2 (r)=

〈(
δui j · r i j

r

)2
〉
, (3.7)

ST
2 (r)=

〈(
δui j − δui j · ri j

r

)2
〉
. (3.8)

Here, δui j = u j − ui is the velocity difference between the i th and j th particles
whose separation vector is r i j = x j − xi , with |r i j | = r . The longitudinal component
corresponds to δui j projected along the direction of r i j , which is responsible for the
particles’ separation, and the transverse component accounts for the element of δui j
perpendicular to r i j , leading to rotation of the separation vector.

Figures 14(a–c) compares structure functions for both particles and tracers for the
same level of forcing, normalised by u2

rms,p and u2
rms, f , respectively. The three identified
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Figure 14. Examples of the second-order velocity structure functions (S2) of particles from different
experiments: (a) Ca = 0.16 and φ = 0.14, (b) Ca = 1.82 and φ = 0.27 and (c) Ca = 2.69 and φ = 0.62. In
each panel, SL

2 (black squares) and ST
2 (red circles) are normalised by u2

rms,p . The dashed and dash-dot lines
represent SL

2 and ST
2 of tracers at the same level of forcing, respectively, normalised by u2

rms, f .

regimes display distinctly different behaviours. In the capillary-driven clustering regime
(figure 14a), both SL

2 and ST
2 are lower than those of tracers. Particles are tightly bound by

capillarity within compact clusters, thus they translate collectively with relatively small
longitudinal velocity differences. The transverse component of the relative velocity is
inhibited to a degree that depends on the cluster size, but in general much less so than its
longitudinal counterpart. In the drag-driven break-up regime (figure 14b), clusters cannot
be sustained in the region of high strain rate, thus they tend to reside in large vortex cores
where they spin as quasi-rigid bodies. As those compact clusters spin, the particles in them
that are separated by relatively large distances attain a rotational motion (with respect to
each other) even faster than fluid parcels at equivalent separation. In those same clusters,
on the other hand, inter-particle interactions limit the longitudinal separation rate. In the
lubrication-driven clustering regime (figure 14c), particle adjacency imposed by excluded
volume leads to the formation of large clusters spanning multiple eddies. While their
lifetime is relatively long (see § 3.1.4), they are continuously deformed by the underlying
turbulent flow, and their normalised SL

2 and ST
2 approach those of tracers.

3.2.3. Particle pair dispersion
Finally, we characterise the particle relative dispersion in a Lagrangian framework. To
this end, we measure the mean squared separation (MSS) by tracking the evolution of the
separation vector r i j between particle pairs as a function of time

M SS(t)= 〈|r i j (t0 + t)− r i j (t0)|2
〉
. (3.9)

We focus on particle pairs that are initially adjacent, i.e. for which, at the initial time,
ri j,0 ∼ dp.

To define the normalisation time scale, we first resort to the theory of 2-D turbulence.
In the enstrophy cascade subrange, classical arguments for the separation law of particle
pairs in smooth flows predict an exponential growth of the MSS at short times, with a
characteristic time scale tζ = ζ−1/3, where ζ ≡ ν〈|∇ω|2〉 is the enstrophy dissipation rate
and ω is the vorticity (Jullien 2003). We estimate ζ by modelling the flow field as an array
of Taylor–Green vortices (Shin et al. 2023)
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Figure 15. (a) Relationship between the enstrophy dissipation rate divided by the kinematic viscosity (ζ/ν) and
u2

rms, f /L4
F . Markers are obtained from PIV analysis of tracer experiments, and the red dotted line represents

the estimation based on Taylor–Green vortices with a slope of 4π4. (b) Examples of the MSS of tracers in the
DL configuration at different levels of forcing, with an initial separation of 1.84 mm. The dashed and dash-dot
lines indicate t2 and t3 scalings, respectively. (c) Compensated MSS, where the MSS is divided by (t/tζ )3,
highlighting the t3 scaling as a plateau.

ζ/ν = 〈|∇ω|2〉 = 4π4u2
rms, f

L4
F

. (3.10)

This simplification yields quantitative agreement with the PIV measurements (figure 15a).
Based on this estimate, we approximate the characteristic time scale as tζ ≈

(4π4νu2
rms, f /L4

F )
−1/3. For short times (t 
 tζ ), the MSS is primarily influenced by the

initial velocity difference, 〈δu2
r (t)〉 ≈ 〈δu2

r0
〉. We therefore rescale the MSS as 〈|r i j (t0 +

t)− r i j (t0)|2〉/(t2
ζ 〈δu2

r0
〉), similar to Li et al. (2024) who studied pair-dispersion in free-

surface turbulence, with tζ replacing their transition time tD between ballistic and diffusive
behaviours of the relative velocity δu.

Figure 15(b) presents normalised MSS curves from tracers in the DL configuration, with
an initial separation ri j,0 ∼ dp. This is close to the range of initial separation of 2 − 4η
that Tan & Ni (2022) proposed as an upper limit for observing the super-diffusive scaling
〈|r i j (t0 + t)− r i j (t0)|2〉/∼ t3 in single-phase homogeneous turbulence. This scaling was
originally proposed by Richardson (1926) based on a scale-dependent diffusivity, and later
justified by Obukhov (1941) as consistent with Kolmogorov’s (1941) theory. According
to the latter, the dissipation rate of the turbulent kinetic energy is the only governing
parameter in the inertial range, which dimensionally leads to the super-diffusive scaling.
Here, the MSS curves collapse well on the chosen normalisation. For t/tζ 
 1, we note
that experimental limitations such as resolution constraints affect the precise measurement
of very small relative displacements of nearby tracers. This is likely the cause of the weak
decline in separation observed at low Reynolds numbers. For t/tζ > 1, the MSS curves
display the super-diffusive scaling, and this persists until the separation grows beyond L F ,
where the dispersion becomes purely diffusive.

The t3-scaling range (highlighted by the compensated plots in figure 15c) is therefore
limited by the scales of the system, and possibly by factors such as cross-scale
contamination, which have made the super-diffusive regime particularly elusive (Bourgoin
et al. 2006; Salazar & Collins 2009; Bitane, Homann & Bec 2012; Elsinga, Ishihara &

1013 A31-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
22

4 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10224


Journal of Fluid Mechanics

Hunt 2022; Tan & Ni 2022). The limited range over which the super-diffusive scaling
is observed, and the fact that such an observation typically requires small initial
separations (below the inertial range prescribed by Richardson–Obukhov theory) has
created significant debate on the nature of the process in both 2-D and 3-D turbulence
(Kellay & Goldburg 2002; Elsinga et al. 2022). This issue is, however, outside the scope
of the present study: our interest is rather on how the particle dispersion compares with
the fluid tracer dispersion, as we now discuss.

The observable width of the super-diffusive regime depends on the scale separation
between the forcing scale L F and the initial separation. For separations much larger than
L F , the behaviour ultimately becomes diffusive, with a corresponding time scale roughly
given by tL ,p ∼ L F/urms,p. In our analysis, the temporal scale separation between the
inertial (ballistic or super-diffusive) regime and the diffusive regime scales approximately
as tL ,p/tζ ∼ L−1/3

F , modulated by the velocity ratio urms, f /urms,p at the given flow Re.
Thus, increasing L F would, in a purely temporal sense, slightly reduce the window over
which super-diffusion is observed. Conversely, from a spatial perspective, it is crucial that
L F is significantly larger than the typical initial separation (which is lower bounded by
the particle diameter dp); indeed, our results indicate that, if the initial separation exceeds
approximately 0.25L F , the t3-scaling is not apparent and replaced by ballistic scaling
(∼ t2). Moreover, when the particle velocity urms,p is much lower than the fluid velocity
urms, f – as observed at high areal fractions – the effective temporal separation is enhanced,
thereby extending the super-diffusive regime.

The relative dispersion of the particles is illustrated in figure 16 for different values of
Ca and φ, again for r0 ∼ dp. A dashed line showing the MSS of tracers for a representative
case (weakly dependent on the forcing, as shown in figure 15) is included for reference. In
the moderately dense case (φ = 0.27, figure 16a), we observe slower initial dispersion at
t/tζ < 1, due to capillarity and lubrication inhibiting separation at small distances. Once
particle pairs grow far enough apart that cohesive interactions become negligible, the
curves at different Ca collapse and exhibit a super-diffusive scaling for over a decade,
until the separation grows beyond L F .

At φ = 0.71 (figure 16b), the effect of Ca becomes more prominent. At Ca 
 1, as
the particle velocity is significantly slower than the fluid velocity (see figure 12a), it
takes much longer than tζ for a pair to separate enough to break away from their mutual
attraction. Conversely, at Ca > 1 particle separation occurs more rapidly and the super-
diffusive regime is retrieved. This scaling of relative dispersion in such densely packed
cases is striking, as most particles remain contained within a massively large, percolating
cluster. This highlights the dynamic nature of clusters formed at high Ca, in contrast to
the quasi-rigid clusters formed at low Ca. This change in behaviour is not captured by
the analysis of cluster lifetime, which shows no noticeable trend with Ca at φ = 0.71
(see figure 11b).

When using tζ for normalisation, the transition to the super-diffusive regime at dense
concentrations occurs at different times. This is not surprising, as the fluid enstrophy is
unlikely to be the governing factor at such high particle concentrations. We hypothesise
that, for dense suspensions at high Ca (i.e. in the lubrication-driven clustering regime),
the frequent inter-particle interactions via lubrication, rather than the fluid enstrophy,
become the dominant mechanism governing the energy dissipation and in turn the
relative dispersion. For each particle, the energy dissipation rate due to lubrication is
εlub ∼ Fluburel , where Flub is the lubrication force experienced by a particle moving
with a velocity urel relative to its neighbour. Considering the particle number density
per area n = 4φ/(πd2

p) and the area density ρA = ρ f δ, where δ is the fluid layer thickness,
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Figure 16. Examples of the MSS of particle pairs with an initial separation of dp = 1.84 mm: (a) φ = 0.27,
and (b) φ = 0.71. The dashed line corresponds to the MSS of tracers from the most turbulent flow in the
experiments. (c) The MSS curves for high φ = 0.62 across varying Ca values, with time normalised by the
collision time scale tcol = h/urel and MSS by h2. The dotted line indicates the MSS prediction by (3.12).
(d) The MSS curves at Ca = 2.49 across different areal fractions, with lines indicating the MSS predictions by
(3.12) at φ = 0.09, 0.27, 0.44 and 0.71 (dash-dot), respectively.

the relevant short-range energy dissipation rate per unit mass can be approximated as

εlub ≈ Fluburel
n

ρA
≈ 3πμd2

pu2
rel

2h

4φ/(πd2
p)

ρ f δ
= 6ν f u2

rel

δdp

φ

[(φmax/φ)0.5 − 1] , (3.11)

where h = dp[(φmax/φ)
0.5 − 1] is the mean surface-to-surface separation between

neighbouring particles, with φmax ≈ 0.9064 being the maximum areal fraction from the
2-D hexagonal close packing.

Under the assumption that εlub is the main governing parameter, dimensional arguments
yield immediately M SS ∼ εlubt3, and therefore

M SS(t)∼ εlubt3 ∼ 6ν f u2
rel

δdp

φ

[(φmax/φ)0.5 − 1] t3. (3.12)

Here, the relevant length and time scale are associated with inter-particle collisions
(meant in a general sense as direct interaction/contact), which we take as h and
tcol = h/urel , respectively. Since the longitudinal second-order structure function
SL

2,p/u
2
rms,p of particles in the lubrication-driven clustering regime shows excellent

quantitative agreement with SL
2, f /u

2
rms, f of tracers (figure 14c), we approximate urel(r)∼
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urms,p(SL
2, f (r)/u

2
rms, f )

0.5, evaluated at r = h. These length and time scales correspond
to the distance and time over which a particle in a pair travels to encounter another
neighbour whose centre is h + dp away from its own. For φ > 0.4, the particles in densely
packed suspensions are expected to forget their initial relative velocity through mutual
interactions, with lubrication governing the decorrelation of their relative velocity.

This expectation is confirmed in figure 16(c,d), which plots the MSS curves for φ = 0.62
with varying Ca values, and for Ca = 2.49 with varying φ values, respectively, normalised
by tcol and h2. Figure 16(c) shows that this normalisation produces a tight collapse of the
curves, which display a super-diffusive regime for t > tcol . Moreover, the super-diffusive
MSS estimated for the highest Ca using (3.12), based on the assumption that lubrication is
the dominant energy dissipation mechanism in dense cases (indicated with a dotted line),
shows good agreement with the experimental curve. We stress that such a scaling argument
is expected to apply within a pre-factor of order unity. The agreement between (3.12) and
the experimental MSS implies that εlub takes on the role of the turbulent dissipation rate
in single-phase flows.

To further inspect the role of short-range interactions in MSS across different
concentrations, we plot the normalised MSS curves at Ca = 2.49 across varying φ

values in figure 16(d). Dashed lines calculated using (3.12) indicate how the agreement
progressively improves for increasing concentrations, as one transitions from the drag-
driven break-up to the lubrication-driven clustering regime.

4. Conclusion
We have investigated the mechanisms governing particle clustering and dispersion in dense
turbulent interfacial suspensions of non-Brownian, monodisperse spherical particles at
immiscible fluid interfaces. Building upon the phase diagram in the capillary number
(Ca) and areal fraction (φ) space constructed in our previous work (Shin & Coletti
2024), we have provided a comprehensive analysis of cluster properties and the particle
dynamics across different regimes. By systematically varying the capillary number Ca
and the areal fraction φ and analysing Lagrangian trajectories, we have characterised the
clustering process via clustering fraction, cluster size distributions, percolation, fractal
dimensions, hexatic order parameters and cluster lifetime. Additionally, we have explored
the particle dynamics by examining single-particle dispersion, velocity structure functions
and pair dispersion. Our findings reveal how the interplay between capillary forces, viscous
drag and lubrication interactions dictates the behaviour of particles in these suspensions,
leading to a distinct dynamics in different regions of the Ca − φ phase space. Specifically,
concerning clustering:

(i) In the capillary-driven clustering regime (Ca < 1), capillary attractions dominate over
viscous drag, leading to the formation of large clusters through hit-and-stick type
collisions. These clusters can grow to sizes even larger than the typical eddy size and
exhibit relatively low fractal dimensions. That is, they have a fractal-like structure akin
to what observed in diffusion-limited processes, resulting from particles aggregating
via capillary forces without significant rearrangement.

(ii) In the drag-driven break-up regime (Ca > 1, φ < 0.40), increased turbulent
fluctuations enhances viscous drag on the particles, which overcome capillary
attraction. Particles tend to remain isolated or form small, short-lived clusters. The
statistical properties of the clusters closely resemble those of random configurations
generated by RSA processes: the clustering fraction, cluster size distributions and
fractal dimensions approach those expected in random, non-interacting particle
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arrangements, indicating that clustering arises primarily due to random proximity
rather than cohesive forces.

(iii) In the lubrication-driven clustering regime (Ca > 1, φ > 0.40), frequent inter-particle
interactions due to high particle concentration amplify the role of lubrication forces.
Despite strong turbulent forcing, particles can form large, dynamically evolving
clusters that can span the entire system and live much longer than the energetic eddies.
Lubrication forces hinder particle separation, leading to densely packed, crystal-like
structures.

Above a threshold level of concentration that depends on Ca, dense interfacial
suspensions exhibit a percolation behaviour similar to what is observed in other
non-turbulent particle systems. In particular, for Ca < 1 the cluster size distribution
follows a self-similar shape found in randomly generated aggregates; while for Ca > 1 the
behaviour resembles what predicted in coagulating agglomerates with equally probable
interactions among all particles.

As for the particle dispersion, single-particle analysis shows that clustering reduces
the diffusivity by lowering their kinetic energy significantly, despite an extended time
correlation of the motion. The velocity structure functions indicate that particles in the
capillary-driven clustering regime have a limited relative velocity due to the strength of
the bonds. This is the case also in the drag-driven break-up regime, in which clusters are
mostly found in vortex cores and are spun as quasi-rigid bodies. In the lubrication-driven
clustering regime, the large long-lived clusters are deformed by the turbulent flow and the
particle relative velocities behave similarly to those of tracers, although with a reduced
magnitude.

Analysis of the relative dispersion shows how, in the capillary-driven clustering regime,
adjacent particle pairs separate at initially slow rates due to strong capillary attraction.
Once this is overcome by turbulent fluctuations, the dispersion becomes super-diffusive
until the separation exceeds the large-eddy size. In the drag-driven break-up regime, pair
dispersion closely resembles that of passive tracers in turbulence. In the lubrication-driven
clustering regime, due to the frequent particle–particle interactions at high concentrations,
the collision rate defines the relevant time scale. This results in a regime where, after
breaking away from each other, initially adjacent particles separate super-diffusively,
but proportionally to the energy dissipation rate of the lubrication forces. Therefore,
even though in this regime the clusters appear densely packed, their internal structure
at intermediate scales is continuously rearranging.

The present work is limited to Q2-D settings with specific particle types and sizes.
Factors like particle shape, size polydispersity and varying interfacial properties (such
as the presence of surfactants) could affect the nature of the capillary attraction.
The moderate Re achieved may not capture all of the relevant dynamics present in
more turbulent environments where the assumption of Stokesian dynamics could break
down. Moreover, free-surface turbulent flows with sizeable depth are characterised by a
compressible surface-velocity field which influences clustering and dispersion (Lovecchio,
Marchioli & Soldati 2013; Li et al. 2024; Qi, Li & Coletti 2025). Future research
is warranted to address these limitations by exploring a broader range of particle
characteristics, interfacial conditions and flow regimes to test the generality of our
findings. The combination of drag, capillarity and lubrication that we use to rationalise
the present system is indeed a simplification which does not take into account higher-order
effects. For example, recent studies have demonstrated the existence of fluctuation-induced
hydrodynamic forces acting on single or multiple objects (Yang et al. 2019; Spandan et al.
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2020; Davoodianidalik et al. 2022). While explicitly quantifying such forces is beyond the
scope of the present work, future studies shall investigate their role directly.

Finally, the connections made with diffusion-limited aggregation, percolation theory
and random particle systems emphasise potentially powerful links with research areas
seldom intertwined with particle-laden fluid dynamics. For example, the present
finding may be compared with the behaviour exhibited by active particles or colloids
(Alert, Casademunt & Joanny 2022). These are driven by self-propulsion and thermal
fluctuations, respectively, rather than turbulence in the carrier fluid. This results in
qualitatively different behaviours, particularly concerning the inter-scale energy transfer.
At high concentrations, on the other hand, the particle–particle interaction may prevail and
similarities with the present class of dense turbulent suspensions might be expected. Any
such analogy, however, is to be investigated by dedicated studies.
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