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Abstract

It is shown in this note that the supremum and infimum of all causal topologies
on Minkowski space are not causal. It is further shown that maximal and
minimal elements exist in the set of all principal causal spaces.

1. Introduction

Following the work of Zeeman [9], several authors [1-6] have suggested new
topologies on Minkowski space, the four-dimensional space-time continuum of
Special Relativity. All these topologies are characterized by the property that they
have the same homeomorphism group G, the group generated by the inhomo-
geneous Lorentz group and dilatations (multiplication by positive scalars). Since
every element of G either preserves or reverses the causal relation on Minkowski
space, these topologies are usually referred to as causal topologies. Some authors
have also suggested topologies (see, for sample, [7]) whose homeomorphism
groups are all equal to Go, the subgroup of G consisting of all elements which
preserve the causal relation. It is well known that this subgroup Go is most
important from a physical point of view; we shall, therefore, refer to these
topologies (that is, the ones having homeomorphism group Go) as causal topologies.
A large number of causal topologies are now known and there is no reason why
any one of them should be preferred to another (for both satisfy the same property).
Ordinarily, one would be ledio believe that the supremum and the infimum of the
causal topologies would be of interest. Alternatively, one would look for maximal
or minimal elements in the set of all causal topologies. It turns out, however, that
the supremum and the infimum of all the causal topologies are not causal. The
aim of this note is to prove these and other related results.
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2. Notation and terminology

Let M denote Minkowski space with characteristic quadratic form Q:

M = {(xo.*i>*2.*3): xt a r e reals},

Q(x)=xl-x\-x\-x\.
Let

K = {xe M: Q{x) > 0 and x0 > 0}

and L = {xeM: Q(x) 5* 0 and x0 > 0}.

Define K* = KKJ {0} and L* =Lu {0}. Denote by K*(x) and L*(x), the trans-
lates of K* and L* respectively: K*{x) = K*+x and L*(x) = L*+x. We shall
(by an abuse of terminology) write -K*(x) and — L*(x) for the sets -K*+x
and — L*+x respectively. We have the following cones at x:

light cone at x: C\x) = {y e M: Q(y - x) = 0} u {x};

time cone at x: CT(x) = {y e M: Q(y - x) > 0} u {x};

space cone at x: Cs(x) = { ^ M : Q()>-x) < 0} u {x}.

Note that c\x) = CT
+(x)uC!(x), where

CT
+(x) = K*+x and C^(x) = - X * + x .

Similarly, CL(x) = C+(x)u C l̂(x), where C+(x) and CL-(x) are the forward and
backward light cones at x. The causality relation in M is represented by a partial
order < defined by

x < y<=>y—xeK.

We shall denote by d the usual Euclidean distance function on M, that is

and by iVf(x), a Euclidean neighbourhood of radius z about x, that is

Nf(x) = {yeM:d(x,y)<E}.

3. The supremum and the infimum

As pointed out in the Introduction, the supremum and the infimum of all
causal topologies are not causal. To prove this, we need two known causal
topologies, namely the j-topology and the Mopology [2].

Let e > 0 and JV (̂x) = jvf(x) n Cr(x). The Mopology on M is denned to be the
topology generated by taking {Nj(x): xeM, e > 0} as a basis; alternatively, we
may take {N\(x): x has rational coordinates, e rational} as a basis for the same
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topology, thus making it second countable. Similarly, let Ns£x) = JVf(x) n Cs(x);
then the s-topology on M is denned to be the topology generated by taking
{N\(x)\ xeM, e > 0} as a basis. The s-topology is also second countable.

PROPOSITION 3.1. The supremum of all the causal topologies on M is not causal.

PROOF. Consider sv t, the supremum of the j-topology and the f-topology. For
any xeM and e > 0, Nl(x) and N't(x) are open in s v / so is N%x) n N[{x) = {x}.
Thus s v Ms the discrete topology. The supremum of all the causal topologies,
being finer than sv t, is therefore discrete and it cannot be causal.

Recall from [4] that every first countable Hausdorff topology T on a space X
has an anti-topology T* which has the same group of homeomorphisms as that
of T. The anti-topology T* is characterized by the property that its closed sets
(except X) are precisely the compact sets of T. Thus the closed sets of t* are those
which are closed and bounded subsets on time-like lines of M or their finite
unions; similarly, the closed subsets of s* are those which are closed and bounded
subsets on space-like hyperplanes or their finite unions. We are now ready to prove

PROPOSITION 3.2. The infimum of all the causal topologies on M is not causal.

PROOF. Consider s* A t*, the infimum of the topologies s* and t*. Let U ( / M)
be open in s* A t*. Since U is open in t*, it must be of the form Ac, where A is a
closed and bounded subset (in the Euclidean sense) lying on a finite number of
time-like lines, and c denotes the complement. Similarly, since U is open in s*, it
must be of the form Bc, where B is a closed and bounded set (in the Euclidean
sense) lying on a finite number of space-like hyperplanes. This is possible if and
only if A {= B) is a (discrete) finite set of points. Thus s*At* is the co-finite
topology on M. If T denotes the infimum of all the causal topologies, then it is
clear that T is weaker than s* A t*. We shall show that T is either (i) the indiscrete
topology or (ii) the co-finite topology.

Suppose that T is not the indiscrete topology; then there is an open set U # M
whose complement is finite. Let Uc = {xltx2;...,*„}. Note that any element
g e Go is a homeomorphism in a causal topology, so that it is a homeomorphism
in T. We can therefore make a translation through — xt to get a set

V = {0,x2-xu...,xn-xl}

which is closed in T. Apply a rotation g e Go to get a closed set

gV = {0,gx2-gxl,...,gxn-gxl};

the choice of the element g is so made that there are no common elements in the
sets of non-zero elements of V and gV. Thus VngV = {0}, showing that {0} is

https://doi.org/10.1017/S0334270000002447 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002447


360 Sribatsa Nanda [4]

a closed set in T. Since translations are homeomorphisms in T, every singleton is
closed in T, and so are the finite sets; thus T must be the cofinite topology.

In either case, any bijective map of M onto itself is a homeomorphism and the
topology cannot be causal. This completes the proof of the Proposition.

Instead of considering the supremum and the innmum of all causal topologies,
we can consider the supremum and the innmum of all causal topologies on M
having a particular property, and they may turn out to be causal. Indeed, Zeeman's
fine topology is characterized by the property that, in the set of all causal spaces
which induce the one-dimensional Euclidean topology on time-like lines and the
three-dimensional Euclidean topology on space-like hyperplanes, the fine topology
is the supremum. Similarly, the ,4-topology [3] can be characterized as the
supremum of all causal spaces having a certain property.

4. Maximal and minimal elements

Since the supremum and the infimum of all the causal topologies are not causal,
one would next try to look for maximal or minimal elements in the set of all
causal spaces. The following results are easy to derive and we omit their proofs.

PROPOSITION 4.1. Let {Tj j e / be a set of topologies on M each having the homeo-
morphism group G and let H be the homeomorphism group of inf;s/ Tt; then
G<=H.

PROPOSITION 4.2. Let {T,}i6/ be a set of topologies on M each having the homeo-
morphism group G and let H be the homeomorphism group of supje/ Tt then G<=H.

REMARK 4.3. Propositions 4.1 and 4.2 are valid if G is replaced by Go.

The difficult step in proving the existence of maximal (or minimal) elements is
to start with a linearly ordered set of topologies {T;}ie/ and to prove that H<=G.
There is no reason to believe that this can be done. Our conjecture is that maximal
(or minimal) elements do not exist in the set of causal spaces. To prove this,
however, one has to construct, starting with a given topology, a strictly finer (or
weaker) topology which is also causal.

The problem of finding a maximal or minimal causal space can be slightly
weakened as follows. Consider (see [5]) the order-topology on M which is
generated by taking the family of positive cones {K*(x)}xeM as a basis. We shall
call this the A"-topology. Similarly, we define the L-topology on M to be the
topology generated by taking the cones {L*(x)}xeM as a basis. It is known that
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both these topologies are causal with homeomorphism group Go. A notable
feature of these two topologies is that they are principal. (A topology T on X is
said to be principal if each point xeX has a smallest ^-neighbourhood BT(x).)
We shall show that, in the set of all principal causal topologies on M, the K-
topology is a maximal element and the L-topology is a minimal element. We
need the following lemmas.

LEMMA 4.4. Let T, and T2 be two principal topologies on M with Tt < T2; then
BTl(x)=> BTi(x) for every xeM.

PROOF. Since BTl(x) is an open set in 7\ containing x, it is also open in T2

(since Tl < T2) and therefore includes the smallest open set BTl(x) about x.
Thus the proof is complete.

LEMMA 4.5. Let T be a principal topology on M and let h be a homeomorphism of
{M, T). Then h(BT{x)) = BT(hx).

PROOF. AS BT(hx) is open, h~'(BT(hx)) is open about x and therefore con-
tains the smallest open set BT(x). Thus BT(x) ch~'(BT(hx)) or, equivalently,
h(BT(x))cBT(hx). Similarly, since h is open, h(BT(x))z> BT(hx). The result there-
fore follows.

PROPOSITION 4.6. The K-topology is maximal in the set of all principal causal
spaces on M.

PROOF. Assume to the contrary that there exists a principal causal topology T
on M which is strictly finer than the AT-topology. Note that, for the AT-topology,
the smallest open set BK(x) about x is just K*(x); so, by Lemma 4.4, we have
BT(x)<=K*(x). We claim that BT(x) * K*(x) for every x e M; for, if BT(x) = K*(x)
for some x, then we can make a translation of these sets to get BT(y) = K*(y) for
every yeM (since by our assumption every translation is a homeomorphism for
each of these topologies K and T), thus making these topologies equal. So
K*{x)-Bj{x)^ 0.

A translation gives us K*-Bj{0)^ 0 . Let zeK*-BT(O). Since every dilatation
is a homeomorphism of the topology T, it follows that kz${k.BT(0)} = BT(0)
(by Lemma 4.5). Thus the entire half-line joining the origin and the point z lies
in K* but outside BT(0). Choose a point peBT(0), a point q in the half-line
mentioned above and a rotation g e Go such that g(q) = p. Since g is a homeo-
morphism of both the topologies, we have

g(B1m=BJ(0) and g(K*) = K*.
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Consequently, g(K*-Bj{0)) = £* - .Br(0). Thus p = g(q)e,K* - 5r(0) which is a
contradiction since peBT(0). This completes the proof of the Proposition.

We need slightly different arguments to prove the following

PROPOSITION 4.7. The L-topology is minimal in the set of all principal causal
topologies on M.

PROOF. Let T be a principal causal topology on M such that T is strictly weaker
than L. Lemma 4.4 then implies that, for any xeM, BT(x)=>L*(x). We can then
repeat the introductory arguments of Proposition 4.6 above to conclude that, for
each xeM, BT(x)^ L*(x); thus, BT(x)-L*(x)/ 0 or, equivalently,

0.

There are now three possibilities: (i) zx is space-like; (ii) zt is on the backward
null cone at the origin; (iii) zt is on the backward time cone at the origin. We shall
show that each of these cases wiU give rise to a contradiction.

Consider case (i) and suppose that z, is space-like. Let z be any space-like
vector; we can then choose a suitable rotation geG0 such that gzl = z. Since
zleBT{0)-L*, z = gfZi6gf(JB7-(O))-fifL* = BT(0)-L*, showing that the whole

space cone at the origin Cs(0) c 2?T(0)—L*. Equivalently,

We claim that this inclusion is strict; for, if these sets are assumed to be equal,
that is

BT(0) = Cs(0)uL*=(-L*)c,

then, for any yeM, we can make a translation to get

Bj{y) = C\y) u L*(y) = ( - L*(y)f.

Let >>! and y2 be two points such that y2—yi is space-like; then

n B7{y2) = [_(-L*(yi))-(-L*(y2))Y.

If we take y = ^{yt +y2), then it is obvious that y e BT(y^) n BT(y2) whereas
B-riyi^B-fij,) r\BT(y2). This is a contradiction so that our claim is proved.

There is, therefore, at least one point z2efir(0)-(Cs(0)uL*). There are now
two possibilities. Either (a) z2 is on the backward null cone at the origin or (b) z2

is on the backward time cone at the origin. Suppose that (a) holds; then for any z
on the backward light cone at the origin we can choose a g e Go such that gz2 = z.
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Thus
z = gz2eg(BT(0))-(gCs(0)uL*) = BT(0) - (Cs(0) u L*),

showing that the entire backward null cone at the origin

Ci(0)^BT(0)~(Cs(0) u L*).

We claim again that this inclusion is strict; for, if the two sets are equal, then

BT(0) = Cs(0)uL*u CL_(0) =(-K*)c

and, through a translation, we get

which is true for any xeM. As before, we can take two points xt and x2 so that
x2 — *i is space-like, so that

,) n Br(x2) = [ ( - K*(

Taking xx = £(*i +*2)> w e n nd that *e5r(*i) n 2?T(x2) but

hence we have a contradiction. Thus strict inequality holds and we have at least
one point z3eBr(0)-(Cs(0)uL* u Ci(O)). Clearly z3 is on the backward time
cone at the origin. We can then choose a rotation g e Go so that gz3 is any other
backward-pointing time-like vector; thus

Cl(0) a Br(0) - (Cs(0) u L* u Ci(0))

or, alternatively, McBT(0); but, since 5T(0) is a subset of M, it follows that
M = BT(0). The topology T is therefore indiscrete and it cannot be causal and we
have a contradiction.

In the case when (b) holds, we have a z2 on the backward time cone at the
origin. We can then proceed similarly as in case (a) to show that BT(0) = M.
We have thus shown that possibility (i) gives us a contradiction. We omit the
proof that possibilities (ii) and (iii) will also give us contradictions (the line of
proof is the same). Thus our assumption that there exists a principal topology
strictly weaker than L is false, and this completes the proof of the Proposition.

Principal spaces, however, are simple in nature and, for this reason, it has been
possible to derive Propositions 4.6 and 4.7 with considerable ease. Whether
maximal and minimal elements exist in the set of all causal topologies is now an _
open question.
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