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Abstract

Owing to the development of new technologies, the epigenome, a second dimensional method
for genome analysis has emerged. Epigenetic mechanisms, including DNA methylation,
histone modifications and noncoding RNAs, regulate gene expression without changing the
genetic sequence. These epigenetic mechanisms normally modulate gene expression,
trans-generational effects and inherited expression states in various biological processes.
Abnormal epigenetic patterns typically cause pathological conditions, including cancers,
age-related diseases, and specific cartilage and bone diseases. Facing the rapidly developing
epigenetic field, we reviewed epigenetic mechanisms and their involvement with the skeletal
system and their role in skeletal development, homeostasis and degeneration. Finally, we
discuss the prospects for the future of epigenetics.

1. Introduction

The epigenome is a multitude of chemical compounds that instruct the genome how to func-
tion. These functions include DNA methylation, chromatin modifications, nucleosome posi-
tioning and alterations in the noncoding RNA (ncRNA) profile (Verma, 2015), which may
affect gene expression and its regulation without altering the DNA sequence. With the
rapid development of bio-technologies, many unknown epigenetic phenomena have been
revealed, which has led to an increasing interest in epigenetic mechanisms of individual devel-
opment and of diseases.

Epigenetic modulation exerts either a positive or negative feedback pathway, leading to
silencing of one of the two X chromosomes in female cells in early development (Gendrel
& Heard, 2014), genomic imprinting (Gupta et al., 2014a) and paramutation (Brink,
1973). The epigenetic pattern and changed phenotype appear after mitosis or meiosis
(Huang et al., 2014). Although various epigenetic programs have been identified, only
three main categories are widely accepted, which are as follows: DNA methylation, histone
modification and ncRNAs. DNA methylation is the most studied; this includes the methyla-
tion of the fifth carbon of cytosine. The DNA methylation pattern is dynamically regulated by
DNA methyltransferases (DNMTs) during development. DNA methylation pattern includes
endogenous transposable elements repression, chromosome alignment and segregation,
second X chromosome control via inactivation in females and modulation of imprinted
gene expression. Histone modifications are characterized by histones that can be covalently
modified at their flexible N- or C-terminal tails, as well as globular domains. This phenom-
enon is associated with DNA methylation. It is also regarded as one of the key components of
chromatin packaging (Henikoff & Shilatifard, 2011). Histones function both positively and
negatively in gene expression regulation; histones are also mainly governed by post-
translational histone modifications (PTMs) and specific histone variants (Kimura, 2013).
PTMs regulate transcription and other DNA-templated functions, which are dynamically
mediated by specific modifying enzymes (Fan et al., 2015). PTMs can be classified into several
categories, including lysine acetylation, lysine and arginine methylation, arginine citrullina-
tion, lysine ubiquitination, phosphorylation, fatty acylation and ADP-ribosylation, which
affect DNA function individually or collectively. NcRNAs are comprised of short and long
ncRNAs. These molecules have been highlighted in biological processes with the development
of deep sequencing and transcriptome analyses; however, these molecules have been previ-
ously regarded as junk RNAs.

Therefore, epigenetic programs are essential to basic biologic events that are associated with
physiological and pathological processes, including skeletal genesis, bone remodelling and
bone metabolic disorders (Fan et al., 2015). This review will discuss the current knowledge
of epigenetics in the skeletal system and will strive to shed new light on the understanding
of epigenetic roles in bone and cartilage tissues.
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2. DNA methylation

DNA methylation is the methylation of the fifth carbon of cyto-
sine, which is known as one of the most important epigenetic
modifications. It plays a considerable role in genome stability,
gene expression and individual development in both prokaryotes
and eukaryotes.

DNA methylation, which occurs on gene promoters, is linked
to transcriptional repression (Chae et al., 2013). Although it hap-
pens mostly in CpG sites, non-CpG sites have also been observed
to be methylated. However, the role of non-CpG methylation
remains unclear. Conversely, gene enhancers that have undergone
DNA methylation are correlated with active gene expression
(Moore et al., 2013). Except for DNA methylation of promoters
and enhancers, DNA methylation emerges on different genomic
regions with different functions. DNA methylation, which occurs
on intergenic regions, represses the expression of potentially harm-
ful genetic elements when the methylation of the CpG islands
impairs the binding of transcription factors, the recruiting of
repressive methyl-binding proteins and gene silencing. However,
more studies are needed to determine how DNA methylation of
the gene body contributes to gene regulation.

DNA methylation is accomplished by DNMTs, including these
five enzymes: DNMT1, DNMT3A, DNMT3B, DNMT3L and
DNMT2. DNMTs have been reported to be involved in the main-
tenance and de novo of DNA methylation (Uysal et al., 2015). For
example, DNMT1 mainly maintains DNA methylation patterns
(Elliott et al., 2015). On the other hand, DNMT3A and
DNMT3B are essential for de novo methylation in early develop-
ment (Okano et al., 1999). DNMT3L cooperates with both
DNMT3A and DNMT3B and enhances the initiation of DNA

methylation (Cheng & Blumenthal, 2008). The fifth DNA methyl-
transferase, DNMT2, targets RNA methylation in mammals, rather
than participating in genome methylation. This phenomenon
modifies the 38th cytosine residue in the anticodon loop of certain
tRNAs and enhances the stability of tRNAs (Ashapkin et al., 2016).
For example, DNMT2 affects polypeptide synthesis during haem-
atopoiesis by modulating the stability and fragmentation of
tRNAs (Tuorto et al., 2015).

DNA methylation changes the nucleic acid structure and the
gene phenotype when it occurs at a certain gene region, which
makes DNA methylation a potential new biomarker in biological
research (Lee et al., 2016). The earliest approach that detected
DNA methylation was through the quantification of total methy-
lated cytosines in a chunk of DNA (Umer & Herceg, 2013). With
development in technology, genome-wide analyses, such as
next-generation sequencing (NGS) technologies, have been widely
used in genome-wide and locus-specific DNA methylation ana-
lyses. Particularly, novel approaches emerge with pertinence,
sensitivity and speed. For example, the global estimation of
5-methylcytosine content can be detected by high-performance
capillary electrophoresis with UV-V detection, liquid chromatog-
raphy with electrospray ionization mass spectrometric detection
and LUminometric Methylation Assay (Berdasco et al., 2009).
These methods provide information about the disease process
and progress and can be useful in various clinical settings and
in drug screening (Umer & Herceg, 2013). Locus-specific DNA
methylation analysis provides insights into early epigenetic repro-
gramming events and identifies rare cells with unique epigenetic
signatures (Cheow et al., 2015). Many methods are available, in-
cluding methylation-specific PCR, MethyLight, combined bisulfite
conversion restriction analysis, bisulfite (Sanger) sequencing,

Fig. 1. Epigenetic mechanisms are associated with OA. Specific inflammatory cytokines were shown to accelerate the development of OA by directly targeting DNA
methyltransferases, and the level of DNA methylation modulated the expression of specific inflammatory cytokines in chondrocytes reversely. For histone mod-
ifications, the overexpression of HDAC4 significantly led to a release of matrix-degrading enzymes, thus, contributing to bone loss associated with OA. For
miRNAs, the reduction of miR-140 played an important role in OA progression by targeting ADAMTS5 and AGGRECAN. Conversely, The overexpression of
miR-365 may accelerate the development of OA by targeting MMP13 and collagen type X (Col X).
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bisulfite pyrosequencing and methylation-sensitive high-resolution
melting (Umer & Herceg, 2013). Although genome-wide and
locus-specific analyses provide a comprehensive understanding
of DNA methylation, higher coverage and accuracy are required
to detect DNA methylation. Firstly, restriction landmark genomic
scanning, methylation-specific arbitrarily primed PCR, methylation-
sensitive representational differential analysis and amplification
of intermethylated sites are widely used, with some inevitable
limitations for samples with large quantities of DNA. These
approaches are labour-intensive and include complex procedures.
Furthermore, microarray-based (DMH, CHARM, HELP assays,
MeDIP-Chip and Illumina Infinium) and sequencing-based
approaches (bisulfite treatments [BS-Seq, MethylC-Seq, reduced rep-
resentational bisulfite sequencing (RRBS) and methyl CpG-binding
domain (MBD)-isolated genome sequencing (MIGS)]) enhance
the sensitivity, simplify the experimental setup and reduce the
sequence redundancy in genome-scale DNA methylation analysis
(Umer & Herceg, 2013). In addition to these widely used DNA
methylation detection methods, some novel approaches have
subsequently emerged, which include an electrochemical detection
system and a methyl-sensitive fluorescence polarization assay. The
former technique targets MBD and a glucose dehydrogenase-fused
zinc finger protein (Lee et al., 2016). The latter technique recog-
nizes the palindromic target sequence CCGG through restriction
endonucleases, namely, MspI and HpaII (Shiratori et al., 2016).
The developments in DNA sequencing technologies, as well as
methods to identify and map 5-hydroxymethylcytosine are
expected to augment our current understanding of epigenomics.

3. Histone modifications

Eukaryotic DNA is tightly packaged within the 2–10 µm nucleus,
which requires several metres of DNA to be compact (Rothbart &
Strahl, 2014). These packages are mainly comprised of core
nucleosome particles, which are formed of 147 DNA base pairs
wrapped around an octamer of histones (two copies each of
H2A, H2B, H3 and H4). The central histones modulate the func-
tion and dynamics of the chromatin by the presence of specific
histone variants and PTMs (Biterge & Schneider, 2014).

On the other hand, histone variants are the key players in the
shape of chromatin structure and the regulation of fundamental cel-
lular processes, such as chromosome segregationandgene expression
(Vardabasso et al., 2014). Histone variants replace the canonical his-
tones to change DNA expression timings (DNA replication inde-
pendent) and mRNA characteristics (Biterge & Schneider, 2014).
This phenomenon alters the stability, dynamics and accessibility
of DNA (Weber &Henikoff, 2014), More importantly, histone var-
iants play important roles in disease progression in certain cases.
For example, MacroH2A is a histone variant that is overexpressed
in patients with Huntington’s disease and steatosis-associated
hepatocellular carcinoma (Biterge & Schneider, 2014). H3.3 is the
variant of H3 that replaces H3K27me3 in paediatric glioma; it is
associated with reduced survival in patients with paediatric glioma
(Chan et al., 2013). Furthermore, subsequent studies have reported
that other core histone variants, namely H2A.X, H2A.Z, CENP-A
and linker histoneH1 variants, are linked to biological development
of diseases (González-Romero et al., 2012).

For PTMs, covalent modification occurs in histones at their
flexible N- or C-terminal tails, as well as globular domains.
PTMs also play important roles in many biological processes,
including in DNA stability and expression. With the advancement
of approaches to biochemical systems, PTMs can be classified into

the following categories: lysine acetylation, lysine and arginine
methylation, arginine citrullination, lysine ubiquitination, phos-
phorylation, fatty acylation and ADP ribosylation. These processes
are precisely modulated by enzymes that transfer specific chemical
groups to implement different modification. Histone acetylation is
catalysed by diverse enzymes, in which two converse enzymes,
namely, histone acetyltransferases and deacetylases, modulate the
acetylation status of histones (Bannister & Kouzarides, 2011).
Additionally, a large number of histone methyltransferases catalyse
the methylation on the ε-amino group of lysine residues and form
the most prevalent histone methylation (Fan et al., 2015). PTMs
have diverse functions with enzyme involvement. For example, his-
tone acetylation, which is the so-called opening up of chromatin,
makes DNA more accessible to other protein factors (Fan et al.,
2015). Histone methylation level is associated with activating tran-
scription, resulting in different chromatin states, influencing aging
and aging phenotypes (McCauley & Dang, 2014; Berr et al., 2016).
Furthermore, cross-talk between different histone modifications,
which may constitute a histone code, have been observed, which
may help fine tune overall control (Bannister & Kouzarides, 2011).

Thousands of experiments have provided enormous data
repositories in terms of the genome-wide binding pattern of
modified histones by ChIP-seq (Rivera & Ren, 2013). Although
ChIP-seq is the gold standard for mapping PTMs, limited reso-
lution, dependence on antibodies and the need for large amounts
of starting material have limited its application. To break the lim-
itations, researchers have proposed a ChIP-exo technique to pro-
vide a single bp accuracy, in which an exonuclease precisely trims
the ChIP DNA of the cross-linking site into a small fragment
(Rhee & Pugh, 2011). Furthermore, a nano-ChIP-seq protocol,
which is combined with a high-sensitivity small-scale ChIP
assay and a tailored procedure, generates high-throughput
sequencing libraries from scarce amounts of ChIP DNA (Adli
& Bernstein, 2011). This nano-ChIP-seq does not only decrease
the need for starting materials, but it also makes the entire pro-
cedure faster. Additionally, many novel approaches have emerged
with comprehensiveness, high-resolution and short setup features,
including ChIP-bisulfite-sequencing (ChIP-BS-seq) (Brinkman
et al., 2012), bisulfite sequencing of chromatin immunoprecipi-
tated DNA (BisChIP-seq) (Challen et al., 2014) and other high-
resolution mass spectrometry assays (Lin & Garcia, 2012).

4. NcRNAs

Previously, mRNA function had been mainly considered to pro-
vide protein-coding information only (Kumari & Sampath,
2015). With the development of deep sequencing and transcrip-
tome analysis, only a tiny portion of the biological genome corre-
sponds to protein-coding sequences; in addition, most genomic
loci produce large transcripts rather than proteins, which are
defined as ncRNAs (Perez et al., 2013). Although these ncRNAs
had been regarded as junk RNAs for a long time, they have
now been identified to have a role in many physiological pro-
cesses, including the maintenance of self-renewal, direction of
cell lineage (Guan et al., 2013) and expression of hundreds of
genes (Varela et al., 2013).

NcRNAs are classified into the following two categories based on
their length: small and long ncRNAs (lncRNAs) (Hirose et al.,
2014). Small ncRNAs include microRNAs (miRNAs), small inter-
fering RNAs (siRNAs) and Piwi-interacting RNAs (piRNAs).
MiRNAs are one of the most widely studied small ncRNAs. A
total of 52% of miRNAs are located in human intergenic regions,
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40% lie within the intrinsic regions of genes and the final 8% are
exonic (Hsu et al., 2006). Mature miRNAs have similar physio-
logical roles to other RNAs, such as transcriptional activation and
inhibition, epigenetic repression and controlled degradation rates
(Mott & Mohr, 2015). Furthermore, by targeting the complemen-
tary sequence of miRNAs, they modulate over 60% of the transla-
tion of protein-coding genes (Mott & Mohr, 2015). Not only in
the modulation of gene translation, miRNA also present intricate
functions in different tissues (Guo et al., 2010). For example,
miR-125b up-regulates and displays oncogenic potential in colon
cancer and haematopoietic tumours. Conversely, miR-125b down-
regulation contributes to malignant transformation in mammary
tumours and hepatocellular carcinoma (Banzhaf-Strathmann &
Edbauer, 2014). siRNAs are usually paired withmRNAswith perfect
complementarity and are directed in their endonucleolytic cleavage
and destruction (Hirose et al., 2014). On the other hand, piRNAs
play a pivotal role in germline genome protection from transposons
(Hirose et al., 2014). lncRNAs are the second class of ncRNAs, which
regulate the RNA and protein content of a cell on the transcriptional
and post-transcriptional level (Melissari & Grote, 2016). These
molecular mechanisms include dosage compensation, chromatin
regulation, genomic imprinting and nuclear organization (Yan
et al., 2016). In addition, a small number of lncRNAs modulate the
recruitment of RNA polymerase II and induce chromatin remodel-
ling in global or local gene expression in trans or cis (Shi et al.,
2013). Therefore, lncRNAs are present in pathological conditions
such as cancer and cardiovascular disease, which makes lncRNAs a
novel potential biomarker for clinical usage (Schmitz et al., 2016).

Moreover, a small part of ncRNAs codes for proteins including
early nodulin 40 and MtHAP2-1 in plants. At the same time, some
mRNAs may modulate post-transcriptional level gene expression,
which is independent of their encoded proteins. These two kinds
of RNAs are called cncRNAs (Kumari & Sampath, 2015), which
have shed new light on the understanding of ncRNAs. A total of
300 alternatively spliced bifunctional RNAs may be observed in
the human genome (Ulveling et al., 2011). The exploration of
protein-coding and noncoding functions for cncRNA loci may be
highlighted in future studies (Kumari & Sampath, 2015).

NcRNA realization has been expanded with the advent of NGS
(Ilott & Ponting, 2013). In particular, lncRNAs have been identi-
fied by RNA-seq technology (Li et al., 2014). Moreover, RNA-seq
data integration detects active transcription to further understand
the reported lncRNAs (Chen et al., 2016 a). These findings may
help to discover novel lncRNAs and may improve the character-
ization of identified lncRNAs.

5. Bone and cartilage diseases associated with epigenetics

Mesenchymal stromal cells (MSCs) are typical adult progenitor
cells, which possess multidifferentiation capacity in vitro and
in vivo (Takahashi et al., 2015). MSCs are one of the promising
candidate cells for skeletal regeneration due to their convenient
isolation and immune-modulatory capability. The epigenetic
changes of MSCs are essential in the differentiation of MSCs
into bone and cartilage. These processes include DNA methyla-
tion, histone modifications and miRNAs.

(i) Osteogenic and chondrocyte differentiation of MSCs by
epigenetics

A coordinated cascade of transcription factors and epigenetic
modifications drive gene transcription, and cause specific cell

fate, and this is indispensable for terminal differentiation of multi-
potent stem cells (Meyer et al., 2016). For example, the osteogenic
and adipogenic differentiation of MSCs are partly regulated by
transcription factors, including peroxisome proliferator-activated
receptor-γ (PPAR-γ) and Runt-related transcription factor 2
(Runx2) (James, 2013), and various epigenetic alterations
(Glemžaitė & Navakauskienė, 2016). These processes are accom-
panied by a loss of the Brachyury gene. Brachyury inactivation is
associated with the methylation of its promoter, which represses
stem cell-associated genes (Dansranjavin et al., 2009). In addition
to the Brachyury gene, the cytosine methylation accumulation at
the endogenous thyroid hormone receptor interactor 10 (Trip10)
promoter reduces Trip10 expression, which accelerates osteogenic
differentiation (Hsiao et al., 2010). Osteocalcin (OC) is a non-
collagenous bone matrix protein, which is partly regulated by
DNA methylation and histone modifications. In MSC osteogenic
differentiation in vitro, OC expression is usually increased with
the decrease in DNA methylation. Additionally, OC is activated
by the accumulation of H3 and H4 acetylation. Conversely, OC
is inhibited by the decrease in H3 and H4 acetylation in the OC
promoter and coding regions. This event occurs in the proliferative
period of osteogenic differentiation (Takahashi et al., 2015). For the
H3 sub-family, the acetylation levels of H3K9Ac and H3K9me2 are
associated with the activation and silencing genes, respectively,
which are modulated by vitamin D receptors at specific gene pro-
moters (Tan et al., 2009). For the epigenetic modulation of
miRNAs, the function of miRNA has been reported in the inhib-
ition of mRNA translation and degradation (Wei et al., 2012;
Takahashi et al., 2015). For example, miR-206 overexpression inhi-
bits the differentiation of osteoblasts by the target of connexin 43
(Inose et al., 2009). MiR-34 inhibits mouse osteoblast proliferation
and differentiation by targeting SATB2, which is a nuclear matrix
protein involved in osteoblast differentiation (Wei et al., 2012).
MiR-27a and miR-489 down-regulate the osteoblast differentiation
by targeting PEX7; on the other hand, miR-148b up-regulates the
differentiation (Schoolmeesters et al., 2009).

The epigenetic mechanisms of chondrocyte differentiation of
MSCs are scarce. In cartilage formation, DNA methylation levels
of CpG-rich promoters of chondrocyte-specific genes are mostly
at a low level (Ezura et al., 2009). SOX9 is one of the master chon-
drogenic transcription factors, which is involved in chondrocyte
differentiation and cartilage formation (Shi et al., 2015).
Age-dependent SOX9 expression is regulated by epigenetic
mechanisms (Mak et al., 2015). Epigenetic studies revealed that
DNA methylation levels increased at specific CpG islands of the
Sox9 gene in mice articular chondrocytes (ACs) at 6 and 12
months old (Zhang et al., 2016). Using the supplementation of
5-azacytidine, which is an inhibitor of DNA methylation, the
DNA methylation level is reduced in the Sox9 promoter region,
which elevates the level of Sox9 expression in ACs. This finding
suggests that expression is associated with DNA methylation
(Zhang et al., 2016). Moreover, in DNA methylation, many
kinds of histone modifications are involved in chondrocyte differ-
entiation. For example, several transcription factors and coactiva-
tors, such as Scleraxis/E47 and p300, cooperatively modulate
Sox9-dependent transcription through p300-mediated histone
acetylation (Furumatsu & Asahara, 2010). And a novel Runx2
enhancer is localized in the primary osteoblasts and is character-
ized by the presence of the histone variant H2A.Z, which contains
sufficient elements to direct Runx2 expression to osteoblasts
(Kawane et al., 2014). For the epigenetic modulation of
ncRNAs, miR-101 and HOTTIP are up-regulated by targeting
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DNMT3B, which alters integrin-α1 methylation, which is a key
protein of chondrocyte ossification (Kim et al., 2013a).

(ii) Skeletal diseases associated with epigenetics

Epigenetic alterations are associated with the aetiology and path-
ology of bone and cartilage diseases. Osteoarthritis (OA) is a
chronic multifactorial disease associated with specific genes.
Specific transcription factors (TFs), cartilage-degrading enzymes,
pro- and anti-inflammatory cytokines and extracellular matrix
proteins contribute to OA development (Zhang & Wang, 2015).
More importantly, advanced studies highlight the role of epigen-
etics in OA, including DNA methylation, histone modifications
and miRNAs (Im & Choi, 2013) (Figure 1).

Differences in the methylome between normal and OA knee
articular cartilage have been identified, including 929 differen-
tially methylated sites. Most of the methylated sites in OA
(69%) are hypomethylated and enriched among gene enhancers
in OA cartilage tissue (Jeffries et al., 2014). For epigenetic changes
of TFs, some OA related TFs (ATOH8, MAFF, NCOR2, TBX4,
ZBTB16 and ZHX2) are significantly hypermethylated and down-
regulated in OA cartilage. These results indicate that the DNA
methylation level negatively affects the chondrocyte transcriptome
and function in OA pathogenesis (Alvarez-Garcia et al., 2016).
For cartilage-degrading enzymes, the demethylation of MMP3,
MMP9, MMP13 and ADAMTS4 promoters increase their gene
expression in OA cartilage (Reynard, 2016). Additionally, inflam-
matory mediators modulate DNMTs, DNMT3B and DNMT3A,
which target DNA methylation directly (Shen et al., 2017).
IL-1β is a proinflammatory cytokine guiding the function of
immune and proinflammatory cells and decreases the expression
of DNMT3B and DNMT3A through NF-κB signalling (Shen
et al., 2017). Another inflammatory chemokine, IL-8, shows
increased demethylation in the promoter region in OA chondro-
cytes, which is correlated with enhanced IL-8 expression
(Takahashi et al., 2015). Furthermore, the DNA methylation
level modulates the expression of specific inflammatory cytokines
in chondrocytes reversely. Significant demethylation of CpG sites
in the inflammatory chemokine IL-8 promoter increases the
expression of IL-8 in the OA chondrocytes (Takahashi et al.,
2015).

With increasing data of genome-wide profiling of DNA
methylation in OA, the alterations of DNA methylation affect
more gene expression in OA. The demethylation of specific pro-
moter and enhancer sites in GDF5, iNOS and SOST increase their
gene expression in OA cartilage and isolated chondrocytes.
Conversely, the increased methylation of SOX9, DIO2 and
COL9 promoters caused reduced expression in OA cartilage
(Iliopoulos et al., 2007; Verma and Dalal, 2011; Kim et al.,
2013b; Gupta et al., 2014b; Papathanasiou et al., 2015).

For histone modifications, HDAC4 is one of the key regulators
in OA development (Lu et al., 2014). The HDAC4 expression
level has a statistically negative correlation with OA severity (Lu
et al., 2014). HDAC4 expression reduction significantly leads to
a repression of the following matrix-degrading enzymes: MMP1,
MMP3, MMP13, ADAMTS4 and ADAMTS5 (Lu et al., 2014).
HDAC4 overexpression does not only decrease the expression
of IL-1β, Cox2 and iNOS, but it also partially blocks IL-1β
mediated effects in catabolic events in human OA chondrocytes
(Thompson et al., 2015). However, HDAC4 inhibition has sup-
pressed the expression of inhibited genes (Young et al., 2005).
For example, trichostatin A (TSA) and sodium butyrate HDAC

inhibitors inhibit cartilage degradation by blocking key MMPs
(MMP-1 and MMP-13) and aggrecan-degrading enzymes
(ADAMTS4 and ADAMTS5). In addition, HDAC4 inhibitors,
including vorinostat, TSA and sodium butyrate, are promising
in the potential treatment of OA (Chen et al., 2010; Makki &
Haqqi, 2016).

For miRNAs, while normal human articular cartilage expresses
miR-140 in chondrocytes, its expression is significantly reduced in
OA progression (Zhang et al., 2012). The transfection of miR-140
in chondrocytes down-regulates IL-1β-induced ADAMTS5 ex-
pression and alleviates IL-1β-dependent repression of AGGRECAN
gene expression (Miyaki et al., 2009). These findings indicate
that decreased expression of miR-140 caused the abnormal gene
expression profile seen in OA. MiR-365 overexpression in chon-
drocytes increases the expression of the matrix-degrading enzyme
MMP13 and collagen type X, which may accelerate OA develop-
ment (Yang et al., 2016). Moreover, the interplay of histone
modifications and miRNAs have been identified in the aetiology
of OA. Subsequently, evidence shows that miR-365 directly tar-
geted HDAC4, which led to HDAC4 expression down-regulation
(Yang et al., 2016), which accelerates the development of OA.
Furthermore, a study of miR-381 has demonstrated that miR-381
overexpression promotes MMP13 and Runx2 expression by the
inhibition of HDAC4, and miR-381 inhibitors increased HDAC4
expression and decreased Runx2 expression (Chen et al., 2016b).
This finding provides us with a novel therapeutic method for the
treatment of OA. This result may inspire researchers to study inhi-
bitors that block the interaction between histone modifications and
miRNAs in order to alleviate the severity of OA.

6. Future direction

This review summarizes the current advances in the study of epi-
genetics and discusses the epigenetic findings pertaining to the
skeletal system. In addition to significant technological develop-
ments, emerging epigenetics research may provide new under-
standing of single genes, specific chromosome regions and the
whole genome (Adli & Bernstein, 2011). Moreover, modifications
can be induced or inhibited by drugs to alleviate or cure disease;
this finding needs further investigation. However, many chal-
lenges remain unsolved to fully use this epigenetic information.
Thus; these challenges will require further research.
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