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The Equation of Telegraphy.

By Miss M. C. GRAY.

(Bead and Received 2nd November 1923.)

§ 1. Introduction.

The equation of the propagation of electric signals along cables,
enerally known as the equation of telegraphy, may be written

dt*
Particular solutions of this equation, adapted to various purposes
have been found by Heaviside,* Poincare',t A. G. Webster,}'
T. W. Ohaundy, § and others. The object of the present paper
is to unify the theory of the equation by exhibiting the relations
which these solutions bear to each other, and by obtaining them
as particular cases of a general solution. The derivation of new
particular solutions by the solution of integral equations is also
discussed.

§ 2. The Relation of the Riemann-Oreen Solution to the General
Solution.

To reduce the equation (1) to the normal form of hyperbolic
partial differential equations put

and we find
2 3

ajr-« 'a?

* Kleotrioal Papers, Vol, I., pp. 53 tt teq. " On the Extra Current."

t Comptes Rendus, 117 (1893), pp. 1027 tt stq. "On the Propagation of
Electricity."

X " Electricity and Magnetism," pp. 540 tt teq.

§ Proe. London Math. Soc (2) XXI. (1922), pp. 214-234.
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If we introduce new variables

a: = s — at \
y = z + al J

it becomes

J^+X^O (2a)
dx dy iar x

or if we take at=-y
z = x

a
it becomes

p -0 (26)
dx dy v

v '
Either (2a) or (26) may be regarded as a normal form.

To find the general solution of the equation we start from the
well-known general solution of Laplace's equation

d,y yy vy+ + ° (3)

f2

viz. F
f2r

F= I /(z + ix cos u + iy sin u, u) du,
Jo

of which a particular form is

F= f ' e*( 2 + 'a:0O8« + 'ysill")^(M)aTM (4)

In (3) substitute iy = y', and the equation becomes

"3? dy1^ + ~dzT~

To make this coincide with the telegraphy equation (26) we must
have

Hence we now substitute V=e*f(x, y') and the equation for / i s
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Also from equation (4) we must have

, f2ir
e* z /= ek{z + ix cos u + y' sin v.)

C2v
i.e. /=J ei

£ ( ) (56)

which tee <rj&e as oitr general solution.

For the equation (2a) the corresponding general solution -will be

J *-£• (oos 8 + i sin $) + *—¥
/ = J « ^ Z <^(6»)^ (5a)

y
when A again equals — .

We now introduce the Riemann-Green function for the equation

This is defined* as a function G (x, y; %, -q) having the two
important properties: —

1. It satisfies the partial Differential Equation.
2. I t has the value unity along the two characteristics through

the arbitrary point (£, ij).

To specify the solution of the equation we must know the values
of M and one of its derivates (and therefore really both derivates)
along a curve AB. Let A and B be the points in which the
characteristics through (£, rj) meet this curve. Then, if G is the
Riemann-Green function for the equation, the general solution may
be written

The Riemann-Green function corresponding to our general
solution (5 b) is

G(x,y; ^,v)=i~ rr
e
i*(z-*>°°<'» + *(y-';)Bin«rf<? (6c)

Air Jo

Of. Riemann, Ges. Werke (1876), pp. 158 et seq. ;
or Darboux, ThSorie Oenerak dea Surfaces, t. II., pp. 75 et ttq.
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since this satisfies the equation, and has the value unity along the
characteristics

1 f2r
for— em(cos$±inine) dQ n a s t n e v a i u e u n i t y whatever m

2TT Jo
may be.

The Riemann-Green function for the equation (26) is usually
written

0{x, y; £ ,)-./, {kj(x-$f-(y-vf} (66)

while that for equation (2a) is

G(x,y; f , , ) - . / , {k J (x - $) (y - r,)} *..(6a)

where Jo is the Bessel function of order zero.

The equivalence of (66) and (6c) can be shown immediately by
substituting in (6c) the values

x - £ = p cos <f>
y-t) = ip sin <j>,

f *t'*G(x, y; £, V) = T~ f
«"• Jo

^ eikp OOBU

2TT Jo

Also «'*pC08" = ^(*¥>) + 2 i c o s M J,(kp) + 2i2cos2uJ2(kp) + ...

=J0(kp)

Now the general solution corresponding to the Riemann-Green
function (6c) is

fc ^+
 87^) -«fcrfy + ̂  dx)
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_lfT
{ik cos ddy + k sin 6dx}.

Now suppose that along AB we have the values

£-*».£-*».
then M (£ »/) = £M^ + \uB j - \ \ *e - »*f o°s 9 -iij sin 9

J j< J 0

re«*/i (0 cos 9 + i/j (0 sin $ F ^ ^j ^ ^

where *(0, <) = ^ (<) / , ' it) + ^ («) &' (t)
- (ik cos 6 f.t(t) + h sin 6 / i ' (<) )/,(<)•

Now, change the order of integration; this gives

~< i f oo8 * " * » 8 i n '

rr e

Since the original equation involves only terms of even order the
general solution may be written

hence the Riemann-Green method of solution leads to a solution
similar in form to the general solution; and as the values of z and
its first derivates may be chosen arbitrarily along the curve A B,
the function v (̂̂ ) m a y be regarded as arbitrary. Thus the
Riemann-Green solution is exhibited as an equivalent form of the
general solution.
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§ 3, Heaviside't Solution.

Heaviside considers the equation

3sv , dv d'v
k +

k
in which we must take — = 2y

1-.-
cs

to reduce it to the form

His general solution, obtained by assuming that we vhave

initially a periodic variation V —j- is

sin wra: t/2a
E " r cos ;

* 1 2yJ
where a. - — = —- and B = cA?2 = - ^ .

« 2y aa

If we now substitute at = y, and cos 6= —— , v reduces to

the form

v=Ve a

and our general solution is

Thus the general solution is given by summing an infinite number
of these particular solutions, each multiplied by the corresponding
value of the arbitrary function <f>(6).
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§ 4. Poincarfs Solution.

There is also a solution due to Poincart who considers the
equation in the form

so that in our general solution we must write k=*l.
The solution given by Poincar^ is

....... (7)

where for the time variable y = 0 we have given initial values of z

and — :—
dy

z reduces to / ( * ) = [ °° & (?) e*" dq
J - 00

dz f+»
and — reduces to / , (x) = I 6X (q) e** dq .

. Consider first the second term of the solution (7). Since it has
singularities at the points + 1, we must integrate along a contour
of the form ABCDE. To evaluate this, suppose x + y>Q, and
integrate round the closed contour ABCDEMA (Fig. I), where

EMA is a circle of very large radius and centre the origin. The
integral round the contour is zero, and also the integral round the
senoicircle tends to zero as the radius tends to infinity.

. •. Integral along ABCDE = 0.
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Now for x + y<0, we retain the path ABODE and adjoin to it
the semicircle EM'A (Fig. II). The integral round the semicircle

will again tend to zero, though the integral round the whole con-
tour is not now zero, but equals that round the contour OABCDEO.
(Fig. III).

G e
Ft«. in

Hence, if we substitute q = cos <j>, <f> must vary from 0 to 2TT,
and the integral becomes

- B 2 i

I _ e»x cos 0 - y sin 0

and each of these terms is a particular case of the general solution.
If we now consider the first term of the solution (7), we see

that it may be derived from the second term by interchanging
6 and 6lt and differentiating with respect to y. Hence to evaluate
/i we perform the same operations on the above value of 72 which
gives
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and again each of these terms is a particular case of the general
solution.

Thus Poincare's solution is exhibited as the sum of four terms,
each of which is a particular form of the solution (56).

§ 5. Webster's Solution.

We pass on now to the more complicated solution given by
Webster. He starts from the equation

32M 2 Vu,

with the initial conditions u = F (x) and — =g(x)but works out

the solution for the more general equation

—- =a
a(—- +—— ) + 62w,

dt? \ dx* 3yV

where we may put at any time u independent of y. We now make

u satisfy the auxiliary equation o2 -r-j- = b*u so that the equation

becomes

and the initial conditions are transformed into

M = # (a;, y, z), ^- = <f, (x, y, z).

Then Foisson's formula * gives as a solution of this equation

u(x, y, z) = -—— I I 14> (a; + at cos a, y + at cos /8, z + at cos y) da
wr dt J J

+ — I I t <f> (x + at cos a, y + at cos /2, z + at cos y) dv>.

* Houveaux Mimoiru de I'Acad. det Science*, b. III.
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For the telegraphic equation Webster, integrating over a
hemisphere for constant z, and then making y vanish, reduces
this finally to the form

1 f+a( 3 / / T\
+ F(x-at)} + -^ J(x + X) — J^ibyjf- - —JrfX

1 f+o(

j
To connect this with our standard solution we consider the

RiemannGreen function

G{x,y; £ ,) = Jt {-£- J(x - tf - (y -

which gives the general solution

In this we may substitute, following Webster,

x - £ = at cos 6, y-rj = at sin 0.

.: u = \uA+%uB-\ f J0{btJ'<
Jo

3M
cos 26}. 2 sin 6 cos 6 wg

3
+ J I M . 2 sin 6 cos 0 -^ Jo {U Jcos 20} d0.

Jo

Now change the variable from 6 to <x, given by cos 20= -sin2a.

~ i I Jo (ibt sin OL) Vl - sin4a. —- da.
Jo o01-

+ J I u J1 - sin4a. j - J"o (ii< sin a.) da..
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Finally substitute at cos a. = X ; this gives

M = \{F(x + at) + F(x - at)}

+ a ( A2 / X2 \ d

M*)
A n d ^T~ "S"5T-

+ o ( , X2 / X

This solution is evidently identical with Webster's solution,

since u and — may be chosen arbitrarily along the curve AB, to
9 X

which a definite form has been assigned. Thus Webster's solution
is really a particular case of the Riemann-Green solution, which we
have already shown to be equivalent to the general solution.

§ 6. T. W. Chaundy's Solution.

Chaundy obtains a solution of the telegraphy equation in an
entirely different manner, but his actual result is very similar to
Webster's, so need only be briefly considered. He starts from the
equation

a 2 *
dxdy

and obtains the solution in series form reducing it finally to
r x

k . Jo (xy) + 1 <f>(u) Jp (2 sl{x-u)y)du
J o
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But the Riemann-Green function corresponding to this equation is

which leads to the general solution

and we see at once that the term

can be reduced to either of the last two terms in Chaundy's
solution, if we take (£, 17) to be the point (u, 0) or (0, u). The
fcsnn «70 (a; y) is simply the Riemann-Green function corresponding
to the origin. Hence Chaundy's solution is the sum of three terms
each of which is a particular form of the Riemann-Green solution.
This solution is, therefore, also a particular form of the general
solution.

Chaundy refers also to another solution

u=\
J 7

where y is a simple closed contour surrounding the origin ; this is
built up from the elementary solution

ixt + \y\t

If we take y to be a circle of unit radius with centre at the
origin, we have evidently t = elS, and therefore

- I •£ (6) e*x(oos " + • B'n ")+*t/(oos ' ~ • s ' n *̂  dO
o

which is exactly equivalent to the general solution (5a) since in

Chaundy's equation — = 1. Hence this solution is rather more

general than the one we have been considering, as the contour y
need not be circular. Practically, however, the two solutions may
be regarded as identical.

3 Vol. 42
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§ 7. Derivation of Particular Solutions from the General Solution.

Since all these solutions can thus be shown to be particular
cases of the general solution, it would seem natural to expect that
there should be some method of evaluating the arbitrary function
f(0) when the initial values of z and its time derivate are assigned.
By substituting this value of f(6) in the general solution, we
should obtain the so'ution corresponding to these given initial
values.

Now the general solution of our equation is

z _ I ikx cos 0 + ky sin 0
J 0

where y is proportional to the time coordinate.
For y — 0, therefore, we have

(«)o= etkxeosef(0)d6,
J o

and ( | ? ) f l =1 2 V** eo. <> k sin e f {6) dd

if we may differentiate under the integral sign.
Then if the given initial values are

£).-'•«
f(6) will be found from the equations

I
i:

2*eikxcoBe

1 0

ilex oos 9
1 o

In the case of Poincar^'s initial conditions the equations are
immediately soluble, for they are

eixeos6f(6)dO=*\ 6{q)eiqx dq (8)

f2*" ixoose siuOfie)de= I +" 61(q)eiqx dq (9)
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In (8) write q = cos <£, and we find as before

1 +°° 6(q) eiqx dq=-\ *6 (cos <j>)eix o o s * sin <f> d<j>
J -oo J o

• '• /(</>)= ~ s i n 41 ® (cos $)•
Similarly from (9) we have

j +e°6»1 (q)eiqx d q = - f *0 , (cos </>)e*35 ° ° s * s i n <f> d<f>.
J -oo J o

.•. We may also have

f (</>)= - ^ ( C O B ^ ) .

This gives as our solution, with Poincare's initial conditions

(cos./,) n

J -

0

This solution is evidently equivalent to the form given by Poincare.
In general the integral equation

f r

can be solved in the form of a series, provided that F(x) satisfies
the conditions necessary for its expansion in a series of Bessel
functions.

Thus we have

F{m)-a0J0{x)+ 2 anJn(x).
n = l

Also we have e** ^ e = Jo (x) + 2 2tVn (*) cos nO.
n=l

We further assume that f{6) can be expanded as a Fourier
cosine series

2&ncosn0.
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etxcos6 f(6)dd=\ d6{J0(x)-t- 2 2i" cos nd Jn(x)}
J o J o 7i=l

00

{&„+ 2 bn cosn^}

= | d6 {60 Jo (x) + 2 2 i» 6, cos2 n^ Jn (x)},
J 0 71=1

since the terms in cos m6 cos n6 (m =(= n) and those in cos md
vanish on integration.

. f *ei

Jo o

(as) + 2TT ^ inbnJn(x).
71 = 1

Thus we are led to the identity

2TT 6,: J"o (x) + 2TT 1 i" &„ ̂  (a;) = a0 Jo (x) + 2 anJn (x);
n - l n = l

and equating coefficients we have

b - ^

b -

Thus the equation is theoretically solved, and we can find the
value oif(8) for any given initial conditions.
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