Donald C. Morton
Anglo-Australian Observatory

SUMMARY

The region of the 0 VI resonance doublet around 1030 Å has been observed in 9 stars with the high resolution (0.051 A FWHM) detector on the Copernicus satellite spectrometer. Although the spectra are confused with interstellar Lyman β and H_2 absorption, P Cygni profiles or shifted absorption lines indicating mass flow were found in ζ Pup (04If), 15 Mon (07V), HD 151804 (081af), 10 Lac (09.4V), υ Ori (BOV) and τ Sco (BOV). However, no O VI could be seen in ρ Leo (BlIab) or γ Ara (BlIb). The O VI profiles display a considerable variety that is not correlated with spectral type. Zeta Pup has a broad km s $^{-1}$, while HD 151804 has only narrow absorption from -1060 to -1660 km s $^{-1}$, and 15 Mon has a parrower feature from 1222 emission and deep absorption ranging over all velocities to about -2800 , and 15 Mon has a narrower feature from -1700 to -2100 km s⁻¹. Both 10 Lac and τ Sco have broad relatively shallow absorptions extending from positive velocities to -1380 and -1000 km s⁻¹ respectively. In contrast, the absorptions are narrower with steeper wings in ζ Oph and \cup Ori. The latter star also has emission, while in ζ Oph the absorption is split into two components from about -1550 to -1280 and -1280 to -980 km s⁻¹.

DISCUSSION FOLLOWING MORTON

<u>Castor</u>: It is not true that the ionization must go \underline{up} with radius in a photoionization model. If the wind is opaque to the ionizing radiation, the ionization goes \underline{down} with radius as the radiation is absorbed. This occurs in the Auger-ionization model, as the softer X-rays are absorbed low in the wind.

 $\underline{\text{Lamers}}$: This depends on the mass loss rates. Joe can answer this better than I.

93

P. S. Conti and C. W. H. de Loore (eds.), Mass Loss and Evolution of O-Type Stars, 93-94. Copyright \otimes 1979 by the IAU.

94 DONALD C. MORTON

 $\underline{\text{Cassinelli:}}$ For optically thick winds one finds that the degree of ionization decreases in the outward direction, as I will show in my discussion tomorrow.

<u>Morton</u>: Since the wind of τ Sco is optically thin, the ionization should increase in the outward direction and hence I wonder about the interpretation of the profile wings.