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Abstract

We study the existence of a unique stationary distribution and ergodicity for a two-
dimensional affine process. Its first coordinate process is supposed to be a so-called
α-root process with α ∈ (1, 2]. We prove the existence of a unique stationary distribution
for the affine process in the α ∈ (1, 2] case; furthermore, we show ergodicity in the α = 2
case.
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1. Introduction

We consider the two-dimensional affine process (affine two-factor model)

dYt = (a − bYt ) dt + α
√
Yt− dLt , t ≥ 0,

dXt = (m− θXt ) dt +√
Yt dBt , t ≥ 0,

(1.1)

where a > 0, b, θ,m ∈ R, α ∈ (1, 2], (Lt )t≥0 is a spectrally positive α-stable Lévy process
with Lévy measure Cαz−1−α1{z>0}, with Cα := (α�(−α))−1 (where � denotes the gamma
function) in the α ∈ (1, 2) case and a standard Wiener process in the α = 2 case, and (Bt )t≥0
is an independent standard Wiener process. Owing to the almost-sure continuity of the sample
paths of a standard Wiener process, instead of

√
Yt− we can write

√
Yt in the first stochastic

differential equation (SDE) of (1.1), with Y the so-called Cox–Ingersol–Ross (CIR) process in
the α = 2 case and in the α ∈ (1, 2) case, the α-root process. Note also that the process (Yt )t≥0
given by the first SDE of (1.1) is a continuous-state branching process with immigration, with
branching mechanism bz + zα/α, z ≥ 0, and immigration mechanism az, z ≥ 0 (for more
details, see the proof of Theorem 3.1(i)). Chen and Joslin [8] found several applications of
model (1.1) with α = 2 in financial mathematics; see their Equations (25) and (26).

The process (Y,X) given by (1.1) is a special affine process. The set of affine processes
contains a large class of important Markov processes, such as continuous-state branching pro-
cesses and Orstein–Uhlenbeck processes. Furthermore, a lot of models in financial mathematics
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are affine, such as the Heston model [18], the model of Barndorff-Nielsen and Shephard [4],
or the model due to Carr and Wu [7]. A precise mathematical formulation and a complete
characterization of regular affine processes are due to Duffie et al. [13]. Later several authors
contributed to the theory of general affine processes: to name a few, Andersen and Piterbarg [1],
Dawson and Li [12], Filipović and Mayerhofer [14], Glasserman and Kim [17], Jena et al. [21],
and Keller-Ressel et al. [24].

In this work we concentrate on the study of the existence of a unique stationary distribution
and ergodicity of the affine process given by SDE (1.1). These kinds of result are important in
their own right and they can be used to study parameter estimation for the given model. For
the existing results on ergodicity of affine processes, see the beginning of Section 3.

Next we give a brief overview of the structure of the paper. Section 2 is devoted to a
preliminary discussion of the existence and uniqueness of a strong solution of SDE (1.1) by
proving that this solution is indeed an affine process; see Theorem 2.1. In Section 3 we prove
the existence of a unique stationary distribution for the affine process given by (1.1) in both
the α ∈ (1, 2) and α = 2 cases, provided that a > 0, b > 0, and θ > 0; see Theorem 3.1.
In Section 4, for the α = 2 case, we prove ergodicity of the process in question provided that
a > 0, b > 0, and θ > 0, and we also show that the unique stationary distribution of the
process is absolutely continuous and has finite (mixed) moments of any order by calculating
some moments explicitly; see Theorems 4.1 and 4.2, respectively.

In a forthcoming paper we will use our results to study parameter estimation for the process
given by SDE (1.1).

2. The affine two-factor model

Let N, Z+, R, and R+ denote the sets of positive integers, nonnegative integers, real numbers,
and nonnegative real numbers, respectively. By ‖x‖ and ‖A‖ we denote the Euclidean norm
of a vector x ∈ R

m and the induced matrix norm ‖A‖ = sup{‖Ax‖: x ∈ R
m, ‖x‖ = 1} of a

matrix A ∈ R
n×m, respectively. By C2(R+ × R,R), C2

c (R+ × R,R), and C∞
c (R+ × R,R),

we denote the set of twice continuously differentiable real-valued functions on R+ ×R, the set
of twice continuously differentiable real-valued functions on R+ × R with compact support,
and the set of infinitely differentiable real-valued functions on R+ × R with compact support,
respectively. Convergence in distribution will be denoted by ‘

d−→’.
Let (�,F , (Ft )t≥0,P) be a filtered probability space satisfying the usual conditions, i.e.

(�,F ,P) is complete, the filtration (Ft )t≥0 is right continuous, and F0 contains all the P-null
sets in F . Let (Bt )t≥0 be a standard (Ft )t≥0-Wiener process, and let (Lt )t≥0 be a spectrally
positive, (Ft )t≥0-stable process with indexα ∈ (1, 2]. We assume thatB andL are independent.
If α = 2, we understand that L is a standard (Ft )t≥0-Wiener process. If α ∈ (1, 2), we
understand that L is a (Ft )t≥0-Lévy process with Lévy–Khintchine formula

E(eiuL1) = exp

{∫ ∞

0
(eiuz − 1 − iuz)Cαz

−1−α dz

}
, u ∈ R,

where Cα = (α�(−α))−1. Recall that in the α ∈ (1, 2) case the Lévy–Itô representation of L
takes the form

Lt =
∫
(0,t]

∫
(0,∞)

zÑ(ds, dz), t ≥ 0,

where Ñ(ds, dz) is a compensated Poisson random measure on (0,∞)2 with intensity measure
Cαz

−1−α1{z>0} ds dz.
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We note that in Remark 2.1 of [3] we shed some light on the definition of the stochastic
integral with respect to the spectrally positive α-stable process L in the first SDE of (1.1) in the
α ∈ (1, 2) case.

Theorem 2.1. Let (η0, ζ0) be a random vector independent of (Lt , Bt )t≥0, satisfying P(η0 ≥
0) = 1. Then, for all a > 0, b,m, θ ∈ R and α ∈ (1, 2], there is a (pathwise) unique
strong solution (Yt , Xt )t≥0 of SDE (1.1) such that P((Y0, X0) = (η0, ζ0)) = 1 and P(Yt ≥
0 for all t ≥ 0) = 1. Furthermore, we have

Yt = e−b(t−s)
(
Ys + a

∫ t

s

e−b(s−u) du+
∫ t

s

e−b(s−u) α√Yu− dLu

)
(2.1)

for 0 ≤ s ≤ t and

Xt = e−θ(t−s)
(
Xs +m

∫ t

s

e−θ(s−u) du+
∫ t

s

e−θ(s−u)√Yu dBu

)
(2.2)

for 0 ≤ s ≤ t . Moreover, (Yt , Xt )t≥0 is a regular affine process with infinitesimal generator

(Af )(y, x) = (a − by)f ′
1(y, x)+ (m− θx)f ′

2(y, x)+ 1
2yf

′′
2,2(y, x)

+ y

∫ ∞

0
(f (y + z, x)− f (y, x)− zf ′

1(y, x))Cαz
−1−α dz (2.3)

in the α ∈ (1, 2) case, and

(Af )(y, x) = (a − by)f ′
1(y, x)+ (m− θx)f ′

2(y, x)+ 1
2y(f

′′
1,1(y, x)+ f ′′

2,2(y, x)) (2.4)

in the α = 2 case, where (y, x) ∈ R+ × R, f ∈ C2
c (R+ × R,R), and f ′

i , i = 1, 2, and
f ′′
i,j , i, j ∈ {1, 2}, denote the first- and second-order partial derivatives of f with respect to

the ith, and ith and j th variables.

Proof. By Theorem 6.2 or Corollary 6.3 of [16] (for the α ∈ (1, 2) case) and by the Yamada
and Watanabe theorem (see, e.g. [22, Proposition 5.2.13]) and [19, Example 8.2, p. 221] (for
the α = 2 case), there is a (pathwise) unique, nonnegative strong solution (Yt )t≥0 of the first
equation in (1.1) with any initial value η0 satisfying P(η0 ≥ 0) = 1.

Using Itô’s formula, we can check (2.1) and (2.2) together with pathwise uniqueness for
(1.1) (for more details, see the proof of Theorem 2.2 of [3]).

We now check that (Yt , Xt )t≥0 is a regular affine process with the given infinitesimal
generator. We may and do suppose that the initial value is deterministic, say, (Y0, X0) =
(y0, x0) ∈ R+ × R, since the infinitesimal generator of a time-homogeneous Markov process
does not depend on the initial value of the Markov process.

In the α = 2 case, by Itô’s formula, for all f ∈ C2
c (R+ × R,R), we have

f (Yt , Xt ) = f (y0, x0)+
∫ t

0
(Af )(Ys,Xs) ds +Mt(f ), t ≥ 0,

where

Mt(f ) :=
∫ t

0
f ′

1(Ys,Xs)
√
Ys dLs +

∫ t

0
f ′

2(Ys,Xs)
√
Ys dBs, t ≥ 0,
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and Af is given by (2.4). It remains to show that (Mt(f ))t≥0 is a local martingale with respect
to the filtration (Ft )t≥0. However, we prove that it is a square-integrable martingale with respect
to the filtration (Ft )t≥0, since∫ t

0
E((f ′

1(Ys,Xs))
2Ys) ds ≤ C1

∫ t

0
E(Ys) ds < ∞, t ≥ 0,∫ t

0
E((f ′

2(Ys,Xs))
2Ys) ds ≤ C2

∫ t

0
E(Ys) ds < ∞, t ≥ 0,

with some constants C1 > 0 and C2 > 0, where the finiteness of the integrals follows from
E(Ys) = e−bsy0 + a

∫ s
0 e−bu du, s ≥ 0; see, e.g. [10, Equation (19)], [20, Theorem 6.3.3.1],

or Proposition 3.2 of [2].
In the α ∈ (1, 2) case, by the Lévy–Itô representation of L, we can rewrite SDE (1.1) in

integral form:

Yt = y0 +
∫ t

0
(a − bYs) ds +

∫ t

0

∫ ∞

0
z α
√
Ys−Ñ(ds, dz), t ≥ 0,

Xt = x0 +
∫ t

0
(m− θXs) ds +

∫ t

0

√
Ys dBs, t ≥ 0.

By Itô’s formula, for all f ∈ C2
c (R+ × R,R), we have

f (Yt , Xt ) = f (y0, x0)+
∫ t

0
(Af )(Ys,Xs) ds +Mt(f ), t ≥ 0,

where

Mt(f ) :=
∫ t

0
f ′

2(Ys,Xs)
√
Ys dBs

+
∫ t

0

∫ ∞

0
(f (Ys− + z α

√
Ys−, Xs−)− f (Ys−, Xs−)) Ñ(ds, dz), t ≥ 0,

and, by the change of variable z α
√
y := z̃,

(Af )(y, x) := (a − by)f ′
1(y, x)+ (m− θx)f ′

2(y, x)+ 1
2yf

′′
2,2(y, x)

+ y

∫ ∞

0
(f (y + z̃, x)− f (y, x)− z̃f ′

1(y, x))Cαz
−1−α d̃z

for (y, x) ∈ R+ × R and f ∈ C2
c (R+ × R,R). It remains to show that (Mt(f ))t≥0 is a

local martingale with respect to the filtration (Ft )t≥0. However, we prove that it is a martingale
with respect to the filtration (Ft )t≥0. The martingale property of

∫ t
0 f

′
2(Ys,Xs)

√
Ys dBs, t ≥ 0,

follows in the same way as in theα = 2 case using the fact that there exists some constantC3 > 0
such that E(Yt ) ≤ C3(1 + y0e−bt/α) for all t ≥ 0; see, e.g. Formula (2.7) or Proposition 2.10
of [26]. Now we check that

M1
t (f ) :=

∫ t

0

∫ ∞

0
(f (Ys− + z α

√
Ys−, Xs−)− f (Ys−, Xs−)) Ñ(ds, dz), t ≥ 0,

is a martingale. For all n ∈ N, let

M
2,n
t (f ) :=

∫ t

0

∫ ∞

1
(f ((Ys− ∧ n)+ z α

√
Ys− ∧ n,Xs−)− f (Ys− ∧ n,Xs−)) Ñ(ds, dz),

M
3,n
t (f ) :=

∫ t

0

∫ 1

0
(f ((Ys− ∧ n)+ z α

√
Ys− ∧ n,Xs−)− f (Ys− ∧ n,Xs−)) Ñ(ds, dz).
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By Taylor’s theorem, we have

|f ((Ys− ∧ n)+ z α
√
Ys− ∧ n,Xs−)− f (Ys− ∧ n,Xs−)| ≤ z α

√
Ys− ∧ n sup

(y,x)∈R+×R

|f ′
1(y, x)|

for z ∈ R+. Since

E

(∫ t

0

∫ ∞

1
|f ((Ys− ∧ n)+ z α

√
Ys− ∧ n,Xs−)− f (Ys− ∧ n,Xs−)|Cαz−1−αds dz

)
≤
(

sup
(y,x)∈R+×R

|f ′
1(y, x)|

) ∫ t

0

∫ ∞

1
E(

α
√
Ys ∧ n)Cαz−αds dz

≤ C4n
1/αt

∫ ∞

1
z−α dz

= C4n
1/α t

α − 1
< ∞, t ∈ R+,

with some constant C4 > 0, by Lemma 3.1 of [19, p. 62], (M2,n
t (f ))t≥0 is a martingale with

respect to the filtration (Ft )t≥0. Furthermore, since

E

(∫ t

0

∫ 1

0
(f ((Ys− ∧ n)+ z α

√
Ys− ∧ n,Xs−)− f (Ys− ∧ n,Xs−))2 Cαz−1−αds dz

)
≤ C5

∫ t

0
E((Ys ∧ n)2/α) ds

∫ 1

0
z1−α dz

≤ C5n
2/α t

2 − α

< ∞, t ∈ R+,

with some constantC5 > 0, by [19, pp. 62, 63], (M3,n
t (f ))t≥0 is a square-integrable martingale

with respect to the filtration (Ft )t≥0. This yields the martingale property of (M1
t (f ))t≥0 with

respect to the filtration (Ft )t≥0. Indeed, for all n ∈ N and f ∈ C2
c (R+ × R,R), let

ηnt (f ) := M1
t (f )−M

2,n
t (f )−M

3,n
t (f ), t ∈ R+.

Then, by Taylor’s theorem,

ηnt (f ) =
∫ t

0

∫ ∞

0
1{Ys−>n}(f (Ys− + z α

√
Ys−, Xs−)− f (Ys−, Xs−)) Ñ(ds, dz)

=
∫ t

0

∫ ∞

0
1{Ys−>n}f ′

1(Ys− + ζz α
√
Ys−, Xs−)z α

√
Ys− Ñ(ds, dz)

=
∫ t

0
f ′

1(Ys− + ζz α
√
Ys−, Xs−) α

√
Ys− dLs, t ∈ R+,

with some (not necessarily measurable) function ζ : � → R. Note that, despite the fact
that ζ is not necessarily measurable, f ′

1(Ys− + ζz α
√
Ys−, Xs−) is a random variable, since it

equals f (Ys− + z α
√
Ys−, Xs−)− f (Ys−, Xs−), which is a random variable. In the same way,
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(f ′
1(Ys− + ζz α

√
Ys−, Xs−))s∈[0,t] is a predictable process; thus, we can use Lemma 2.8 of [26],

and, hence, there exist some constants C6 > 0 and C7 > 0 such that, for all t ∈ R+,

E

(
sup
s∈[0,t]

|ηns (f )|
)

≤ C6 E

((∫ t

0
1{Ys>n}(f ′

1(Ys + ζz
α
√
Ys,Xs))

αYs ds

)1/α)
≤ C7

(∫ t

0
E(1{Ys>n}Ys) ds

)1/α

,

where the last inequality follows by Jensen’s inequality and the fact that f ′ is bounded. As
there exists some constant C8 > 0 such that E(Yt ) ≤ C8(1 + y0e−bt/α), t ∈ R+ (see, e.g.
Formula (2.7) or Proposition 2.10 of [26]), we have∫ t

0
E(1{Ys>n}Ys) ds ≤ C8

∫ t

0
(1 + y0e−bs/α) ds < ∞, n ∈ N,

and so, by the dominated convergence theorem,

lim
n→∞ E

(
sup
s∈[0,t]

|ηns (f )|
)

= 0, t ∈ R+.

Then (M1
t (f ))t≥0 is a martingale with respect to the filtration (Ft )t≥0. For more details, see [3,

Proof of Theorem 2.2].
Finally, we check that the transition semigroup (Pt )t≥0 with state space R+ × R corre-

sponding to (Yt , Xt )t≥0 is a regular affine semigroup having infinitesimal generator given by
(2.3) or (2.4) in the α ∈ (1, 2) or, respectively, α = 2 case. Using the notation given in [12],
(0, (αi,j )2i,j=1, (bi)

2
i=1, (βi,j )

2
i,j=1, 0, μ) and (0, (αi,j )2i,j=1, (bi)

2
i=1, (βi,j )

2
i,j=1, 0, 0) are sets

of admissible parameters corresponding to the α ∈ (1, 2) and α = 2 cases, respectively, where

(
α1,1 α1,2
α2,1 α2,2

)
:=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
0 0

0 1
2

)
if α ∈ (1, 2),(

1
2 0

0 1
2

)
if α = 2,

(b1, b2) := (a,m) for α ∈ (1, 2],(
β1,1 β1,2
β2,1 β2,2

)
:=
(
b 0
0 −θ

)
for α ∈ (1, 2],

μ(dy, dx) := Cαy
−1−α dyδ0(dx) for α ∈ (1, 2),

and δ0 denotes the Dirac measure concentrated on 0 ∈ R. Hence, it follows from Theorem 2.7
of [13] (see also Theorem 6.1 of [12]) that, for these sets of admissible parameters, there exists
a regular affine semigroup (Qt )t≥0 with infinitesimal generator given by (2.3) or (2.4) in the
α ∈ (1, 2) or, respectively, α = 2 case. By Theorem 2.7 of [13], C∞

c (R+ × R,R) is a core
of the infinitesimal generator corresponding to the affine semigroup (Qt )t≥0. Since we have
checked that the infinitesimal generators corresponding to the transition semigroups (Pt )t≥0
and (Qt )t≥0 (defined on the Banach space of bounded functions on R+ × R) coincide on
C∞
c (R+ × R,R), by the definition of a core, they coincide on the Banach space of bounded

functions on R+ × R. Then (Yt , Xt )t≥0 is an affine process with infinitesimal generator (2.3)
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or (2.4) in the α ∈ (1, 2) or, respectively, α = 2 case. We also note that we could have used
Lemma 10.2 of [13] to conclude that (Yt , Xt )t≥0 is a regular affine process with infinitesimal
generator (2.3) or (2.4) in the α ∈ (1, 2) or, respectively, α = 2 case, since we have checked that
(Mt(f ))t≥0 is a martingale with respect to the filtration (Ft )t≥0 for any f ∈ C2

c (R+ × R,R)

in both the α ∈ (1, 2) and α = 2 cases.

Remark 2.1. In Theorem 2.1 it was assumed that a > 0, which ensures that P(Yt ≥ 0 for all
t ≥ 0) = 1.

3. Stationarity

The study of existence of stationary distributions for affine processes in general is currently
under active research.

In the special case of continuous-state branching processes with immigration the question
of existence of a unique stationary distribution has been studied; see [23, Theorem 2.6] or [25,
Theorem 3.20 and Corollary 3.21].

Glasserman and Kim [17, Theorem 2.4] proved existence of a unique stationary distribution
for the process

dYt = (a − bYt ) dt +√
Yt dLt , t ≥ 0,

dXt = −θXt dt +√
1 + σYt dBt , t ≥ 0,

where a > 0, b > 0, θ > 0, σ ≥ 0, and L and B are independent standard Wiener processes.
The following result gives the existence of a unique stationary distribution of the affine

process given by SDE (1.1) for both the α ∈ (1, 2) and α = 2 cases.

Theorem 3.1. Consider the two-dimensional affine model (1.1) with a > 0, b > 0, m ∈ R,
and θ > 0, and with a random initial value (η0, ζ0) independent of (Lt , Bt )t≥0 satisfying
P(η0 ≥ 0) = 1. Then

(i) (Yt , Xt )
d−→ (Y∞, X∞) as t → ∞, and the distribution of (Y∞, X∞) is given by

E(e−λ1Y∞+iλ2X∞) = exp

{
−a

∫ ∞

0
vs(λ1, λ2) ds + i

m

θ
λ2

}
(3.1)

for (λ1, λ2) ∈ R+ × R, where vt (λ1, λ2), t ≥ 0, is the unique nonnegative solution of
the (deterministic) differential equation

∂vt

∂t
(λ1, λ2) = −bvt (λ1, λ2)− 1

α
(vt (λ1, λ2))

α + 1

2
e−2θtλ2

2, t ≥ 0,

v0(λ1, λ2) = λ1,

(3.2)

(ii) supposing that the random initial value (η0, ζ0) has the same distribution as (Y∞, X∞)
given in part (i), (Yt , Xt )t≥0 is strictly stationary.

Proof. (i) We prove this part in three steps.
Step 1. In this step we give some representations of the affine transition semigroup (Pt )t≥0

with state space R+ × R corresponding to the process given by SDE (1.1). By Theorem 6.1
of [12] and Theorem 2.1, the transition semigroup (Pt )t≥0 is given by∫

R+×R

e〈u,ξ〉Pt((y0, x0), dξ) = e〈(y0,x0),ψt (u)〉+φt (u)
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for u ∈ U , (y0, x0) ∈ R+ × R, t ≥ 0, where U := C− × (iR) with

C− := {z1 + iz2 : z1 ∈ (−∞, 0], z2 ∈ R}, iR := {iz2 : z2 ∈ R},
and for all u = (u1, u2) ∈ U , we have ψt(u) = (ψ

(1)
t (u), e−θtu2), t ≥ 0, where ψ(1)t (u),

t ≥ 0, is a solution of the generalized Riccati equation

∂ψ
(1)
t

∂t
(u) = R(ψ

(1)
t (u), e−θtu2), t ≥ 0, ψ

(1)
0 (u) = u1,

and

φt (u) =
∫ t

0
F(ψ(1)s (u), e−θsu2) ds, t ≥ 0.

Here, for α ∈ (1, 2], the (complex-valued) functions F and R are given by

F(u) = au1 +mu2, R(u) = −bu1 + (−u1)
α

α
+ u2

2

2
, u = (u1, u2) ∈ U.

Indeed, in theα ∈ (1, 2) case, the formula forR(u), u ∈ U , can be checked as follows. By [12],
in the α ∈ (1, 2) case,

R(u) := −bu1 + u2
2

2
+
∫ ∞

0

∫ ∞

−∞
(e〈u,ξ〉 − 1 − 〈u, ξ〉)Cαξ−1−α

1 dξ1δ0(dξ2)

= −bu1 + u2
2

2
+ Cα

∫ ∞

0
(eu1ξ1 − 1 − u1ξ1)ξ

−1−α
1 dξ1

= −bu1 + (−u1)
α

α
+ u2

2

2
, u ∈ U,

where, for the last equality, we used the facts that 1/�(−α) = α(α − 1)/�(2 − α), the
imaginary part of −iu1ξ1 is nonnegative, and

(−iz)α = α(α − 1)

�(2 − α)

∫ ∞

0
(eizξ1 − 1 − izξ1)ξ

−1−α
1 dξ1

for all complex numbers z with nonnegative imaginary part; see, e.g. [35, pp. 67, 68].
Note also that, for all u = (u1, u2) ∈ U and t ≥ 0, the real part of ψ(1)t (u) is less than or

equal to 0 (compare also with Remark 2.2 of [13]), and, in addition, if u1 ∈ R such that u1 ≤ 0
then ψ(1)t (u) ∈ R with ψ(1)t (u) ≤ 0. Moreover, for all t ≥ 0, we have

φt (u) =
∫ t

0
(aψ(1)s (u)+me−θsu2) ds = a

∫ t

0
ψ(1)s (u) ds +mu2

1 − e−θt

θ
.

In fact, one can give a simplified characterization of the transition semigroup (Pt )t≥0 by∫ ∞

0

∫ ∞

−∞
e−λ1ξ1+iλ2ξ2Pt((y0, x0), dξ1, dξ2)

= exp{−y0vt (λ1, λ2)+ ix0e−θtλ2 + gt (λ1, λ2)} (3.3)
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for (λ1, λ2), (y0, x0) ∈ R+ × R, where

gt (λ1, λ2) :=
∫ t

0
(−avs(λ1, λ2)+ ime−θsλ2) ds

= −a
∫ t

0
vs(λ1, λ2) ds + imλ2

1 − e−θt

θ
(3.4)

and vt (λ1, λ2), t ≥ 0, is the unique, nonnegative solution of the differential equation

∂vt

∂t
(λ1, λ2) = −bvt (λ1, λ2)− 1

α
(vt (λ1, λ2))

α + 1

2
e−2θtλ2

2, t ≥ 0,

v0(λ1, λ2) = λ1,

(3.5)

in the α ∈ (1, 2] case; see [3, Proof of Theorem 3.1]. Note also that vt (λ1, λ2) ≥ 0 for all
(λ1, λ2) ∈ R+ × R, since ψ(1)t (u) ≤ 0 for u1 ≤ 0. The uniqueness of the solutions of the
differential equation (Cauchy problem) (3.5) follows by general results of [13, Propositions 6.1
and 6.4, and Lemma 9.2]. For a direct proof, see the proof of Theorem 3.1 of [3].

Step 2. We show that

vt (λ1, λ2) ≤ M(λ1, λ2)(1 + t)max(e−2θt , e−bt ), t ≥ 0, (λ1, λ2) ∈ R+ × R, (3.6)

where

M(λ1, λ2) :=

⎧⎪⎪⎨⎪⎪⎩
λ1 + λ2

2

2|b − 2θ | if b �= 2θ ,

λ1 + λ2
2

2
if b = 2θ .

The proof is based on the following version of the comparison theorem (see, e.g. [34] or
Lemma B.3. of [15]): if S : R+ × R → R is a continuous function which is locally Lipschitz
continuous in its second variable and p, q : R+ → R are differentiable functions satisfying

p′(t) ≤ S(t, p(t)), t ≥ 0, q ′(t) = S(t, q(t)), t ≥ 0, p(0) ≤ q(0),

then p(t) ≤ q(t) for all t ≥ 0. Using this, we can check that vt (λ1, λ2) ≤ ut (λ1, λ2) for all
t ≥ 0 and (λ1, λ2) ∈ R+ × R, where, for all (λ1, λ2) ∈ R+ × R, ut (λ1, λ2), t ≥ 0, is the
unique solution of the differential equation

∂ut

∂t
(λ1, λ2) = −but (λ1, λ2)+ 1

2
e−2θtλ2

2, t ≥ 0, u0(λ1, λ2) = λ1.

Furthermore, we can verify that

ut (λ1, λ2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
λ1 + λ2

2

2(−b + 2θ)

)
e−bt − λ2

2

2(−b + 2θ)
e−2θt if b �= 2θ ,(

λ1 + λ2
2

2
t

)
e−bt if b = 2θ .

(3.7)

For more details, see the proof of Theorem 3.1 of [3].
Finally, by (3.7), (3.6) readily holds for b = 2θ . If b > 2θ then

ut (λ1, λ2) ≤ λ1e−2θt − λ2
2

2(−b + 2θ)
e−2θt ≤

(
λ1 − λ2

2

2(−b + 2θ)

)
(1 + t)e−2θt ,
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and if 0 < b < 2θ then

ut (λ1, λ2) ≤
(
λ1 + λ2

2

2(−b + 2θ)

)
e−bt ≤

(
λ1 + λ2

2

2(−b + 2θ)

)
(1 + t)e−bt ,

as desired.
Step 3. By the continuity theorem and (3.3), to prove (i), it is enough to check that, for all

(λ1, λ2), (y0, x0) ∈ R+ × R,

lim
t→∞(−y0vt (λ1, λ2)+ ix0e−θtλ2 + gt (λ1, λ2)) = −a

∫ ∞

0
vs(λ1, λ2) ds + i

m

θ
λ2

=: g∞(λ1, λ2), (3.8)

and that the function R+ × R � (λ1, λ2) �→ g∞(λ1, λ2) is continuous. Indeed, using (3.3),
and the independence of (η0, ζ0) and (Lt , Bt )t≥0, the law of total expectation yields

E(e−λ1Yt+iλ2Xt )

=
∫ ∞

0

∫ ∞

−∞
E(e−λ1Yt+iλ2Xt | (Y0, X0) = (y0, x0)) P(Y0,X0)(dy0, dx0)

=
∫ ∞

0

∫ ∞

−∞
exp{−y0vt (λ1, λ2)+ ix0e−θtλ2 + gt (λ1, λ2)} P(Y0,X0)(dy0, dx0)

for all (λ1, λ2) ∈ R+ ×R, where P(Y0,X0) denotes the distribution of (Y0, X0) on R+ ×R, and,
hence, (3.8) and the dominated convergence theorem imply that

lim
t→∞ E(e−λ1Yt+iλ2Xt ) =

∫ ∞

0

∫ ∞

−∞
eg∞(λ1,λ2) P(Y0,X0)(dy0, dx0) = eg∞(λ1,λ2)

for (λ1, λ2) ∈ R+ × R. Then, using the continuity of the function R+ × R � (λ1, λ2) �→
g∞(λ1, λ2) (which will be checked later), the continuity theorem yields (i).

Now we prove (3.8). Since θ > 0 and b > 0, by (3.6), and using the fact that vt (λ1, λ2) ≥ 0
for all t ≥ 0 and (λ1, λ2) ∈ R+ × R (see step 1), we have

lim
t→∞(−y0vt (λ1, λ2)+ ix0e−θtλ2) = 0.

Recall that

gt (λ1, λ2) = −a
∫ t

0
vs(λ1, λ2) ds + imλ2

1 − e−θt

θ
.

Since θ > 0, we have limt→∞ (1 − e−θt )/θ = 1/θ , and since vt (λ1, λ2) ≥ 0 for all t ≥ 0,
(λ1, λ2) ∈ R+ × R (see step 1), by the dominated convergence theorem and (3.6), we obtain

lim
t→∞

∫ t

0
vs(λ1, λ2) ds =

∫ ∞

0
vs(λ1, λ2) ds.

Indeed, for all t ≥ 0 and s ≥ 0, |vs(λ1, λ2)1[0,t](s)| ≤ vs(λ1, λ2), and, by (3.6),∫ ∞

0
vs(λ1, λ2) ds ≤ M(λ1, λ2)

∫ ∞

0
(1 + s)max(e−2θs, e−bs) ds

= M(λ1, λ2)max

(
1

b
+ 1

b2 ,
1

2θ
+ 1

(2θ)2

)
< ∞.
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The continuity of the function R+ × R � (λ1, λ2) �→ g∞(λ1, λ2) can be checked as
follows. It will follow if we prove that, for all s ≥ 0, the function vs is continuous. Namely,
if λ(n) = (λ

(n)
1 , λ

(n)
2 ), n ∈ N, is a sequence in R+ × R such that limn→∞ λ(n) = λ, where

λ ∈ R+ × R, then limn→∞ vs(λ
(n)) = vs(λ) for all s ≥ 0, and, by (3.6),

vs(λ
(n)) = vs(λ

(n)
1 , λ

(n)
2 ) ≤ M(λ

(n)
1 , λ

(n)
2 )(1 + s)max(e−2θs, e−bs), n ∈ N, s ≥ 0.

Since the sequence λ(n), n ∈ N, is bounded (since it is convergent), we have supn∈NM(λ
(n)
1 ,

λ
(n)
2 ) < ∞, and using also that

∫∞
0 (1 + s)max(e−2θs, e−bs) ds < ∞, the dominated conver-

gence theorem implies that

lim
n→∞

∫ ∞

0
vs(λ

(n)
1 , λ

(n)
2 ) ds =

∫ ∞

0
vs(λ1, λ2) ds,

which shows the continuity of g∞. Finally, we prove that, for all s ≥ 0, the function R+ ×R �
(λ1, λ2) �→ vs(λ1, λ2) is continuous. Note that the function vs does not depend on the
parameters a and m, since it is the unique solution of the differential equation (3.2). Let
(Ỹt , X̃t )t≥0 be an affine process satisfying SDE (1.1) with initial value (Ỹ0, X̃0) = (Y0, X0),
and with parameters a = m = 0 and the given b > 0 and θ > 0. Then, by (3.3),∫ ∞

0

∫ ∞

−∞
e−λ1ξ1+iλ2ξ2 P̃s((y0, x0), dξ1, dξ2) = exp{−y0vs(λ1, λ2)+ ix0e−θsλ2} (3.9)

for s ∈ R+ and (λ1, λ2), (y0, x0) ∈ R+ × R, where (P̃t )t≥0 denotes the transition semigroup
of the affine process (Ỹt , X̃t )t≥0. For all s ∈ R+, the left-hand side of (3.9) is a continuous
function of (λ1, λ2) ∈ R+ × R, since,for all (λ1, λ2) ∈ R+ × R and (h1, h2) ∈ R

2,∣∣∣∣ ∫ ∞

0

∫ ∞

−∞
e−(λ1+h1)ξ1+i(λ2+h2)ξ2 P̃s((y0, x0), dξ1, dξ2)

−
∫ ∞

0

∫ ∞

−∞
e−λ1ξ1+iλ2ξ2 P̃s((y0, x0), dξ1, dξ2)

∣∣∣∣
≤
∫ ∞

0

∫ ∞

−∞
|e−h1ξ1+ih2ξ2 − 1| P̃s((y0, x0), dξ1, dξ2),

which tends to 0 as (h1, h2) → (0, 0), by the dominated convergence theorem. This implies
that the right-hand side of (3.9) is also a continuous function of (λ1, λ2) ∈ R+×R. This readily
yields the continuity of the function vs for all fixed s ∈ R+.

(ii) First we check that the one-dimensional distributions of (Yt , Xt )t≥0 are translation
invariant and have the same distribution as (Y∞, X∞). Using (3.1), (3.3), the tower rule,
and the independence of (Y0, X0) and (L, B), it is enough to check that, for all t ≥ 0 and
(λ1, λ2) ∈ R+ × R,

E(exp{−vt (λ1, λ2)Y∞ + i e−θtλ2X∞ + gt (λ1, λ2)})
= exp

{
−a

∫ ∞

0
vs(λ1, λ2) ds + i

m

θ
λ2

}
.

By (3.1) and (3.4), and using the fact that vt (λ1, λ2) ≥ 0 for all t ≥ 0 and (λ1, λ2) ∈ R+ × R
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(see step 1 of the proof of part (i)), we have

E(exp{−vt (λ1, λ2)Y∞ + ie−θtλ2X∞ + gt (λ1, λ2)})
= exp

{
−a

∫ ∞

0
vs(vt (λ1, λ2), e−θtλ2) ds + i

m

θ
e−θtλ2 + gt (λ1, λ2)

}
= exp

{
−a
(∫ ∞

0
vs(vt (λ1, λ2), e−θtλ2) ds +

∫ t

0
vs(λ1, λ2) ds

)
+ i
m

θ
λ2

}
.

Hence, it remains to check that∫ ∞

0
vs(λ1, λ2) ds =

∫ ∞

0
vs(vt (λ1, λ2), e−θtλ2) ds +

∫ t

0
vs(λ1, λ2) ds

for t ≥ 0 and (λ1, λ2) ∈ R+ × R, i.e.∫ ∞

t

vs(λ1, λ2) ds =
∫ ∞

0
vs(vt (λ1, λ2), e−θtλ2) ds, t ≥ 0, (λ1, λ2) ∈ R+ × R.

For this, it is enough to check that

vs(vt (λ1, λ2), e−θtλ2) = vs+t (λ1, λ2), s, t ≥ 0, (λ1, λ2) ∈ R+ × R,

or, equivalently,

vt (vs(λ1, λ2), e−θsλ2) = vs+t (λ1, λ2), s, t ≥ 0, (λ1, λ2) ∈ R+ × R. (3.10)

By (3.2), we have

∂vs+t
∂t

(λ1, λ2) = −bvs+t (λ1, λ2)− 1

α
(vs+t (λ1, λ2))

α + 1

2
e−2θ(s+t)λ2

2, t ≥ 0,

with initial condition vs+0(λ1, λ2) = vs(λ1, λ2). Note also that, again by (3.2),

∂vt

∂t
(vs(λ1, λ2), e−θsλ2) = −bvt (vs(λ1, λ2), e−θsλ2)− 1

α
(vt (vs(λ1, λ2), e−θsλ2))

α

+ 1
2 e−2θt (e−θsλ2)

2, t ≥ 0,

with initial condition v0(vs(λ1, λ2), e−θsλ2) = vs(λ1, λ2). Hence, for all s ≥ 0, the left- and
right-hand sides of (3.10), as functions of t ≥ 0, satisfy the differential equation (3.2) with the
initial value vs(λ1, λ2). Since (3.2) has a unique solution for all nonnegative initial values, we
obtain (3.10).

Finally, the strict stationarity (translation invariance of the finite-dimensional distributions)
of (Yt , Xt )t≥0 follows by the chain rule for conditional expectations and the fact that it is a
time-homogeneous Markov process.

4. Ergodicity

As with the existence of a unique stationary distribution, the question of ergodicity for an
affine process is also the focus of current investigations. Recently, Sandrić [31] proved ergod-
icity of so-called stable-like processes using the same technique that we applied. Furthermore,
the ergodicity of the so-called α-root process with α ∈ (1, 2] (see the first SDE of (1.1)) and
some statistical applications were given in [26].

In the following result we give the ergodicity of the affine diffusion process given by SDE
(1.1) with α = 2.
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Theorem 4.1. Consider the two-dimensional affine diffusion model (1.1) with α = 2, a > 0,
b > 0, m ∈ R, and θ > 0, and with a random initial value (η0, ζ0) independent of (Lt , Bt )t≥0
satisfying P(η0 ≥ 0) = 1. Then, for all Borel measurable functions f : R

2 → R such that
E |f (Y∞, X∞)| < ∞, we have

P

(
lim
T→∞

1

T

∫ T

0
f (Ys,Xs) ds = E f (Y∞, X∞)

)
= 1, (4.1)

where the distribution of (Y∞, X∞) is given by (3.1) and (3.2) with α = 2.

Proof. We use the notation of [28] and [29]. Using Theorem 6.1 (so-called Foster–Lyapunov
criteria) of [29], it is enough to check that

(a) (Yt , Xt )t≥0 is a right process (defined as [32, p. 38]);

(b) all compact sets are petite for some skeleton chain (skeleton chains and petite sets are
defined in [28, pp. 491, 500] and [27, p. 550], respectively);

(c) there exist c, d ∈ R with c > 0 such that the inequality

(AnV )(y, x) ≤ −cV (y, x)+ d, (y, x) ∈ On,
holds for all n ∈ N, where On := {(y, x) ∈ R+ × R : ‖(y, x)‖ < n} for each n ∈ N,

V (y, x) := (y − c1)
2 + (x − c2)

2, (y, x) ∈ R+ × R, (4.2)

with some appropriate c1, c2 ∈ R, and An denotes the extended generator of the process
(Y
(n)
t , X

(n)
t )t≥0 given by

(Y
(n)
t , X

(n)
t ) :=

{
(Yt , Xt ) for t < Tn,

(0, n) for t ≥ Tn,

where the stopping time Tn is defined by Tn := inf{t ∈ R+ : (Yt , Xt ) ∈ (R+ ×R) \On}.
(Here we note that instead of (0, n)we could have chosen any fixed state in (R+×R)\On,
and we could also have defined (Y (n)t , X

(n)
t )t≥0 as the stopped process (Yt∧Tn, Xt∧Tn)t≥0;

see [29, p. 521].)

Indeed, Theorem 6.1 of [29] then yields the exponential ergodicity of the process (Yt , Xt )t∈R+ ,
namely, there exist β > 0 and B ∈ R+ such that

sup
|g|≤V+1

| E(g(Yt , Xt ) | (Y0, X0) = (y0, x0))− E(g(Y∞, X∞))| ≤ B(V (y0, x0)+ 1)e−βt

for all t ∈ R+ and (y0, x0) ∈ R+ × R, where the supremum is taken over Borel measurable
functions g : R+ × R → R. According to the discussion after Proposition 2.5 of [6], this
implies (4.1). Here we point out that, due to Bhattacharya [6], we do not have to assume that
P(Y0 > 0) = 1 in order to prove (4.1).

To prove (a), it is enough to show that the process (Yt , Xt )t∈R+ is a (weak) Feller (see [28,
Section 3.1]), strong Markov process with continuous sample paths; see, e.g. [28, p. 498].
According to Proposition 8.2 (or Theorem 2.7) of [13], the process (Yt , Xt )t≥0 is a Feller
Markov process. Since (Yt , Xt )t≥0 has continuous sample paths almost surely (specifically, it
is càdlàg), it is automatically a strong Markov process; see, e.g. Theorem 1 of [9, p. 56].
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To prove (b), in view of Proposition 6.2.8 of [30], it is sufficient to show that the skeleton
chain (Yn,Xn)n∈Z+ is irreducible with respect to the Lebesgue measure on R+×R (see, e.g. [29,
p. 520]), and admits the Feller property. The skeleton chain (Yn,Xn)n∈Z+ admits the Feller
property since the process (Yt , Xt )t≥0 is a Feller process. In order to check irreducibility
of the skeleton chain (Yn,Xn)n∈Z+ with respect to the Lebesgue measure on R+ × R, it
is enough to prove that the conditional distribution of (Y1, X1) given (Y0, X0) is absolutely
continuous (with respect to the Lebesgue measure on R+ × R) with a conditional density
function f(Y1,X1) | (Y0,X0) : R

2 × R
2 → R+ such that f(Y1,X1) | (Y0,X0)(y, x | y0, x0) > 0 for all

(y, x, y0, x0) ∈ (0,∞)× R × R+ × R. Indeed, the Lebesgue measure on R+ × R is σ -finite,
and if B is a Borel set in R+ × R with positive Lebesgue measure then

E

( ∞∑
n=0

1B(Yn,Xn)

∣∣∣∣ (Y0, X0) = (y0, x0)

)
≥ P((Y1, X1) ∈ B | (Y0, X0) = (y0, x0))

=
∫∫

B

f(Y1,X1) | (Y0,X0)(y, x | y0, x0) dy dx

> 0

for all (y0, x0) ∈ R+ × R. The existence of f(Y1,X1) | (Y0,X0) with the required property can be
checked as follows. By Theorem 2.1 we have

Y1 = e−b
(
y0 + a

∫ 1

0
ebu du+

∫ 1

0
ebu
√
Yu dLu

)
,

X1 = e−θ
(
x0 +m

∫ 1

0
eθu du+

∫ 1

0
eθu
√
Yu dBu

)
,

provided that (Y0, X0) = (y0, x0), (y0, x0) ∈ R+ × R. Recall that a two-dimensional random
vector ζ is absolutely continuous if and only ifV ζ+v is absolutely continuous for all invertable
matrices V ∈ R

2×2 and for all vectors v ∈ R
2, and if the density function of ζ is positive on

a set S ⊂ R
2 then the density function of V ζ + v is positive on the set V S + v. Hence, it is

enough to check that the random vector(∫ 1

0
ebu
√
Yu dLu,

∫ 1

0
eθu
√
Yu dBu

)
(4.3)

is absolutely continuous with respect to the Lebesgue measure on R
2 having a density function

being strictly positive on the set {y ∈ R : y > −y0 − a
∫ 1

0 ebu du} × R. For all x ∈ R and
y ≤ −y0 − a

∫ 1
0 ebu du, we have

P

(∫ 1

0
ebu
√
Yu dLu < y,

∫ 1

0
eθu
√
Yu dBu < x

)
= P

(
ebY1 − y0 − a

∫ 1

0
ebu du < y,

∫ 1

0
eθu
√
Yu dBu < x

)
≤ P(Y1 < 0)

= 0,

since P(Y1 ≥ 0) = 1. Note that the conditional distribution of
∫ 1

0 eθu
√
Yu dBu given

(Yt )t∈[0,1] is a normal distribution with mean zero and variance
∫ 1

0 e2θuYu du due to the fact
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that (Yt )t∈[0,1] and (Bt )t≥0 are independent. Indeed, (Yt )t≥0 is adapted to the augmented
filtration corresponding to η0 and (Lt )t≥0 (see, e.g. [22, p. 285]), and using the independence
of the standard Wiener processes L and B, and Problem 2.7.3 of [22], we can argue that
this augmented filtration is independent of the filtration generated by B. Hence, again using
the independence of the standard Wiener processes L and B, we obtain, for all x ∈ R and
y > −y0 − a

∫ 1
0 ebu du,

P

(∫ 1

0
ebu
√
Yu dLu < y,

∫ 1

0
eθu
√
Yu dBu < x

)
= P

(
ebY1 − y0 − a

∫ 1

0
ebu du < y,

∫ 1

0
eθu
√
Yu dBu < x

)
= E(1{Y1<e−b(y+y0+a

∫ 1
0 ebu du)} E(1{∫ 1

0 eθu
√
Yu dBu<x} | (Yt )t∈[0,1]))

= E

(
1{Y1<e−b(y+y0+a

∫ 1
0 ebu du)}

∫ x

−∞
p

(
w;
∫ 1

0
e2θuYu du

)
dw

)
,

where

p(w; σ 2) := 1√
2πσ 2

e−w2/2σ 2
, w ∈ R, σ > 0.

We note that, under the assumption that a > 0, P(
∫ 1

0 e2θuYu du > 0) = 1. Then, by the law of

total expectation, for all x ∈ R and y > −y0 − a
∫ 1

0 ebu du,

P

(∫ 1

0
ebu
√
Yu dLu < y,

∫ 1

0
eθu
√
Yu dBu < x

)
=
∫ F

0

∫ x

−∞
E

(
1√

2π
∫ 1

0 e2θuYu du
exp

{
− w2

2
∫ 1

0 e2θuYu du

} ∣∣∣∣ Y1 = z

)
fY1(z) dz dw,

where F := e−b(y + y0 + a
∫ 1

0 ebu du) and fY1 denotes the density function of Y1 (given that
Y0 = y0, y0 ∈ R+). For y0 ∈ (0,∞),

fY1(y) = 2beb(2a+1)

eb − 1

(
y

y0

)a−1/2

exp

{
−2b(y0 + eby)

eb − 1

}
I2a−1

(
2b

√
y0y

sinh(b/2)

)
1(0,∞)(y)

for y ∈ R, where I2a−1 denotes the modified Bessel of the first kind of order 2a − 1, i.e.

I2a−1(x) =
∞∑
m=0

1

m!�(m+ 2a)

(
x

2

)2m+2a−1

, x ∈ (0,∞);

see, e.g. [5, Proof of Proposition 2], [10, Equation (18)], or [20, Proposition 6.3.2.1]. For
y0 = 0, the density function of Y1 (given that Y0 = 0) is given by

fY1(y) = 1

�(2a)

(
2b

1 − e−b

)2a

y2a−1 exp

{
− 2by

1 − e−b

}
1(0,∞)(y), y ∈ R,

since, by [19, p. 222], Y1 (given that Y0 = 0) has a gamma distribution with parameters 2a and
2b/(1 − e−b). Note that in both cases fY1(y) > 0 for all y ∈ (0,∞). Then, by a change of
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variable, we have, for all x ∈ R and y > −y0 − a
∫ 1

0 ebu du,

P

(∫ 1

0
ebu
√
Yu dLu < y,

∫ 1

0
eθu
√
Yu dBu < x

)
=
∫ y

−y0−a
∫ 1

0 ebu du

∫ x

−∞
E

(
exp{−w2/2

∫ 1
0 e2θuYu du}√

2π
∫ 1

0 e2θuYu du

∣∣∣∣ Y1 = e−b
(
v + y0 + a

∫ 1

0
ebu du

))

× fY1

(
e−b

(
v + y0 + a

∫ 1

0
ebu du

))
e−b dv dw.

In what follows we will make use of the simple observation that, if ξ and η are random
variables such that P(ξ > 0) = 1, E(ξ) < ∞, and P(η > 0) = 1, and η is absolutely
continuous with a density function fη having the property fη(x) > 0 Lebesgue almost every
x ∈ (0,∞), then E(ξ | η = y) > 0 Lebesgue almost every y ∈ (0,∞). For a proof, see, e.g.
the proof of Theorem 4.1 of [3].

Now we return to the proof that the random vector (4.3) is absolutely continuous with
respect to the Lebesgue measure on R

2 with a density function being strictly positive on the set
{y ∈ R : y > −y0 − a

∫ 1
0 ebu du} × R. Since supx∈R+ xe−w2x2/2 < ∞, w ∈ R \ {0}, implies

that

E

((
2π
∫ 1

0
e2θuYu du

)1/2

exp

{
− w2

2
∫ 1

0 e2θuYu du

})
< ∞, w ∈ R \ {0},

and using the fact that fY1(e
−b(v + y0 + a

∫ 1
0 ebu du)) > 0 for all v > −y0 − a

∫ 1
0 ebu du,

there exists a measurable function g : R
2 → R+ such that g(v,w) > 0 for v > −y0 −

a
∫ 1

0 ebu du, w ∈ R, and

P

(∫ 1

0
ebu
√
Yu dLu < y,

∫ 1

0
eθu
√
Yu dBu < x

)

=

⎧⎪⎨⎪⎩
∫ y

−y0−a
∫ 1

0 ebu du

∫ x

−∞
g(v,w) dv dw if y > −y0 − a

∫ 1
0 ebu du, x ∈ R,

0 if y ≤ −y0 − a
∫ 1

0 ebu du, x ∈ R,

as desired. Consequently, the random vector (4.3) is absolutely continuous with density function
g having the desired property.

To prove (c), we first note that, since the sample paths of (Y,X) are almost surely continuous
for each n ∈ N, the extended generator has the form

(Anf )(y, x) = 1
2yf

′′
1,1(y, x)+ 1

2yf
′′
2,2(y, x)+ (a − by)f ′

1(y, x)+ (m− θx)f ′
1(y, x)

for all (y, x) ∈ On and f ∈ C2(R+ × R,R); see, e.g. [29, p. 538]. We also note that, by [13,
Theorem 2.7], for functions f ∈ C2

c (R+ × R,R), Anf = Af on On, where A denotes the
(nonextended) generator of the process (Yt , Xt )t∈R+ . For the function V defined in (4.2), we
have V ∈ C2(R+ × R,R) and

V ′
1(y, x) = 2(y − c1), V ′

2(y, x) = 2(x − c1), V ′′
1,1(y, x) = V ′′

2,2(y, x) = 2,

for (y, x) ∈ R+ × R, and, hence, for all n ∈ N and 0 < c < ∞,

(AnV )(y, x)+ cV (y, x) = (c − 2b)y2 + 2(1 + a + bc1 − cc1)y + cc2
1 − 2ac1

+ 2(m− θx)(x − c2)+ c(x − c2)
2 for all (y, x) ∈ On.
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Let us choose c > 0 in such a way that c �= 2b, and let c2 := m/θ . Then

(AnV )(y, x)+ cV (y, x) = (c − 2b)

(
y + 1 + a + bc1 − cc1

c − 2b

)2

− (1 + a + bc1 − cc1)
2

c − 2b

+ cc2
1 − 2ac1 + (c − 2θ)

(
x − m

θ

)2

, (y, x) ∈ On.

Hence, (AnV )(y, x) ≤ −cV (y, x)+ d, (y, x) ∈ On, n ∈ N, with c ∈ (0, 2 min(b, θ)) and

d := − (1 + a + bc1 − cc1)
2

c − 2b
+ cc2

1 − 2ac1.

Note that the above argument also shows that in the definition of the function V given in (4.2)
the constant c1 can be an arbitrary real number.

In the next theorem we collect several facts about the random variable (Y∞, X∞) given by
(3.1) and (3.2) with α = 2.

Theorem 4.2. The random variable (Y∞, X∞) given by (3.1) and (3.2) withα = 2 is absolutely
continuous, and the Laplace transform of Y∞ takes the form

E(e−λ1Y∞) =
(

1 + λ1

2b

)−2a

, λ1 ∈ R+,

so Y∞ has gamma distribution with parameters 2a and 2b. Furthermore, all the (mixed)
moments of (Y∞, X∞) of any order are finite, i.e. we have E(Y n∞|X∞|p) < ∞ for alln, p ∈ Z+,
and, specifically,

E(Y∞) = a

b
, E(X∞) = m

θ
,

E(Y 2∞) = a(2a + 1)

2b2 , E(Y∞X∞) = ma

θb
, E(X2∞) = aθ + 2bm2

2bθ2 ,

E(Y∞X2∞) = a

(b + 2θ)2b2θ2 (θ(ab + 2aθ + θ)+ 2m2b(2θ + b)).

Proof. First we show that the random variable (Y∞, X∞) is absolutely continuous. Let us
consider the two-dimensional affine diffusion model (1.1) with α = 2, a > 0, b > 0, m ∈ R,
and θ > 0, and with a random initial value (Y0, X0) independent of (Lt , Bt )t≥0 having the same
distribution as that of (Y∞, X∞). Then, by part (ii) of Theorem 3.1, the process (Yt , Xt )t≥0 is
strictly stationary. Hence, it is enough to prove that (Y1, X1) is absolutely continuous. This
can be done similarly to the proof of Theorem 4.1(b), and so we only sketch a proof. Namely,
by Theorem 2.1 we have

Y1 = e−b
(
Y0 + a

∫ 1

0
ebu du+

∫ 1

0
ebu
√
Yu dLu

)
,

X1 = e−θ
(
X0 +m

∫ 1

0
eθu du+

∫ 1

0
eθu
√
Yu dBu

)
.

Since ξ and η are independent two-dimensional random vectors such that one is absolutely
continuous, their sum ξ + η is absolutely continuous (regardless of the other distribution), so
it is enough to check that the random vector(∫ 1

0
ebu
√
Yu dLu,

∫ 1

0
eθu
√
Yu dBu

)

https://doi.org/10.1239/aap/1409319564 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1409319564


Stationarity and ergodicity for an affine two-factor model 895

is absolutely continuous with respect to the Lebesgue measure on R
2. Its proof goes along the

very same lines as the proof of Theorem 4.1(b).
The fact that Y∞ has a gamma distribution with parameters 2a and 2b follows from [10,

Equation (20)]. For other proofs, see [3, Proof of Theorem 4.2].
We now prove that all the mixed moments of (Y∞, X∞) are finite. Let us consider the

two-dimensional affine diffusion model (1.1) with α = 2, a > 0, b > 0, m ∈ R, and θ > 0,
and with a random initial value (Y0, X0) independent of (Lt , Bt )t≥0 such that all the mixed
moments of (Y0, X0) are finite and P(Y0 > 0) = 1. We note that, due to Theorem 3.1, the
distribution of (Y∞, X∞) does not depend on the initial value of model (1.1), so we can have
such a choice. First we show that∫ t

0
E(Y nu X

2p
u ) du < ∞ for all t ≥ 0 and n, p ∈ Z+. (4.4)

Owing to the inequality between two power means, (a + b + c)2p ≤ K(a2p + b2p +
c2p), a, b, c ∈ R, with some constant K > 0, and, hence, by (2.2), to prove (4.4), it is
enough to check that∫ t

0
E

(
Ynu

(
e−2pθuX

2p
0 +

(
m

∫ u

0
e−θ(u−v) dv

)2p

+
(∫ u

0
e−θ(u−v)√Yu dBv

)2p))
du

< ∞ (4.5)

for all t ≥ 0 and n, p ∈ Z+. Since, for all u ∈ [0, t], the conditional distribution of∫ u
0 e−θ(u−v)√Yv dBv with respect to the σ -algebra generated by (Ys)s∈[0,t] is a normal dis-

tribution with mean 0 and variance
∫ u

0 e−2θ(u−v)Yv dv, to prove (4.5), it is enough to check that,
for all t ≥ 0 and n, p ∈ Z+,∫ t

0
E(e−2pθuY nu X

2p
0 ) du < ∞,

∫ t

0
E(Y nu ) du < ∞,

and ∫ t

0
E

(
Ynu

(∫ u

0
e−2θ(u−v)Yv dv

)p)
du < ∞.

Using the facts that θ > 0 and P(Yt ≥ 0, t ∈ R+) = 1, by the Cauchy–Schwarz inequality,
for all u ∈ [0, t], we have E(e−2pθuY nu X

2p
0 ) ≤ (E(Y 2n

u ))
1/2(E(X

4p
0 ))1/2, and

E

(
Ynu

(∫ u

0
e−2θ(u−v)Yv dv

)p)
≤ (E(Y 2n

u ))
1/2
(

E

((∫ u

0
Yv dv

)2p))1/2

= (E(Y 2n
u ))

1/2
(∫ u

0
· · ·
∫ u

0
E(Yv1 · · ·Yv2p ) dv1 · · · dv2p

)1/2

≤ (E(Y 2n
u ))

1/2
(∫ u

0
· · ·
∫ u

0
(E(Y 2p

v1
) · · · E(Y 2p

v2p
))1/2pdv1 · · · dv2p

)1/2

,

where the last inequality follows by the multivariate version of Hölder’s inequality. Since
E(X

4p
0 ) < ∞, this shows that, in order to prove (4.4), it is enough to check that, for all k ∈ Z+

and t ∈ R+, supu∈[0,t] E(Y ku ) < ∞, which is verified in [3, Proof of Theorem 4.2].
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For all n, p ∈ Z+, using the independence of L and B, by Itô’s formula, we have

d(Y nt X
p
t ) = nYn−1

t X
p
t ((a − bYt ) dt +√

Yt dLt)+ pYnt X
p−1
t ((m− θXt ) dt +√Yt dBt)

+ n(n− 1)

2
Yn−2
t X

p
t Yt dt + p(p − 1)

2
Ynt X

p−2
t Yt dt

=
(
nYn−1

t (a − bYt )X
p
t + pYnt (m− θXt )X

p−1
t + n(n− 1)

2
Yn−1
t X

p
t

+ p(p − 1)

2
Yn+1
t X

p−2
t

)
dt + nY

n−1/2
t X

p
t dLt + pY

n+1/2
t X

p−1
t dBt

for t ≥ 0. Writing the SDE above in an integrated form and taking the expectation of both
sides, we have

E(Y nt X
p
t )− E(Y n0 X

p
0 )

=
∫ t

0

[
anE(Y n−1

u X
p
u )− bnE(Y nu X

p
u )+ pmE(Y nu X

p−1
u )− pθ E(Y nu X

p
u )

+ n(n− 1)

2
E(Y n−1

u X
p
u )+ p(p − 1)

2
E(Y n+1

u X
p−2
u )

]
du, t ≥ 0,

where we have used the facts that(∫ t

0
Y
n−1/2
u X

p
u dLu

)
t≥0

and

(∫ t

0
Y
n+1/2
u X

p−1
u dBu

)
t≥0

are continuous square-integrable martingales due to (4.4); see, e.g. [19, p. 55]. Introduce the
functions fn,p(t) := E(Y nt X

p
t ), t ∈ R+, for n, p ∈ Z+. Then we have

f ′
n,p(t) = −(bn+ pθ)fn,p(t)+

(
an+ n(n− 1)

2

)
fn−1,p(t)+ pmfn,p−1(t)

+ p(p − 1)

2
fn+1,p−2(t), t ∈ R+,

where fk,�(t) := 0 if k, � ∈ Z with k < 0 or � < 0. Hence, for all M ∈ N, the functions
fn,p, n, p ∈ Z+, with n+p ≤ M satisfy a homogeneous linear system of differential equations
with constant coefficients. Thus, for all n, p ∈ Z+, the function fn,p is a linear combination of
the functions e−(kb+�θ)t , t ∈ R+, k, � ∈ Z+, with k + � ≤ n+ p, since the eigenvalues of the
coefficient matrix of the abovementioned system of differential equations are −(kb+�θ), k, � ∈
Z+, with k + � ≤ M . Consequently, for all n, p ∈ Z+, the function fn,p is bounded and the
limit limt→∞ fn,p(t) exists and is finite. By the moment convergence theorem (see, e.g. [33,
Lemma 2.2.1]), limt→∞ fn,p(t) = limt→∞ E(Y nt X

p
t ) = E(Y n∞X

p∞), n, p ∈ Z+. Indeed, by
Theorem 3.1 and the continuous mapping theorem, Ynt X

p
t

d−→ Yn∞X
p∞ as t → ∞, and the family

{Ynt Xpt : t ∈ R+} is uniformly integrable. This latter fact follows from the boundedness of the
function f2n,2p; see, e.g. [33, Condition (2.2.5)]. Hence, all the mixed moments of (Y∞, X∞)
are finite.

Finally, we calculate the moments listed in the theorem. Let us consider again the two-
dimensional affine diffusion model (1.1) with α = 2, a > 0, b > 0, m ∈ R, and θ > 0, and
with a random initial value (Y0, X0) independent of (Lt , Bt )t≥0 having the same distribution
as that of (Y∞, X∞). Then, by Theorem 3.1, the process (Yt , Xt )t≥0 is strictly stationary, and,
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hence, fn,p(t) = E(Y n∞X
p∞) for all t ∈ R+ and n, p ∈ Z+. The above system of differential

equations for the functions fn,p, n, p ∈ Z+, yields

E(Y n∞X
p∞) = 1

bn+ pθ

((
an+ n(n− 1)

2

)
E(Y n−1∞ X

p∞)+mpE(Y n∞X
p−1∞ )

+ p(p − 1)

2
E(Y n+1∞ X

p−2∞ )

)
(4.6)

for all n, p ∈ Z+. By (4.6) we can calculate the moments listed in the theorem.
Finally, we note that, to calculate the moments E(Y n∞X

p∞) < ∞, n, p ∈ Z+, we could have
used Formula (4.4) of [15], which gives a formal representation of the polynomial moments of
(Yt , Xt ), t ∈ R+. The idea behind this formal representation is that the infinitesimal generator
of the affine process (Y,X) formally maps the finite-dimensional linear space of all polynomials
in (y, x) ∈ R+ × R of degree less than or equal to k into itself, where k ∈ N. For a more
general class of time-homogeneous Markov processes having this property, for the so-called
polynomial processes, see [11]. We also remark that the moments of Y∞ could have been
calculated directly using the fact that Y∞ has a gamma distribution with parameters 2a and 2b.
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