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Abstract. Brief reviews of the classical 'angular momentum problem' and the statistics of upper-main-
sequence binaries are presented as background for the suggestion that the close, early-type, binaries 
are produced by fission of rapidly rotating protostars. 

Next, theoretical sequences of contracting, rotating stars are described. Recent work demonstrates 
that the zero-viscosity, polytropic sequences, have essentially the same properties as the McLaurin 
sequence. Thus, fission is possible for centrally condensed stars. Observations of close early-type 
binaries are compared with theoretical predictions for the minimum angular momentum in binary 
systems of given total mass; the agreement is excellent. 

Finally, the existing theoretical objections to the fission hypothesis for the origin of binary stars 
are reviewed, and it is concluded that, although fission remains unproven, there are now no strong 
theoretical arguments against the process, and there is considerable observational support for its 
existence. 

1. Background 

A. THE ANGULAR MOMENTUM PROBLEM 

It is generally believed that stars are formed from the diffuse gas and dust found in 
interstellar space (cf. Spitzer, 1968). Although the detailed processes of star formation 
are by no means well understood, a commonly accepted, over-all, model postulates 
conditions in the interstellar medium which would lead to large scale hydrodynamical 
or thermal instabilities occurring over extended regions; large masses (M^1O 4 M 0 ) 
of gas and dust begin to collapse and then to fragment, the ultimate fragments being 
protostars. In a variant model suggested by McCrea (1961), fragmentation proceeds 
until the mass is reduced to quite small 'flocules'; these collide with one another, fuse 
during certain inelastic collisions, and ultimately approach proto-star proportions. 

Detailed theories of star formation vary greatly in their predictions for the angular 
momentum content of protostars. However, all of the simpler (non-electromagnetic) 
theories lead to values of the angular momentum, / , much greater than observed in 
main-sequence stars. This point is easily made in rough quantitative fashion. Consider 
(a) the angular momentum of a spherical blob of gas, due simply to the fact that the 
local standard of rest rotates about the galaxy with a period of ~ 108 yrs; and (b) the 
angular momentum expected if the protostar cloud has rotational kinetic energy in 
equipartition with its translational kinetic energy (|«tr| x 10 km/sec). In the two cases 
we find that a protostar with an original density of ^ 10~24 gm/cm3 would have 

Ja x 1056 (M/MQ)5/3 gm cm2 sec - 1 (galactic rotation), 

Jb x 1058 (M/MG)4/3 gm cm2 sec"1 (equipartition). (-

In comparison to this, even the most rapidly rotating main-sequence stars have 
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/ ~ 1051-1052 gm cm2 sec- 1 . It is interesting to note parenthetically that, in McCrea's 
fusion model, the estimates given by Equation (1) are considerably reduced; the 
angular momentum due to galactic rotation appears primarily as the rotation of the 
resulting star cluster and the equipartition angular momentum is reduced by the 
square root of the number of'flocules' comprising a single star. The values of/given 
by Equation (1) are in fact much larger than equilibrium stars would be able to 
contain with their observed masses and radii.* This is the angular momentum 
problem. 

In order to 'solve' the problem various authors (cf. Spitzer, 1968, for references) 
have suggested that magnetic forces are adequate to transfer the 'excess' angular 
momentum to the surrounding medium. There are two principal objections to these 
mechanisms. First, the time scales for angular momentum transfer are longer than 
the relevant free fall times of the initial condensation if the prevailing field strength is 
~ 3 x 10~6 gauss. Second, there is much more angular momentum in binaries than 
in single stars; after finding an appropriate angular momentum loss mechanism one 
would then be required to turn it off - prevent angular momentum loss - when 
binaries are to be formed. Angular momentum transfer from protostars by magnetic 
fields may be astrophysically important. But for the reasons mentioned above, it may 
be useful to consider other approaches to the angular momentum problem. 

In any case, it is easy to see that multiple star systems can store much more angular 
momentum in the form of orbital motions than the several stars could readily contain 
as spin. Thus the angular momentum problem would be greatly alleviated (if not 
solved) were there a simple mechanism for transforming the spin angular momentum 
of a single massive protostar into the orbital angular momenta of stars in a cluster. 
One can imagine the process proceeding in two stages. During the initial fragmenta­
tion and, perhaps, subsequent fusion stages of star formation, much of the angular 
momentum is fixed in the orbital motions of massive protostars. The subsequent 
gravitational interactions among the massive stars can, according to the detailed 
numerical calculations of Van Albada (1968b), lead to the formation, of wide (visual) 
binaries. Returning to the massive protostars, we see that, even in McCrea's model, 
each object is likely to have somewhat more angular momentum than is found in 
single main-sequence stars. In Sections 2 and 3 we shall suggest that, so long as the 
kinetic energy of the contracting star is large (compared to the gravitational energy) 
fission will occur, perhaps repeatedly, and that the resulting stars will have the 
observed properties with regard to surface velocity and dualism, of the upper main 
sequence. 

B. BINARY STARS 

In order for this solution to the angular momentum problem to be plausible, it is 
clearly required that most stars be found in gravitationally bound double (or triple, 

* Of course a one-solar mass model could be constructed in equilibrium with, say, J = 1057 gm cm2 

sec-1; however, it would have a radius more nearly R ~ 10u RQ than 1 /? 0 ! 
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etc.) systems. If we consider the upper* main-sequence stars we find our expectations 
confirmed (cf., for example, Blaauw, 1961). Approximately 75% of O-B stars are 
members of double or triple systems. An interesting, if tentative, additional piece of 
evidence is presented by Van Albada (1968a) and Blaauw and Van Albada (1969). 
Carefully examining the distribution of binary separations they find that the division 
of early-type binaries into close (spectroscopic) and wide (visual) pairs is probably 
real and not due to the obvious selection effects. For the upper main sequence, the 
data seem to indicate that, contrary to the earlier suggestions of Kuiper (1935), there 
is a real deficiency of binaries with separations in the range 10° A U < a < 1 0 2 AU. 
This result, if accepted, implies that there are distinct processes for forming close and 
wide binary stars. Since many authors have suggested that widely separated binaries 
can be formed during the multiple encounters which occur in a young stellar associa­
tion, it is attractive to examine the possibility that the close pairs are formed by fission. 

2. Theoretical Sequences of Contracting, Rotating Stars 

A. HISTORICAL BACKGROUND 

The thoughts presented above are not new. They have provided part of the impetus 
behind centuries of elegant attacks on the problem of the equilibrium and stability 
of rotating, homogeneous, self-gravitating objects. Among others, McLaurin, Jacobi, 
Poincare, Cartan, and Chandrasekhar have studied the subject (for a brief historical 
review cf. Chandrasekhar, 1967). Darwin (1916, see Collected Works, Vol. Ill) and 
Jeans (1929) in particular examined the question of fission. The problem, simply 
stated, is to enumerate the sequence of forms that an isolated object will pass through, 
if it is initially very large, nearly spherical, and slowly rotating, and then gradually and 
quasi-statically contracts. The classical problem of a homogeneous 'star' has been 
treated with considerable rigor; although real stars are not homogeneous, the classical 
tale bears retelling because (a) it is by now well understood, and (b) recent calculations 
show that similarly defined compressible sequences mimic in all essential respects the 
classical McLaurin sequence. 

B. MCLAURIN SEQUENCE 

Consider an axisymmetric star with fixed angular momentum J and mass M within 
which viscous and magnetic effects may be neglected. Define a model by the value of 
the density, Q, supposed uniform throughout the object. Define a limiting model, 
g->0, to be uniformly rotating and require that the angular momentum of every 

* Low mass (M< 2 A/Q) stars must be considered separately, since they have lengthy contraction 
phases during which the transport of angular momentum by turbulent viscosity (cf. Von Weiz-
sacker, 1947) or stellar winds (cf. Schatzman, 1962) is likely to be important; the upper main sequence 
apparently passes directly from collapse to radiative contraction (Larson, 1968), skipping the con-
vective Hayashi phase. 
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annular mass element in any member of the sequence have the same value as it had 
in the limiting model. Define a mean radius fs(3Af/47tg)1/3. Then one can show that 
each member of the sequence (i) is an oblate spheroid with axes (a, a, c), a>c, such 
that the eccentricity e = {\ — a2/c2)112 is implicitly related to f as follows: 

r = ( ~ ) ( ^ 3 ) e\X - eT6 [(1 - * e2) sin"1 e - e(l - e ^ T ' , (2) 

(ii) rotates uniformly with angular velocity 

° = (125) (~¥) *" C(1 ~ f ^ Sin" € ~ £(l ~ g2)1/2]2 • (3) 

Note that, although the McLaurin sequence was defined (somewhat unconventionally) 
as a zero viscosity sequence and the angular velocity distribution was left to be deter­
mined by the dynamical constraints, it turned out that each member of the sequence 
was required to rotate as a solid body if the initial, nearly spherical member did. We 
may think of the McLaurin sequence as the sequence of an n — 0 polytrope [polytrope 
- star in which (pressure) oc (density)'"+1,/"]. Clearly there must exist analogous poly-
tropic sequences having n\0. It seems unlikely that the special property of the homo­
geneous McLaurin spheroids - uniform rotation - will be preserved in the more 
general case. Instead, even though the initial members are uniformly rotating, subse­
quent members of the generalized sequences are found to rotate differentially. 

Returning to the « = 0 case we find the following behavior as Q varies from 0 to 00 
and f from 00 to 0. The eccentricity varies monotonically from 0 to 1, c from 00 to 0, 
a from 00 to the asymptotic value (25TT/108) (J2/GM3), and Q from 0 to (27TT/125) 

x G2M5/J3. The total energy varies monotonically from 0 to — 00 and the ratio of 
771 W\ of kinetic to absolute gravitational energy from 0 to \ monotonically. 

The « = 0 sequence does not terminate at any point; there exists an equilibrium 
model for every 0^g<oo . However, a detailed analysis of the lowest incompressible 
modes by Lebovitz (1961) shows that the models are neutrally stable to a nonaxi-
symmetric mode at e = 0.813, T/\W\ =0.138 and become dynamically overstable at 
e = 0.953, 771 W\ =0.273. The neutral mode occurs at the classical 'point of bifurca­
tion' where uniform, uniformly rotating, ellipsoids become dynamically possible; 
however, the bifurcation point has no significance in the present discussion, because no 
instabilities occur there so long as viscosity is neglected. The second point (T/\ W\ = 
0.273) leads to dynamical motions examined in the nonlinear regime by Rossner (1967) 
and Fujimoto (1968). The motion is quite complex but might very roughly be de­
scribed as the end over end tumbling of a quite prolate (a/c«25) spheroid. An im­
portant next step would be to carry the numerical work further, relaxing the assumption, 
made by both Rossner and Fujimoto, that the bodies remain ellipsoidal. There are 
rather strong arguments (too detailed to be given here) for believing that, after the 
point of overstability is reached, fission will occur as the very thin, approximately 
spheroidal body breaks up into two or more objects orbiting about the common 
center of mass. 
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C. POLYTROPIC SEQUENCES 

At this juncture the reader is no doubt wondering why the classical results have been 
summarized in such detail. Is it not known that these considerations are irrelevant to 
realistic centrally condensed stars? Has it not been shown (Jeans, 1919; James, 1964; 
Tassoul and Ostriker, 1970) that polytropes of index n>0.808 'fly apart' before any 
instabilities are reached? The answer is no. Rather, in the aforementioned papers it 
was shown that centrally condensed stars cannot store much kinetic energy and remain 
uniformly rotating. This is not surprising. We know without making any calculations 
that, for parts of a centrally condensed star within which the pressure forces are 
small compared to the inertial forces, the rotation law must approach Keplerian 
motion; that is £2ccd>-1'2. If we restrict consideration to model stars forced to rotate 
uniformly, then we are restricting our attention to the interval 0^T/\W\<^\, within 
which interval we should not expect to find rotationally induced instabilities. What 
happens if we do not require uniform rotation? 

The zero viscosity polytropic (n^O) sequences defined earlier have been studied 
over the past few years by a group at Princeton University Observatory. The equilibria 
are numerically found using the SCF method (Ostriker and Mark, 1968) and the 
normal modes of oscillation studied using the virial techniques described by Tassoul 
and Ostriker (1968). Detailed results will be published elsewhere, but the important 
points are easily summarized by saying that in all essential respects the n^Q sequences 
resemble the classical « = 0 McLaurin sequence. In particular, the sequences do not 
terminate. That is, for given (J, M) a model can apparently be constructed with 
central density QC, 0^QC<CO. There is no 'rotational breakup'. For « ^ 0 , neither the 
density nor the rotation are uniform nor, in general, are the equipotential surfaces 
spheroids. However, the dependence of a, c, Q, E, T/\W\, and the normal modes on 
QC are topologically similar to the « = 0 case. In all cases examined, a point of bifurca­
tion occurs at 771^1 = 0.14 and overstability is reached at 771^1 = 0.26. The numerical 
values of Tj\W\ at the critical points are remarkably independent of n; to the level 
of accuracy presently available in the numerical work these critical values are con­
stants. Thus it appears that real stars may, after all, undergo fission. The over-all 
picture is schematically reviewed in Figure 1. From a somewhat different point of view 
Roxburgh (1966) anticipated these conclusions without a detailed study of stability, 
and revived the fission hypotheses for the origin of close binaries among the low mass 
stars (W Ursae Majoris stars). 

3. Applications of Theory 

A. WHITE DWARFS 

White dwarf stars obeying the Chandrasekhar equation of state are similar to poly­
tropes, but the central densities are not arbitrarily adjustable. One can, however, 
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Fig. 1. Schematic diagram showing the limits placed by equilibrium and stability requirements on 
the ratio T/\ W\ between kinetic energy of rotation and gravitational energy. See text in Section 2.C. 

consider a star of given mass and angular momentum distribution and construct the 
sequence of stars having larger and larger total angular momenta. The computations 
(Ostriker and Bodenheimer, 1968) again indicate that the sequences do not terminate. 
A maximum in Q is found along the sequence but neither 'rotational mass loss' nor 
'rotational breakup' ever occur. However, a stability analysis (Ostriker and Tassoul, 
1969) indicates that for T/\W\'=.0.26 the models are overstable and probably subject 
to fission. Nevertheless, for a variety of reasons it is very unlikely that close pairs of 
white dwarfs can be formed by fission, and in fact no such pairs have yet been observed. 

B. PRE-MAIN SEQUENCE EVOLUTION 

A more promising line of research (with respect to the fission problem) has been 
followed by Bodenheimer (1969) and Bodenheimer and Ostriker (1970), who have 
examined the pre-main sequence evolution of massive stars. The calculations (for 
3-12 M G stars) begin at the start of the radiative contraction phase. For each star 
the mass, M, and total angular momentum, J, are assumed fixed. Since all the sug­
gested processes for redistribution of angular momentum require longer than a Kelvin 
time, we further assume that the angular momentum of each annular element is 
preserved. Thus, the angular momentum distribution (chosen to be that of a uniformly 
rotating, uniform sphere) is an invariant. The study reached the following principal 
conclusions: 

(1) For given M, the evolutionary track of a star with small J is like the non-
rotating track, nearly horizontal in the (logL/LQ, logTeff) plane. With increasing J 
the luminosity decreases and the tracks become more nearly vertical. Aside from the 
dependence of track shape and orientation on J, the high angular momentum models 
resemble slowly rotating models of lower mass with respect to contraction times and 
position (near the main sequence) after nuclear burning commences. 

(2) For sufficiently high values of J (with given M) the stars become unstable to 
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nonaxisymmetric modes before they have contracted to the main sequence. It is 
interesting to note that if J is slightly less than the critical value JC{M), the surface 
velocity of the 12MG model at the main sequence is x 400 km/sec, approximately 
the maximum velocity observed * for that mass star. In all probability it is instability to 
fission that limits the angular momentum and hence the surface velocity of main 
sequence stars. 

(3) Stars with angular momentum just greater than the critical value, JC(M), will 
presumably form close binary systems. We can compare the relation J=JC(M) with 
the observed relation between angular momentum and mass in the closest (lowest 
angular momentum) early-type binaries. The agreement is excellent, with the theoretic­
al curve lying between the curves for binaries with mass ratio one J=Jb(M, 1) and 
mass ratio two J=Jb{M, 2). As is seen in Figure 2, 

Jb(M,\)>Jc(M)>Jb(M,2). (4) 

A similar comparison for the low mass stars was made by Roxburgh (1966). 

4. Summary 

In conclusion, let us review the arguments that have been put forward against the 
fission theory for the origin of binary stars. 

Early in this century mathematicians thought it possible for stars to proceed quasi-
statically through a series of uniformly rotating configurations to a detached binary 
system; the evolution envisaged was first along the McLaurin sequence of spheroids, 
then, at the point of bifurcation, to the Jacobi ellipsoids, and then, at a second point 
of bifurcation, to the 'pear-shaped' configurations studied in detail by Darwin. At 
this stage James felt there was 'little doubt' that fission would occur and lead to two 

0.4 0.6 0.8 1.0 1.2 

LOG (M/MQ) 

Fig. 2. Estimated relations between mass and angular momentum per unit mass adapted from 
Bodenheimer and Ostriker (1970): (1) JC(M) - differentially rotating models which are suspected 
to undergo fission just prior to the onset of nuclear reactions; Jb(M, 1), Jb{M, 2) - main sequence 

contact binaries adapted from Kraft (1969), with the given total mass and mass ratios 
of 1 and 2 respectively. 

* The 'observed' velocities for rapidly rotating stars perhaps underestimate ve sin; by as much as a 
factor 1.4 according to Hardorp and Strittmatter's (1968) calculations of gravity darkened models. 

18.5 

q i8.o 

https://doi.org/10.1017/S0252921100027147 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100027147


154 JEREMIAH P . OSTRIKER 

detached, unequal, masses. However, Cartan (1922) proved unequivocally that the 
Jacobi ellipsoid is unstable at the point where the pear-shaped configurations branch 
off so that quasi-static evolution to a binary system was recognized as impossible. 
The possibility nevertheless remained that binary stars could form as a result of a 
dynamical instability. The argument for continuous quasi-static contraction fails on 
other grounds as well. It now seems unlikely that viscosity plays an important role 
during the early evolution of massive stars; in the absence of any dissipation a 
homogeneous star will not enter the Jacobi sequence at all but will follow the 
McLaurin sequence until T/\W\ =0.27, at which point it is dynamically unstable. 
However, in the course of the subsequent dynamical evolution (described by Rossner, 
1967) it may break into two or more pieces. Dynamically induced fission is probable 
here, but remains unproven. 

A second objection is due to Lyttleton (1953). Since the dynamical evolution does 
not require friction, it must be time reversable. But, if we reverse the direction of time 
in an existing binary system it clearly does not revert to a single star but simply remains 
a binary system with the orbital directions reversed. Therefore a single system cannot 
evolve without dissipation into a binary. This argument is irreproachable as stated. 
However, other stages of stellar evolution proceed in a notably nonadiabatic way so 
it seems unreasonable to assume that the fission process alone should be energy 
conservative. Without the restriction to energy conservative systems, the argument of 
time reversability fails and Lyttleton's objection loses force. 

As Roxburgh pointed out, a far more serious objection arose from the discovery 
of Jeans' (1929) and James' (1964) that centrally condensed («>0.808) uniformly 
rotating objects could never reach the points of bifurcation or overstability. However, 
it is now clear that this result was an artifact of the constraint to uniform rotation. 
The self-consistent zero-viscosity, polytropic sequences («> 1 and n< 1) described in 
Section 2.C do not terminate and they do become overstable at 7/1 W| = 0.27. Thus, 
it seems compressible stars do have the possibility of becoming binaries by undergoing 
dynamically induced fission. 

Finally, the observational evidence presented by Roxburgh (1966) and Boden-
heimer and Ostriker (1970) concerning the angular momentum of close binaries 
provides experimental support for the fission hypothesis. While there is still a con­
siderable amount of work to be done (cf. comments in Section 2.B) before one can 
say, with certainty, that the process is theoretically possible, there are now no strong 
theoretical arguments against it. 

In the light of present observational and theoretical work, the fission hypothesis 
seems attractive, once again, as a partial solution to the angular momentum problem, 
and as a natural way of producing close binaries. 
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Discussion 

Jaschek: I would just like to comment that the investigation by Blaauw and Van Albada should be 
extended to later-type stars in which the statistics seem to behave very differently from what they 
found. In particular no break between close and wide binaries was found. This break is furthermore 
located at the very point where the incidence of selection is largest, so that its reality should not be 
accepted without further investigation. 

Ostriker: I am not qualified to comment on the reliability of Blaauw and Van Albada's statistical 
conclusions. Van Albada's mechanism for producing wide (visual) binaries is in any case interesting 
and, I believe, plausible. 

Fricke: I don't feel very satisfied with the neglect of angular momentum transport by meridional 
circulations during the pre-main-sequence evolution. The ratio of centrifugal force to gravity becomes 
of order 1 in your models and angular momentum transport within the Kelvin-Helmholtz time scale 
over appreciable distances of the star should be expected. I suggest that constant angular velocity 
might be the more reasonable constraint one should impose during the contraction phase. 

Ostriker: For most of the proposed contraction phase the ratio of centrifugal to gravitational 
force is small. Even for the most rapidly rotating part of the star with the largest angular momentum 
considered and taking that star at its most rapidly rotating (most condensed) part of the contraction 
phase - even in this most extreme case, the ratio of centrifugal force to gravity is only 0.4. That is, 
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I believe that circulation currents should be included and intend to do so in future work, but I doubt 
the conclusions will be very much altered. 

Furthermore, it is not obvious to me that circulation would lead the star towards constant angular 
velocity; in the absence of any detailed calculations constant angular momentum density seems, a 
priori, equally probable. 

Collins: You have established that a sequence of models is in equilibrium. Have you established 
that any two neighboring models can be reached, i.e., can you move from one model to another 
without violating any physical laws? 

Ostriker: The models are connected to one another in the same sense as models along the classical 
McClaurin Sequence. I have not investigated for either sequence what form (if any) the quasi-static 
contractionmust takein order to transform one equilibrium model into the next one along the sequence. 

Roxburgh: As I pointed out in 1966 it is to be expected that non-uniform rotation is developed 
during pre-main sequence contraction, and I used this in my papers on the fission theory. However, 
as I pointed out, during the adjustment period from fully convective phase to the radiative phase a 
high degree of differential rotation develops with an approximately radial variation. 

The question I wish to put is whether your set of models, which with a misuse of the term are 
homologous, are in fact a sequence? That is whether you can in fact go from one model to the next 
in a sequential sense. You assume that in each model the angular velocity is constant on cylinders 
and that the angular momentum per unit mass is conserved. This may not be possible without at 
the same time destroying the angular momentum conservations for each individual fluid element that 
you must have in an inviscid fluid. 

Ostriker: Your question was answered in part when I replied to Collins' question; the sequences 
are constructed so that every element conserves vorticity - and of course angular momentum as well. 
On your first point, we treated the contraction phase of high mass stars (5-12 MQ) specifically 
because these, according to recent calculations of Larson and Bodenheimer, may not have any 
Hayashi phase. The non-dynamical contraction phase is expected to be purely radiative for these 
stars and our calculations begin at the beginning of this quasi-static radiative contraction phase. 
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