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Introduction. Until recently none of the numerous papers on the distribu
tion of quadratic and higher power residues was concerned with questions 
of the following sort: Let k and m be positive integers. According to a theorem 
of Brauer (1), for every sufficiently large prime p there exist m consecutive 
positive integers r, r + l , . . . , r + m — 1, each of which is a &th power 
residue of p. Let r(k, m, p) denote the least such r. What can be said about 
the behaviour of r(k, m, p) as p varies? In particular, for what values of k 
and m is r(k, m, p) bounded, and for these values what is its maximum? 
For a fixed k and m we call a prime exceptional and denote it by p* if there 
do not exist m consecutive integers each of which is a &th power residue of p*. 
Set A(k,m) = Max r (k, m, p), where the maximum is taken over all non-
exceptional primes p. In a previous paper (4) Lehmer and Lehmer showed that 

_. . ,, N (if k is even and m > 3, 
(1) A(*. m) = » | . f 2 < k < i o 4 8 9 Q 9 a n d m > i 

If A(k, m) is finite it follows from Theorem 2 of the preceding paper that 
there is an infinity of primes p such that r(k, m, p) = A{k, m). 

In this paper we discuss A(fe, 2) for k < 6. The question of whether A(k, 2) 
is finite for all k is a very interesting open question. To summarize we cite the 
following results: 

(2) A(2, 2) = 9, p* = 2 ,3 ,5 , 

(3) A(3, 2) = 77, £* = 2, 7, 13 (M. Dunton), 

(4) A(4, 2) = 1224, £* = 2, 3, 5, 13, 17, 41 (W. H. Mills and 
R. Bierstedt), 

(5) A (5, 2) = 7888, p* = 2, 11, 41, 71, 101, 

(6) A(6, 2) = 202124, £* = 2, 3, 5, 7, 13, 19, 43, 61, 97, 157, 277. 

Result (6), for example, states that every prime p > 277 has two consecutive 
numbers which are sextic residues and do not exceed 202125. Furthermore, 
this limit is best possible because there are infinitely many primes having 
(202124, 202125) as the least pair of consecutive sextic residues. 

Result (2) is easily verified by discussing the cases in which 2 and 5 are or 
are not quadratic residues of p. On the other hand any prime, like 43, for which 
2, 3, 5, and 7 are all quadratic non-residues, will have (9, 10) as the least pair 
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of consecutive quadratic residues. The corresponding result (3) for cubic 
residues was obtained by Dunton (2) by a similar argument involving more 
cases. It was this result that aroused our interest in the whole problem of 
A(k, m). Result (4) for quartic residues was obtained independently by Mills 
and Bierstedt (6) by considering more than 100 cases. Results (5) and (6) 
are new and were made possible by electronic computers, not only in the pre
paration of the necessary data for the proofs, but in the actual carrying out of 
the logical steps in the proofs themselves. Result (5) could have conceivably 
been obtained by hand computation, although it required the consideration 
of 4568 cases. However, the proof of (6) which required the consideration of 
25411 cases would have been impractical without the use of high speed com
puters, at least by our present methods. Since we cannot give the full details 
of the machine's steps in the proofs of these results we content ourselves with 
giving the theoretical background and some aspects of the machine programme. 

The calculations were made at the University of California Computer 
Center in Berkeley on the IBM 701 and 704 computers. In a future paper (5) 
having to do with the determination of A (3, 3) (which equals 23532) we plan 
to give more of the computational details. 

1. Preliminary considerations. Let ^ be a prime, p = kx + 1, and 
let ind n denote the index of n with respect to some primitive root g of p, 
that is, 

glnûn ^n (modp). 

Let R(n) denote the integer valued function defined by 

R(n) = ind n (mod k), 0 < R(n) < k, 

for every integer n not divisible by p. Clearly n is a &th power residue of p 
if and only if R{n) = 0. For machine purposes the function R(n) is more 
convenient than the multiplicative complex-valued character function. Let 

S: qi < q2 < . . . < qt 

be a finite set of distinct primes. The vector 

(7) [R(q1),R(q2)1...JR(qt)] 

will be called an 5-vector. Let n be any number of the form 

(8) n = q-'q"2 . . . q?, 

where the a* are non-negative integers. Let a* be the least non-negative 
residue of at modulo k. The vector 

(9) [ah a2, . . . ,at] 

will be called the decomposition vector of n. From the additive properties of 
the index we have 

R(n) = aiR(qi) + . . . + atR(qt) (mod k). 
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T h u s n is a &th power residue of p if and only if 

a i£ (g i ) + a2R(q2) + . . . + atR(qt) = 0 (mod k), 

or, as one could say, if and only if the vectors (7) and (9) are orthogonal modulo 
k or simply k-orthogonal. 

I t is clear t h a t t o each prime p not in the set S, there corresponds an S-
vector. Conversely every vector [ri, r2, . . . , rt], 0 < rt < k, t h a t satisfies 
certain par i ty conditions is the S-vector of infinitely m a n y primes. (See 
Theorem 3 of the preceding paper.) T h u s all primes not in S are sorted into 
¥ compar tments by assigning values to each of the components in the S-
vector. T h u s we can hope to prove a result about the infinitude of primes not 
in S by merely considering a finite number of S-vectors. In part icular A(fe, 2) 
< L if for each S-vector V there exist a pair of consecutive positive integers 
not exceeding L, both of the form (8), whose corresponding decomposition 
vectors (9) are both ^-orthogonal to V. For this to work there mus t be an 
adequate supply of pairs of consecutive positive integers of the form (8). 
By a crude probabilistic a rgument one may expect s pairs to be adequa te , 
where 

s = -tlogk/[log(l - & - * ) ] . 

In actual practice we used t = 22. For t = 22 and k = 5 and 6, this formula 
gives s = 867 and 1400 respectively. We used 1020 and 2398 respectively. 

However, the numbers (8) whose primes factors are restricted to the given 
finite set 5 are relatively scarce, and pairs of consecutive integers of this kind 
are scarcer still. In fact Stôrmer (7) has shown t h a t the to ta l number of such 
pairs is finite.* T o obtain as many pairs as possible we usually took 5 to be 
the set of the first t primes. For the problems under consideration we had to 
find all such pairs below a fixed limit L. Such a list can be prepared on a high 
speed computer in any one of several s traightforward ways (see (5)) . 

After such a list is prepared, we produce the decomposition vectors of the 
two elements of each pair. By the k-dimension of a number n with decomposi
tion vector [ai, a2, . . . , at] we mean the largest d such t h a t ad F^ 0. T h e 
^-dimension of a &th power is defined to be zero. By the k-dimension of a 
pair (n, n + 1) we mean the larger ^-dimension of the two numbers . T h e 
next step is to sort the pairs according to their ^-dimensions. We now have for 
each d < t a set of pairs of decomposition vectors. For example, for k = 5, 
d = 6, and S the set of the first six primes, the smallest pair is (12, 13) 
whose decomposition vectors are [2, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1] and the largest 
pair is 

123200 = 2 6 - 5 2 - 7 - l l , 123201 = 3 6 -13 2 

*By a modification of Stôrmer's method Lehmer (3) was able to show that there are less 
than i(qt + 1)(2' — 1) such pairs. He determined all such pairs for the set 5 consisting of the 
first 13 primes. The determination of all such pairs corresponding to a set with more than 13 
primes becomes prohibitive at the present time. 
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whose corresponding decomposition vectors are [1, 0, 2, 1, 1, 0] and 
[0, 1, 0, 0, 0, 2]. 

2. The main programme. The number t of primes needed is so large 
that it is not feasible to consider k% separate cases. Hence we introduce the 
concept of a case vector as follows: A case vector is a vector [ax, a2, . . . , ad], 
where at are integers, 0 < at < k and d < t. We call d the dimension of the 
case vector. We say that a prime p is covered by this case vector if R(qt) = at 

for 1 < i < d. 
We are now in a position to consider the main programme. First the sets of 

pairs of decomposition vectors are stored in the memory of the computer. The 
machine now proceeds to dispose of a sequence of case vectors in a methodical 
way described below: 

Suppose that at a certain stage of the proof, the case vector is 

(10) A = [ah a2> . . . , ad] 

of dimension d. The machine goes through the list of pairs of ^-dimension d 
to see if for some pair both decomposition vectors are ^-orthogonal to the 
current case vector. If such a pair is discovered then the primes covered by 
(10) have a pair of consecutive &th power residues less than L. In this case if 
di = d2 = • . • = (id — k — 1, then the process is complete and the machine 
stops. Otherwise A is replaced by aA, where 

= ( [ah a2, . . . , ad + 1] if ad < k - 1, 
\ [a i , a2, . . . , ar + 1] if aT < k — 1, ar+i = . . . = ad = k — 1. 

If, on the other hand, no suitable pair is discovered with ^-dimension d, and 
if d < t, then A is replaced by [ah a2, . . . , ad, 0], which has dimension d + 1. 
H d = t and no suitable pair is discovered, then we have an 5-vector which 
cannot be handled with the pairs at the machine's disposal. In this case the 
machine puts out this 5-vector, and returns to consider the next case vector 
in order. 

3. The case k = 5. We now give a brief account of the proof that 
A(5, 2) = 7888. Primes p for which 2 is a quintic residue obviously have the 
pair (1, 2) of consecutive quintic residues. Hence we may suppose that 
R(qi) 9^ 0, Q\ = 2. However, because the primitive root g can be replaced by 
any other primitive root of the prime p, we can suppose that R(qi) = 4. Thus 
we need to consider only the case vectors whose first component is 4, and in 
particular the first case vector is [4] with d = 1. 

It is known from cyclotomy that p* = 2, 11, 41, 71, and 101 are the only 
exceptional primes. It is clear that if these primes are not included in the set 5, 
then there is bound to be an output of 5-vectors which the machine cannot 
handle, namely the 5-vectors of these primes. In the actual run we took 
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/ = 22, with S the set of the first 21 primes and 101. Four runs were actually 
made, the first two with L = 215 and 213 respectively produced no output, 
the third with L = 212 produced output of the form 

(11) [ 4 , 0 , 0 , 4 , 4 , 3 , 4 , 3 , 3 , 0 , . . . ] . 

All this output is disposed of by the pair 

7888 = 2M7-29, 7889 = 73-23. 

A final run was made with L = 7889 with no output. Hence A(5, 2) < 7888. 
Each of these four runs took about 3 minutes. As a check on the work the 
machine was programmed to report the disposal of every case vector of the 
maximal dimension d = 22. The machine reported handling successfully the 
5 expected case vectors 

[4, 1, 1, 1, 2, 4, 0, 4, 4, 4, 1, 4, 0, 3, 2, 2, 1, 3, 4, 1, 4, a], (a = 0, 1, 2, 3, 4), 

the first 21 components of which correspond to the quintic characters of the 
first 21 primes modulo 101. Had no provision been made for the exceptional 
prime 101, that is, had 5 consisted of the first 22 primes, the machine would 
have reported that it could not dispose of the vector 

[4, 1, 1, 1, 2, 4, 0, 4, 4, 4, 1, 4, 0, 3, 2, 2, 1, 3, 4, 1, 4, 1], 

the last component of which corresponds to the character of 79 modulo 101. 
In the final run the machine disposed of 4568 different cases. 
It now remains to show that there exist primes p whose least pair of con

secutive quintic residues is (7888, 7889). It is clear that the quintic characters 
of the small primes modulo such p are given by (11). Thus our problem is to 
extend the vector (11) to the set of all primes below 7888. It can be shown that 
any prime p such that 

(R(S) = R(5) = R(29) = 0 
)R(1S) = R(19) = R(23) = 22(31) = i?(41) = R(4S) = R(2ll) 

U ] \ = R(277) = 3 
\R(q) = 4 for all other primes q with 2 < q < 7888 

actually has the desired property that the least positive integer n for which 
R{n) = R{n + 1) = 0 is n = 7888. There are several good ways in which 
this can be checked by machine. In actual practice we did this both by machine 
and by inspection of factor tables. By Kummer's theorem (see preceding 
paper) there exist an infinity of primes p satisfying (12). Hence A(5, 2) 
= 7888. 

4. The case k = 6. By a similar, but more complicated procedure we 
were able to determine A(6, 2). The final run with L = 202125 involved the 
consideration of 25411 case vectors, and was completed in 18 minutes. A set 
of primes for which (202124, 202125) is the least pair of consecutive sextic 
residues is characterized by 

https://doi.org/10.4153/CJM-1963-020-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1963-020-4


PAIRS OF CONSECUTIVE POWER RESIDUES 177 

(i?(3) = R(4S) = R(fil) = 0, 
)R(71) = R(101) = 1?(331) = 22(733) = J?(1423) = i?(4877) 

( } S = 12(5413) = 22(6043) = 4, 
\R(q) = 5 for all other primes q such that 2 < g < 202123. 

By Theorem 3 of the preceding paper there exist an infinite number of such 
primes p. Thus we established that 

A (6, 2) = 202124. 

The problem of exhibiting a prime characterized by (12) or (13) is a sieve 
problem beyond the capabilities of existing electronic computers. 

Added in proof. R. Graham has recently shown that A(k, 4) = °° for k > 1. 
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