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Abstract

Let the word "graph" be used in the sense of a countable, connected, simple graph with at least one
vertex. We write Qn and Ocn for the graphs associated with the n-cube Q" and the /i-octahedron Oc"
respectively. In a previous paper (Dekker, 1981) we generalized Qn and ()" t oa graph Qv and a cube
QN, for any nonzero recursive equivalence type N. In the present paper we do the same for Oc,, and
Oc". We also examine the nature of the duality between QN and Oc'1', in case N is an infinite isol.
There are c RETs, c denoting the cardinality of the continuum.

1980 Mathematics subject classification (Amer. Math. Soc): primary 03 D 50; secondary 05 C 99.

1. Preliminaries

This paper is closely related to 'RETs and cubes', Dekker (1981), to which the
reader is referred for notations and terminology not explained below. Proposi-
tions of that paper are referred to as Pl . l , PI .2 , . . . ,P2.1, P2.2, . . . , and so on. We
write e for the set (0,1,. . .) , o for the empty set, A for the collection of all isols
and £2 for the collection of all RETs. Also, e0 = e - (0), Ao = A - (0) and
fi0 = fi — (0). We again use the canonical enumeration (pn) of the class of all
finite sets, that is, finite subsets of e. For a finite set a the unique number /' such
that a = Pi is the canonical index of a, written can(a). Put rn ~ card pn\ for v C e,
/ G e we define 2" = {x G e | px C v) and [v; i] — {x G e | px C v & rx — / } . These
recursive, combinatorial operators enable us to extend the functions 2" and [n; i]
from e into e to functions 2N and [A'; i] from fi into £2. The ordinary, vertical
notations for the binomial functions [n; i] and [N; i] are only used in displayed
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formulas. I f / i s a function from a subset of e into e, we denote its domain by Sf,
its range by pf and the image of n u n d e r / b y / ( « ) or/n , sometimes in the same
context. Throughout this paper the symbols v, v0, vx, P2denote nonempty sets,
while n, ju0, jU|, ji2 stand for sets of cardinality > 2.

We define the (undirected) u-cube Q" on the set v as the ordered pair (2", Fv),
where Fv is the class of all/aces of Q", that is, the class of all finite subsets a of 2"
for which there exist disjoint finite subsets pp and pq of v such that a = {x G 2" |
Pp C px C Pp U pq). The number j(p, q) is the G-number G(a) of a and the
number k = rq the dimension of a; we refer to a as a k-face oi Q" and write .F^ for
the class of all &-faces of Q". All faces of Q" are therefore finite-dimensional, even
if the RET./V = Req v, the so-called co-dimension of Q", is infinite, that is, belongs
to fi — e. We use the term "N-cube " for an co-cube of co-dimension TV. For k G e,
N C S20, J> €= ,/V we define

(1.1) a , t = ( G ( a ) e £ | a £ ^ } , «„ = (G(a ) G

(1.2) ^ M = Reqar / t , ,4,, = Req a,.

The functions ANk and AN are well-defined, that is, independent of the repre-
sentative v of N. According to P4.1 and P4.2 we have for N G fl0 and 0 < k < N,

k

2. Octahedral graphs

The six vertices and twelve edges of a regular octahedron in E3 form a graph;
its vertices can be denoted by 1, . . . , 6 so that the pairs of opposite vertices are
(1,2), (3,4), (5,6); it is therefore isomorphic to the complete tripartite graph
O3 = K(2,2,2) with two vertices in each partite set. For n 3* 1 the n-octahedral
graph On is defined as the «-partite graph K(2,..., 2) with two vertices in each of
its n partite sets, Jungerman and Ringel (1978). Let On have /i, = ( 1 , . . . ,2n) as set
of vertices and ((1,2),.. . ,(2« — 1,2n)) as class of its partite sets. Define/as the
permutation of /x which interchanges 2k — 1 and 2k, for 1 < & < M. We now
drop the condition that ju = (1 , . . . ,2«) and define an involution without fixed
points (iwfp) of ju as a permutation / of ju such that f2 = i and f(x) ¥= x, for
x G ju. Denote the family of all iwfps of ju by Inv(jti), associate with every
/ G Inv(jti) the graph Gf = (n, 6), where 0 - {can(x, y) G [/x; 2] | / ( x ) ^>>}, and
call a (countable) graph G = (ju,, 0) octahedral, ii G = Gf, for some / G Inv(ju).
Note tha t / -> Gy maps Inv(ju) one-to-one onto the family of all octahedral graphs
with ju as set of vertices. The vertices p and q of Gf are opposite, if f(p) = q or
equivalently, /(<?) = /?; thus /? and <7 are adjacent iff they are not opposite. The
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iwfp/of /i is an u-iwfp of /x, if it has a partial recursive one-to-one extension; here
"one-to-one" can be deleted without changing the concept defined, since/ = / " ' .
Denote the family of all to-iwfps of ju by Invu(ft). If G — (ft, 9) we call the
function / such that G — Gf the octahedral function of G\ the graph G is
^-octahedral, if its octahedral function belongs to Invu(/x). We claim that in case
/ G Inv(ju), we have: / G Inv^ju.) if and only if / is the restriction to ju of some
partial recursive iwfp of some r.e. superset of ju. For if / is a partial recursive
extension of/we put ji - {x G 8f\f(x) ¥^x&f(x) G 8f&f2(x) = x}; then ji is
r.e., ju C ji a n d / | ji is a partial recursive extension of/. Note that Invu/x = Inv/x,
if /i is finite. Thus a finite graph is w-octahedral if and only if it is octahedral.

PROPOSITION B2.1. Let M = Req ju. Then there is an ^-octahedral graph with ju
as set of vertices if and only if M is even.

PROOF. Let G = {\x,0) and Af=Req/i . . Suppose G is co-octahedral, say
G — Gs, f o r / G Invu(ju). Then / = / | /x , for some partial recursive iwfp/of some
r.e. superset of \i, say a. Define

(2 1) l " 0 = ^ G " I* < / ( * ) } ' a, = {x Ga| jc > / ( * ) } ,
[ao = a 0 n J u , a , = a , n / x , 8g = a0, g=f\a0, g = / | a 0 ,

then g is a partial recursive one-to-one function from a0 onto a, which maps a0

onto a,, hence a0 — a,. Clearly, ju = a0 U a,, where a0 | a,, hence M — 2 Req a0

is even. Now assume that M — Req /i. is even, say /x = a0 U a,, a0 — a, and
a0 | a,. Let g be a one-to-one function from a0 onto a, with a partial recursive
one-to-one extension. Put 8 / = jx,f(x) — g(x), for x G a0 and / (x ) = g"'(x), for
x G a,. Then / i s an «-iwfp of ju and Ĝ- is an co-octahedral graph with /x as set of
vertices.

REMARK. Since A — e has cardinality c and the mappings X -> 2 X and Z -»
2 X + 1 are one-to-one, there are exactly c infinite even isols and exactly c infinite
odd isols. Thus we see by B2.1 that there are exactly c co-octahedral graphs. With
every infinite odd isol M we can associate a set ju, G M and (since S o = 2N0) an
iwfp/ of n and the octahedral graph Gf. In view of B2.1 the graph Gf is not
co-octahedral. It follows that there also are exactly c octahedral graphs which are
not co-octahedral.

The graph G = (v, TJ) is r.e., if the sets v and 7) are r.e. We call a connected
graph G an u-graph, if it has an MPA (minimalpath algorithm), that is, if there is
an effective procedure YL which associates with every two distinct vertices of G a
path of minimal length between them. An co-graph G = (v, rj) is uniform, if G is
an induced subgraph of some r.e. co-graph G which has an MPA II which when
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applied to distinct vertices p and q of G yields a minimal path between p and q in
G, that is, a minimal path with vertices in v and edges in TJ. It was proved by
Remmel (1981) that an w-graph G — (v, TJ) need not be uniform, even if v is
immune.

PROPOSITION B2.2. Let G = (/x, 0) be an u-octahedral graph. Then G is a
uniform u-graph and there is a nonzero RET A' such that Req it = 2./V and
Req0 = 2N(N - 1).

PROOF. Let G = (ii, 9), say G — Gf, for / G Invw(/^). Define a0 and a, as in
(2.1), then M = Req /x = IN, where N - Req aQ. Put

\ = {can(x, y) £ [ju; 2]|x G « 0 & j G a, &/ (* ) ^ y } ,

then Req A = N(iV - 1) and 0 = [ju0; 2] U [/x,; 2] U A, where the three sets on
the right are separable. Hence Req 6 equals 2[iV; 2] + Req A, that is, 2N(N — 1).
Note that this proof is valid both in case N G Ao, that is, if N — 1 < N and in
case N G fi0 - A, that is, if N - 1 = N. In the latter case Req 6 = IN2. We now
prove that Gf — (ju, 6) is a uniform co-graph. Let / = f\ /x, where / is a partial
recursive iwfp of a r.e. superset of ju, say a. Define a0, a,, a0, a, as in (2.1) and
8= (can(x, _y) G [a;2]\f(x) =£y}, then Ĝ  is an induced subgraph of the r.e.
graph G = (a, 6). We may assume without loss of generality that card a0 > 2.
Let p,u E ao,p ¥= u, q = f(p), thenp, q, u are distinct vertices of G and p, q are
opposite. Put for x, y G a, x ¥= y,

( (x, u, y), if x — p and j> = q, or x = q andy = p,

(x,p,y), if x £ ( />,?) , b u t / ( x ) =y,

Then 7rr>, is a minimal path between x and _y in G which is a minimal path in G in
case x, y G ju. Since wxv. can be effectively obtained from x and y, the w-graph G
is uniform.

Define the functions d0, dx by SJ0 = 8d} = e, J 0 (x) = 2x, dx(x) = 2JC + 1
and associate with every set v the sets P0 = do(v) and vx = dx{v). The standard
co-iwfp associated with v is the function / G Invu(ju), where ji= v0U vx and
/(2x) = 2x + \,f(2x + 1) = 2.x, for x G v. The standard w-octahedral graph Oc,,
associated with v is the graph Gf = (n,0), where / is the standard co-iwfp
associated with v. Thus the vertices p and q of Oc,, are opposite, if p is even and
p + 1 = g, or q is even and g + 1 = p. An ^-isomorphism from the graph G, onto
the graph G2 is an isomorphism from G, onto G2 which has a partial recursive
one-to-one extension. Gx is isomorphic (io-isomorphic) to G2, if there is at least one

https://doi.org/10.1017/S1446788700019790 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700019790


[s] Recursive equivalence types and octahedra 105

isomorphism (co-isomorphism) from G, onto G2. These two equivalence relations
are denoted by s and =u. Two finite graphs are co-isomorphic if and only if they
are isomorphic. Under an co-isomorphism from G, onto G2 minimal paths in G,
correspond to minimal paths in G2. This implies

(2.2) ifGl=Q> G2 and G, is an co-graph, so is G2.

PROPOSITION B2.3. A graph is {^-octahedral if and only if it is u-isomorphic to
some standard u-octahedral graph.

PROOF. Let G = (n, 6). (a) Suppose g is an co-isomorphism from Oc,, = (v0 U
vx, T)> onto G; put St = v0 U v{, t(x) = x + 1, for x 6 v0, t(x) — x — 1, for

x G i>,; then Oc,, = Gr Define 8/ = jti, a n d / = gtg'\ t hen / G Invw(jn). Moreover,
can(x, y) G 0 if and only if can(g~'(x), g'\y)) G TJ if and only if tg~\x) —
g~\y) if and only if f(x) ¥= y, so that 0 = {can(x, y) E [ft; 2] \f(x) ^ y} and
G = Gf. The function t has a recursive one-to-one extension, namely /, where
8t = e, t(x) = x + 1, for x G 50, while r(x) = x - 1, for I E 8,. Let g be a
partial recursive one-to-one extension of g; put 8f — {x G pg\ t(x) G 8g} and
/(•*) — S ' f ' ( ^ ) . then / is a partial recursive one-to-one extension of / , hence
G = Gfis co-octahedral.

(b) Assume that G = (JX, 6) is co-octahedral, say G = Gf, where/ G Invu)(iu). If
ju is finite, put m = { card ju, v — (0 , . . . ,m — 1); then Oc,, s= G, hence Oc,, ~ u G.
Now assume that /x is infinite. Let / b e a partial recursive iwfp of some r.e.
superset of jit, say jS, then there is a one-to-one recursive function un ranging over
/I such that f{u2n) = uln+-[ and " 2 n < " 2 n + i - Then u2n G ju. if and only if
M2n+1 G ju, for n G e. Let P = {« G e | u2n G ft), then u(v0 U »>,) = ju. Define
8t = VQ U *>,, f(x) = x + 1, for x G c0, t{x) — x — 1, for x G »»,, then Oc^ = Gr

For Ocr = (p0 U j>,, T/> and x, y E v0U vx,

can(x, j ) G TJ « r(x) ^ j ' « t7,(jt) ^ J7,(v)

« / ( M X ) # MV « can(«;c, J7V) G 6».

Thus M | vQ U J», is an isomorphism from Oc,, onto G with the recursive one-to-one
extension w, hence Oc,, s u G.

If G = (/i, #) is an co-graph, o(G) = Req ju is the order of G. Thus o(G) has the
usual meaning if and only if G is finite. If the graph G = (ju, #) is co-octahedral,
its order M is even by B2.1 , that is, M = 2 A, for some A ESI. We call A the
us-dimension of G, written dimuG. Since 2̂ 4 = 2B implies A = B by Friedberg
(1961), dimwG is well-defined for an co-octahedral graph G. Hence two co-oc-
tahedral graphs have the same order if and only if they have the same
co-dimension.
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PROPOSITION B2.4. Two w-octahedral graphs are u-isomorphic if and only if they
have the same co-dimension.

PROOF. Since dimMOc,, = Reqj% it suffices to show in view of B2.3 that
a ~ /? <=» Oca =a> Oc^, for nonempty sets a and /?. The conditional from the right
to the left is trivial, since co-isomorphic graphs have the same order. Now assume
a ~ fi, say a C 8p, p(a) — /?, p partial recursive and one-to-one, Oca = (a0 U
a,, da), OC/8 = </?0 U £ „ 6jg>. Put 8q = do(8p) U dx(8p), q(x) = 2p(x/2), for
x G 8q n 80, while q(x) — 2p(x - 1/2), for x G 8q D 8,. Then «0 U a, C 8q,
q(a0 U a,) = f$0 U fix, where q is partial recursive and one-to-one. Moreover,
can(x, y) G 6a implies c&n(qx, qy) G dp, for x, y G <x0 U a,, so that q | a0 U a, is
an co-isomorphism from Oca onto Oc^.

For Â  G S20 we define Oc^ as any co-octahedral graph of co-dimension N, or
equivalently, of order 2N. Thus Oc^ is unique up to co-isomorphism. For the
definitions of an co-regular graph and its co-degree, see page 546 of Dekker
(1981a). It can be shown that every ^-octahedral graph of order 2N is u-regular of
u-degree 2(N — 1); the proof is routine.

3. Octahedra

With every / G Inv(/x) we associate the ordered pair Cky = (/x, CM), where
ft = 8f and Ĉ  is the class of all finite subsets a of ju such that no two elements of
a correspond to each other under/. An octahedron is an ordered pair Oc = (ju, CM)
such that Oc = Oc/5 for s o m e / G Inv(/i); Oc^is an ^-octahedron, i f / G Invu(ju).
The mapping/ -> Oc^maps Inv(ju,) one-to-one onto the family of all octahedra on
ix and lnvu(n) one-to-one onto the family of all co-octahedra on /x. If Oc^ = (/t, CM),
then Gf = (n, 6) where 0 — {can(x, y) G [fi; 2] \ (x, y) G C^}, hence Oc^ and Gf

uniquely determine each other; we say that Ocy and Gf are associated. The
members of n are the vertices of Oc^ — (fi, C^), while the members of Ĉ  are the
faces of Ocy. If a is a face we define dim a as the number k = card a — \ and
refer to a as a k-face of Oc^; we write C^k for the class of all Ar-faces of Oc^. Note
that (i) every face of (ju, C ) is finite-dimensional, even if n is infinite, (ii) every
subset of a face is again a face, (iii) there is only one (— l)-face, namely the empty
set, (iv) (i £ Cp, since our agreement that card ju s* 2 implies that n contains two
opposite vertices. For the co-octahedron Oc = (ju, CM> with M — Req fi, we define
the order o(Oc) as M and the co-dimension dimu(Oc) as M/2. Hence o(Oc) = o(G)
and dimu(Oc) = dimw(G), where G is associated with Oc. An isomorphism
{^-isomorphism) from Oc, = (jUi,C(1)) onto Oc2 = ( M 2 , C ( 2 ) > is a one-to-one
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function (with a partial recursive one-to-one extension) from ju, onto /x2 which
preserves faces and their dimensions. We write ss for "isomorphic to" and =u for
"w-isomorphic to." If G] and G2 are associated with Oc, and Oc2 respectively, the
isomorphisms (co-isomorphisms) from G, onto G2 are the same as the isomor-
phisms (co-isomorphisms) from Oc, onto Oc2. We have therefore by B2.4 for
w-octahedra Oc, = (ju,, C^,,) and Oc2 - <ju2, C;(2)>,

(3.1) jw, — n2 ** Oc, = w Oc 2 <=> dim^Oc, = dimwOc2.

The standard w-octahedron Oc" associated with the set v is the w-octahedron
Ocf, where/is the standard w-iwfp associated with v. In view of B2.3 and (3.1) we
conclude that (i) an octahedron is an co-octahedron if and only if it is co-isomor-
phic to a standard w-octahedron, (ii) a = /? <=> Oca =u Oc^, for a, ji ¥= o. If
TV G J20 we define Oc^ as any w-octahedron of w-dimension TV; it is unique up to
co-isomorphism. Let for n > 1, — 1 < k < n — 1, Oc" have cnk k-l&czs and cn

faces. It is well-known and readily seen that cnk = 2"+1[«; k + 1] and cn = 3". In
order to generalize these formulas to Oc^, for N G So, we define for Oc" =
(H,C»), - \ < k < N - 1,

(3.2) %k= { * G e | P x G C M } , % = { x G e | P ; t G C , } ,

(3.3) C M = Req f^, for v G TV, Q = Req y,, for v G TV,

( 3 - 4 ) y , A = [j{p,q) £ e \ p p , pq C v & P p n Pq = o&rp+q = k + l ) ,

(3-5) y,

The functions C^^ and CN are well-defined, that is, independent of the choice of
v. Note that x G yvk if and only if dg\Px n 50) and ^f ' (px n 5,) are disjoint
subsets of v and r̂  — k + 1. The G-number G(Px) of the face Px of Oc" = <ju, C^)
is defined asj(p, q), where Pp = ^o'(Pt

 n ô)> Pq
 = d\\Px n 5,). It can now be

proved that

(3-6) f,*-Y,*

PROPOSITION B3.1. For TV G fl0 a«£? - 1 < A: *£ TV - 1,

r — 7k+\( TV \ , „ _ - N
C M "~ z \ fc + 1 / w ~~ "

PROOF. Let v G TV. Then we have y, - a,, and CN - AN - 3N by (1.1), (1.3),
and (3.6). The formula for CNk is trivial for k = — 1. Now assume k > 0. Put
a = (0,...,A:) and P = j[2a X [v; k + 1]] then Req P = 2k + ][N; k + 1] and it
suffices to prove ft ^ yvk. Let 8g = ft and for y'(x, _y) G /8, g/'(x, y) =j(p, q),
where/) and q are computed as follows: find the enumeration according to size of
p,., say z0,. ..,zk\ then pp = {z, | 0 < / < fc & / e pA} and Pq = p, - p^. Then pp

and p? are disjoint subsets of v, while rp + q = rY = k + \, hence_/'(/>, ^) G y^, so
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that g((l) C yvk. It can now be proved that g(/8) = yvk, where g is one-to-one and
both g and g~x have partial recursive extensions. Thus ft — yyk.

4. Some sequences of isols

This section deals with the sequences defined by the functions [n; k], for
0^k<n, ank = 2"-k[n;k] and cnk = 2k+i[n; k + 1], for 0 < k < n - \,
namely

I

III <c . ,> ; . - ' : 2 n ,

Using the algebraic relations [n; k] = [«;« — A:], for 0 *£ A: =£ n and an/t =
c« n-k-\> cnk = an n-k-\> for 0 ^ A: ̂  « — 1, we see that for n 3* 3 these se-
quences are first strictly increasing and then strictly decreasing; moreover, II and
III have the same elements, but in reverse order. If we replace the number n by an
infinite isol N, we may or may not permit A: to assume values of the type N — i,
where / G e. We obtain

l o H i / ' • " ' l o r I I ) ' • • • ' \ N - i / ' \ N ) '

II' 2 " , 2 " - ' ( * ) , . . . , II"

III' 2 ^ , 2 2 ( ^ ) , . . . , Ill"

PROPOSITION B4.1. For an infinite isol N, sequences I', II', III' are strictly
increasing. Moreover, sequences II' and III' have no elements in common.

PROOF. Define for A G A, P(A, 0) = 1 and

(4.1) P(A,k)= A • (A - \) (A-k+l), for 1 < k < A ;

then

(4.2) P(A, k + 1) = {A - k)P(A, k), iork+\^A,
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(4.3) P(A,k)=k\(A\, fork^A,

(4.4) mP(A,k) <P(A,k+ 1) , for m, k G e,A G A - e.

Relation (4.3) holds by Theorem 113 of Dekker and Myhill (1960). For k G e,
iV G A -- e we have

(N\ <( N \

,A: + 1

and the desired statements can be proved from (4.1),... ,(4.5).

We also have

PROPOSITION B4.2. For an infinite isol N the tail of I" is the reverse of the head of
I". Moreover, the tail of II" is the reverse of the head of 111", while the head of II" is
the reverse of the tail of III". Finally, I", II", III" are first strictly increasing and
then strictly decreasing.

5. Duality

Let the word "n-polytope" be used the sense of a bounded, convex, «-dimen-
sional polytope. For an «-polytope P we write F(P) for the class of all its faces
and fnk(P) for the number of its ̂ -dimensional faces, for 0 < k < n — 1. If P and
P* are n-polytopes, a duality-mapping from F(P) onto F(P*) is a one-to-one
mapping D such that both D and D~l are inclusion-reversing, that is, such that

(5.1) a C £«£>( /? ) C f l ( a ) , fora,/3 G F ( P ) .

P and P* are d«a/, if there exists a duality-mapping from F(P) onto F(P*)\ see
page 46 of Griinbaum (1967). Note that (5.1) implies: dim a + dim D(a) = n — 1,
for a G F(P). Thus dim a = k if and only if dim D(a) = n — k — 1, hence

LAp) =/n.n-*-iC*)> for 0 « * < « - 1; the sequences </„„(/»),. • • , / , ,„-X^))
and (fn0(P*),... ,/„ _„_,(/"")) have therefore the same elements, but in reverse
order.

Let QN = <2", /;> and Oc" = </i, Q , where W > 2. It is well-known that QN

and Ocw are dual, if Â  is finite, say A' = n. Then the relation fnk(P) ~ fn,n-k-1(^*)
becomes anA. = c,, ,„_*_,, for 0 </c < « — 1, so that (anQ,. -.,«„,„_!> and
(cn 0 , . . . ,cn „_,) have the same elements, but in reverse order. Now assume that
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N is an infinite isol. Are QN and Oc^ effectively dual under a suitable generaliza-
tion of the notion of duality? More specifically, if v is immune, /x = v0 U j»,,
QV _ gv^ F^ a n d O c , _ ^ c ^ i s t h e r e a duality-mapping D from Fv onto CM

such that the corresponding one-to-one mapping d from av onto ŷ  has a partial
recursive one-to-one extension and maps the sets in (ap0, <*„,,...) onto the sets in
(Yxo> YKI>- • •)? The answer is clearly negative, since (.4^0, .4^ , , . . . ) and
(CJVQ, (?#, , . . . ) have no elements in common for N G A — e by B4.1. However,
II" and III" have the same elements, but in reverse order by B4.2. This suggests
that while Q" is not effectively dual to Oc", if v is immune, there is a system
closely related to Q" — (2", Fv) which might be dual to Oc", namely the system
consisting of 2" and a class of subsets of v which behave like faces, but have
co-dimensions of type N — k, for k > 0.

Let N = Req v and N s* 2. We define a coface of Q" as a subset T of 2" for
which there exist disjoint subsets ft and y of v such that ft is infinite, y is cofinite
relative to v and T = (x G 2" | ft C p^ C fi U y}. We call Req y the ^-dimension of
T, written dim^ T. A coface of co-dimension N — k is called an (iV — k)-coface of
0". Clearly, T ~ {x G 2" | o C px C y}, that is, T ~ T>. Thus each (iV - A:)-coface
of Q" has RET 2N~k. Note that T is a coface of Q" if and only if there exist finite
subsets ft and S of p such that ft n (e - 6) = o, that is, y3 C 6 and T = {x G 2" | ft
C px C ft U (v — 8)}. The G-number of the coface T is the number j(p, s) such
that

(5.2) r = [x E2'\ Pp C Px C PpU (v - ps)}, where pp C ps C v.

Let TV = Req v and k<N. Recall that we write Fvk for the class of all A>faces
of Q" and Fv for the class of all faces of Q". Similarly, we write Lv N_k for the
class of all (N - A:)-cofaces of Q" and Lv for the class of all cofaces of Q". It is
readily seen that the classes Fv and Lv are equal if and only if v is finite; they are
disjoint if and only if v is infinite, for then Fv consists of finite sets and Lv of
infinite sets. Let v G N, k < N, N G Ao. Then \pJV-k stands for the set of all
G-numbers of (N — £)-cofaces of Q" and \ v for the set of all G-numbers of
cofaces of Q". In symbols,

(5-3) K,N-k= {j(P>s)£e\PpCpsCv&rs = k},

(5-4) \,= {j(p,s)ee\PpCPsCv}.

Let a G N, N G Ao, k =£ N. Then a — ft implies Xa N_k — \p^-k and Aa — \p.
This enables us to define LNN_k = Req \ViN-k and LN = Req A,,, for any v G A7.

In the remainder of this section it is essential that we distinguish between the
G-number G(T) of some coface T of Q" and the G-number G(a) of some face a of
Oc". To stress this distinction we shall henceforth write G'(a) rather than G(a)
for the G-number of a face a of Oc".
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DEFINITION. Let TV e A, N > 2, Q" = <2", Fp), Ocy = </x, CM>. Then an effec-
tive duality-mapping from Lv onto C^ is a one-to-one mapping D from Lv onto C
such that (a) a C /? if and only if Z>(/8) C I>(a), for a, /? E Lr, (b) D(Lv<N_k) =
Clik_v for 0 *s /c < TV, (c) the one-to-one function J from \p onto yM such that
dG{j) = G'D(r) has a partial recursive one-to-one extension.

For an /V-cube Q" with N E A, TV 3= 2 we define a /ace? of £>" as an
(TV — l)-coface of <2" [hence as an (TV — l)-face of Q" if and only if N is finite].
Recall that in E3 we can with a solid cube Q associate its dual, namely a solid
octahedron Oc by defining the vertices of Oc as the midpoints of the faces of Q
and the edges of Oc as the line segments which join the midpoints of nonparallel
faces of Q. We generalize this procedure in the proof of the next theorem, but we
replace the midpoints of the facets of the cube by the (/-numbers of these facets,
since we are working with discrete cubes and discrete octahedra.

PROPOSITION B5.1. Let /VGA and N > 2. Then we can associate with every
N-cube Q" — (2", Fr) an N-octahedron Oc^ = (ju, C^) and an effective duality-map-
ping from Lv onto C^.

PROOF. Assume the hypothesis, k > 0 and write vu for v — (u), if u E v. Recall
that every (TV — A:)-coface of Q" has RET 2N~k. The following three statements
can now be proved:

(A) Let T be a facet of Q" and G ( T ) —j(p, s). Then T is of one of the two
types:

(I) T = {x G 2" | (u) C px C (w) U vu), for some u E v.
(II) T = ( x £ 2 ' | a C p J C o U vu), for some u E v.

In fact, T is of type (I) if and only if rp = 1 & rs — 1, while T is of type (II) if and
only if rp = 0&rs= 1.

(B) For each facet T of Q" there exists exactly one facet of Q" disjoint from it,
namely T — T [we call two facets of Qv opposite, if they are complementary
subsets of 2", otherwise adjacent].

(C) Let k > 2 and T,,. .. ,rk be k mutually adjacent facets of Q" and T = T,
n • • • C\Tk. Then T is an (TV — A:)-coface of Q" and G ( T ) can be computed from
G{TX),. .. ,G{Tk). Moreover, for every (N — A:)-coface of Q" there exists exactly
one class ( T , , . . . , ^ ) of k mutually adjacent facets of Q" such that T = T,

n- - -n T , .
Using (A), (B) and (C) we now finish the proof. Write ju for the set of all

G-numbers of the facets of Q"; call two elements of ju opposite (adjacent), if they
are G-numbers of opposite (adjacent) facets of Q". Let / be the iwfp of ju which
maps each element of ju onto its opposite. Put ju, = ( G ( T ) E JU | T is of type (I)},
ju2 = ( G ( T ) E JU I T is of type II}. According to (A) we have ju, = {j(2', 2') 11 E v)
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and /x2 = {7(0,2') 11 £ v}, so that ju = ju., U jn2, and ju, ] ju2. Then the function /
which maps/(2', 2') andy'(0,2') onto each other, for / G v, has a partial recursive
one-to-one extension. Hence/ £ Invw(/x), /x, = /x2 =̂  p and Req JX = 2N. We now
show that OCf = (JLI, C^) satisfies the requirements. Note that dim^ Oc^ = N, since
Req n — 2N. Define for k 3* 2 the mappings D .̂ and ^ by:

(5.5)

(5.6) <

for any A: mutually adjacent facets T,,. . . ,rk of Q". By (C) the mapping Dk maps
Lv N_k one-to-one onto C(li/fe_1 so that ^ maps \v N^k one-to-one onto yjX_k-\-
Moreover, dk and dk~

x have partial recursive extensions, hence dk has a partial
recursive one-to-one extension. Define the mappings D and d as follows: for
T £ /,„, x = G ( T ) and dimw r - N - k,

D(T) = 0, rf(x) = G'(o), for A: = 0, that is, T - 2",

D(T) = ( G ( T ) ) , rf(x) = G' of (x), for k = 1, that is, T is a facet,

) , . . . , G ( T J ) , </(x) = G'(G(T1)>...,G(Tj),for*>2,

where in case A: > 2, T,,. . . ,7^ are the A: mutually adjacent facets of Q" such that
T = T, n • • • Ork. Given an element x = j(p, s) £ X,,, we can compute k — rs

and d{x) = dkj(p, s). Thus the one-to-one function d from \v onto ŷ  has a
partial recursive one-to-one extension. Also, D(LV N_k) — Dk(Lv N_k) = C)lk_l,
hence d(\v N_k) — Y^>t_i, for k > 0. Let (T , , . .. , r t ) and (T,*,. .. ,T*) be classes of
mutually adjacent facets of Q" with T, D • • • C\Tk = T and T* D • • • (IT* = T*.
Then T C T* if and only if (T,*,. . . ,r*) C (T , , . . . ,jk) if and only if
( G ( T * ) , . . . , G ( T * ) ) C ( G ( T , ) , . . •,G(Tt)) if and only if D(r*) C Z)(T).

COROLLARY. L^ N_k = 2k(X) and LN = 3^, /or iV £ Ao, 0 < k < JV.

REMARK (A). Let Q" = (2", Fv), Oc" = <>, CM>, iV = Req v, N £ A, JV > 2.

Write Cg" for <2", Lr> and call Cg" effectively dual to Oc", if there is an effective
duality-mapping from Lv onto C . Then we have

(I) If iV is infinite, Q" is not effectively dual to Oc",
(II) CQ" is effectively dual to Oc", for every N (finite or infinite); however, for

a finite ,/V this only yields the well-known fact that the «-cube is dual to the
w-octahedron, for in that case Lv — Fv, hence CQ" = Q".

REMARK (B). Under the hypothesis of the preceding remark it is also possible to
define a class H^ of cofaces of Oc" = (ju, C ) such that there exists an effective
duality-mapping from Fv onto H^. Thus the systems (2", Fv, Lp) and (p, C^, H^)
are effectively dual in the sense that there is not only an effective duality-mapping
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from Lv onto Q , but also one from Fv onto H^. If N = Req v is finite, we have
Fv = q, and Lv = / ^ and we can identify <2", Fp, Lv) with Qv = <2", Fv) and
<M, q,, #„> with oc ' = </i, q,>.
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