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Abstract

This article proposes a new method for examining the impact on a firm’s investment of
uncertainty reflected in its stock-return volatility. We simultaneously address the endogene-
ity of uncertainty and mismeasurement in Tobin’s Q, but earlier empirical work often
neglects one of the two issues. Our nonparametric estimates further suggest that the relation
between investment and uncertainty is significantly decreasing and strongly concave. This
result contrasts with the existing literature that widely adopts linear regressions. Ignoring
nonlinearity ormeasurement error inQ can lead to a substantial estimation bias. However, the
bias due to the endogeneity of uncertainty is small.

I. Introduction

This article examines the impact of uncertainty measured by a firm’s stock-
return volatility on its investment through a novel empirical method. Our estimates
simultaneously account for endogeneity in stock volatility and measurement error
inTobin’sQ as a proxy for investment opportunities.We further allow the investment–
uncertainty relation to be arbitrarily nonlinear. In contrast, earlier empirical work often
leaves either the endogeneity ormismeasurement issueuntreated and focuses on linear
models (e.g., Panousi and Papanikolaou (2012), Alfaro, Bloom, and Lin (2022)). To
what extent can these simplifications affect estimation results? We empirically find
that neglecting measurement error inQ can introduce a substantial bias. However, the
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bias caused by the endogeneity of uncertainty is small. Moreover, the investment–
uncertainty relation is decreasing and strongly concave.

Another goal of this article is to establish amethodology to explicitly and jointly
address unknown nonlinearities, regressor endogeneity, and mismeasurement. These
problems are commonplace in empirical studies, but a comprehensive approach to
address them all has not yet been developed.We propose a nonparametric method to
fill the gap. To this end, our article extends the work of Erickson and Whited (2000)
and Erickson, Jiang, and Whited (2014) that treat measurement error in Q in linear
models without regressor endogeneity.

The theoretical literature shows that the relation between investment and
uncertainty can have complex nonlinearities. For instance, Dixit and Pindyck
(1994) document that heightened uncertainty decreases investment by increasing
the real option value, and Sarkar (2000) andWong (2007) demonstrate that this real
option effect is nonlinear. The financial friction literature instead argues that high
uncertainty can reduce investment by raising risk premiums, as in Bernanke,
Gertler, and Gilchrist (1999), or due to managerial risk aversion, as in Panousi
and Papanikolaou (2012). In this strand of literature, the relation between invest-
ment and uncertainty is typically concave. Moreover, greater uncertainty can also
increase investment i) by inducing managers to overinvest (Eisdorfer (2008)); ii) if
the increased uncertainty is due to “good news” (Segal, Shaliastovich, and Yaron
(2015)); or iii) because of the Oi–Hartman–Abel effect (Oi (1961), Hartman (1972),
and Abel (1983)). Given that all these effects can coexist, the combined effect of
uncertainty on investment is expected to be nonlinear with a complex and unknown
shape.

Due to such unknown nonlinearities, any parametric empirical model can lead
to misspecification in estimating the impact of uncertainty on investment. This
article instead proposes a nonparametric estimator based on penalized series
approximation. We first approximate the investment–uncertainty relation by a
linear combination of Hermite basis functions. Then, through a penalty method,
we select the most relevant approximation terms relying on data to obtain a
parsimonious model. We prove that this data-driven approach can recover the true
investment–uncertainty relation under common regularity assumptions.

Moreover, there are regressor endogeneity and measurement error issues. On
the one hand, the variable proxying for uncertainty at the firm level (such as stock-
return volatility) can be affected by the firm’s investment decisions. In linear
models, this reverse causality is often addressed using the 2-stage least squares
(2SLS) method with proper instrumental variables (see, e.g., Panousi and Papani-
kolaou (2012), Alfaro et al. (2022)). However, in nonparametric regressions, the
2SLS method faces an ill-posed inverse problem. Newey and Powell (2003)
develop a nonparametric estimator analog to the 2SLS method to resolve this
concern but assume that all variables are perfectly measured.

On the other hand, a firm’s investment opportunities are unobservable, ofwhich
empiricists can obtain only imperfect measures, such as Tobin’s Q. Since Q is often
included in estimation as a control variable, its measurement error, if untreated, can
lead to estimation bias of unknown directions to all coefficients, not only that of Q
itself (Greene (2017)). It is also difficult to find suitable instrumental variables to deal
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with this mismeasurement.1 Erickson and Whited ((2000), (2002), (2012)) and
Erickson et al. (2014) develop a high-order moment approach that needs no such
extraneous instruments (outside the model being considered) to correct for the
measurement error bias. However, they focus on linear regressions of investment
on Tobin’sQ and an exogenous cash flow variable. Their method cannot account for
unknown nonlinearities or endogenous regressors such as stock volatility. Meijer,
Spierdijk, andWansbeek (2017) propose anothermeasurement error remedy in linear
models that do not have additional regressor endogeneity problems.

To jointly address endogeneity and mismeasurement problems, we propose
a novel control function approach combined with a nonparametric generalized
method of moments (GMM) estimator. The control function approach is originally
developed byNewey, Powell, and Vella (1999) for cross-sectional models, and ours
is the first effort to extend it to panel data models with fixed effects.We demonstrate
that it can address the endogeneity of uncertainty in the presence of mismeasured
Tobin’s Q. Then, we correct for the measurement error bias caused by Q through
a GMM estimator in the spirit of Meijer et al. (2017) but in our nonparametric
framework. Furthermore, in contrast to their method, our approach involves a
penalty selection ofmoment conditions used in the GMMestimation, which greatly
improves finite-sample performance. Last, we prove that the final estimator, which
combines series approximation, control function approach, and measurement error
remedy, is consistent and asymptotically normally distributed.

Applying our proposed methodology to U.S. firm-level data, we find that the
investment–uncertainty relation is significantly decreasing and strongly concave.
Thus, in net terms, uncertainty decreases investment, and this effect intensifies as
uncertainty increases. The magnitude of the concavity is also considerable: Raising
the level of uncertainty from the bottom to the top decile of our data more than
doubles the marginal effect of uncertainty on investment. We further construct a
point-by-point t-statistic to formally test the appropriateness of an otherwise similar
linear regression model, demonstrating that the linear coefficient significantly
overestimates the marginal effect when uncertainty is at low-to-median levels
(accounting for more than 50% of our sample).

Due to methodological limitations, the existing literature often focuses on
addressing either the endogeneity of uncertainty or mismeasurement in Q, but not
both issues simultaneously. The endogeneity of uncertainty receives arguably more
attention in the investment–uncertainty literature (discussed below), because it is
intuitive to hypothesize that the mismeasured Q as a control variable should play a
lesser role in affecting the coefficient of uncertainty. We find that this intuition is
incorrect. To illustrate our point, we reestimate the model by leaving one of the
two issues untreated and compare the resulting estimates with the estimates in
which both issues are addressed. The results suggest that by not treating mis-
measured Q, one can introduce a significant amplification bias in estimating the
marginal impact of uncertainty on investment. The untreated measurement error
can also lead to a misinterpretation of the shape of the investment–uncertainty

1Almeida, Campello, and Galvao (2010), among others, adopt lagged Tobin’sQ’s as instruments for
the current Q. Erickson and Whited (2012) argue that lagged Q’s are not valid instruments because the
measurement error is likely to be serially correlated.
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relation. However, the bias caused by the endogeneity of uncertainty is small and
statistically insignificant.2

We further analyze subsamples and find evidence in line with the theoretical
notion that uncertainty influences investment through various channels. This find-
ing reaffirms the need for nonparametric estimation since the combined effect
of uncertainty does not have an explicit functional form. Our analysis supports,
specifically, the coexistence of the real option channel, risk premium channel,
overinvestment channel, and good news principle that the uncertainty of good news
affects investment differently than the uncertainty of bad news. We also demon-
strate that some channels are difficult to detect using linear regressions.

Related Literature

Previous empirical studies examine the effects of uncertainty on investment in
linear regressionmodels, andmost of them focus on dealingwith the endogeneity of
uncertainty. For instance, Eisdorfer (2008), Julio and Yook (2012), Gulen and Ion
(2016), Kim and Kung (2017), and Doshi, Kumar, and Yerramilli (2018) choose to
explore aggregate uncertainty fluctuations that are exogenous to firm-level invest-
ment. Alnahedh, Bhagat, and Obreja (2019) construct a backward-lookingmeasure
of cash flow uncertainty for individual firms, arguing that it is less prone to
endogeneity. Bond and Cummins (2004) and Gilchrist, Sim, and Zakrajšek
(2014) instead use stock-return volatility to measure uncertainty at the firm level
and address endogeneity through a GMM method with lagged variables as instru-
ments, following Arellano and Bond (1991). However, this approach can be
complicated by weak-instrument and many-instrument problems (see discussions
in Roodman (2009)). Panousi and Papanikolaou (2012) and Alfaro et al. (2022)
also study individual firms’ stock volatility but resolve endogeneity in a 2SLS
framework with instrumental variables based on customer base concentration and
industry-level heterogeneous exposure to aggregate uncertainty shocks, respectively.

In this literature, much less attention has been given to the mismeasurement of
Tobin’sQ.All the abovementioned work has includedQ as a control variable (with
slightly different definitions). Among them, Kim and Kung (2017) and Doshi et al.
(2018) have explicitly corrected for this measurement error.3 However, their uncer-
tainty variables are aggregated, and therefore their conclusions cannot characterize
the responses of investment to firm-specific uncertainty. Another branch of the
literature constructs arguably better measures of Q (see, among others, Bond and
Cummins (2004)).4 However, since true investment opportunities are unobserva-
ble, it is still difficult to determinewhether themeasurement error contained in these
alternativeQmeasures is negligible; thus, the mismeasurement concern is not fully
addressed. Panousi and Papanikolaou (2012) and Gulen and Ion (2016) consider

2An important caveat is that these results apply only to our empirical sample. In econometric theory,
the mismeasurement and endogeneity biases can be in any directions and of any magnitude (see more
discussions in footnote 6).

3Both articles employ the high-order cumulant estimator developed in Erickson et al. (2014) to treat
the measurement error. Kim and Kung (2017) also implement an alternative method that instruments the
mismeasured Q with lagged Q and cash flow.

4Peters and Taylor (2017) also propose an alternative measure of Tobin’sQ, but their work estimates
the investment–Q relation rather than the investment–uncertainty relation. See also Philippon (2009) on
the aggregate relation between investment and a Q measure constructed by bond prices.
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both the endogeneity of uncertainty and measurement error in Q but separately
address one of them at a time.5 Doing so can still lead to biased estimates due to the
issue that is left untreated.

II. Empirical Model and Challenges

We begin with a linear regression model to discuss the mismeasurement in
Tobin’s Q and endogeneity of uncertainty. We aim to illustrate that, even in this
linear setup, it is difficult to simultaneously address the two problems. Then, we
move to the more complicated nonparametric case and outline our approach.

The following regression (1) and its variations have been widely adopted by
previous studies to examine how uncertainty affects investment at the firm level:

yi,t = μiþ λtþα0x
∗
i,t�1þβ0zi,t�1þ γ0si,t�1þui,t,(1)

where yi,t denotes the investment of firm i in year t for i= 1,…,n and t = 1,…,T ; μi
and λt represent firm and year fixed effects, respectively; x∗i,t�1 denotes investment
opportunities that are unobservable to researchers; zi,t�1 is the cash flow represent-
ing internal funds; si,t�1 is a measure of uncertainty; and ui,t is the error term. All
explanatory variables are lagged by 1 year to ensure that they are in the firm’s
information set when it invests.

In model (1), the investment opportunities x∗i,t�1 are unobservable and often
measured with error by Tobin’s Q. To see how this measurement error affects the
estimation results, following Erickson and Whited (2000), we assume that

xi,t�1 = x
∗
i,t�1þ ei,t�1,(2)

where xi,t�1 is themeasured Tobin’sQ and ei,t�1 is themeasurement error. Substitut-
ing equation (2) into equation (1) yields

yi,t = μiþ λtþα0xi,t�1þβ0zi,t�1þ γ0si,t�1þui,t�α0ei,t�1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
εi,t

,(3)

where the regressor xi,t�1 is correlated with the new error term εi,t, if α0 6¼ 0, since
they both contain themeasurement error term ei,t�1. That is, themeasured Tobin’sQ
is an endogenous variable in model (3), thus introducing estimation bias to all the
regression coefficients. In econometric theory, the directions and magnitude of the
bias are also difficult to predict.6

5Both papers address the endogeneity issue via instrumental variable approaches assuming that there
is no measurement error, and they correct for measurement error bias using the high-order moment/
cumulant estimator developed in Erickson and Whited (2000) and Erickson et al. (2014), leaving the
regressor endogeneity issue untreated.

6An exception is the estimates of α0, where the bias is known as an attenuation bias. For other
coefficients, however, the directions andmagnitude of the bias are theoretically unknown (Greene (2017)).
Erickson and Whited (2000) and Abel (2018) consider a special case in which the investment regression
contains mismeasured Tobin’sQ and cash flow as the only two regressors (i.e., these authors do not study
the effects of uncertainty). In this simple two-variable case, a closed-form solution to the bias exists,
suggesting that the coefficient of cash flow is biased upward if the correlation between the trueQ and cash
flow is positive. This correlation-based logic is no longer valid when there are more than two regressors,
because the bias depends on the covariance between the true Q and other regressors in complex ways.
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Correcting for the measurement error bias is challenging, partly because of
a lack of proper instruments for Tobin’s Q, and partly because of the potential
endogeneity of uncertainty. For the former, the existing literature has proposed
some unconventional measurement error remedies that require no such instruments
(Erickson and Whited (2000), Erickson et al. (2014), and Meijer et al. (2017)).
However, to achieve identification, all these methods assume that the regressors
other than Tobin’s Q are exogenous. This assumption does not hold in model (3) if
the uncertainty variable, si,t, is endogenous, that is, correlated with ui,t. One such
case is when uncertainty is represented by individual stock volatility because the
firm’s stock returns are likely to be influenced by its investment. With such reverse
causality, the previous literature has not yet developed a consistent estimator to the
linear models (1)–(3).7

Moreover, as discussed previously, the investment–uncertainty relation is
theoretically nonlinear with an unknown functional form. As a result, the linear
investment model (1) is misspecified, as any specific parametric model can be. To
account for this problem, we replace γ0si,t�1 with an unknown function g0 si,t�1ð Þ in
whichwe do not impose any specific assumptions on the functional form, except for
smoothness, and aim to recover g0 �ð Þ from data through a penalized series approx-
imation approach (discussed in Section III). In addition, since previous studies
suggest that the investment–cash flow relation is potentially nonlinear as well, we
also replace β0zi,t�1 with an unknown function f 0 zi,t�1ð Þ.8 Our proposed nonpara-
metric regression model is therefore defined as follows:

yi,t = μiþ λtþα0x
∗
i,t�1þ f 0 zi,t�1ð Þþg0 si,t�1ð Þþui,t:(4)

We implement a novel control function approach, accompanied by a non-
parametric GMM estimator, to simultaneously deal with the endogeneity of
uncertainty andmeasurement error in Tobin’sQ in models (2) and (4). The control
function approach decomposes the regression error term into two parts: one part
that contains all the information that is correlated with the uncertainty variable
(referred to as the “control function”) and the other part that is uncorrelated with
uncertainty:

yi,t = μiþ λtþα0x
∗
i,t�1þ f 0 zi,t�1ð Þþg0 si,t�1ð ÞþCTRLFUNC|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

correlated withs

þui,t�CTRLFUNC|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
uncorrelated withs

:(5)

In model (5), the part that is uncorrelated with uncertainty acts as the new error
term, and, as a result, the uncertainty variable becomes exogenous. The control
function is unknown, and we estimate it nonparametrically from data. Then, con-
sidering equations (2) and (5) together, since all the variables other than Tobin’s Q
are exogenous, we can correct for the measurement error bias through a GMM
estimator in the spirit of Meijer et al. (2017) by extending their work to our
nonparametric framework.

7We define the reverse causality issue rigorously in Section III.A. Note that using lagged uncertainty
in model (3) cannot prevent this problem because, after the firm fixed effects are removed through the
within-group transformation, the terms si,t�1�T�1Στsi,τ

� �
and ui,t �T�1Στui,τ

� �
are still correlated.

8Previous studies include, among others, Allayannis and Mozumdar (2004), Bhagat, Moyen, and
Suh (2005), Cleary, Povel, and Raith (2007), and Firth, Malatesta, Xin, and Xu (2012).
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Several caveats are worth nothing. First, we intentionally keep the term Q
linear, that is, α0x∗i,t�1, so that our results provide a direct test of neoclassical theory.
This linear assumption also simplifies our estimation. Schennach and Hu (2013)
have considered a sieve maximum likelihood estimator to investigate the potential
nonlinearity between investment and Q, finding that the nonlinear estimate of the
investment–Q relation is close to the linear estimate once the measurement error in
Q is corrected for. Therefore, we do not expect that this simplificationwould cause a
significant bias to our estimation.

Second, methodologically, it is straightforward to extend model (4) to
further account for interactions amongQ, cash flow, and volatility by, for example,
letting α0 depend on z and s or considering a full nonparametric model
F x∗i,t�1,zi,t�1,si,t�1

� �
. However, empirically, the estimation of such a model suffers

from the curse of dimensionality, and the estimated marginal effects are also
difficult to interpret. Thus, to obtain an estimate that is more comparable to the
literature (i.e., model (1)), we adhere to the semiparametric partially linear additive
setup and leave further investigation to future research.

Third, we assume that the cash flow and volatility variables are free of
measurement error and that cash flow is exogenous.9 These assumptions can be
easily relaxed in our econometric theory but are empirically useful, because we
need exogenous variation to correct for any mismeasurement bias. As we will
discuss in Section III, moment conditions built on cash flow and volatility provide
such variation within the model to treat measurement error in Tobin’s Q. Further
allowing cash flow and volatility to be mismeasured or cash flow to be endogenous
requires finding additional instrumental variables to address the measurement error
and endogeneity problems.

Last, even though our focus is on the investment–volatility relation g0, we
allow the cash flow effect f 0 and the control function to take general forms because
Cleary et al. (2007) have predicted a nonlinear investment–cash flow relation.
Accounting for nonlinearities therein helps test for their theory, also mitigating
the concern that the nonlinearities can bias the estimates of g0. That said, doing so
complicates the estimation process. For our empirical sample, we conduct a robust-
ness check by replacing f 0 and the control function with linear functions and find
that the estimated shape of g0 remains similar (see Appendix E of the Supplemen-
tary Material).

III. Identification and Estimator

A. Identification and Assumptions

We start with the endogeneity of uncertainty in model (4) to present our
identification strategy. Specifically, the endogeneity issue we consider here is the

9Both assumptions are common in the empirical literature. Given that cash flow is from accounting
data and volatility from the stock market, the first assumption implicitly assumes that there exists no
accounting error and that the stock market is efficient enough to correctly reflect underlying uncertainty.
The second assumption can be invalid if unobservable investment opportunities drive both investment
and cash flow and are not well controlled for.We assume that this is not the case once measurement error
in Tobin’s Q is removed, so that controlling for Q is sufficient to capture investment opportunities.
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reverse causality that an investment shock reflected by the error term ui,t can
influence the changes in the firm’s stock-return volatility, Δsi,t, thereby leading to
a contemporaneous correlation betweenΔsi,t and ui,t. As a result, si,t = si,t�1þΔsi,t is
an endogenous variable.10 Suppose that wi,t is a vector of strictly exogenous
instruments for Δsi,t with the following first-stage regression:

Δsi,t = η0þw0
i,tπ0þvi,t,(6)

wherewi,t satisfies the usual exclusion conditions as follows, and vi,t is an error term
with zero mean and finite variance:

E ui,twi,sð Þ= 0 and E vi,twi,sð Þ= 0, ∀ i, t,sð Þ:(7)

Given the exclusion conditions, the correlation between Δsi,t and ui,t must be
caused by the correlation between vi,t and ui,t. Thus,

E ui,tjvi,tð Þ 6¼ 0,∀ i, tð Þ:(8)

Let r0 vi,tð Þ=E ui,tjvi,tð Þ be the control function with an unknown functional
form, and define

ωi,t = ui,t� r0 vi,tð Þ:(9)

Substituting (9) into (4), we obtain

yi,t = μiþ λtþα0x
∗
i,t�1þ f 0 zi,t�1ð Þþg0 si,t�1ð Þþ r0 vi,tð Þþωi,t|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

ui,t

,(10)

where ωi,t is the new error term. Given that the control function r0 vi,tð Þ already
captures all information related to vi,t (and therefore to Δsi,t), the new error termωi,t

is uncorrelated with vi,t. Thus, the endogeneity issue is addressed.We estimate r0 �ð Þ
directly fromdata, and because vi,t is unobservable, we replace it with the fitted errorbvi,t calculated from the first-stage regression (6).

We estimate the unknown functions f 0 �ð Þ, g0 �ð Þ, and r0 �ð Þ through a series
approximation method by approximating each function with Hermite orthonormal
basis functions:11

f 0 zð Þ≈ ϑ 1ð Þ
z,0P1 zð Þþϑ 2ð Þ

z,0P2 zð Þþ⋯þϑ kð Þ
z,0Pk zð Þ= ϑ0z,0Pk zð Þ,

g0 sð Þ≈ ϑ 1ð Þ
s,0P1 sð Þþϑ 2ð Þ

s,0P2 sð Þþ⋯þϑ kð Þ
s,0Pk sð Þ= ϑs,0Pk sð Þ,

r0 vð Þ≈ ϑ 1ð Þ
v,0P1 vð Þþϑ 2ð Þ

v,0P2 vð Þþ⋯þϑ kð Þ
v,0Pk vð Þ= ϑ0v,0Pk vð Þ,

(11)

10See Panousi and Papanikolaou (2012), Alfaro et al. (2018), and the references therein for more
discussions about the cause of the reverse causality. We follow Alfaro et al. (2018) to treat volatility
changes as the source of endogeneity because the lagged volatility si,t�1 is predetermined and less likely
to be correlated with the error term ui,t .

11The Hermite approximation is similar to Taylor expansions in polynomials but uses Hermite
orthonormal basis functions instead. The literature has documented that the Hermite approximation
produces smaller biases than the polynomial approximation.
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where Pk �ð Þ= P1 �ð Þ,…,Pk �ð Þ½ �0 represents the up-to-kth-order Hermite functions;

ϑz,0 = ϑ 1ð Þ
z,0 ,…,ϑ kð Þ

z,0

h i0
, ϑs,0 = ϑ 1ð Þ

s,0 ,…,ϑ kð Þ
s,0

h i0
, and ϑv,0 = ϑ 1ð Þ

v,0 ,…,ϑ kð Þ
v,0

h i0
are the expan-

sion coefficients of f 0 zð Þ, g0 sð Þ, and r0 vð Þ, respectively. In the series approximation
literature, the highest order k is determined by the sample size nT . The larger nT is,
the higher the k that can be used, and the more precise the approximation. However,
this conventional approach has an unappealing feature: Once k is determined, all
the expansion terms up to the kth order are used in the approximation. If some terms
are redundant, then including them in the regressionmodel decreases the estimation
efficiency and can cause a many-regressor bias in finite samples.12

We propose the use of a penalty method to select the most relevant approx-
imation terms among P1 �ð Þ,…,Pk �ð Þf g and remove the irrelevant terms based on
the data. This approach decreases the number of regressors, thus improving the
estimation efficiency and reducing finite-sample bias.13 To simplify the notation,
we continue to use equation (11) to represent the series approximation of f 0 �ð Þ,
g0 �ð Þ, and r0 �ð Þ before formally introducing the penalty estimator in Section III.B.
Substituting (11) into (10) yields

yi,t ≈ μiþ λtþα0x
∗
i,t�1þϑ0z,0P

k zi,t�1ð Þþϑ0s,0P
k si,t�1ð Þþϑ0v,0P

k vi,tð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
f 0 zi,t�1ð Þþg0 si,t�1ð Þþr0 vi,tð Þ

þωi,t(12)

as a linear regression model, where the regressors include a group of Hermite

terms.14 For compactness, we let ϑ0 = ϑ0z,0,ϑ
0
s,0,ϑ

0
v,0

h i0
and Ei,t = Pk zi,t�1ð Þ0,�

Pk si,t�1ð Þ0, Pk vi,tð Þ0�0; then, the regression model can be rewritten as

yi,t ≈ μiþ λtþα0x
∗
i,t�1þE0

i,tϑ0þωi,t:(13)

Next, we substitute the measurement error equation (2) into model (13) and
obtain

yi,t ≈ μiþ λtþα0xi,t�1þE0
i,tϑ0þ εi,t;(14)

εi,t =ωi,t�α0ei,t�1,(15)

where we treat ei,t as a classicalmeasurement error following Erickson andWhited
(2000); thus, E ui,tei,sð Þ= 0 for all i, t, and s. In model (14), xi,t�1 (Tobin’s Q) is an
endogenous variable since it correlates with the error term εi,t if α0 is nonzero. In
linear models, the literature has developed three different approaches to use internal
variation to address classical measurement error when external instrumental

12Using polynomial approximation to illustrate this idea, when the true functional form is h að Þ= a2,
the linear term is redundant in the approximation, and the same logic applies to Hermite approximation.

13The penalty estimator also allows f 0 �ð Þ, g0 �ð Þ, and r0 �ð Þ to consist of different approximation terms.
In contrast, the conventional approach assigns the same k to all three approximations and thus implicitly
assumes that the three unknown functions have the same highest order.

14The relation “≈ ” indicates that approximation error exists in the Hermite expansions. This
approximation error vanishes as n!∞ under Assumption 2(i), which we introduce later; thus, this
error does not affect the consistency of our estimator.
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variables for xi,t�1 are difficult to find.15 Erickson and Whited ((2000), (2002),
(2012)) and Erickson et al. (2014) develop a high-order moment (cumulant) esti-
mator. Meijer et al. (2017) document two additional approaches: one based on
strongly exogenous regressors and another based on exploiting the error term’s
covariancematrix.16We extend the latter two remedies to fit into our nonparametric
methodology and prove that the unified estimator is consistent.17

Specifically, we first cancel the firm fixed effect μi through within-group
transformation and obtain the following transformed regression:

~yi,t ≈~λtþα0~xi,t�1þ ~E
0
i,tϑ0þ~εi,t,(16)

where ~ai,t = ai,t�T�1P
τai,τ denotes the demeaned data. We estimate the trans-

formedmodel through a GMMapproach, where the orthogonal moment conditions
are constructed based on two blocks of information. First, we utilize time dummies
and regressors in ~Ei,t

� �T

t = 1
as instruments for the mismeasured Tobin’sQ. Regard-

ing the exclusion condition, time dummies represent macroeconomic fundamentals
and are by default exogenous to individual firm’s investment. Cash flow is assumed
to be exogenous by following Erickson and Whited (2000) and Kim and Kung
(2017). The measure of uncertainty and control function are exogenous by con-
struction due to the step of the control function approach. In terms of the relevance
condition, all these instruments are correlated with Tobin’s Q following economic
intuitions. The reason is that Q relies on the firm’s stock market value, which is, in
turn, associatedwithmacroeconomic fundamentals, cash flow, and uncertainty. The
second block of moments utilizes the orthogonal complement of the error terms’
covariance matrix to construct instruments for Q. See Appendix B of the Supple-
mentaryMaterial for the technical details and (B.1) for a full list of instruments. We
include both blocks ofmoments in the econometric theory for completeness, but the
first block of moments is sufficient to identify model (16).18

15Ideally, measurement error in Q can be addressed by “external” instruments outside of the model
that are uncorrelated with the regression error term (exclusion condition) but correlated with investment
opportunities (relevance condition). For a small group of firms, like a specific industry, it is possible to
identify external movements of investment opportunities to construct such instruments, for example, by
exploiting exogenous changes in industry competition or regulation. However, it is difficult to find
external instruments for a large group of firms and industries. As a result, in the existing literature,
researchers instead utilize “internal” variation to correct for measurement error in Q.

16Consistent with the first methodology, Kim and Kung (2017) empirically use lagged Q and cash
flow as internal instruments by assuming that these regressors are exogenous.

17In contrast, integrating the high-order moment (cumulant) method into our approach and proving
consistency is theoretically demanding. We instead include some numerical analyses in Section IV.C.2.

18In our empirical analysis, we use only the first block of moments to reduce the total number of
instruments, and among this block, we further select a smaller set of instruments that are most relevant to
Tobin’s Q based on the method developed by Belloni, Chen, Chernozhukov, and Hansen (2012). The
purpose of these efforts is tomitigate the concern ofmany-instrument bias in finite samples. Notably, this
instrument selection is independent of selecting relevant expansion terms in the series-approximation
step. For our empirical sample, estimating a regression of the residual (of the main regression) on the
selected instruments yields a very small F-statistic of 2.32 and an extremely low R2 of 0.01, indicating
that the instruments are statistically uncorrelatedwith the error term. In contrast, the first-stage regression
of Tobin’s Q on these instruments yields an F-statistic value of 32.11 and an R2 of 0.16, suggesting that
the instruments are sufficiently relevant to Q according to empirical rule of thumbs. In addition, we
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Identification is based on the next two assumptions. We introduce the follow-
ing useful notation: ai = ai,1,…,ai,T½ �0 and ai,�1 = ai,0,…,ai,T�1½ �0 are two T �1
vectors for any variable a; Wi = wi,1,…,wi,T½ � is a dw�T matrix, where dw is the
number of instrumental variables for uncertainty (see equation (6)); and 0T denotes
a T �1 vector of zeros.

Assumption 1. (i) yi,t,xi,t,zi,t,w
0
i,t,si,t,ui,t,vi,t,ei,t

� �n o
is IID in index i and has a finite

second-order moment; (ii) E uið Þ= 0T , E eið Þ= 0T , and E við Þ= 0T , and E uiu0i
	 


=Σu,
E eie0i
	 


=Σe, and E viv0i
	 


=Σv are all nonsingular matrices; (iii) ui,við Þ, ei,�1, and

x∗i,�1,zi,�1,W0
i

h i0
are mutually independent; and (iv) E f 0 zi,t�1ð Þ½ �=E g0 si,t�1ð Þ½ �= 0.

Assumption 1(i) assumes cross-sectional independence (see Erickson et al.
(2014) for a similar assumption).19 The assumption of identical distribution in index
i is nonessential and can be relaxed with more complex mathematical expositions.
Assumption 1(ii) assumes that all error terms have zero means, finite variances,
and potentially serial correlations. Assumption 1(iii) is standard in the literature on
classical measurement error. This assumption can be relaxed to ei,�1 and

x∗i,�1,zi,�1,W0
i

h i0
being mutually uncorrelated and ui,við Þ being independent of

ei,�1,x∗i,�1,zi,�1,W0
i

h i0
. Assumption 1(iv) is for separately identifying the functions

f 0 �ð Þ and g0 �ð Þ and firm fixed effects μi.

Assumption 2. (i) There exists ϑ0 = ϑ0z,0,ϑ
0
s,0,ϑ

0
v,0

h i0
such that

sup
z∈Sz

f 0 zð Þ�ϑ0z,0P
k zð Þ�� �� ≤M 1k

�ζ ,

sup
s∈Ss

g0 zð Þ�ϑ0s,0P
k sð Þ�� �� ≤M 2k

�ζ ,

sup
v∈Sv

r0 vð Þ�ϑ0v,0P
k vð Þ�� �� ≤M 3k

�ζ ,

forM 1 > 0,M 2 > 0,M 3 > 0, and ζ > 2 for all k, where Sz, Ss, and Sv represent the
support set for z, s, and v, respectively; (ii) the orthonormal basis functions
Pj �ð Þ, j= 1,2,…

� �
satisfy max x∈Rmax j Pj xð Þ�� �� ≤M <∞.

conduct sensitivity analysis by dropping each of the four groups of instruments at a time (i.e., those
regarding time dummies, cash flow, uncertainty, and control function, respectively), finding that our
results are robust (see Appendix E of the Supplementary Material).

19In practice, the error term εi,t in the main regression model (14) may exhibit cross-sectional
dependence due to, for instance, industry-cluster effects that violate Assumption 1(i). This violation
is innocuous if the industry effects are time-invariant, since these effects are canceled out by the
demeaning technique used in equation (16). If the cross-sectional dependence is caused by time-varying
industry effects, the standard errors in estimation may need to be adjusted by using, for example, the
nonparametric kernel heteroscedasticity autocorrelation spatial correlation (HACSC) robust standard
errors. Driscoll and Kraay (1998) and Vogelsang (2012) study HACSC covariance estimators with
arbitrary cross-sectional dependence in parametric panel data models with fixed effects. However, these
estimators are inefficient in our case as we can observe to which industry a firm belongs. Thus, it would
be beneficial to modify their estimators to directly employ the observed industry information, for
example, by extending the HACSC estimator for cross-sectional data in Bester, Conley, Hansen, and
Vogelsang (2016) to panel data cases. We leave this extension to future research.
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This assumption is standard in the literature on series approximation. Assump-
tion 2(i) requires that f 0 �ð Þ, g0 �ð Þ, and r0 �ð Þ are at least twice differentiable so that
they can be approximated by typical orthonormal basis functions, and the approx-
imation error vanishes as the sample size nT increases, where the highest order k is
required to increase with nT . Assumption 2(ii) instead imposes requirements on the
choice of the orthonormal basis functions used in the series approximation. The
Hermite series satisfies this condition.

B. Penalized GMM Estimator

Let θ0 = ~λ1,…,~λT�1,α0,ϑ
0� �0

include all unknown parameters to be estimated
in model (16) and ~di denote a T �miv matrix of instruments used to correct for the
measurement error in Tobin’sQ, wheremiv is the number of instruments. Then, the
following miv theoretical orthogonal moment conditions exist:

E ~d
0
i~εi

� �
≈ 0miv ,(17)

where “≈ ” is due to series approximation. Based on (17), we construct the follow-
ing empirical moments as a function of the unknown parameters θ:

�Gn θð Þ= 1

n

Xn
i = 1

~bd0i~bεi,

where ~ba equals ~a with vi,t replaced by bvi,t calculated from fitting model (6).
The traditional GMM estimation minimizes the following objective function

and uses the minimizer as the estimate of θ0:

Qn θð Þ= �Gn θð Þ0n �Gn θð Þ,(18)

where n is a symmetric and nonsingular weight matrix.
We instead propose a penalized GMM estimator to select which regressors in

model (16) are most relevant and remove the irrelevant regressors. Our objective
function is as follows:

Qn θ;ψð Þ= �Gn θð Þ0n �Gn θð Þþ
Xp
l = 1

pc θlj j,ψð Þ,(19)

where pc �,ψð Þ is a nonnegative penalty function with c> 1 controlling its concavity
and ψ> 0 as the tuning parameter; a larger value of ψ indicates stronger penaliza-
tion; p is the number of regressors in model (16); and ∣θl∣, for l = 1,2,…,p, is the
absolute value of the lth coefficient.20 We refer to the minimizer, bθ, of (19) as the
penalty estimator of θ0.

20The total number of regressors is p= T þ3k, where k = knT (increasing with the sample size nT ) is
the highest order of the series approximation of each of f 0 �ð Þ, g0 �ð Þ, and r0 �ð Þ. Specifically, there exist
T �1ð Þ time dummies, plus Tobin’s Q coefficient α0, and the Hermite expansion coefficients of f 0 zð Þ,
g0 sð Þ, and r0 vð Þ, each containing k elements. We set k = 4 in the estimation based on our sample size and
check robustness for k = 6 (see Appendix E of the Supplementary Material).
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This penalty approach is based on the belief that there are only a few important
regressors in model (16), whereas the other regressors are redundant and do not
contribute to investment. By construction, the penalty term pc jbθlj,ψ

� �
will be

positive if bθl 6¼ 0. Thus, including a redundant regressor whose true coefficient is
zero but the estimate bθl is nonzero increases the objective function (19) and is
disfavored by the penalty estimator. This approach improves estimation efficiency
because it does not need to estimate the coefficients of redundant regressors.

Based on penalty selection, we further propose a post-penalty estimator ~θ by
reestimating the model by the traditional GMM approach after removing the
redundant regressors chosen by the penalty estimator:

min
θ

�Gn θð Þ0n �Gn θð Þ

s:t:θj = 0if j∉ supp bθ� �
,

(20)

where supp bθ� �
= l∈ 1,2,…,pð Þ :bθl 6¼ 0
n o

is the set of nonredundant regressors.

An advantage of the post-penalty estimator is that the standard errors of the
coefficients can be conveniently calculated using common procedures.

We use theminimax concave penalty (MCP) developed in Zhang (2010) as the
penalty function pc �,ψð Þ, where the tuning parameter ψ is chosen optimally using
the Bayesian information criterion (BIC) and cross-validation, and the constant c is
set to 3 by convention.21 Under this choice, we derive the limiting results of both the
penalty and post-penalty estimators in Appendix B of the Supplementary Material
and find thatbθ and ~θ are asymptotically equivalent, converging to the true parameter
values θ0 as the cross-sectional sample size n!∞.

IV. Data and Estimation

A. Data and Variables

We collect annual data on U.S. firms from Compustat.22 Following Erickson
et al. (2014), wemeasure investment (yi,t) as capital expenditures divided by capital
stock, that is, gross plant, property, and equipment at the beginning of year t. Cash
flow (zi,t) is the income before extraordinary items plus depreciation and amorti-
zation, divided by capital stock. Tobin’s Q (xi,t) equals the sum of short-term and
long-term debts, plus the market value of equity, minus the current assets, divided
by the capital stock.

21See equation (F.17) for the definition of the MCP penalty function. Compared with another
commonly used penalty function (the least absolute shrinkage and selection operator developed by
Tibshirani (1996)), theMCP penalty has the advantage of being asymptotically unbiased. Moreover, we
combine the BIC and cross-validation approaches to choose the tuning parameter by adopting the one
that gives a smaller number of selected regressors.

22We consider only U.S. firms with ordinary common shares listed on the NYSE, American Stock
Exchange, and Nasdaq StockMarket. Given that it is reasonable to assume that listed firms in the United
States are less financially constrained than private firms and firms in emerging markets, and that it is
commonly believed that financially constrained firms are often more vulnerable to uncertainty shocks,
our estimates are likely to provide a lower bound of the effect of uncertainty on investment.
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Themeasure of uncertainty (si,t) and its instrumental variables (wi,t in equation
(6)) are constructed following Alfaro et al. (2022). Specifically, firm i’s uncertainty
is measured by its individual stock volatility, which equals the annualized standard
deviation of the firm’s daily stock returns in year t. The stock-return data are
obtained from the CRSP.

The instrumental variables are at the industry level and constructed based on
the by-industry heterogeneous responses of individual stock volatility to 10 dif-
ferent sources of aggregate uncertainty shocks: oil prices, U.S. 10-year Treasury
yields, U.S. policy uncertainty, and the exchange rates between the U.S. dollar
and seven major currencies worldwide.23 In total, there are 10 instrumental vari-
ables. The idea is that firms have differential exposure to aggregate uncertainty
shocks, and thus their individual stock volatility responds differently to these
shocks. For example, when oil prices becomemore volatile, the stock volatility of
companies in oil-related industries can increase more than that of companies in
oil-unrelated industries. We first estimate industry-specific exposure to oil-price
movements through the asset-pricing model in equation (D.1) in Appendix D of
the Supplementary Material. We then multiply the resulting industry-specific
exposure by oil uncertainty shocks to obtain the industry-level oil instrument.
The same approach applies to the construction of all the 10 instrumental vari-
ables, corresponding to the 10 aggregate uncertainty shocks, respectively. It is
worth noting that we choose to work with industry-level, rather than firm-level,
instruments because they are more likely to be exogenous to investment of
individual firms. Estimating the first-stage regression (6) leads to an R2 = 0:35
and F‐stat = 248:2.24

Our empirical sample covers the post-Great Recession period from 2010 to
2017. We aim to avoid including the Great Recession in this study, as it might
cause structural breaks. We remove firms in the financial, utility, and public
sectors and firms with less than 200 daily CRSP stock returns in any given year.
We trim our sample at the top and bottom 0.5% of each variable to remove outliers.
We further remove firms with individual stock volatility greater than 150% per
annum, firms with a cash-flow-to-capital ratio greater than 1.5 or smaller than
�1.5 in any year, and firms changing their major industry (according to the 3-digit
SIC code) during the sample period.25 Ultimately, we obtain a balanced panel of

23These currencies include theAustralian dollar, British pound, Canadian dollar, Euro, Japanese yen,
Swedish krona, and Swiss franc.

24The data of aggregate uncertainty are obtained from Bloomberg, with the U.S. policy uncertainty
as an exception, for which the data are obtained from https://www.policyuncertainty.com. See Appendix
D of the Supplementary Material and Alfaro et al. (2018) for more details. By convention, the first-stage
2SLS regression also includes all exogenous and perfectly measured regressors under our assumptions
(i.e., cash flow and year dummies).

25These steps remove 2.2%, 7.8%, and 5.7% of firms, respectively, from our sample. We drop these
firms not because they are necessarily outliers, but believe that they are different from most firms
included in the study. Our baseline results are robust to a more generous selection criterion which
removes firms with individual stock volatility greater than 200% per annum, firms with a cash-flow-
to-capital ratio greater than 2 or smaller than�2 in any year, and also to a stricter criterion that removes
firms with individual stock volatility greater than 100% per annum, firms with a cash-flow-to-capital
ratio greater than 1 or smaller than �1 in any year (see Appendix E of the Supplementary Material).
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1,025 firms and 8,200 firm-year observations, and Table 1 presents the summary
statistics.26

A remark is worth noting. Our estimator should better be considered for short
panels if researchers are unsure about the persistence of regressors. The estimator
can be applied to long panels only if all the variables are stationary. Some previous
articles have considered longer sample periods, such as starting from 1970s or
1980s. Our data actually allow us to investigate an extended sample period between
1986 and 2017, because the U.S. policy uncertainty data date back to 1985.
However, we find that in this extended sample, our key variables (investment,
Tobin’s Q, cash flow, and volatility) are likely to have unit roots for more than
two-thirds of firms (see Table E.2 in Appendix E of the SupplementaryMaterial for
unit-root test results). Such time-series properties can play a significant role in a
long panel of 32 years, though innocuous if the time period is short. Consequently,
our proposed estimator and tests are no longer valid for long samples because the
methodology has not accounted for the uncertain degree of persistence of variables.
We leave extending our work to account for potential unit roots for future research.

B. Baseline Results

The estimates of the investment–uncertainty relation, bg sð Þ, and its first-order
derivative, dbg sð Þ=ds, are plotted in Figure 1. As shown in Graph A, this relation is
decreasing and concave in a majority range of volatility. Only when volatility is at
high levels is the curve slightly convex. These patterns can be observed more
clearly in Graph B, where the first-order derivative is significantly below 0 and
decreases with volatility for most of the sample. The economic magnitude of the
concavity is also large in that increasing the volatility from the bottom to top decile
more than doubles the marginal impact on investment (from �0:03 to �0:07).27

TABLE 1

Summary Statistics

Table 1 includes the summary statistics of our sample with 8,200 observations, where Std. Dev. is the standard deviation, and
p10, p25, p50, p75, and p90 represent the 10th, 25th, 50th, 75th, and 90th percentile values, respectively. All numbers are in
decimal form.

Mean Std. Dev. Skewness p10 p25 p50 p75 p90

y : Investment/capital stock 0.10 0.09 3.96 0.03 0.05 0.08 0.13 0.20
x : Tobin’s Q 3.29 5.35 5.79 0.17 0.63 1.54 3.89 8.28
z: Cash flow/capital stock 0.23 0.30 0.16 �0.01 0.09 0.18 0.35 0.61
s: Individual stock volatility 0.39 0.16 1.48 0.22 0.27 0.35 0.47 0.60

26We choose to study a balanced panel since firms with entry or exit during an 8-year period may
have differential behavior from firms that stay active in this period. Nevertheless, our econometric theory
also applies to unbalanced panels withmore complicatedmathematical notation, and our baseline results
are robust to the following two unbalanced samples: i) an unbalanced panel between 2010 and 2017 that
includes 1,598 firms and 11,324 observations and ii) an unbalanced panel between 2004 and 2017 that
includes 2,427 firms and 22,122 observations (see Appendix E of the Supplementary Material).

27To put these numbers into perspective, a marginal effect equal to �0:07 indicates that a
1-standard-deviation increase in the individual stock volatility reduces the investment-to-capital rate
by 0:07�0:16 = 0:0112. That is, the investment decreases by an amount equal to 1.12% of the capital
stock.
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In addition, when volatility is over 100% per annum, the first-order derivative starts
to increase with volatility, suggesting that the investment–uncertainty relation is
convex. However, this region only accounts for less than 1% of the sample.

We construct a joint Wald test for the null hypothesis of g0 sð Þ= 0 for all s to
formally test whether uncertainty has a meaningful impact on investment. The test
significantly rejects the null with a p-value = 0:00. The result implies that overall,
the curve g0 sð Þ is significantly different from 0, so uncertainty is a crucial deter-
minant of investment.

A pointwise t-test is further introduced to test for the null hypothesis that
dg0 sð Þ=ds is constant. This test examines whether the investment–uncertainty
relation can be characterized by a linear function g0 sð Þ= γ0s, thereby shedding light
on the validity of linear regressions that are commonplace in the literature. The test
procedure roughly consists of three steps: i) obtain a linear estimatebγ; ii) comparebγ
with the nonparametric estimates dbg sð Þ=ds; and iii) reject the linear model if bγ is
outside the 95% confidence intervals of the nonparametric estimates. The test
results are shown in Graph B of Figure 1, where the horizontal dash-dotted line
represents the linear estimate bγ. The test rejects the linear model when volatility is
below approximately 40% per annum. According to Table 1, this region accounts
for more than half of the sample, in which the linear coefficient significantly
overestimates the negative impact of uncertainty on investment. In contrast, when
volatility exceeds this threshold, the linear model provides a good approximation of
the investment–uncertainty relation, as the linear estimate falls within the 95%
confidence intervals of the nonparametric estimates.28

Moreover, Tobin’s Q coefficient α0 is estimated to be 0.014 and highly
significant with a standard error of 0.002. In addition, Graphs A and B of
Figure 2 plot the estimates of the investment–cash flow relation bf zð Þ and its first

FIGURE 1

Investment–Uncertainty Relation

Graph A of Figure 1 plots the estimate of the investment–uncertainty relation bg sð Þ, where, for identification purposes, its
sample mean is normalized to 0. Graph B plots its first-order derivative dbg sð Þ=ds, where the dashed lines indicate the 95%
confidence intervals. The horizontal dash-dotted line represents the linear estimate bγ. All numbers are in decimal form.
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28See Appendix C of the Supplementary Material for technical details of the two tests.
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derivative, showing that this relation is statistically significant and strongly non-
linear. The joint Wald test rejects f 0 zð Þ= 0 with a p-value = 0:00, and the pointwise
t-test rejects linearity for 63% of the sample. The results demonstrate that cash flow
contributes to investment in addition to Tobin’s Q and volatility and therefore
contrasts with neoclassical theory in which Q is a sufficient statistic for invest-
ment.29 Furthermore, the investment–cash flow relation is first decreasing, then

FIGURE 2

Investment–Cash Flow Relation and Control Function

Graphs A and C of Figure 2 plot the estimates of the investment–cash flow relation bf zð Þ and the control function br vð Þ,
respectively, where, for identification purposes, their sample means are normalized to 0. Graphs B and D plot their first-
order derivatives, where the dashed lines indicate the 95% confidence intervals. The horizontal dash-dotted line represents
the corresponding linear estimates. All numbers are in decimal form.
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29Our empirical results are also different from the results in Erickson and Whited (2000), and more
recently Erickson et al. (2014), where cash flow does not contribute to investment once themeasurement
error in Tobin’sQ is treated. The different results are likely due to differences in empirical samples rather
than model specifications or estimation methods. To illustrate this point, we estimate the same linear
regression (1) using our data by a linear version of our proposed estimator (i.e., without series approx-
imation) and by the high-order cumulant estimator in Erickson et al. (2014), respectively (see Appendix
E of the Supplementary Material). We find that the estimation results are close to each other and in both
estimates, cash flow contributes to investment after treating the measurement error in Tobin’s Q.
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increasing, and finally flat (as the first-order derivative is insignificant from 0). This
shape is consistent with the theoretical results in Cleary et al. (2007). Previous
empirical studies have documented similar U-shapes by estimating linear regres-
sions within negative and positive cash flow subsamples, finding that the linear
slope is negative in the negative cash flow region and positive in the positive cash
flow region.30 Our nonparametric estimation does not need to impose such pre-
determined sample splits and further finds that the cash flow threshold at which the
investment–cash flow dependence shifts from negative to positive should not be
0 but instead �0:5.

Graphs C and D of Figure 2 plot the estimated control function br vð Þ and its
first-order derivative. Most notably, the joint Wald test rejects the null of r0 vð Þ= 0
with a p-value = 0.02.31 This test result confirms that stock volatility is indeed an
endogenous variable in model (4).

C. Further Discussions

1. Ignoring Measurement Error or Endogeneity

In econometric theory, neglecting the measurement error in Q or endogeneity
of uncertainty can lead to inconsistent estimates. However, the magnitudes and
directions of the bias rely on data in complexways and are difficult to know a priori.
We empirically examine the bias by reestimating our model and leaving either the
mismeasurement or endogeneity issue untreated. Then, we compare the resulting
biased estimates with the previous baseline estimates to evaluate the bias corre-
sponding to the untreated issue.32

In Graph A of Figure 3, we compare the baseline estimates of the marginal
effects of uncertainty on investment (solid line) to the estimates wheremeasurement
error in Q is untreated (dashed-dotted line). This comparison shows that measure-
ment error bias can lead to misinterpretation of the shape of the investment–
uncertainty relation. Specifically, the dash-dotted curve increases with volatility
formost of our sample (see the kernel distribution of volatility from the dotted curve
(using the right vertical axis)). That is, in the estimates with untreated measurement
error, the investment–uncertainty relation is largely convex as opposed to concave.
Moreover, ignoring measurement error leads to a significant overestimation of the
negative impact of uncertainty on investment for over half of the observations. This

30See, among others, Bhagat et al. (2005), Cleary et al. (2007), and Firth et al. (2012). These papers
also rely on quadratic and spline regressions to account for nonlinearity, but none of them have
considered nonparametric estimation.

31The pointwise t-test rejects the linearity for only 0.4% of the observations, indicating that r0 vð Þ is
largely linear. Notably, this test result does not contradict the results shown in Graph D of Figure 2
because v is close to 0 for most observations, where the linear estimate (i.e., the horizontal dashed line) is
within the 95% confidence interval of the nonparametric estimate.

32Note that in both cases, themoment conditions (17) still apply, and the sameGMMapproach can be
used to estimate the model. In the case when the measurement error is ignored, the least squares method
is more efficient than the GMM method, although both are consistent, because without measurement
error, model (13) is a linear regressionwith all its variables being exogenous.We therefore adopt the least
squares method to produce the Graph A of Figure 3 to achieve greater efficiency. Moreover, in the case
when endogeneity of volatility is ignored, the terms of the control function are dropped, and the model is
estimated by GMM to obtain the Graph B of Figure 3.
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is when volatility is within the low-to-medium region (s< 0:34) andwhen volatility
is high (s> 0:88), shown by the dash-dotted curve lying outside the 95% confi-
dence intervals of the baseline estimates (dashed lines).

In Graph B of Figure 3, we compare the baseline estimates with the estimates
where the endogeneity of uncertainty is neglected. The two curves are close to each
other, indicating that the bias is small. Ignoring the endogeneity issue leads to slight
overestimation of the impact of uncertainty on investment when uncertainty is low
and a slight underestimation of the impact when uncertainty is high. However, since
the dash-dotted curve lies within the 95% confidence intervals of the baseline
estimates, the two estimates are statistically indifferent.

A crucial remark is worth mentioning here. The results that measurement error
in Q can introduce a substantial bias into estimation but the endogeneity of uncer-
tainty cannot are specific to our empirical sample. Our purpose is not to overly stress
the role of measurement error, or to downplay the role of regressor endogeneity, but
instead to provide a methodology to directly and jointly address both issues. Given
the complex nature of the bias due to the two problems in data, such a method is
necessary to obtain reliable empirical estimates.

2. High-Order Cumulant Estimator

Erickson andWhited ((2000), (2002), (2012)) introduce a high-order moment
estimator to treat measurement error inQ.Based on the cumulant equations given in
Geary (1941), Erickson et al. (2014) further develop a cumulant estimator that is
more computationally efficient. In their setup, the regressionmodel is linear, and all
accurately measured regressors are exogenous. As a result, the high-order cumulant
(or moment) estimator is not applicable to our model (4), since individual stock

FIGURE 3

Ignoring Measurement Error or Endogeneity

Graph A of Figure 3 compares the marginal effects of uncertainty on investment, dbg sð Þ=ds, between the baseline estimates
and the estimates in which measurement error inQ is untreated. The solid line represents the baseline estimates, and the two
dashed lines indicate the 95% confidence intervals. The dash-dotted line indicates the estimates wheremeasurement error in
Q is ignored. The two vertical dotted lines are at s =0:34 and s=0:88, respectively. The dotted curve represents the kernel
density of swithin our sample, where the values are on the right vertical axis.GraphB insteadcompares thebaseline estimates
and the estimates where the endogeneity of uncertainty is neglected. All numbers are in decimal form.
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volatility is an endogenous variable and the regression features unknown non-
linearities.

However, after we address the endogeneity issue via the control function
approach and the nonlinearities through penalized series approximation, our model
(14) essentially satisfies the identification assumptions in Erickson et al. (2014), so
their estimator becomes applicable. Even though deriving the limiting results of this
augmented high-order cumulant estimator is theoretically demanding and beyond
the scope of this article, we find that numerically, it yields estimation results similar
to our baseline estimates. Specifically, we adopt the high-order cumulant method to
estimate model (14), in which the series approximation terms in Ei,t are selected by
our penalty estimator (i.e., equation (19)). The results are compared to the baseline
estimates in Figure 4, where Graph A shows the level relation bg sð Þ, and Graph B
shows the marginal impact function dbg sð Þ=ds. From this comparison, we observe
that the estimates ofmarginal effects of uncertainty on investment obtained from the
augmented high-order cumulant method (dash-dotted line) are slightly stronger but
still lie in the 95% confidence intervals of the baseline estimates, and the two
estimates of the level relation are also close to each other.

3. Robustness

The baseline results on the investment–uncertainty relation remain largely
intact in the following robustness checks:33 i) using pre-sample data (between 1998
and 2009) to construct the instrumental variables,wi,t, for individual stock volatility
to ensure that they are exogenous to investment; ii) controlling for by-industry
exposure to the first-moment movements of the aggregate uncertainty shocks that
are used to construct wi,t (Alfaro et al. (2022)); iii) including control variables as in
Panousi and Papanikolaou (2012) and Kim and Kung (2017);34 iv) estimating an
unbalanced panel between 2010 and 2017 (1,598 firms and 11,324 observations)
and a longer unbalanced panel between 2004 and 2017 (2,427 firms and 22,122
observations); v) replacing the realized stock volatility with the EGARCH-inferred
volatility (Li, Magud, and Valencia (2020));35 vi) considering the realized idiosyn-
cratic volatility (Panousi and Papanikolaou (2012));36 vii) replacing the cash flow
variable with the measure constructed in Lewellen and Lewellen (2016);

33The results are shown in Appendix E of the Supplementary Material.
34Sales growth, stock returns, book leverage, and size of capital. See Appendix E of the Supple-

mentary Material for more discussions.
35We fit an EGARCH p,qð Þ model for each firm in each year using daily stock returns, where we

choose the optimal lags based on the Akaike information criterion by setting the maximum number of
lags to be 4 for both p andQ. The annual EGARCH volatility is calculated as the squared root of the sum
of daily EGARCH-inferred variance divided by the number of days with non-missing data and multi-
plied by 252.

36The idiosyncratic stock returns are calculated based on the CAPM, where the exposure to market
risk is partialled out. The first-stage regression of this idiosyncratic volatility on our instruments leads to
an F-statistic = 168 and R2 = 0.27. Following the usual convention, these high statistical values indicate
that our instruments are relevant to the idiosyncratic volatility defined in this way.Moreover, because the
CAPM-based idiosyncratic volatility does not contain market risk but can include both industry-level
and firm-level risks, we expect it to be correlated with our industry-level instruments also from an
economic perspective. In contrast, in Panousi and Papanikolaou (2012), the idiosyncratic volatility is
defined in an alternative way. They have partialled out not only the exposure to market risk but also the
exposure to industry risk. Then, we believe that our industry-level instruments can be less relevant.
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viii) including R&D expenses as a part of the investment and cash flow (Chen,
Goldstein, and Jiang (2007)); ix) replacing f 0 and r0 with linear functions; x)
dropping each of the four groups of instruments for Tobin’s Q at a time
(i.e., those regarding time dummies, cash flow, volatility, and control function,
respectively); and xi) adopting the granular instrumental variables of Gabaix and
Koijen (2020) for individual stock volatility.

V. Transmission Channels

Why does uncertainty affect investment beyond Q and cash flow? Theoreti-
cally, multiple channels exist: Heightened uncertainty may reduce investment due
to the real option effect or by increasing risk premiums in the firm’s borrowing; it
may also enhance investment because of the overinvestment effect, the good news
principle, or the Oi–Hartman–Abel effect.37

Understanding which effects drive the estimation results is of empirical inter-
est. Among these mechanisms, the Oi–Hartman–Abel effect is less relevant to our
results since typically, it is not very strong in the short run (Bloom (2014)). To
investigate the remaining four channels, we divide our sample based on capital
irreversibility, financial vulnerability, and size and further disentangle individual
stock volatility into positive and negative semivariances to reestimate our model.
We focus on the differences in the estimated investment–uncertainty relations
across these specifications and find evidence that supports the coexistence of all
four channels. Some of the evidence is difficult to obtain from linear regressions.

FIGURE 4

Augmented Higher-Order Cumulant Estimates

Graph A of Figure 4 compares bg sð Þ between the baseline estimates and the estimates obtained from the high-order cumulant
estimator developed by Erickson et al. (2014), with the latter augmented by the control function approach, series approxi-
mation, and penalty selection. The solid line shows the baseline estimates, and the dash-dotted line indicates the augmented
high-order cumulant estimates. Graph B instead compares the estimates of dbg sð Þ=ds obtained from the twomethods, where,
additionally, thedashed lines indicate the 95%confidence intervals of the baseline estimates. All numbers are in decimal form.
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37See Bloom (2014) for a recent survey of these channels and the references therein; see Eisdorfer
(2008) for the overinvestment channel.
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A. Capital Irreversibility

The real option theory predicts that firms investing in more irreversible capital
reduce such investment to a greater extent in response to high uncertainty because
irreversibility enhances the value of “wait-and-see” (Dixit and Pindyck (1994)).We
test this hypothesis by dividing our sample firms into low-irreversibility versus
high-irreversibility groups according to the industry-level index of capital resal-
ability constructed in Balasubramanian and Sivadasan (2009) and Chirinko and
Schaller (2009). Specifically, we collect data on industry-level total capital expen-
ditures and expenditures on used capital from the Annual Capital Expenditures
Survey (ACES) of the U.S. Census Bureau from 1994 to 2017. We use the time
average of the survey results to construct an index of resalability, which is the
share of used capital in total capital expenditures. A firm is assigned to the
low-irreversibility group if its resalability index is higher than the median, and
vice versa.38

The subsample estimates are compared in Figure 5. As shown in Graph A, the
investment–uncertainty relations obtained from both subsamples are decreasing
and concave, but the relation in the high-irreversibility subsample (dash-dotted line)

FIGURE 5

Subsample Estimates: Low Versus High Irreversibility

Graphs A and B of Figure 5 compare bg sð Þ and dbg sð Þ=ds, respectively, between the estimates obtained from the low-
irreversibility subsample and those from the high-irreversibility subsample. The degree of irreversibility is measured by an
industry-level index of capital resalability constructed based on the share of used capital in aggregate industry capital
expenditures, and the data are obtained from the ACES of the U.S. Census Bureau from 1994 to 2017 (Balasubramanian
and Sivadasan (2009), Chirinko and Schaller (2009)). A firm is assigned to the low-irreversibility subsample if its resalability
index is higher than the sample median and vice versa. The solid line represents the estimates obtained from the low-
irreversibility subsample, and the two dashed lines indicate the 95%confidence intervals. Thedash-dotted line represents the
estimates obtained from the high-irreversibility subsample, whereas the two dotted lines represent the 95% confidence
intervals. All numbers are in decimal form.
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38We start from 1994 when the first survey is available, and we end in 2017 because this is the last
year of our sample. The final resalability index varies by industry but not across time, and therefore we
treat it as exogenous to individual firms’ investment. The results in Figure 5 are also robust to the firm-
level scale inflexibility index calculated from quarterly data in our sample period, following Gu,
Hackbarth, and Johnson (2018) (see Appendix E of the Supplementary Material).
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is steeper than that in the low-irreversibility subsample (solid line). This finding can
be seen more clearly in Graph B. The marginal effects of uncertainty on investment
are negative in both subsamples; however, the curve estimated for the high-
irreversibility subsample is below that estimated for the low-irreversibility subsam-
ple. The two curves lie outside the 95% confidence intervals of each other, indi-
cating that the differences between the two estimates are statistically significant.
These results are consistent with the predictions from the real option channel.

B. Financial Distress or Constraints

The impact of financial distress on how uncertainty influences investment is
theoretically mixed. First, the literature on default costs illustrates that high uncer-
tainty can increase the likelihood of default by expanding the size of the left-tail
default outcomes. Therefore, it raises the default-risk premium and the expected
deadweight loss of bankruptcy (Bernanke et al. (1999)). Consequently, heightened
uncertainty increases firms’ borrowing costs and decreases investment. This effect
is stronger when firms are closer to financial distress because an additional increase
in the default probability can lead to more drastic changes in borrowing costs.
Second, Eisdorfer (2008) documents an overinvestment channel that suggests the
opposite. Given that greater uncertainty benefits shareholders of distressed firms at
the expense of debtholders, it provides an incentive for managers who represent
shareholders’ interests to overinvest. Consequently, the negative relation between
uncertainty and investment may be weakened or reversed among financially dis-
tressed firms.

We examine the roles of financial distress by dividing our sample according to
Z-scores following Eisdorfer (2008). To mitigate the endogeneity concern that Z-
scores may rely on investment, we use each firm’s average Z-score over time
throughout the sample period. A firm is assigned to the financially distressed group
if its average Z-score is below 1.81, and vice versa.39 The estimates obtained from
the undistressed and distressed groups are compared in Figure 6. We observe that
the estimates in the undistressed subsample (solid line) are similar to the baseline
estimates, but those in the distressed subsample (dash-dotted line) are different. In
Graph A, the investment–uncertainty relation in the distressed group displays a
U-shape: Investment decreaseswith uncertainty formost observations but increases
with uncertainty when uncertainty is high. In Graph B, the estimated marginal
effects of uncertainty on investment for the distressed group increase with the level
of uncertainty. These marginal effects are alsomore negative, lying outside the 95%
confidence interval of the undistressed group, when the firm’s stock volatility is
lower than 60% per annum. Furthermore, when the stock volatility reaches 100%
per year, the marginal effects of uncertainty estimated in the distressed group
become positive.

We interpret these results as evidence of the coexistence of the risk premium
channel and the overinvestment channel. On the one hand, if uncertainty is not

39The definition of the Z-score and the criterion of 1.81 follow Eisdorfer (2008). The Z-score = 1.2
(working capital/total assets) þ 1.4 (retained earnings/total assets) þ 3.3 (earnings before interest and
taxes/total assets) þ 0.6 (market value of equity/book value of total liabilities) þ 0.999 (sales/total
assets). Approximately 17% of firms in our sample are assigned to the distressed group.
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extremely high, then distressed firms reduce investment more aggressively under
greater uncertainty than firms that are not distressed, supporting the risk premium
channel. On the other hand, if uncertainty is sufficiently high, then investment
increases with uncertainty for distressed firms because managers overinvest to
transfer risk to debtholders. The two countervailing forces together produce a
U-shaped investment–uncertainty relation.

Nonparametric estimation is also important to this comparison. If we estimate
linear regressions instead, then the coefficients of uncertainty are�0:05 and�0:11
in the undistressed and distressed subsamples, respectively. The linear regression
results support the risk premium channel but cannot detect the overinvestment
channel.

The above analysis is based on the assumption that the average Z-score over
time throughout the study period is exogenous to investment. To further mitigate
endogeneity concerns, we instead use the average Z-score over time in the pre-
sample period from 1999 to 2009. However, using this approach, we need to
change the interpretations of the resulting subsamples because a firm that was on
average in financial distress between 1999 and 2009 was not necessarily in
financial distress between 2010 and 2017. Therefore, this sample split is not
suitable for testing the overinvestment channel. However, it can be reasonable
to assume that firms experiencing financial distress during the pre-sample period
would be “more financially constrained” during the sample period than firms that
did not have that experience. This is because financial distress can hurt a firm’s
reputation, customer relationships, and human capital, and thus persistently
damage their borrowing capacities. Lenders can also be more cautious in lending
money to firms that were in financial distress in the recent past and therefore

FIGURE 6

Subsample Estimates: Undistressed Versus Distressed

Graphs A and B of Figure 6 compare bg sð Þ and dbg sð Þ=ds, respectively, between the estimates obtained for the undistressed
group and those obtained for the distressed group. A firm is defined as financially distressed if the time average of itsZ-scores
(between 2010 and 2017) is below 1.81 following Eisdorfer (2008), and vice versa. The solid line represents the estimates
obtained for the undistressed group, and the two dashed lines indicate the 95% confidence intervals. The dash-dotted lines
are the estimates obtained for the distressed group, whereas the two dotted lines are the 95% confidence intervals. All
numbers are in decimal form.
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request higher risk premiums.40 According to the risk premium channel, the
negative effects of uncertainty on investment in the more constrained group
should be stronger than those in the less constrained group. As shown in
Figure 7, this situation holds: For the more constrained group, in Graph A, the
investment–uncertainty relation (dash-dotted line) is steeper, and in Graph B, the
estimated marginal effects of uncertainty are further below 0. Moreover, for more
than half of the observations, the estimates of the marginal effects of uncertainty
obtained for the two groups are outside the 95% confidence intervals of each
other, indicating that the differences are statistically significant.

C. Double Sorting: Irreversibility and Financial Constraints

To the extent that the real option channel and the risk premium channel can
coexist, do they reinforce or undermine the impact of each other? We examine this
question by double sorting our sample into four subsamples according to the
resalability index and the criterion of financial constraints based on the pre-sample
average Z-scores.

The estimates of the marginal effects of uncertainty on investment obtained in
these four cases are compared in Figure 8. As shown in Graph A, the marginal
effects are insignificant from 0 if firms are less financially constrained and have low

FIGURE 7

Pre-Sample Z-Scores: Less Versus More Constrained

Graphs A and B of Figure 7 compare bg sð Þ and dbg sð Þ=ds, respectively, between the estimates obtained for the less financially
constrained subsample and those obtained for the more constrained subsample. A firm is defined as more constrained if the
pre-sample averageof itsZ-scores (between1999and2009) is below1.81, that is, the firmwasonaverage in financial distress
prior to our sample period. The solid line shows the estimates obtained for the less constrained subsample, and the two
dashed lines indicate the 95% confidence intervals. The dash-dotted line represents the estimates obtained for the more
constrained subsample, whereas the two dotted lines are the 95% confidence intervals. All numbers are in decimal form.
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40An advantage of this backward-looking measure is that it is exogenous to the firm’s current
investment. From this perspective, this measure can be better than some commonly adopted indicators
in the literature, such as the Cleary index, Kaplan–Zingales index, andWhited–Wu index. In fact, using a
simulation-based method, Hennessy and Whited (2007) note that none of the latter three indexes is a
good proxy for financial constraints due to endogeneity, but instead, firm size is a robust measure. We
discuss the effects of firm size in Section V.D.
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capital irreversibility. In Graphs B and C, when firms either face high irreversibility
or are more financially constrained, but not both, the marginal effects are signifi-
cantly negative, and the magnitudes of the marginal effects in these two cases are
similar. These results support the coexistence of the real option effect and the risk
premium effect and suggest that the two isolated effects may be of a similar
magnitude. In addition, when firms face tighter financial constraints and high
capital irreversibility simultaneously, the negative effects of uncertainty on invest-
ment are the strongest, as shown in Graph D.41 This finding indicates that the real

FIGURE 8

Double Sorting: Irreversibility and Financial Constraints

Figure 8 compares the estimates of dbg sð Þ=ds obtained for four subsamples as follows: Graph A presents the subsample of
firms that have low irreversibility and are financially less constrained, Graph B presents the subsample of firms that have high
irreversibility and are less constrained, Graph C presents the subsample of firms that have low irreversibility and are more
constrained, andGraphDpresents the subsample of firms that have high irreversibility and aremore constrained. The degree
of irreversibility is measured by the industry-level index of capital resalability as shown in Figure 5, and the degree of financial
constraints is defined by the criterion as shown in Figure 7. All y -axes have the same scale, and all numbers are in
decimal form.
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41Note that the subsample in Graph D includes only 90 firms. Thus, the results need to be interpreted
with caution, as they can be sensitive to the inclusion of some particular firms.
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option channel and the risk premium channel may strengthen each other in reducing
firms’ investment in response to heightened uncertainty.

D. Firm Size

Next, we examinewhether the investment of large firms and that of small firms
are influenced differently by uncertainty. Firm size matters because, on the one
hand, it reflects the degree of financial constraints (small firms aremore constrained
due to the more problematic asymmetric information; Hennessy and Whited
(2007)). Following this logic, the investment of small firms should be more sensi-
tive to uncertainty, according to the risk premium channel. On the other hand, in the
industrial organization literature, large firms are often viewed as having more
market power (Carlton, Perloff, and van ’t Veld (1990)), which can intensify the
real option effect, as documented by Caballero (1991). This mechanism leads to the
opposite prediction that the investment of large firms is more responsive to uncer-
tainty. Therefore, by dividing the sample based on firm size, we jointly test the
following two predictions:

Prediction 1. The investment of large firms is affected more by uncertainty if size
mainly represents market power AND the real option channel is at work.

Prediction 2. The investment of small firms is affected more by uncertainty if size
mainly represents financial constraints AND the risk premium channel is at work.

We measure firm size by the book value of total assets and use the pre-sample
average between 1999 and 2009 to mitigate endogeneity concerns. A firm is
classified as a large firm if its pre-sample average of total assets is among the top
50% of all firms within our sample, and vice versa. The estimates obtained for the
“large” and “small” subsamples are compared in Figure 9. We can observe that the
negative effects of uncertainty on investment are actually stronger in the group of
large firms given that the investment–uncertainty relation (solid line) is steeper in
Graph A. Additionally, in Graph B, the estimates of the marginal effects of uncer-
tainty among large firms are more negative than those among small firms, and the
differences between the two groups of estimates are statistically significant. This
empirical evidence supports prediction 1 above; that is, size mainly measures
market power, and the real option effect leads to the investment of larger firms
reacting to heightened uncertainty more aggressively.

E. Good and Bad Uncertainty

A strand of literature regards uncertainty as having a “good news” component
and a “bad news” component associated with positive and negative innovations,
respectively, in stock prices and economic growth. For instance, Segal et al. (2015)
decompose aggregate uncertainty into good and bad components and find that good
uncertainty predicts an increase in economic activity (referred to as the “good news
principle”), but bad uncertainty forecasts a decline in aggregate growth. Inspired by
this idea, we divide the individual stock volatility into positive and negative realized
semivariances, which represent good news and bad news uncertainty, denoted by
RSþ and RS�, respectively, following Patton and Sheppard (2015). Our purpose is
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to investigate whether these two components have different effects on firm
investment.42

The comparison of the marginal effects on investment is shown in Figure 10,
where Graph A is for good uncertainty and Graph B is for bad uncertainty. Notably,
the negative effects of good uncertainty are smaller (in absolute values) than those
of bad uncertainty at most uncertainty levels. We do not find direct evidence that
good uncertainty can increase investment, but the magnitude of the negative effects
indeed diminishes to 0 as good uncertainty rises. In contrast, the negative marginal
effects of bad uncertainty become stronger as bad uncertainty heightens. These
patterns are weak evidence of the good news principle, suggesting that the effects of
good and bad uncertainty on investment are different.

VI. Concluding Remarks

Examining U.S. firm-level data, this article estimates the relation between
investment and uncertainty reflected in individual stock volatility. We propose a
novel methodology to overcome three challenges in the data regarding regressor
endogeneity of the stock volatility, mismeasurement of Tobin’sQ, and the unknown
function of the investment–uncertainty relation. We find that investment signifi-
cantly decreases upon greater uncertainty and more so if uncertainty has already
stood at a higher level. This nonlinear relation is likely due to a combination of the

FIGURE 9

Firm Size: Big Versus Small

Graphs A and B of Figure 9 compare bg sð Þ and dbg sð Þ=ds, respectively, between the estimates obtained for the subsample of
large firms and those obtained for the subsample of small firms. A firm is defined as a large firm if the pre-sample average of its
total assets in book value (between 1999 and 2009) is above the median. The solid line represents the estimates obtained for
the “large” subsample, and the two dashed lines indicate the 95% confidence intervals. The dash-dotted line represents the
estimates obtained for the “small” subsample, whereas the two dotted lines are the 95% confidence intervals. All numbers are
in decimal form.
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42Specifically, for a given firm-year combination, we classify daily stock returns into a positive
return group and a negative return group. The positive realized semivariance equals the sum of squared
returns in the positive return group, and the negative realized semivariance equals the sum of squared
returns in the negative return group.
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real option effect, risk premium effect, and overinvestment effect, and is different
for good news uncertainty than for bad news uncertainty.

Our work contrasts with the existing empirical literature which ignores at least
one or two of the three challenges due to limitations in estimation methods. In
econometric theory, it is difficult to evaluate the resulting bias which relies on data
in complicated ways. Our methodological framework can instead empirically
assess the corresponding bias through “a controlled experiment” in which one of
the three data issues is left untreated intentionally.We find that linear approximation
can lead to significant overestimation of the marginal effect on investment of the
stock volatility that is in the low region. Untreated measurement error in Q can
instead result in overestimation of themarginal effect in both low and high volatility
regions, and also incorrectly implies the shape of the investment–uncertainty
relation. In contrast, neglecting the endogeneity of stock volatility would not cause
significant bias in the estimation with our empirical sample.

The last result is to some extent surprising. Intuitively, one would expect that
the regressor endogeneity of volatility has a more direct, and thus larger, impact on
the estimation of the relation between investment and volatility than the mismea-
surement of Tobin’s Q does as a control variable. Possibly due to this intuition,
previous empirical studies more often choose to address the regressor endogeneity
problem than the measurement error issue. We find that this strategy can lead to
significant bias in some situations, as in our empirical sample. However, we have no
intention to generalize this finding to cases other than our empirical work, because
the bias relies crucially on data in complex ways. This complexity further warrants
the need for our estimation approach, since the bias is unpredictable prior to jointly
addressing the measurement error and regressor endogeneity problems.

FIGURE 10

Good Versus Bad Uncertainty

Graphs A and B of Figure 10 compare the marginal effects of uncertainty on investment between the estimates where
uncertainty is “good uncertainty” and those where uncertainty is “bad uncertainty.”Good and bad uncertainty are measured
by the realized positive and negative semivariances, respectively, following Patton and Sheppard (2015). The solid line
reflects the point estimates of the marginal effects, and the two dashed lines indicate the 95% confidence intervals. All
numbers are in decimal form.
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Finally, our proposed method can also be applied elsewhere since measure-
ment error, regressor endogeneity, and nonlinearities are commonplace in empirical
research. For example, a firm-level leverage regression that is similar to the one in
Rajan and Zingales (1995) can be an ideal candidate—it is potentially nonlinear,
where themarket-to-book ratiomay contain measurement error, and the Tangibility
variable is likely an endogenous regressor. In econometric theory, future work may
include considering nonclassical measurement error, cross-sectional dependence
caused by time-varying industry effects, and a full nonparametric model
F x∗i,t�1,zi,t�1,si,t�1

� �
that allows for more interacting effects among regressors.

Supplementary Material

To view supplementary material for this article, please visit http://doi.org/
10.1017/S0022109023000169.
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