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Abstract

The African penguin (Spheniscus demersus) is a critically endangered species endemic to
southern Africa. Limited information is available on the parasite diversity associated with
the species in natural settings. This study explores the diversity and incidence of parasites
associated with African penguins and their nests, and records the effect of host and environ-
mental factors on parasite infestation. Ecto-, haemo- and helminth parasites were recorded
from 210 adult birds, 583 chicks and 628 nests across five colonies (two mainland and
three islands) along the south-western coast of South Africa, in 2016 and 2017. Mean nest
density (total and active nests) and climate variables (temperature and precipitation) were
obtained for each colony. Parapsyllus humboldti was the most abundant and prevalent ecto-
parasite on penguins and in nests (69.10 and 57.80%, respectively), while Piroplasmorida/
Haemospororida (33.51%) and Cardiocephaloides spp. (56.17%) were the most prevalent
haemo- and helminth parasites of penguins, respectively. In general parasite abundance
and prevalence was significantly affected by penguin age (chicks vs adults), location (mainland
vs islands), nest density (total and active nests) and season (spring vs autumn/winter). It is
concluded that parasite infestations are structured and that penguin chicks at mainland col-
onies are more susceptible to parasite infestations during spring.

Introduction

Seabirds occupy diverse habitats that include marine and terrestrial ecosystems where they find
resources to feed, nest, breed, find shelter and moult (Schreiber and Burger, 2001). In this dual
environment, seabirds are exposed to parasites through their diet and eating habits (e.g. hel-
minths present in fish species) (Randall and Bray, 1983; Brandão et al., 2014), nesting sites (e.g.
ectoparasites in the nest material and soil) (Daturi, 1986) and through their interaction with
other co-occurring congeneric and confamilial birds (e.g. bird-specific ectoparasites and
pathogens such as viruses and bacteria) (McCoy et al., 2002).

There are several factors that can cause among colony variation in parasite diversity and
level of infestations in seabirds (Jones and Shellam, 1999). Most seabird species form large col-
onies comprising up to thousands of breeding pairs (Schreiber and Burger, 2001) and therefore
colony size and especially the nest density can facilitate high infestations of both host (lice) and
nest parasites (fleas and ticks) (Rivera-Parra et al., 2014; Ramos and Drummond, 2017). For
example, tick infestation has been found to be higher in Peruvian Boobies (Sula variegata), a
seabird that nest in large groups than in blue-footed boobies (Sula nebouxi), which tend to
cluster at relatively lower densities (Duffy and Campos de Duffy, 1986). The presence of
co-occurring congeneric and confamilial bird can further increase host and nest density,
which can result in higher abundances and transmission of bird-specific parasites (Duffy,
1988). The level of parasite infestation in prey species can also vary spatially and may influence
the risk of infection for seabirds that act as definitive hosts (Van der lingen et al., 2015; Levsen
et al., 2018). A large scale study by Levsen et al. (2018) recorded regional difference in parasite
infestations of Anisakid nematodes in sardine (Sardina pilchardus) and other commercial fish
species within the European fishing grounds. Several of these nematodes require seabirds as
definitive hosts (Anderson, 2000). Climatic conditions on land and in the water can also affect
parasite distribution. Nidicolous ectoparasite species (spend time in nests and shelters) are sus-
ceptible to mean temperature and precipitation (Marshall, 1981a; Sonenshine, 1993) while
water temperature and salinity can effect most marine endoparasites in fish (Möller, 1978).
In addition, bird age and immune status are also important factors (De Lope et al., 1998;
Van Rensburg, 2010). For example, a study on the seabird Kittiwake (Rissa tridactyla) recorded
higher tick infestations on intermediate age chicks compared with younger and older chicks.
The authors surmised that this may be due to the fact that intermediate aged chicks spend
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more time in the nests and are therefore more exposed to ticks
(Boulinier and Danchin, 1996). Knowledge of the factors that
drive parasite infestation is important as parasites can directly
(cause stress, anaemia and reduced fitness) (Johnson and
Clayton, 2003; Bitam et al., 2010) and indirectly (transmit disease
causing microbes such as protozoa, bacteria and viruses) affect
the condition and survival of their host (Nuttall, 1984).
Although several studies have been conducted on parasites of sea-
bird at the terrestrial-marine interface (e.g. Gauthier-Clerc et al.,
1999; Frenot et al., 2001; Carrera-Játiva et al., 2014; Rivera-
Parra et al., 2014), little is known about the factors that influence
parasite loads on seabirds that naturally occur along the southern
African coastline (Daturi, 1986; Duffy and Daturi, 1987).

The African penguin (Spheniscus demersus) is endemic to the
Benguela Upwelling Ecosystem (Crawford et al., 2011) and the
only penguin species that breeds in Africa (Shelton et al., 1984).
The species breeds in 28 colonies (24 islands and four mainland)
(BirdLife International, 2016) distributed from central Namibia to
the east coast of South Africa (Crawford et al., 2011). The suitabil-
ity for breeding sites has been linked to the distribution and
abundance of their primary prey: the Cape anchovy (Engraulis
encrasicolus) and the South African sardine (Sardinops sagax)
(Crawford et al., 2006). During the breeding season (in South
Africa normally extended from February to September/October;
Crawford et al., 1995; Crawford et al., 2006), the adults spend
most of the day catching fish at sea and return to the colonies
in the evenings to feed the chicks and relieve their mate
(Cooper, 1980). They lay two eggs that are incubated for about
40 days. After hatching, the chicks are under parental care and
become independent after ca. 80 days (Williams and Cooper,
1984). Historically, African penguins were common on nearshore
islands, but more recently the species also started to occupy mains-
land areas. It is surmised that this movement may have been due
to excessive harvesting of eggs (for human consumption) and
guano (for fertilizer) on islands (Rand, 1969; Whittington et al.,
1996), although a reduction in food resources along certain
islands may have also contributed (Shelton et al., 1984;
Crawford et al., 2011). Consequently, the species has suffered
severe (>50% over three generations) and rapid population decline
mainly on island colonies, and its conservation status is listed as
endangered (BirdLife International, 2016). African penguins are
parasitized by a diverse range of parasite taxa that include ecto-
parasites (soft ticks, lice and fleas), helminths (nematodes, ces-
todes and trematodes) and haemoparasites (Brandão et al.,
2014; Parsons and Vanstreels, 2016). To date, most studies on
the parasite of African penguins have been conducted on animals
admitted to rehabilitation centres (e.g. Horne et al., 2011; Yabsley
et al., 2012; Parsons and Vanstreels, 2016) or have focused on
parasites in nests at a single island colony (Daturi, 1986; Duffy
and Daturi, 1987). As yet, there is no empirical data on the para-
sites associated with African penguins and their nests across mul-
tiple colonies in South Africa. In addition, little is known with
regards to the factors that drive among and within colony parasite
infestations on African penguins and in their nests.

The aims of the study were: (1) to record the diversity and
prevalence of parasites associated with African penguins and
their nests at multiple colonies along the south-western coast of
South Africa, and (2) to establish the effect of various host and
environmental factors on parasite infestation patterns. We predict
that penguin chicks will have higher parasite infestations com-
pared with adults. This may be due to a combination of factors
such as lower immunity and closer association with nests (and
nest parasites) in chicks. We further predict that parasite abun-
dance and prevalence will be positively related to nest density.
Colonies with higher nest densities provide more resources
(food and shelter) that can facilitate higher parasite infestations.

Materials and methods

Study site and design

The study was conducted at five African penguin colonies: three
islands: Dassen-, Dyer- and Robben Island and two mainlands:
Stony Point and Simon’s Town (previously known as Boulders
Beach) along the south-western coast of South Africa during
2016 and 2017 (Fig. 1; Table 1). Penguins (adults and chicks:
20 day-old and older) and their respective nests were randomly
selected and sampled at the peak of the first breeding season
between May and July (autumn/winter, i.e. cold and rainy season)
each year. In addition, penguins and their nests were sampled at
one colony (Stony Point) during a second breeding season in
October–November (spring, i.e. warm and dry season) during
2016. Sixty penguins (20 adults and 40 chicks) and 40 nests
were sampled at each colony in autumn/winter each year. At
Stony Point, 105 penguins (22 adults and 83 chicks) and 109
nests were sampled in autumn/winter 2016, 103 penguins (eight
adults and 95 chicks) and 81 nests were sampled in spring 2016
and 105 penguins (20 adults and 85 chicks) and 118 nests were
sampled in autumn/winter 2017 (Table 1). Sampling was con-
ducted during the day starting at 9:00 and ending at 16:00.

Parasite collection from penguins and nests

Each penguin (adult and chick) was examined for 8 min.
Ectoparasites (fleas, lice and ticks) were collected by systematically
brushing the plumage for 1 min around the pelvic area using a
soft brush. Ectoparasites that occur on the face of the animals
were also removed using forceps. Parasites were stored in 70%
ethanol. A new brush and clean tweezers were used for each
animal. A blood smear was made from a drop of blood collected
from the dorsal aspect of the foot using a mechanical pipette
attached to a 23-gauge needle. The blood smear was air-dried
and fixed with methanol. Penguin chicks naturally defecate
when handed. This allowed the collection of fresh faecal material,
which were fixed in 10% formalin and kept cool until examination
in the laboratory. Body mass (kg) was recorded for each penguin
with a handheld electronic scale (25 kg/50 lb Sensation). Penguin
nests were sampled for parasites by collecting 200 mL nest mater-
ial (including soil) from the centre of the nest. Nest material was
stored in plastic jars sealed with a lid and kept cool until further
processing.

Parasite recovery and identification

Ectoparasites were extracted from the nest material using a
modified Berlese funnel method (Southwood, 1978). In a sealed
unit naphthalene moth balls (100 g) were used as a repellent
and hung above the nest material for 24 h (Daturi, 1986).
Thereafter, each nest material sample was systematically examined
using a dissecting microscope. The latter method was included
due to the ineffectivity of the extraction method to remove all
parasites. Parasites recorded by the two methods were combined.
Ectoparasites were identified morphologically using taxonomic
reference keys (Jordan, 1942; Von Keler, 1952; Arthur, 1963;
Kohls et al., 1965; Segerman, 1995; Banks and Palma, 2003)
and counted. Ectoparasite species were identified to species level
and the life stage and sex was recorded. Thin blood smears
were stained using an Eosin-Methylene Blue stain (RapiDiff kit)
and examined by detecting presence of haemoparasites in 150
fields per slide under a light microscope (Leica Microsystems,
Wetzlar, Germany) at 100× magnification (Palinauskas
et al., 2008). Haemoparasites were identified to order level
(Piroplasmorida/Haemospororida and Spirochaetales) based on
morphological characters (Campbell and Ellis, 2007; Peirce and
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Fig. 1. Map of the selected African penguin colonies along the south-western coast of South Africa. Two mainland (Simon’s Town and Stony Point) and three island
colonies (Dassen-, Dyer- and Robben Island). Areas were plotted using GPS coordinates and QGIS open source Geographic Information System (http://qgis.osgeo.org).

Table 1. Locality, date of sampling, sample size, season and nest density at five African penguin colonies along the south-western coast of South Africa during 2016
and 2017

Locality Coordinates

Sampling date

Sample size
(adult:chicks) Season

Mean nest density (average
per m2) (total:active)2016 2017

Island-based colonies

Dassen Island 33.423647S, 18.086542E 12 May–14 May 08 May–12 May 120 birds (40:80)
and 80 nests

Autumn/winter 0.02:0.012

Dyer Island 34.684075S, 19.414769E 30 May–01 June 29 July–31 July 120 birds (40:80)
and 80 nests

Autumn/winter 0.08:0.06

Robben Island 33.807607S, 18.371231E 07 June–26 June 29 May–02 June 120 birds (40:80)
and 80 nests

Autumn/winter 0.05:0.007

Land-based colonies

Stony Point 34.374151S, 18.895248E 29 June–13 July 19 June–12 July 210 birds (42:168)
and 227 nests

Autumn/winter 0.28:0.13

24 October–07
November

103 birds (8:95)
and 81 nests

Spring

Simon’s Town 34.197220S, 18.451285E 13 June–20 June 26 June–03 July 120 birds (40:80)
and 80 nests

Autumn/winter 0.22:0.14
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Parsons, 2012; Vanstreels et al., 2016). Faecal material (1 g) was
examined for helminth eggs using qualitative techniques.
Nematode and cestodes eggs were detected with the modified
Wisconsin sugar flotation method (Nolan, 2006) (specific gravity
of sugar solution >1.14). The sedimentation technique described
by Hansen and Perry (1994) was used to detect trematodes,
acanthocephalans and any eggs that did not float with the flota-
tion technique. The helminth parasites were identified to genus
level (Horne et al., 2011; Carrera-Játiva et al., 2014).

Nest density

Nest density was recorded by counting the total number of nests
(non-active and active nests) and active nests only (nests contain-
ing eggs, chicks and/or adults) in a 15 × 15 m quadrant during the
autumn/winter season each year. Five quadrants were randomly
selected each year at all colonies apart for Stony Point. At the
latter colony, 12 quadrants were selected each year.

Climate data

Data on the annual mean temperature (°C) and annual precipita-
tion (mm) was obtained for each colony from WorldClim (Global
Climate Data) using the function getData in the ‘raster’ package in
R (Hijmans and van Etten, 2012). Remote censed data were
selected due to the lack of local weather data at all the colonies.

Data analysis

To assess the effect of different parameters on parasite infesta-
tions, we considered the total number of parasites (i.e. parasites
at all life stages) and combined the two flea species found in
this study into one group. Since flea larvae only occur in the
nest and adult fleas are found in the nest and on the host, we con-
sidered analysis at each life stage only for this ectoparasite in
order to record differences. Morphological differentiation
between flea species at the larval stage is notoriously difficult
(Krasnov, 2008) and as such the larvae of P. humboldti and E.
gallinacea (recorded only at Dassen Island) could not be distin-
guished. Consequently, data on flea larvae from Dassen Island
were not considered in the calculation of abundance and preva-
lence of total fleas (i.e. no available data).

The effect of penguin age (adult and chick), colony location
(mainland and island) and colony (Dassen-, Dyer-, and Robben
Island, Stony Point and Simon’s Town) on parasite loads during
the autumn/winter season were assessed primarily using general-
ized linear models (GLMs). Where needed the effect of penguin
body mass (kg) and year (2016 and 2017) were corrected for in
the models. Since parasite data were highly skewed with an excess
of zeros, parasite data were first modified by adding the value of 1,
then log transformed and rounded (Changyong et al., 2014), fol-
lowed by testing for overdispersion (GLM ‘quasipoisson’). To
model data on parasite abundance, we used zero-inflated regres-
sion with a negative binomial residual distribution to correct for
data overdispersion, using the zeroinfl function from the ‘pscl’
R package (Jackman, 2017). Whenever the model did not fit the
data we transformed the abundance data into presence/absence
format and used GLM with a binomial distribution [function
glm()]. Parasite prevalence was assessed by GLM with a binomial
distribution. Since we aimed at assessing the effect of different fac-
tors on parasite infections, we presented the full models with all
independent variables in the main text. However, we also per-
formed backward model selection based on Akaike information
criterion (AIC), using the function step() in R, and compared
the selected models with the corresponding full models using a
χ2 test. To compare cross-colony parasite mean abundance/

prevalence in relation to nest density (total nest density and active
nest density) and climatic factors (air temperature and precipita-
tion) we used analysis of variance and Tukey HSD tests. The effect
of nest density and climatic factors on parasite mean abundance
(i.e. number of parasites of a particular species divided by the
total number of hosts examined; Bush et al., 1997) and prevalence
(i.e. number of infected hosts by a particular parasite species
divided by the total number of hosts examined; Bush et al.,
1997) was assessed using Pearson and Spearman correlation
tests. Statistical analysis included Wilcoxon rank sum test and
proportion test to compare parasite abundance and prevalence,
respectively, between sampling seasons (autumn/winter and
spring) at Stony Point. Seasonal differences in parasite prevalence
were assessed using parasites from chicks because chicks were
mainly sampled in the spring season at Stony Point and helminth
parasites were only recorded for chicks. All statistical tests and
plot design were conducted in R 3.4.3 (R Core Team, 2017).

Results

Three parasitic groups (ectoparasites, haemoparasites and hel-
minth parasites) were recorded from 793 African penguins and
628 penguin nests at five colonies along the south-western coast
of South Africa (Fig. 1). Ectoparasites comprised of two fleas
(Parapsyllus humboldti and Echidnophaga gallinacea), a louse (Aus-
trogoniodes demersus) and a soft tick (Ornithodoros capensis s. s.).
Haemoparasites were morphologically consistent with the orders
Piroplasmorida/Haemospororida and Spirochaetales. Four helminth
genera were detected in chicks (Cardiocephaloides spp., Renicola
spp., Contracaecum spp. and Cyathostoma spp.). Prevalence, mean
abundance, mean intensity (i.e. average number of parasites of a
particular species divided by the number of infected hosts; Bush
et al., 1997) and sex ratios of parasites associated with penguins,
across the selected colonies, are provided in Table 2. Although
mites (Acari) were recorded, they were mainly found in penguin
nests and in high abundance. Mites are very specious and were
not included in this study due to the taxonomic difficulty in distin-
guishing between parasitic and non-parasitic soil mites (Proctor and
Owens, 2000). However, the importance of mite data is recognized
and will be included in follow-up studies.

Ectoparasites on penguins

The most abundant and prevalent ectoparasite on penguins was
P. humboldti (4.57 ± 0.2; 69.10%), while the second most abun-
dant ectoparasite was O. capensis (s. s.) (0.51 ± 0.07; 16.65%) of
which larvae were mainly collected (Table 2). This life stage was
the most abundant on penguins at three of the five colonies
(Supplementary Table S1). Parapsyllus humboldti also exhibited
the highest mean intensity on penguins (6.61 ± 0.25), followed
by E. gallinacea (4.95 ± 0.60). The infestation level of A. demersus
was in general very low, and apart from its absence at Simon’s
Town, no pattern was evident. The sex ratios of the individual
parasite taxa varied: P. humboldti recorded an equal sex ratio,
E. gallinacea and A. demersus recorded a female-biased ratio,
while only female O. capensis (s. s.) (three females infested
three penguins) were recorded from penguins (Table 2).

Haemoparasites and helminth parasites of penguins

Piroplasmorida/Haemospororida was the most prevalent haemo-
parasite group (33.51%) compared with Spirochaetales (2.59%) in
penguins. The helminth Cardiocephaloides spp. was the most
prevalent genus (56.17%) in penguin chicks followed by
Contracaecum spp. (12.83%) (Table 2).
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Ectoparasites in nests

The prevalence, mean abundance, mean intensity and sex ratios of
parasites recorded from penguin nests across the selected colonies
are provided in Table 3. Only ectoparasites were recorded in nests,
therefore the results are presented only for fleas and ticks. More
than half of the nests were infested with P. humboldti (57.80%),
of which the larval stage was the most abundant and prevalent
(13.60 ± 1.49; 47.29%). The second most abundant and prevalent
parasite was O. capensis (s. s.) (6.37 ± 1.90; 54.30%), of which
nymphs were the most abundant and prevalent (2.5 ± 0.94;
39.81%) (Supplementary Table S2). Parapsyllus humboldti also
recorded the highest mean intensity, in infected nests, (25.30 ±
2.52) of which larvae recorded the highest mean intensity
(28.55 ± 2.90), followed by O. capensis (s. s.) (11.74 ± 3.48) of
which tick larvae recorded the highest mean intensity (9.08 ±
3.02) (Table 3). Ectoparasite taxa in nests exhibited different sex
ratios: P. humboldti recorded a female-biased ratio, E. gallinacea
recorded an equal number of males and females, and O. capensis
(s. s.) recorded a male-biased ratio in nests (Table 3).

Factors that influence parasite infestations

The outcome of regression models showed a strong effect of pen-
guin age, colony location and colony (Table 4). The majority of
the full models used in the analysis did not show significant
differences from the best models selected according to the AIC
(Supplementary Table S3). In particular, abundance of total
ectoparasites, fleas (P. humboldti and E. gallinacean combined)
and O. capensis (s. s.), and prevalence of Piroplasmorida/
Haemospororida were significantly higher in chicks compared
with adult penguins (Table 4). Interspecific variation in parasite
infestations, on penguins, was recorded in mainland compared
with island colonies. Penguins at mainland colonies recorded sig-
nificantly higher abundances for total ectoparasites and fleas on
penguins than island colonies. In addition, Piroplasmids/
Haemospororida and Cardiocephaloides spp. were significantly
more prevalent in penguins at mainland colonies compared
with islands. A similar pattern was recorded in penguin nests
with significantly higher abundance recorded for total ectopara-
sites, fleas (both life stages combined), adult fleas and flea larvae
at mainland colonies compared with islands.

Parasite infestations also varied between colonies with Stony
Point and Simon’s Town generally harbouring significantly
more parasites on penguins and in nests. In particular, total
ectoparasite abundance was significantly higher on penguins at
Stony Point and Simon’s Town than most of the other
colonies (Table 4). In addition, at Stony Point a significantly
higher O. capensis (s. s.) abundance and higher Piroplasmorida/
Haemospororida prevalence were recorded for penguins com-
pared with most or all other colonies. Penguin chicks at Stony
Point also recorded a significantly higher prevalence of
Cardiocephaloides spp. compared with other colonies, though
when compared with Simon’s Town the difference in prevalence
was not significant. Abundance of O. capensis (s. s.) in nests
were also generally higher at Stony Point compared with the
other colonies and significantly so for Simon’s Town and
Dassen Island. In contrast, penguins at Simon’s Town recorded
a significantly higher abundance of fleas on penguins compared
with other colonies. In addition, this colony recorded significantly
higher infestations of total ectoparasites, total fleas (both life
stages combined), adult fleas and flea larvae in nests compared
with the other colonies.

Cross-colony comparison of mean abundance and prevalence
of parasites in autumn/winter in relation to nest density (total and
active nest density) and climatic factors (air temperature and Ta
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Table 4. Effect of colony location (mainland and island), colony (Stony Point, Simon’s Town, Dassen-, Dyer- and Robben Island) and penguin age (adult and chick)
on parasite infestation of African penguins and their nests during in the autumn/winter season (2016 and 2017)

Type of analysis Dependent variable Predictor Intercept
Independent
variables Estimate S.E. z value P value

Ectoparasites
on penguins

ZINB Total Ectoparasites Location Islands Mainland 0.12738 0.032324 3.941 ***

Year 2016 2017 0.087586 0.032304 2.711 **

Age Adult Chick 0.436554 0.05141 8.492 ***

ZINB Total Ectoparasites Colony Stony
Point

Dassen
Island

−0.104378 0.047471 −2.199 *

Stony
Point

Dyer Island −0.327557 0.058797 −5.571 ***

Year 2016 2017 0.099295 0.031331 3.169 **

Age Adult Chick 0.444792 0.050382 8.828 ***

ZINB Fleas (P. humboldti and
E. gallinacea)

Location Islands Mainland 0.117148 0.033258 3.522 ***

Year 2016 2017 0.068947 0.033196 2.077 *

Age Adult Chick 0.42249 0.052495 8.048 ***

ZINB Fleas (P. humboldti and
E. gallinacea)

Colony Stony
Point

Simon’s
Town

0.090054 0.04393 2.05 *

Stony
Point

Dyer Island −0.314059 0.060882 −5.158 ***

Year 2016 2017 0.082524 0.032126 2.569 *

Age Adult Chick 0.431918 0.051295 8.42 ***

glm
‘binomial’

Ticks (O. capensis s. s.) Year 2016 2017 0.6829 0.2899 2.355 *

Age Adult Chick 2.2412 0.7432 3.016 **

Body mass −0.4595 0.2194 −2.094 *

glm
‘binomial’

Ticks (O. capensis s. s.) Colony Stony
Point

Simon’s
Town

−2.436 0.747 −3.261 **

Stony
Point

Dassen
Island

−1.0322 0.4444 −2.323 *

Stony
Point

Dyer Island −1.527 0.512 −2.982 **

Year 2016 2017 0.6398 0.2956 2.165 *

Age Adult Chick 2.0568 0.7473 2.752 **

Body mass −0.6267 0.2304 −2.72 **

Haemoparasites

glm
‘binomial’

Piroplasmids/
Haemospororida

Location Islands Mainland 1.9782 0.2148 9.211 ***

Age Adult Chick 2.3298 0.3198 7.286 ***

Body mass 0.396 0.1639 2.415 *

glm
‘binomial’

Piroplasmids/
Haemospororida

Colony Stony
Point

Simon’s
Town

−0.5709 0.275 −2.076 *

Stony
Point

Dassen
Island

−3.0786 0.4518 −6.815 ***

Stony
Point

Dyer Island −1.2171 0.2873 −4.236 ***

Stony
Point

Robben
Island

−2.7051 0.3871 −6.987 ***

Age Adult Chick 2.3439 0.3273 7.161 ***

Body mass 0.4331 0.169 2.563 **

Helminths

glm
‘binomial’

Cardiocephaloides spp. Location Islands Mainland 0.7119 0.2317 3.073 **

(Continued )
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precipitation) revealed significant differences between colonies
for some parasitic groups (Piroplasmids/Haemospororida
F = 39.73, P < 0.001; Cardiocephaloides spp. F = 2.69, P < 0.05;
total parasites in nest F = 4.12, P < 0.01; fleas in nest F = 9.605,
P < 0.001; total parasites on penguins F = 14.27, P < 0.001; fleas
on penguins F = 15.15, P < 0.001). The infestation levels of several
parasite taxa correlated with nest density (total and active). In
particular, the prevalence of Piroplasmids/Haemospororida in
penguins was significantly positively correlated with total and
active nest density (r = 0.97, P < 0.01 and r = 0.92, P < 0.05,
respectively) (total nest density as example Fig. 2A). The pre-
valence of Cardiocephaloides spp. in penguin chicks was signifi-
cantly positively correlated with total nest density (Fig. 2B)
(r = 0.98, P < 0.01). Likewise, mean abundance of total

ectoparasite and O. capensis (s. s.) in nests was significantly posi-
tively correlated with the density of active nests (Fig. 2C)
(rSpearman = 0.9, P < 0.05) and total nests (Fig. 2D) (rSpearman =
0.9, P < 0.05), respectively. Flea abundance in nests follow a
similar pattern as the total ectoparasites in nests, however the
response was not significant. The infestation levels of two parasite
taxa correlate with climate. In particular, mean abundance of
A. demersus on penguins was significantly negatively correlated
with annual mean ambient temperature and annual precipitation
(r =−0.95, P < 0.05, and r = −0.92, P < 0.05, respectively), while
prevalence of Contracaecum spp. in chicks was significantly posi-
tively correlated with annual mean ambient temperature and
annual precipitation (r = 0.97, P < 0.01, and r = 0.94, P < 0.05,
respectively).

Table 4. (Continued.)

Type of analysis Dependent variable Predictor Intercept
Independent
variables Estimate S.E. z value P value

Year 2016 2017 −1.4495 0.2351 −6.166 ***

Body mass 0.5537 0.1777 3.115 **

glm
‘binomial’

Cardiocephaloides spp. Colony Stony
Point

Dassen
Island

−0.8585 0.3538 −2.426 *

Stony
Point

Dyer Island −0.7548 0.3519 −2.145 *

Stony
Point

Robben
Island

−0.8319 0.3531 −2.356 *

Year 2016 2017 −1.4688 0.2382 −6.167 ***

Body mass 0.5373 0.1823 2.947 **

Ectoparasites in
nests

ZINB Total Ectoparasites Location Islands Mainland 0.15051 0.055 2.737 **

Year 2016 2017 0.21289 0.05421 3.927 ***

ZINB Total Ectoparasites Colony Stony
Point

Simon’s
Town

0.21364 0.07566 2.824 **

Year 2016 2017 0.22431 0.05424 4.136 ***

ZINB Total fleas (P. humboldti
and E. gallinacea)

Location Islands Mainland 0.16791 0.06119 2.744 **

Year 2016 2017 0.15607 0.06157 2.535 *

ZINB Total fleas (P. humboldti
and E. gallinacea)

Colony Stony
Point

Simon’s
Town

0.23235 0.08304 2.798 **

2016 2017 0.17289 0.06185 2.795 **

ZINB Adult fleas (P. humboldti
and E. gallinacea)

Location Islands Mainland 0.159537 0.074776 2.134 *

ZINB Adult fleas (P. humboldti
and E. gallinacea)

Colony Stony
Point

Simon’s
Town

0.39834 0.08065 4.939 ***

ZINB Flea larvae (P. humboldti
and E. gallinacea)

Location Islands Mainland 0.18582 0.06615 2.809 **

Year 2016 2017 0.13789 0.06697 2.059 *

ZINB Flea larvae (P. humboldti
and E. gallinacea)

Colony Stony
Point

Simon’s
Town

0.21678 0.08927 2.428 *

Year ear 2016 2017 0.14373 0.06776 2.121 *

ZINB Ticks (O. capensis s. s.) Colony Stony
Point

Simon’s
Town

−0.22204 0.09968 −2.228 *

Stony
Point

Dassen
Island

−0.4778 0.14262 −3.35 ***

Type of analysis: regression model ZINB (zero-inflated negative binomial), glm ‘binomial’ and proportion test.
Significant values: ***<0.001, **0.001–0.01, *0.01–0.05.
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Several parasite taxa exhibited seasonal variation in infesta-
tions on penguin chicks at Stony Point during 2016. In particular,
P. humboldti was significantly more prevalent (91.6 and 77.1%
respectively, P < 0.05) and abundant (8.1 ± 0.7 and 4.6 ± 0.5
respectively, W = 2619.5, P < 0.001) on chicks in spring compared
with autumn/winter. A similar, but stronger pattern was recorded
for O. capensis (s. s.) prevalence (75.8 and 9.6% respectively,
P < 0.001) and abundance (2.8 ± 0.4 and 0.1 ± 0.05 respectively,
W = 1181.5, P < 0.001) on chicks [data for P. humboldti and O.
capensis (s. s.) abundance not shown] (Fig. 3A). Spirochaetales
were also more prevalent in penguins in spring compared with
autumn/winter, but only marginally significant (11.6% spring
and 2.5% autumn/winter, P = 0.05) (Fig. 3B). Helminth parasite
infestations in chicks were not affected by season (Fig. 3C).
Prevalence of ectoparasites in penguin nests also varied signifi-
cantly across seasons. Parapsyllus humboldti was significantly
more prevalent (68.0 and 42.2% respectively, P < 0.001) and abun-
dant (8.14 ± 0.7 and 4.6 ± 0.5 respectively, W = 0.373, P value
<0.001) in nests during spring compared with autumn/winter.
Likewise, O. capensis (s. s.) was significantly more prevalent
(95.1 and 56.0% respectively, P < 0.001) and abundant (13.9 ± 5
and 1.7 ± 0.3, respectively, P < 0.05) in nests in during spring
compared with autumn/winter (Fig. 4).

Discussion

Parasite diversity and abundance associated with penguins
and their nests

In this study, P. humboldti was the most prevalent and abundant
parasite on penguins and in their nests. Most of the P. humboldti

found on penguins were adults, while the larval stage
dominated the nests. This is consistent with the life cycle of
fleas, given that adult fleas mainly attach to the host for a blood
meal while the larvae remain in the nest where they feed on
organic matter (Bitam et al., 2010). The sex ratio of P. humboldti
was equal on penguins and female-biased in nests (0.7:1). This
pattern has previously been observed in nests of other avian
species (e.g. passerines) and is consistent with the fact that female
fleas live longer than males in natural populations and are thus
more prevalent (Rothschild and Clay, 1952; Shutler et al., 2003).
The genus Parapsyllus seems to be specifically targeting
penguins (Clarke and Kerry, 1993) with some species, such as
P. longicornis, occurring on multiple penguin species (Murray
et al., 1990). In the case of P. humboldti the flea has been
found on Humboldt penguins (Spheniscus humboldti) and in
their nests in Chile and Peru (Segerman, 1995) and is frequently
collected from African penguins in rehabilitation centres in South
Africa (Parsons and Vanstreels, 2016). It is currently the only spe-
cies from the genus Parapsyllus in southern Africa (Segerman,
1995).

A species of flea not previously reported for African penguins,
the sticktight flea (E. gallinacea) was attached to the eyelids
and body of penguins and recorded in the nests at Dassen
Island. Echidnophaga gallinacea has a worldwide-distribution
(Boughton et al., 2006) and infests an extensive variety of hosts,
including poultry, domestic mammals and wildlife (Segerman,
1995; Bitam et al., 2010). The European rabbit (Oryctolagus cuni-
culus) is also a common host and the presence of the rabbit and
sharing of burrows on the island would explain the flea’s presence
on African penguins (Dunnet and Nardon, 1974). Female fleas
remain firmly attached on the host for long periods and have a

Fig. 2. Pearson correlation between (A) Piroplasmids/Haemospororida prevalence and total nest density, and (B) Cardiocephaloides spp. prevalence and total nest
density. Spearman correlation between (C) mean total nest ectoparasites and active nest density and (D) mean nest ticks (O. capensis s. s.) and total nest density of
African penguins.
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high fecundity (Krasnov, 2008). This would explain the female-
biased ratio on the penguins (0.16:1).

As several other Austrogoniodes species are associated with
penguin species (Pilgrim and Palma, 1982; Clarke and Kerry,
1993), the presence of the chewing louse A. demersus on
African penguins in the current study is not unexpected (Von
Keler, 1952; Banks and Palma, 2003). The louse has also been

recorded on Galápagos penguins (Spheniscus mendiculus) in the
Galápagos Archipelago (Banks and Palma, 2003). The on-host
sex ratio for A. demersus was female-biased (0.38:1) and might
be the result of the longevity of females and, the smaller size
and active lifestyle of males (Marshall, 1981b). Lice transmission
occurs by direct body contact between individuals such as
between parents to offspring in the nest (Clayton and
Tompkins, 1994, 1995) and between older chicks when they
group together in the crèche stage (Banks et al., 2006).

The soft tick O. capensis sensu stricto (s. s.) infests several sea-
bird species globally (e.g. Keirans et al., 1992; Dupraz et al., 2016).
In South Africa, O. capensis (s. s.) has been collected from several
seabird species such as Cape cormorant (Phalacrocorax capensis)
(Peirce and Parsons, 2012), great black-backed gull (Larus mari-
nus) and African penguins (Theiler, 1959; Daturi, 1986).
Ornithodoros capensis (s. s.) is nidicolous and is able to live in
the host’s shelter for long periods of time (with a maximum life
span of 25 years) (Sonenshine, 1991, 1993; Vial, 2009). All life
stages (larvae, nymphs and adults) attach to the host for short
periods (from a few minutes up to an hour) to feed (Oliver,
1989). The colonial lifestyle, repeated use of nests and high popu-
lation densities that penguins reach, expose them to a greater
abundance of ticks (Duffy, 1988; Mangin et al., 2003). In our
study, O. capensis (s. s.) was the second most abundant ectopar-
asites found on penguins. The presence of blood in larvae from
penguins provides new evidence that larval stages from some
Ornithodoros spp. do take blood meals. This life stage was also
the most abundant on penguins in the majority of the selected
colonies. In nests, O. capensis (s. s.) was also the second most
prevalent and abundant parasite, and exhibited one of the highest
mean intensity of infestation. Nymphs were the most prevalent
and abundant life stage in all nests, while larvae recorded the
highest mean intensity in nests. This agrees with a previous

Fig. 3. Prevalence of ectoparasites, haemoparasites and helminth parasites associated with African penguin chicks at Stony Point during two seasons (autumn/
winter and spring) in 2016. Sample sizes N = 178 (ectoparasites), 166 (haemoparasites) and 122 (helminths).

Fig. 4. Prevalence of fleas and soft ticks in the nests of African penguins (N = 190) at
the Stony Point colony during two seasons (autumn/winter and spring) in 2016.
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study on African penguin nests at Marcus Island (Daturi, 1986).
In the current study, only female ticks were recorded on penguins,
while in nests the tick showed a strong bias towards males. In
many nidicolous tick species, males require fewer nymphal stages
to emerge as adults (i.e. become adults sooner) compared with
females (Sonenshine, 1991). This could explain the presence of
more male than female ticks in penguin nests. In fact, it is not
unusual to find large numbers of male nidicolous ticks in the
host nests (e.g. Argas arboreus in nests of cattle egrets (Bubulcus
ibis); Guirgis, 1971).

In this study, Piroplasmorida/Haemospororida (orders that
include Babesia spp., Plasmodium spp. and Leucocytozoon spp.;
Levine, 1971; Atkinson, 2008) were more commonly recorded
in penguins (33.51%) compared with Spirochaetales (2.59%)
(order that includes Borrelia spp.; Paster et al., 1991). This pattern
supports previous studies and suggests that Piroplasmorida/
Haemospororida are more prevalent in penguin species compared
with Spirochaetales (Quillfeldt et al., 2011; Yabsley et al., 2012).
Ornithodoros spp. are known vectors of haemoparasites; it is pos-
sible that the high prevalence of Babesia-like inclusions in ery-
throcytes observed in this study is related to the presence of O.
capensis on penguins and in their nests.

Helminth species from four genera (Cardiocephaloides,
Renicola, Contracaecum and Cyathostoma) were recorded from
penguin chicks. Previously, the trematodes Cardiocephaloides
physalis and Renicola sloanei, and the nematodes Contracaecum
sp., Contracaecum variegatum and Cyathostoma phenisci were
recorded from African penguins (Horne et al., 2011; Kanarek
et al., 2013; Viljoen, 2015). Most of these helminths have
been associated with various penguin species, which may be
related to their similarity in diet (Brandão et al., 2014).
Cardiocephaloides spp. was the most prevalent (56.17%) helminth
genus recorded in the study followed by Contracaecum spp.
(12.83%) and Cyathostoma spp. (3.87%). These results are
supported by a previous study on African penguins along the
south-western coast of South Africa (Viljoen, 2015). Since the
life cycle of the helminth parasites involves fish, squid and krill,
it is likely that penguins acquired infection through their diet
(Randall and Bray, 1983; Horne et al., 2011; Brandão et al.,
2014). The integrity of the immune system, type of diet and
behaviour of penguins will however determine the degree of sus-
ceptibility to helminth infections (Diaz, 2006; Diaz et al., 2010;
Carrera-Játiva et al., 2014).

Factors that influence parasite infestations

Significantly more ectoparasites, and particularly fleas (P. hum-
boldti and E. gallinacea) and ticks (O. capensis s. s.) were recorded
on chicks compared with adult penguins. Chicks generally have a
less developed immune system and are therefore more susceptible
to parasitic infestations compared with adult penguins (van
Rensburg, 2010). In addition, chicks spend more time in or
close to the nest (Sherley et al., 2014) and are therefore more read-
ily infested by nest-associated ectoparasites (fleas and soft ticks).
Since ticks can act as vectors of haemoparasites, the significantly
higher incidence of Piroplasmorida/Haemospororida in chicks
compared with adult penguins, in the current study, could poten-
tially be a reflection of the pattern observed for O. capensis (s. s.)
(Peirce, 2000).

Parasite infestations were significantly higher in mainland
compared with island colonies. Stony Point and Simon’s Town,
the two mainland colonies, exhibited the same parasite richness
but higher abundance and prevalence of parasites on and in pen-
guins and in their nests than on islands. The most likely explan-
ation for this pattern for ectoparasites is the higher densities of
both total and active nests on mainland compared with island

colonies. Large colonies with nests at close proximity allow prolif-
eration and transmission of ectoparasites (Brown and Brown,
1986). Parasite species found in nests vary in host association,
and in particular soft ticks are able to remain in nests regardless
of the presence of a bird host (Duffy, 1988) while fleas are
dependent on the presence of the host (Marshall, 1981a). This
was supported by our results, which showed a positive correlation
between mean abundance of O. capensis (s. s.) in nests and total
nest density (active and non-active together), while mean total
ectoparasite abundance in nests (of which fleas represented
71.57%) correlated with the density of active nests. The positive
correlation between total nest density and Piroplasmids/
Haemospororida prevalence in penguins is most probably due
to a higher abundance of O. capensis (s. s.) in colonies with higher
nests densities. Coloniality in birds seems to facilitate elevated
haemoparasite richness and prevalence (Tella, 2002). From the
current study it appears that higher total nest density can further
aggravate the situation.

The trematode Cardiocephaloides spp. was significantly more
prevalent in chicks at the two mainland colonies compared with
islands. The complete life cycle of C. physalis, the most likely
Cardiocephaloides species found in our study, has not been fully
described but it is hypothesized that it uses the snail Burnupena
spp. as its first intermediate host (Ukomadu, 2017). Rock lobsters
such as the South Coast (Palinurus gilchristi) and West Coast rock
lobster (Jasus lalandii) are the potential natural predator of
Burnupena spp. Both lobster species are commercially fished
between the west coast (Cape Point) and the southeast coast
(East London) of South Africa (Fig. 1). This range includes the
two mainland colonies (Stony Point and Simon’s Town) and
Dyer Island (Department of Environmental Affairs, 2013). This
could affect the abundance of rock lobster in the area and facili-
tate a larger abundance of Burnupena spp. Further, the distribu-
tion of fish (second intermediate host) and specifically infected
fish can also contribute to this pattern. Recently, studies on sar-
dines (food source of penguins) did record higher densities of sar-
dines and specifically higher densities of Cardiocephaloides spp.
infected sardines along the south-western coast between Cape
Point and Cape Agulhas (Mhlongo et al., 2013; Van der lingen
et al., 2015). From this evidence, it is possible that the presence
of intermediate and definitive hosts facilitates a higher incidence
of Cardiocephaloides spp. in penguins at the two mainland
colonies. Although Dyer island falls within the abovementioned
range, it is possible that the inaccessibility of the island to
humans may facilitate a healthier lobster population in the imme-
diate area around the island. This may explain why the incidence
of Cardiocephaloides spp. in penguin chicks was lower compared
with the two mainland colonies.

Infestation levels of O. capensis on penguins and in their
nests were higher at Stony Point compared with other colonies.
This pattern explains the higher incidence of Piroplasmids/
Haemospororida in penguins from Stony Point. In contrast to
other colonies the number of breeding pairs have consistently
increased at Stony Point for the last 5 years to reach a size of
2388 in 2016 (2017 counts are yet unconfirmed) (CapeNature,
DEA and SANParks, unpublished results). This influx of pen-
guins may explain the higher total nest density (0.28 nests
per m2) and O. capensis (s. s.) abundance on penguins and in
nests at Stony Point compared with the other colonies.
Interestingly, the Simon’s Town colony had the second highest
total nest density, but a higher active nest density (0.14 nests
per m2), although only slightly, compared with Stony Point
(0.13 nests per m2) (Table 1). The dependence of fleas on hosts
(Marshall, 1981a) would explain the higher abundance of total
ectoparasites (of which fleas represented >70%) and fleas in active
nests at Simon’s Town compared with the other colonies.
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Very limited deductions can be made from the relationship
between the remote sensed climate data and parasite infestation.
It appears that there was a significant negative relationship
between A. demersus infestation on penguins and annual mean
temperature and precipitation. Conversely, there was a positive
relationship between prevalence of Contracaecum spp. in penguin
chicks and annual mean temperature and precipitation. Although
there are some evidence that chewing lice are severely affected by
temperature and humidity near the host skin (Johnson and
Clayton, 2003) and that hatching time of Anisakidae larva (hel-
minth family of Contracaecum spp.) is delayed in colder water
temperature (Højgaard, 1998) the sample sizes of the current
study are too small to make firm deductions.

Seasonal variation in parasite infestation

Parapsyllus humboldti and O. capensis (s. s.) prevalence and abun-
dance on penguin chicks and in nests were higher in spring com-
pared with the colder and wet autumn/winter. Possible drivers of
this pattern may be the absence of caring adults (e.g. providing
allopreening and food) for the chicks and more favourable cli-
matic conditions for parasites during spring. During the 21-day
moult period (spring and summer) in South Africa (Crawford
et al., 2006) adults leave chicks unattended and unfed in the
nests (Sherley et al., 2014). A lack of food (Obendorf and
McColl, 1980) and allopreening (Brooke, 1985) will affect chick
condition and parasite infestations. The warm and dry conditions
associated with spring are also more favourable for tick devel-
opment, which would facilitate higher infestation of O. capensis
(s. s.) in nests in spring (Lees, 1947). The higher incidence of
O. capensis during spring could explain the higher incidence of
Spirochaetales in penguins during spring compared with
autumn/winter. Yabsley et al. (2012) also recorded a higher preva-
lence of Borrelia spp. in blood smears from African penguins dur-
ing spring/summer months (October to February) compared with
autumn/winter months (March to September) in South Africa.

The current study provides current information on the parasite
diversity of natural occurring African penguins and their nests at
colonies along the south-western coast of South Africa. In general,
penguin chicks are more susceptible to parasite infestations dur-
ing spring. Further, it is evident that the observed spatial variation
in parasite infestations between colonies is driven by several fac-
tors. In particular, patterns recorded for ecto- and haemoparasites
tend to be facilitated by nest density, while the availability of
infected prey influences helminth infestations. Knowing and
detecting changes in parasitic diversity and abundance can give
insight into the possible intrinsic and extrinsic factors that may
threaten the conservation of African penguins in the region.
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