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BOUNDS FOR SOLUTIONS OF SYSTEMS
OF LINEAR EQUATIONS

JEFFREY D. VAALER AND A.J. VAN DER POORTEN

We apply recent results of Vaaler that simultaneously bound

linear forms so as to obtain a 'Siegel lemma', sharper than those

that have appeared in the literature, and in a shape convenient

for application in transcendence theory.

1.

In [3] Vaaler proved the following result. Let

n
M * > =• I *>--x. , i = 1, ..., M ,

be M linear forms in n variables x = [x , ..., x J with coefficients

b. . € C . We suppose that each form A. which does not have real
I'd T*

coefficients is accompanied by its complex conjugate form A., thus

A. ,(x) =Y,l~.~c. for some i' € {l, .. . , M) .

T' I'd d
Further let B be the M x n matrix of coefficients B = [b. .) and

1-3

let A = [d.&..) be a M x M diagonal matrix with positive entries d.

subject to d. = d., when A. and A., are complex conjugate.
( s i * Is is

Suppose that for a positive integer k we have

Idet B*A2B\ 5 k~2 ,
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where as usual B* i s the complex conjugate transpose of B . Then there

are a t l e a s t k d i s t i n c t pa i r s of non-zero points ±x (. TL such tha t

|A . (±x) | 5 d".1 for A. r e a l , and |A.(±x) | 5 (2/TT) ^CT.1 i f not. Next, in
Lf Is (s is U

[41, we see that this result may be applied to bounding integer solutions

of homogeneous linear systems by taking

J— J-

(so M = n + m ) 9 and not ic ing tha t now B*& B i s of the shape

B*A B = A + (A 4J * (ApJ4J

for a n x n diagonal matrix Â  , and a m x m diagonal matrix A? . I t

remains to find a suitable upper bound for the determinant of matrices of

th is shape ( [4] , Lemma 5). In a notation compatible with that above this

is

det B*A2B 2

2.

We shall apply these results to the case of linear forms with

coefficients in an algebraic number field.

Let

n
L.(x) = T a. .x. . i = 1, ..., m ,

be m non-trivial linear forms in n variables x = (x.. , ... , x ) with

coefficients a. . in an algebraic number field IK of degree D over Q .

To set notation it might be convenient to suppose that of the D distinct

embeddings o of IK into C , D are real and 2D are complex (so

D = D± + 2D2).
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We define a demonimator den L. for each form toy the product

den Li = Tl max( |a,:i |M, ..., |a,.M | J
v *il'v'

taken over the normalised non-archimedean valuations V of IK .

The following preliminary form of our theorem is an immediate

consequence of the result cited in §1 above, and is a refinement of similar

lemmata appearing in the literature.

THEOREM 1'. Let n > mD , and write

T. =

\o{a,,)

2 / 5l+(den L,)'
/U(2/i) £ |o(a..)|

according as a(IK) is reaZ or otherwise. Then there is a lattice point

u = [u. , ..., u ) + 0 in TL such that L.(u) = 0 for i = 1, ..., m
x n "v

and

WA s TTTT2-,
i=l a ^a

l/(n-mD)

, 3 = 1. n .

In practice this result is neither in a practical nor in a natural

form. The following result, though a little weaker, is more congenial.

THEOREM 1. Let

L.{x) = £ a..x. (1 5 i 2 m) ,
i j=1 T-3 3

be non-trivial linear forms with coefficients a. . is an algebraic number
13

field IK of degree D over Q . Define a size ||L.|| for each form L.

by

where the product is over all the normalised valuations (both archimedean
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and non-arehimedean) of IK , and write

Suppose n > mD . Then there is a lattice point u t 0 w / such that

L.(u) = 0 for i = 1, 2, . . . , m and

i i / i .smDl{n-mD) , . ..
\u.\ 5 (vn+1 A) / v (1 2 o 5 n) .

u
Of course we could do a little better if D > 0 . Amusingly, one did

a little worse in exactly this case with arguments directly depending on

the box principle (for example [5], pp. 1.10-lU).

To see that Theorem 1 follows from Theorem 1' it suffices to notice

that, by the product formula for valuations, certainly each \\L. \\ 2 1 . It

seems, at first, that in defining \\L. \\ one should take
If

max(l, |aa- |, ..., laavnl) £°r the archimedean valuations but, as pointed

out to the authors by David Masser, this inhomegeneity is not necessary in

view of the homogeneous definition of the den L. (made possible by our
If

supposing that no one of the forms vanishes identically). Indeed we may

replace each of the a.- by aa. . for any non-zero rational q , and then

without loss of generality the 1 in the maximum becomes redundant whilst

the T. of Theorem 1' are unchanged. Theorem 1' itself is simply a

matter of applying the results of Section 1 to the mD forms G\L.) and

noting that

(den L.) T7 o{L (x)}
Z a t-

is a rational integer for x in / , Thus L.{x) = 0 if this quantity

has absolute value less than 1 .

3.

In applications in transcendence theory one will not be concerned with

minimising the co-ordinates, as such, of a lattice point but rather with

constructing non-zero expressions
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L = y CM.

so that they be small relative to the size of the c .u . . With the uniform
3 3

bound U for the co-ordinates, such as that given by Theorem 1, one

obtains

n
\L\ 5 U I |e | = nV

3=1 °

n
1

It' may be preferable to attempt to select the u . "in sympathy with their
3

eventual use" by a suitable variant of Theorem 1; for example by viewing

the given forms as

a . .x . =
T-3 3

\c~. a. . \{c -a:.) .
{ 3 t-3)^ 3 3}

and applying Theorem 1' to find a "lattice point" with "co-ordinates"

ex . . We are not aware of circumstances in which this improvement has a
3 3

material effect in applications. In particular, the authors received no

comfort in their forays against Lehmer's question (concerning algebraic

integers near the unit circle); see Dobrowolski [/].

A real improvement in a relative bound for L may result if

Conjecture 6 of Vaaler [3] is established. Theorem 7 of [3] would then

become unconditional and the methods of [4] could be employed to give a

generalisation of our Theorem 1' in which L is bounded directly in place

of max|u . | .
3

4.

If a is a non-zero element of the algebraic number field IK we

define its size \\a\\ by

||a|| = 7 7 max(l, |a| )
v

where the product is over all the normalised valuations V of IK . One

has ||a|| = exp h{a) , where h{a) is the absolute logarithmic height of

a .
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F r e q u e n t l y i t i s u s e f u l t o s o l v e t h e s y s t e m L.(z) = 0 ( l < £ < m)
In

for 2 in K , z # 0 , rather than for z in 7L as we have above. In

the literature it seems to be suggested that this may introduce difficult

to estimate field constants, but the following strategy avoids this

possibility and motivates the shape of Theorem 2 below: there is no loss

of generality in supposing that the mn a. . generate IK over Q ; hence
I'd

there are D quantities

R u ( l l ) U(12) u(mn)
By = a l l a12 ••• amn

which generate IK as a Q-vector space. Here the v{ij) are non-negative

in tegers with sum l e s s than D . We presume a sensible choice for the

3 . I f we suppose \\a. . II < A , then i t follows tha t for each M ,

||S || -A~ , and i f we now view the m forms L.{z) = £ a . .2 . as forms

in nD va r iab les x . in Z ,
Ml/

then Theorem 1 yields a non-trivial solution u with

\u1 5 vto+Td 4
uj l o

already provided that n > m . Plainly it is always efficient to seek

solutions in B\ in this sense, but one may have to take care that

expressions L that one now constructs

do not vanish identically. [For example, above, one could not once again

suppose that the x . may be chosen in IK . J

The following form for Theorem 1 is due to Mignotte and Waldschmidt

m.
THEOREM 2. Let 8 . . . , 9^ be non-zero algebraic numbers in a

number field of degree D over Q and let
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be polynomials of degree at most N. , in X, ( l 5 i 5 B, 1 < j < n,

1 5 k 2 r ) . Denote by L[P. .) the length of the polynomial P. . (that
1-3 ^3

is, the sum of the absolute value of its coefficients). Write

ai3=Pi3(Ql> • - e i J

and denote by B the geometric mean of the m quantities

B; = i L{P ) frwekw
Ni'k.

v j-=l %3 k=1 x-

If n > mD there exist rational integers w,, ..., u not all zero such
that

n
X a. M. = 0 (1 2 i < m)
3=1 Z° 3

and

\u.\ <^/<»-™0) (i <h <„) .
3

Of course this is an immediate corollary of Theorem 1. We could

(somewhat pointlessly) improve on the B. t>y replacing the sum by the

square root of 1 plus the sum of the squares of the summands. Our point

is that Vaaler's results yield a tidy bound, in contrast to the bound

in effect obtained in [2]. This is at least psychologically useful in

applications. Moreover, an anonymous adviser has kindly pointed out to us

that there are circumstances in which a precise bound can be applied to

good purpose (and this circumstance is relevant to [J]): Let 6 be an

algebraic number of degree at most D and with size ||0|| satisfying

||6|| < 2 . Then there is a polynomial P(X) t 0 whose coefficients are 0

or ±1 such that P(0) = 0 and P has degree at most N , if

C/Log(2/11611°) .
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To see this, apply Theorem 1 to the single equation

xQ9 + x 6 "1 + ... + xN = 0 , and ask for a solution x t 0 in 7T +

with \x. | < 2 , for all j .
3
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