Bull. Aust. Math. Soc. **79** (2009), 103–107 doi:10.1017/S0004972708001068

REGULAR SUBGROUPS OF THE AFFINE GROUP AND RADICAL CIRCLE ALGEBRAS

FRANCESCO CATINO[™] and ROBERTO RIZZO

(Received 23 April 2008)

Abstract

We establish a link between regular subgroups of the affine group and radical circle algebras on the underlying vector space.

2000 *Mathematics subject classification*: 20B10, 16N20. *Keywords and phrases*: affine group, regular subgroups, radical circle algebras.

1. Introduction

Caranti *et al.* [1] have obtained a simple description of abelian regular subgroups of the affine group in terms of commutative associative radical algebras. Hegedüs [3] has produced examples of nonabelian regular subgroups of the affine group AGL(n, p) for p > 2 and n > 3 or p = 2 and $n \ge 3$, n odd.

The main purpose of this note is a description of the regular subgroups of the affine group in terms of radical circle algebras. We say that a vector space V over a field F with an operation \cdot is a *circle algebra* if, for all $\lambda \in F$ and $x, y, z \in V$, the following conditions hold:

(1)
$$(x \cdot y)\lambda = (x\lambda) \cdot y;$$

- (2) $(x+y) \cdot z = x \cdot z + y \cdot z;$
- (3) $x \cdot (y + z + y \cdot z) = x \cdot y + x \cdot z + (x \cdot y) \cdot z.$

Set, for all $x, y \in V$, $x \circ y = x + y + x \cdot y$. The structure (V, \circ) is a semigroup. In particular, if (V, \circ) is a group, then we say that the circle algebra V is *radical*.

It is clear that any associative algebra is a circle algebra and that there are circle algebras which are not associative. Moreover, it is easy to see that a commutative circle algebra is an associative algebra.

Our notation is mostly standard, and for basic results we refer to [2, 5].

^{© 2009} Australian Mathematical Society 0004-9727/2009 \$16.00

2. The correspondence theorem

The main theorem establishes a link between regular subgroups of the affine group and circle algebra structures on the underlying vector space and depends on the techniques developed by Caranti *et al.* in [1].

THEOREM 1. Let V be a vector space over a field F. Denote by \mathcal{RC} the class of radical circle algebras with underling vector space V and by \mathcal{T} the set of all regular subgroups of the affine group AGL(V).

- (1) If V^{\bullet} is a radical circle algebra with underlying vector space V, then $T(V^{\bullet}) = \{\tau_x \mid x \in V\}$, where $\tau_x : V \longrightarrow V$, $y \mapsto y \circ x$, is a regular subgroup of the affine group AGL(V).
- (2) The map

 $f: \mathcal{RC} \longrightarrow \mathcal{T}, \quad V^{\bullet} \mapsto T(V^{\bullet})$

is a bijection.

In this correspondence, isomorphism classes of circle algebras correspond to conjugacy classes under the action of GL(V) of regular subgroups of AGL(V).

PROOF. (1) First we note that, for all $x \in V$, the map

$$\gamma_x: V \longrightarrow V, \quad y \mapsto y + y \cdot x$$

belongs to Sym(V). In fact, if $y, z \in V$ are such that $y\gamma_x = z\gamma_x$, then $y \circ x = y\gamma_x + x = z\gamma_x + x = z \circ x$. Since V is radical, we have y = z. Moreover, if x^- is the inverse of x with respect to \circ , then

$$((y+x) \circ x^{-})\gamma_{x} = (y+x) \circ x^{-} + ((y+x) \circ x^{-}) \cdot x = (y+x) \circ x^{-} \circ x - x = y$$

for every $y \in V$.

Now, since V^{\bullet} is a circle algebra, the map γ_x belongs to GL(V). Indeed

$$(y+z)\gamma_x = y + z + (y+z) \cdot x = x + z + y \cdot x + z \cdot x = y\gamma_x + z\gamma_x,$$

$$(y\lambda)\gamma_x = y\lambda + (y\lambda) \cdot x = y\lambda + (y \cdot x)\lambda = (y\gamma_x)\lambda,$$

for all $x, y, z \in V$ and $\lambda \in F$. So $\tau_x = \gamma_x t_x \in AGL(V)$, where t_x is the translation by x. Finally, the map

$$\tau: V \longrightarrow AGL(V), \quad x \mapsto \tau_x$$

is a monomorphism of the circle group of V^{\bullet} into AGL(V) and $V\tau = T(V^{\bullet})$. Hence, $T(V^{\bullet})$ is a regular subgroup of AGL(V).

(2) Let *T* be a regular subgroup of AGL(V). For each $x \in V$ there is a unique $\tau_x \in T$ such that $0\tau_x = x$. Thus $T = {\tau_x | x \in V}$. We remark that, for each $x \in V$, there is a unique $\gamma_x \in GL(V)$ such that $\tau_x = \gamma_x t_x$, where t_x is the translation by *x*. It follows

that

$$(x\lambda)\tau_y = (x\tau_y)\lambda - y\lambda + y,$$

$$(x+y)\tau_z = x\tau_z + y\tau_z - z,$$

$$(-x)\tau_z = -(x\tau_z) + z + z,$$

$$\tau_y\tau_z = \tau_{y\tau_z},$$

for all $\lambda \in F$ and $x, y, z \in V$.

Now, we introduce on V the following operation

$$\forall x, y \in V, \quad x \cdot y = x\tau_y - x - y.$$

The vector space V equipped with this operation is a circle algebra. In fact, for any $x, y, z \in V$ and for any $\lambda \in F$,

$$\begin{aligned} (x\lambda) \cdot y &= (x\lambda)\tau_y - x\lambda - y \\ &= (x\tau_y)\lambda - y\lambda + y - x\lambda - y \\ &= (x \cdot y)\lambda. \end{aligned}$$

Moreover,

$$(x + y) \cdot z = (x + y)\tau_z - (x + y) - z$$

= $x\tau_z + y\tau_z - z - (x + y) - z$
= $x \cdot z + y \cdot z$.

Finally,

$$\begin{aligned} x \cdot y + x \cdot z + (x \cdot y) \cdot z &= x\tau_y - x - y + x\tau_z - x - z + (x\tau_y - x - y) \cdot z \\ &= x\tau_z - x - z + (x\tau_y - x - y)\tau_z - z \\ &= x\tau_z - x - z + x\tau_y\tau_z + (-(x + y))\tau_z - z - z \\ &= x\tau_z - x - z + x\tau_y\tau_z - (x + y)\tau_z \\ &= x\tau_y\tau_z - x - y\tau_z = x\tau_{y\tau_z} - x - y\tau_z = x \cdot y\tau_z \\ &= x \cdot (y + z + y \cdot z). \end{aligned}$$

It follows that $T(V^{\bullet}) = T$ and that f is onto. On the other hand, it is clear that f is one-to-one, so f is a bijection.

Now, suppose that V^{\bullet} and V^* are two radical circle algebras with underlying vector space V and suppose that there is an isomorphism φ of V^{\bullet} onto V^* . In particular, $\varphi \in GL(V)$. Let $T(V^{\bullet}) = \{\tau_x^{(1)} | x \in V\}$ and $T(V^*) = \{\tau_x^{(2)} | x \in V\}$ be the corresponding regular subgroups of AGL(V). It is easy see that

$$\forall x \in V, \quad \varphi^{-1}\tau_x^{(1)}\varphi = \tau_{x\varphi}^{(2)}.$$

So that $T(V^*) = \varphi^{-1}T(V^{\bullet})\varphi$.

https://doi.org/10.1017/S0004972708001068 Published online by Cambridge University Press

[3]

Conversely, suppose that T_1 and T_2 are two regular subgroups of AGL(V) such that $T_2 = \varphi^{-1}T_1\varphi$ for some $\varphi \in GL(V)$. Let V^{\bullet} and V^* be the radical circle algebras such that $T_1 = T(V^{\bullet}) = \{\tau_x^{(1)} \mid x \in V\}$ and $T_2 = T(V^*) = \{\tau_x^{(2)} \mid x \in V\}$. Let $\psi : V \longrightarrow V$ be the bijection such that

$$\forall x \in V, \quad \varphi^{-1}\tau_x^{(1)}\varphi = \tau_{x\psi}^{(2)}.$$

For all $x \in V$, we have $x\psi = 0(\tau_{x\psi}^{(2)}) = 0(\varphi^{-1}\tau_x^{(1)}\varphi) = x\varphi$, so that $\psi = \varphi$. Now, for all $x, y \in V$,

$$\tau_{x\tau_{y}^{(2)}}^{(2)} = \tau_{x}^{(2)}\tau_{y}^{(2)} = \varphi^{-1}\tau_{x}^{(1)}\tau_{y}^{(1)}\varphi = \varphi^{-1}\tau_{x\tau_{y}^{(1)}}^{(1)}\varphi = \tau_{(x\tau_{y}^{(1)})\varphi}^{(2)}.$$

Then φ is an isomorphism of V^{\bullet} onto V^* .

It is easy to see that the following result holds.

COROLLARY 2. Let V^{\bullet} be a radical circle algebra with underlying vector space V over a field F. Let Tr(V) be the group of translations and let $T(V^{\bullet}) = \{\tau_x \mid x \in V\}$, where $\tau_x : V \longrightarrow V$, $y \mapsto y \circ x$. Then

$$Tr(V) \cap T(V^{\bullet}) = \{\tau_x \mid x \in Ann_L(V^{\bullet})\}$$

where $Ann_L(V^{\bullet})$ is the set of the left annihilators of the circle algebra V^{\bullet} .

In particular, if V^{\bullet} is a radical associative algebra of finite dimension, then $Tr(V) \cap T(V^{\bullet}) \neq 1$.

We remark that the regular subgroups given by Hegedüs [3] correspond to the circle algebras produced in the following result.

PROPOSITION 3. Let p be a prime and let n be an integer. If p > 2 and n > 3 or p = 2 and $n \ge 3$, n odd, there exists a noncommutative radical circle algebra V of dimension n over the field \mathbb{F}_p .

PROOF. Let *W* be a vector space of dimension n - 1 over the field \mathbb{F}_p and let *Q* be a nondegenerate quadratic form of *W*. Then there exists an element *f* of the orthogonal group associated with *W* and *Q* of order *p*.

Now, let $V = W \oplus \mathbb{F}_p$ and, if $v \in V$, let $v_r \in W$ and $v_s \in \mathbb{F}_p$ such that $v = v_r + v_s$. We claim that the vector space V is a noncommutative radical circle algebra by setting, for all $x, y \in V$,

$$x \cdot y = (x_r f^{\alpha} - x_r) + (x_r, y_r f^{-\alpha})b,$$

where $\alpha = y_s - y_r Q$ and *b* is the bilinear form associated with *Q*. In fact, if $\lambda \in F$ and *x*, *y*, *z* \in *V*, then $(x \cdot y)\lambda = (x\lambda) \cdot y$ and $(x + y) \cdot z = x \cdot z + y \cdot z$. Moreover, if $\alpha = y_s - y_r Q$ and $\beta = z_s - z_r Q$, it is easy to prove that

$$\alpha + \beta = y_s + z_s + (y_r, z_r f^{-\beta})b - (z_r + y_r f^{\beta})Q.$$

from which it follows that

$$x \cdot (y + z + y \cdot z) = (x_r f^{\alpha + \beta} - x_r) + (x_r, (z_r + y_r f^{\beta}) f^{-(\alpha + \beta)})b$$

= $(x_r f^{\alpha + \beta} - x_r) + (x_r f^{\alpha}, z_r f^{-\beta})b + (x_r, y_r f^{-\alpha})b$
= $x \cdot y + x \cdot z + (x \cdot y) \cdot z$.

Finally, if $\gamma = x_s - x_r Q$ and $x^- = -x_r f^{-\gamma} - x_s + (x_r, x_r)b$, then

$$x^{-} \circ x = (x_r, x_r)b + (-x_r f^{-\gamma}, x_r f^{-\gamma})b = 0,$$

and the claim follows.

Liebeck *et al.* [4] have stated that the regular subgroups given by Hegedüs are examples of transitive subgroups that contain no nontrivial normal subgroup of the socle. A natural question arising from the context is whether other examples could come out from our characterization, and this will be a subject of future work.

Acknowledgement

We thank the anonymous referee for the careful reading of the paper, for drawing the paper [4] to our attention and pointing out the final question.

References

- [1] A. Caranti, F. Dalla Volta and M. Sala, 'Abelian regular subgroups of the affine group and radical rings', *Publ. Math. Debrecen* **69** (2007), 297–308.
- [2] J. D. Dixon and B. Mortimer, *Permutation Groups* (Springer, New York, 1996).
- [3] P. Hegedüs, 'Regular subgroups of the affine group', J. Algebra 225 (2000), 740–742.
- M. W. Liebeck, C. E. Praeger and J. Saxl, 'Transitive subgroups of primitive permutation groups', J. Algebra 234 (2000), 291–361.
- [5] D. E. Taylor, *The Geometry of the Classical Groups* (Heldermann, Berlin, 1992).

FRANCESCO CATINO, Dipartimento di Matematica 'E. De Giorgi',

Università del Salento, Via Provinciale Lecce-Arnesano, P.O. Box 193, 73100 Lecce, Italy

e-mail: francesco.catino@unile.it

ROBERTO RIZZO, Dipartimento di Matematica 'E. De Giorgi',

Università del Salento, Via Provinciale Lecce-Arnesano, P.O. Box 193, 73100 Lecce, Italy

e-mail: rizerr@libero.it

https://doi.org/10.1017/S0004972708001068 Published online by Cambridge University Press

П

107