# REGULAR SUBGROUPS OF THE AFFINE GROUP AND RADICAL CIRCLE ALGEBRAS 

 FRANCESCO CATINO ${ }^{\boxtimes}$ and ROBERTO RIZZO(Received 23 April 2008)


#### Abstract

We establish a link between regular subgroups of the affine group and radical circle algebras on the underlying vector space.


2000 Mathematics subject classification: 20B10, 16N20.
Keywords and phrases: affine group, regular subgroups, radical circle algebras.

## 1. Introduction

Caranti et al. [1] have obtained a simple description of abelian regular subgroups of the affine group in terms of commutative associative radical algebras. Hegedüs [3] has produced examples of nonabelian regular subgroups of the affine group $A G L(n, p)$ for $p>2$ and $n>3$ or $p=2$ and $n \geq 3, n$ odd.

The main purpose of this note is a description of the regular subgroups of the affine group in terms of radical circle algebras. We say that a vector space $V$ over a field $F$ with an operation $\cdot$ is a circle algebra if, for all $\lambda \in F$ and $x, y, z \in V$, the following conditions hold:
(1) $(x \cdot y) \lambda=(x \lambda) \cdot y$;
(2) $(x+y) \cdot z=x \cdot z+y \cdot z$;
(3) $x \cdot(y+z+y \cdot z)=x \cdot y+x \cdot z+(x \cdot y) \cdot z$.

Set, for all $x, y \in V, x \circ y=x+y+x \cdot y$. The structure $(V, \circ)$ is a semigroup. In particular, if $(V, \circ)$ is a group, then we say that the circle algebra $V$ is radical.

It is clear that any associative algebra is a circle algebra and that there are circle algebras which are not associative. Moreover, it is easy to see that a commutative circle algebra is an associative algebra.

Our notation is mostly standard, and for basic results we refer to [2,5].

[^0]
## 2. The correspondence theorem

The main theorem establishes a link between regular subgroups of the affine group and circle algebra structures on the underlying vector space and depends on the techniques developed by Caranti et al. in [1].

THEOREM 1. Let $V$ be a vector space over a field $F$. Denote by $\mathcal{R C}$ the class of radical circle algebras with underling vector space $V$ and by $\mathcal{T}$ the set of all regular subgroups of the affine group $A G L(V)$.
(1) If $V^{\bullet}$ is a radical circle algebra with underlying vector space $V$, then $T\left(V^{\bullet}\right)$ $=\left\{\tau_{x} \mid x \in V\right\}$, where $\tau_{x}: V \longrightarrow V, y \mapsto y \circ x$, is a regular subgroup of the affine group $A G L(V)$.
(2) The map

$$
f: \mathcal{R C} \longrightarrow \mathcal{T}, \quad V^{\bullet} \mapsto T\left(V^{\bullet}\right)
$$

is a bijection.
In this correspondence, isomorphism classes of circle algebras correspond to conjugacy classes under the action of $G L(V)$ of regular subgroups of $A G L(V)$.

Proof. (1) First we note that, for all $x \in V$, the map

$$
\gamma_{x}: V \longrightarrow V, \quad y \mapsto y+y \cdot x
$$

belongs to $\operatorname{Sym}(V)$. In fact, if $y, z \in V$ are such that $y \gamma_{x}=z \gamma_{x}$, then $y \circ x$ $=y \gamma_{x}+x=z \gamma_{x}+x=z \circ x$. Since $V$ is radical, we have $y=z$. Moreover, if $x^{-}$ is the inverse of $x$ with respect to $\circ$, then

$$
\left((y+x) \circ x^{-}\right) \gamma_{x}=(y+x) \circ x^{-}+\left((y+x) \circ x^{-}\right) \cdot x=(y+x) \circ x^{-} \circ x-x=y
$$

for every $y \in V$.
Now, since $V^{\bullet}$ is a circle algebra, the map $\gamma_{x}$ belongs to $G L(V)$. Indeed

$$
\begin{gathered}
(y+z) \gamma_{x}=y+z+(y+z) \cdot x=x+z+y \cdot x+z \cdot x=y \gamma_{x}+z \gamma_{x} \\
(y \lambda) \gamma_{x}=y \lambda+(y \lambda) \cdot x=y \lambda+(y \cdot x) \lambda=\left(y \gamma_{x}\right) \lambda,
\end{gathered}
$$

for all $x, y, z \in V$ and $\lambda \in F$. So $\tau_{x}=\gamma_{x} t_{x} \in A G L(V)$, where $t_{x}$ is the translation by $x$. Finally, the map

$$
\tau: V \longrightarrow A G L(V), \quad x \mapsto \tau_{x}
$$

is a monomorphism of the circle group of $V^{\bullet}$ into $A G L(V)$ and $V \tau=T\left(V^{\bullet}\right)$. Hence, $T\left(V^{\bullet}\right)$ is a regular subgroup of $A G L(V)$.
(2) Let $T$ be a regular subgroup of $A G L(V)$. For each $x \in V$ there is a unique $\tau_{x} \in T$ such that $0 \tau_{x}=x$. Thus $T=\left\{\tau_{x} \mid x \in V\right\}$. We remark that, for each $x \in V$, there is a unique $\gamma_{x} \in G L(V)$ such that $\tau_{x}=\gamma_{x} t_{x}$, where $t_{x}$ is the translation by $x$. It follows
that

$$
\begin{aligned}
(x \lambda) \tau_{y} & =\left(x \tau_{y}\right) \lambda-y \lambda+y \\
(x+y) \tau_{z} & =x \tau_{z}+y \tau_{z}-z \\
(-x) \tau_{z} & =-\left(x \tau_{z}\right)+z+z \\
\tau_{y} \tau_{z} & =\tau_{y \tau_{z}}
\end{aligned}
$$

for all $\lambda \in F$ and $x, y, z \in V$.
Now, we introduce on $V$ the following operation

$$
\forall x, y \in V, \quad x \cdot y=x \tau_{y}-x-y
$$

The vector space $V$ equipped with this operation is a circle algebra. In fact, for any $x, y, z \in V$ and for any $\lambda \in F$,

$$
\begin{aligned}
(x \lambda) \cdot y & =(x \lambda) \tau_{y}-x \lambda-y \\
& =\left(x \tau_{y}\right) \lambda-y \lambda+y-x \lambda-y \\
& =(x \cdot y) \lambda
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
(x+y) \cdot z & =(x+y) \tau_{z}-(x+y)-z \\
& =x \tau_{z}+y \tau_{z}-z-(x+y)-z \\
& =x \cdot z+y \cdot z
\end{aligned}
$$

Finally,

$$
\begin{aligned}
x \cdot y+x \cdot z+(x \cdot y) \cdot z & =x \tau_{y}-x-y+x \tau_{z}-x-z+\left(x \tau_{y}-x-y\right) \cdot z \\
& =x \tau_{z}-x-z+\left(x \tau_{y}-x-y\right) \tau_{z}-z \\
& =x \tau_{z}-x-z+x \tau_{y} \tau_{z}+(-(x+y)) \tau_{z}-z-z \\
& =x \tau_{z}-x-z+x \tau_{y} \tau_{z}-(x+y) \tau_{z} \\
& =x \tau_{y} \tau_{z}-x-y \tau_{z}=x \tau_{y \tau_{z}}-x-y \tau_{z}=x \cdot y \tau_{z} \\
& =x \cdot(y+z+y \cdot z)
\end{aligned}
$$

It follows that $T\left(V^{\bullet}\right)=T$ and that $f$ is onto. On the other hand, it is clear that $f$ is one-to-one, so $f$ is a bijection.

Now, suppose that $V^{\bullet}$ and $V^{*}$ are two radical circle algebras with underlying vector space $V$ and suppose that there is an isomorphism $\varphi$ of $V^{\bullet}$ onto $V^{*}$. In particular, $\varphi \in G L(V)$. Let $T\left(V^{\bullet}\right)=\left\{\tau_{x}^{(1)} \mid x \in V\right\}$ and $T\left(V^{*}\right)=\left\{\tau_{x}^{(2)} \mid x \in V\right\}$ be the corresponding regular subgroups of $A G L(V)$. It is easy see that

$$
\forall x \in V, \quad \varphi^{-1} \tau_{x}^{(1)} \varphi=\tau_{x \varphi}^{(2)} .
$$

So that $T\left(V^{*}\right)=\varphi^{-1} T\left(V^{\bullet}\right) \varphi$.

Conversely, suppose that $T_{1}$ and $T_{2}$ are two regular subgroups of $A G L(V)$ such that $T_{2}=\varphi^{-1} T_{1} \varphi$ for some $\varphi \in G L(V)$. Let $V^{\bullet}$ and $V^{*}$ be the radical circle algebras such that $T_{1}=T\left(V^{\bullet}\right)=\left\{\tau_{x}^{(1)} \mid x \in V\right\}$ and $T_{2}=T\left(V^{*}\right)=\left\{\tau_{x}^{(2)} \mid x \in V\right\}$. Let $\psi: V \longrightarrow V$ be the bijection such that

$$
\forall x \in V, \quad \varphi^{-1} \tau_{x}^{(1)} \varphi=\tau_{x \psi}^{(2)} .
$$

For all $x \in V$, we have $x \psi=0\left(\tau_{x \psi}^{(2)}\right)=0\left(\varphi^{-1} \tau_{x}^{(1)} \varphi\right)=x \varphi$, so that $\psi=\varphi$. Now, for all $x, y \in V$,

$$
\tau_{x \tau_{y}^{(2)}}^{(2)}=\tau_{x}^{(2)} \tau_{y}^{(2)}=\varphi^{-1} \tau_{x}^{(1)} \tau_{y}^{(1)} \varphi=\varphi^{-1} \tau_{x \tau_{y}^{(1)}}^{(1)} \varphi=\tau_{\left(x \tau_{y}^{(1)}\right) \varphi}^{(2)}
$$

Then $\varphi$ is an isomorphism of $V^{\bullet}$ onto $V^{*}$.
It is easy to see that the following result holds.
Corollary 2. Let $V^{\bullet}$ be a radical circle algebra with underlying vector space $V$ over a field $F$. Let $\operatorname{Tr}(V)$ be the group of translations and let $T\left(V^{\bullet}\right)=\left\{\tau_{x} \mid x \in V\right\}$, where $\tau_{x}: V \longrightarrow V, y \mapsto y \circ x$. Then

$$
\operatorname{Tr}(V) \cap T\left(V^{\bullet}\right)=\left\{\tau_{x} \mid x \in \operatorname{Ann}_{L}\left(V^{\bullet}\right)\right\}
$$

where $A n n_{L}\left(V^{\bullet}\right)$ is the set of the left annihilators of the circle algebra $V^{\bullet}$.
In particular, if $V^{\bullet}$ is a radical associative algebra of finite dimension, then $\operatorname{Tr}(V) \cap T\left(V^{\bullet}\right) \neq 1$.

We remark that the regular subgroups given by Hegedüs [3] correspond to the circle algebras produced in the following result.

Proposition 3. Let $p$ be a prime and let $n$ be an integer. If $p>2$ and $n>3$ or $p=2$ and $n \geq 3, n$ odd, there exists a noncommutative radical circle algebra $V$ of dimension $n$ over the field $\mathbb{F}_{p}$.

Proof. Let $W$ be a vector space of dimension $n-1$ over the field $\mathbb{F}_{p}$ and let $Q$ be a nondegenerate quadratic form of $W$. Then there exists an element $f$ of the orthogonal group associated with $W$ and $Q$ of order $p$.

Now, let $V=W \oplus \mathbb{F}_{p}$ and, if $v \in V$, let $v_{r} \in W$ and $v_{s} \in \mathbb{F}_{p}$ such that $v=v_{r}+v_{s}$. We claim that the vector space $V$ is a noncommutative radical circle algebra by setting, for all $x, y \in V$,

$$
x \cdot y=\left(x_{r} f^{\alpha}-x_{r}\right)+\left(x_{r}, y_{r} f^{-\alpha}\right) b,
$$

where $\alpha=y_{s}-y_{r} Q$ and $b$ is the bilinear form associated with $Q$. In fact, if $\lambda \in F$ and $x, y, z \in V$, then $(x \cdot y) \lambda=(x \lambda) \cdot y$ and $(x+y) \cdot z=x \cdot z+y \cdot z$. Moreover, if $\alpha=y_{s}-y_{r} Q$ and $\beta=z_{s}-z_{r} Q$, it is easy to prove that

$$
\alpha+\beta=y_{s}+z_{s}+\left(y_{r}, z_{r} f^{-\beta}\right) b-\left(z_{r}+y_{r} f^{\beta}\right) Q .
$$

from which it follows that

$$
\begin{aligned}
x \cdot(y+z+y \cdot z) & =\left(x_{r} f^{\alpha+\beta}-x_{r}\right)+\left(x_{r},\left(z_{r}+y_{r} f^{\beta}\right) f^{-(\alpha+\beta)}\right) b \\
& =\left(x_{r} f^{\alpha+\beta}-x_{r}\right)+\left(x_{r} f^{\alpha}, z_{r} f^{-\beta}\right) b+\left(x_{r}, y_{r} f^{-\alpha}\right) b \\
& =x \cdot y+x \cdot z+(x \cdot y) \cdot z .
\end{aligned}
$$

Finally, if $\gamma=x_{s}-x_{r} Q$ and $x^{-}=-x_{r} f^{-\gamma}-x_{s}+\left(x_{r}, x_{r}\right) b$, then

$$
x^{-} \circ x=\left(x_{r}, x_{r}\right) b+\left(-x_{r} f^{-\gamma}, x_{r} f^{-\gamma}\right) b=0,
$$

and the claim follows.
Liebeck et al. [4] have stated that the regular subgroups given by Hegedüs are examples of transitive subgroups that contain no nontrivial normal subgroup of the socle. A natural question arising from the context is whether other examples could come out from our characterization, and this will be a subject of future work.

## Acknowledgement

We thank the anonymous referee for the careful reading of the paper, for drawing the paper [4] to our attention and pointing out the final question.

## References

[1] A. Caranti, F. Dalla Volta and M. Sala, 'Abelian regular subgroups of the affine group and radical rings', Publ. Math. Debrecen 69 (2007), 297-308.
[2] J. D. Dixon and B. Mortimer, Permutation Groups (Springer, New York, 1996).
[3] P. Hegedüs, 'Regular subgroups of the affine group', J. Algebra 225 (2000), 740-742.
[4] M. W. Liebeck, C. E. Praeger and J. Saxl, 'Transitive subgroups of primitive permutation groups', J. Algebra 234 (2000), 291-361.
[5] D. E. Taylor, The Geometry of the Classical Groups (Heldermann, Berlin, 1992).

FRANCESCO CATINO, Dipartimento di Matematica 'E. De Giorgi',
Università del Salento, Via Provinciale Lecce-Arnesano, P.O. Box 193, 73100 Lecce, Italy
e-mail: francesco.catino@unile.it
ROBERTO RIZZO, Dipartimento di Matematica 'E. De Giorgi',
Università del Salento, Via Provinciale Lecce-Arnesano, P.O. Box 193, 73100 Lecce, Italy
e-mail: rizerr@libero.it


[^0]:    (c) 2009 Australian Mathematical Society 0004-9727/2009 \$16.00

