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Abstract. Each finite dimensional irreducible rational representation V of the symplectic group
Sp2g(Q) determines a generically defined local system V over the moduli space Mg of genus g
smooth projective curves. We study H2(Mg;V) and the mixed Hodge structure on it. Specifically,
we prove that if g > 6, then the natural map IH2(fMg;V)!H2(Mg;V) is an isomorphism wherefMg is the Satake compactification of Mg . Using the work of Saito we conclude that the mixed
Hodge structure on H2(Mg;V) is pure of weight 2 + r if Vunderlies a variation of Hodge structure
of weight r. We also obtain estimates on the weight of the mixed Hodge structure on H2(Mg;V) for
3 6 g < 6. Results of this article can be applied in the study of relations in the Torelli group Tg .
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Introduction

The moduli spaceMg of smooth projective curves of genus g is a quasi-projective
variety over C . Its points correspond to isomorphism classes of smooth projective
complex curves of genus g. It has only finite quotient singularities, and therefore
behaves like a smooth variety.

This space has several natural compactifications. In this article we will be
interested in the so called Satake compactification fMg of Mg. The period map
determines an inclusion of Mg into Ag, the moduli space of principally polarized
abelian varieties. The Satake compactification fMg is the closure of Mg inside
Ag, the Satake compactification of Ag. It has quite complicated singularities at its
boundary fMg �Mg.

Each representation of the algebraic group Sp2g gives rise to an orbifold local
system over Mg. To explain this we introduce the mapping class group �g. It
is the group of connected components of the group of the orientation preserving
diffeomorphisms of a compact orientable surface S of genus g. The group �g is the
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164 ALEXANDRE I. KABANOV

orbifold fundamental group of Mg, and representations of �g give rise to orbifold
local systems over Mg . There is a natural surjective map

�g ! Aut (H1(S;Z);\);

where \ is determined by the intersection pairing. The right-hand group is iso-
morphic to Sp2g(Z). So each finite dimensional rational representation V of an
algebraic group Sp2g gives rise to a symplectic orbifold local system V overMg.

Since V is generically defined over fMg, one can consider the intersection
cohomology groups IH�( fMg;V). There is a natural restriction map

IH�( fMg;V) ! H�(Mg;V):

The main result of this article is

THEOREM (cf. Th. 4.1). The natural restriction map

IHk( fMg;V) ! Hk(Mg;V)

is an isomorphism when k = 1 for all g > 3, and when k = 2 for all g > 6.

The group H1(Mg;V) is easily computed when g > 3 for all symplectic local
systems V using Johnson’s fundamental work [23]) (cf. [14]).

Let X be an algebraic variety. From Saito’s work [37], [38] we know that
H�(X;V) has natural mixed Hodge structure (MHS) if V!X is an admissible
polarized variation of Hodge structure, and IH�(X;V) has natural mixed Hodge
structure if V is a generically defined admissible polarized variation of Hodge
structure overX . Further ifX is compact andV is pure of weight r, then IH�(X;V)
is pure of weight k + r.

THEOREM (cf. Cor. 5.1, Cor. 5.3). If g > 6 and V !Mg is a variation of Hodge
structure of weight r whose underlying local system is symplectic, then the natural
mixed Hodge structure on H2(Mg;V) is pure of weight 2 + r. If 3 6 g < 6, then
the weights of the mixed Hodge structure on H2(Mg;V) lie in f2 + r; 3 + rg.

Each symplectic local systemV associated to an irreducible representation V of
Sp2g underlies a variation of Hodge structure overMg which is unique up to Tate
twist. It is convenient to fix the weight of the variation of Hodge structure V(�)
associated to a dominant integral weight �. Fix fundamental weights�1; �2; : : : ; �g
of Sp2g. If � = a1�1 + a2�2 + � � �+ ag�g, define j�j = a1 + 2a2 + � � �+ gag . This
is the smallest integer r such that V (�) � H1(S)


r . (A good reference is [11].)
ThenV(�) can be realized uniquely as a variation of Hodge structure of weight j�j.

Harer proved in [17] that the cohomology Hk(Mg;Z) stabilizes when g >
3k, and Ivanov later improved the range of stability [21, 22]. He showed that
Hk(Mg;Z) stabilizes when g > 2k + 2. In [22] Ivanov also proved that
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Hk(Mg;1;V(�)) is independent of g when g > 2k + 2 + j�j. (The space Mg;1
is the moduli space of curves with a marked non-zero tangent vector.) In [28]
Looijenga calculated the stable cohomology groups of Mg with symplectic coef-
ficients as a module over stable cohomology groups of Mg with trivial coeffi-
cients. In particular, this implies that Hk(Mg;V(�)) is independent of g when
g > 2k + 2 + 2j�j.

Looijenga’s result also provides very specific information about the MHS on
Hk(Mg;V(�)). Combined with computations of Hk(Mg;Q) in low dimensions
due to Harer [16, 19, 20], it implies that Hk(Mg;V(�)) is pure of weight k + j�j

when k 6 4 and g is in the stability range. In particular, H2(Mg;V(�)) is pure
of weight 2 + j�j when g > 6 + 2j�j. Recently, Pikaart proved in [34] that the
stable cohomology Hk(Mg;Q) is pure of weight k. Combined with Looijenga’s
computations, this shows that Hk(Mg;V(�)) is pure of weight k + j�j whenever
g > 2k + 2 + 2j�j.

Unlike the stability range, our purity range is independent of j�j. This is impor-
tant for the following application which was the motivation for this article.

The Torelli groupTg is the kernel of the surjective homomorphism�g!Sp2g(Z).
One can consider the Malcev Lie algebra tg associated to Tg. (For definitions see
[13]). This Lie algebra is an analogue of the Lie algebra associated to the pure
braid group on m strings, which is important in the study of Vassiliev invariants
and conformal field theory. By a result of Johnson [23], Tg is finitely generated
when g > 3. Thus, tg is also finitely generated when g > 3. It is not known for any
g > 3 whether Tg is finitely presented or not.

In [15] Hain gives an explicit presentation of tg for g > 3. More specifically, he
proves that for each choice of x0 2Mg there is a canonical MHS on tg which is
compatible with the bracket. Thus,

tg 
 C �=
Y
m

GrW
�mtg 
 C ;

where GrW
�

are the graded quotients of the MHS associated to a choice of x0. Hain
proves that for all g > 3

GrW
�

tg = L(H1(tg))=(Rg);

where L stands for the free Lie algebra, and Rg is a set of relations. According to
a result of Johnson [23] H1(tg) is isomorphic as an Sp2g-module to V (�3).

Using the above theorem about the MHS on H2(Mg;V) Hain proves that the
relations Rg are quadratic when g > 6, and quadratic and possibly cubic when
g = 3; 4; 5. Moreover, he explicitly calculates all quadratic relations. This implies
that tg is finitely presented for all g > 3.

We shall outline the proof of the first theorem above. There are three main steps
in the proof. The first step is to notice that if g > 3, then the boundary fMg �Mg

of the Satake compactification has one irreducible component of codimension two,

comp3976.tex; 5/12/1997; 11:39; v.7; p.3

https://doi.org/10.1023/A:1000256302432 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000256302432


166 ALEXANDRE I. KABANOV

and all other irreducible components have codimension three. This immediately
implies that H1(Mg;V) �= IH1( fMg;V).

The codimension two irreducible component of fMg �Mg has a Zariski open
subset isomorphic toM1�Mg�1. We denote it byX . (In the paper we work with
a smooth Zariski open subset of X . However this is just a technical detail, and we
do not want to draw an attention to it here.) LetN� be the link bundle ofX in fMg .
We denote by � the corresponding projection. Then there is an exact sequence

0! IH2( fMg;V)!H2(Mg;V)!H0(X;R2��V);

and the last morphism factors through the edge homomorphism

 :H2(N�;V)!H0(X;R2��V)

of the Leray–Serre spectral sequence of �. Therefore it suffices to show that  is
the trivial homomorphism.

The second step is to understand the link bundle N�. Let L be the pull-back
under pr2:X!Mg�1 of the unit relative tangent bundle over Mg�1, and e� be
the corresponding projection L!X . We show that L is a two-to-one unramified
covering ofN�. (This is done in Sect. 3.) Here we need to assume that g > 4. Denote
by eV the pull-back of the local system V to L, and by e the edge homomorphism
H2(L; eV)!H0(X;R2e��eV) of the Leray–Serre spectral sequence of e�. There is a
commutative diagram

H2(L; eV) e - H0(X;R2e��eV)

H2(N�;V)

6

 - H0(X;R2��V);

6

where both vertical maps are inclusions. This implies that  is trivial, if e is trivial.
The third step is to show that e is trivial. The local system eV extends to the

stratum X �= M1 �Mg�1, and splits over it according to the branching rule for
the standard inclusion of Sl2 � Sp2g�2 into Sp2g . The bundle map e� respects this

splitting. Thus, it suffices to show that e is trivial for each irreducible symplectic
local system V over X . We complete the computation using Schur’s lemma and
the fact, due to Harer [20], that H2(�g;1;H1(S)) is trivial when g > 4. (One can
also use a result from [19, Sect. 7] that H2(�g;1;H1(S)) is trivial when g > 9.)

1. Basic facts about the moduli space of curves

In this section we recall the definitions and basic properties of the moduli spaces
of curves, and the corresponding mapping class groups.
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The moduli spaceMs
g;r parameterizes the isomorphism classes of smooth com-

plex projective curves of genus g with s marked points and r marked nonzero
holomorphic tangent vectors. The existence of such moduli spaces follows from
geometric invariant theory. These moduli spaces are known to be normal quasi-
projective varieties [30, Th. 5.11, Th. 7.13].

One can also constructMs
g;r using Teichmüller theory. This approach allows us

to establish the relation between the moduli spaces and the corresponding mapping
class groups.

Let S denote a smooth compact orientable surface of genus g. Fix s+ r distinct
points p1; : : : ; pr+s on S, and r non-zero tangent vectors v1; : : : ; vr at points
p1; : : : ; pr respectively. One can consider triples

(C; (q1; : : : ; qr+s; w1; : : : ; wr); [f ]);

where C is a smooth projective genus g curve, q1; : : : ; qr+s are distinct points on
C ,w1; : : : ; wr are non-zero holomorphic tangent vectors at q1; : : : ; qr respectively,
and f :C!S is an orientation preserving diffeomorphism such that f(qi) = pi
and f�(wi) = vi (we use the canonical identification of the holomorphic tangent
space with the underlying real tangent space). We denote by [f ] the isotopy class
of f relative to fq1; : : : ; qr+s; w1; : : : ; wrg. Two triples

(Cj ; (q
j
1; : : : ; q

j
r+s; w

j
1; : : : ; w

j
r); [fj ]); j = 1; 2;

are called equivalent if there exists a biholomorphismh:C1!C2 such thath(q1
i ) =

q2
i , h�(w

1
i ) = w2

i , and [f2 � h] = [f1] where the isotopy is required to preserve
the marked points and tangent vectors. The space of equivalence classes T s

g;r is
called the Teichmüller space [18], [19, p. 26]. It is known that T s

g;r is a contractible
complex manifold of dimension 3g � 3 + s+ 2r when 2g � 2 + s+ 2r > 0.

The mapping class group �sg;r is defined to be Diff+(S)=Diff+0 (S), where
Diff+(S) is the group of orientation preserving diffeomorphisms of S, which leave
the marked points p1; : : : ; pr+s and marked tangent vectors v1; : : : ; vr fixed, and
Diff+0 (S) is the connected component of the identity. If g > 0, then the group �sg;r
is torsion free when either r > 0, or s > 2g + 2.

The group �sg;r acts on T sg;r as follows. If g 2 �sg;r, then

g(C; (q1; : : : ; wr); [f ]) = (C; (q1; : : : ; wr); [g � f ]):

The quotient space �sg;r n T
s
g;r is the moduli space Ms

g;r of curves with s marked
points and r marked tangent vectors. The group �sg;r acts on T sg;r by biholomor-
phisms, and this action is properly discontinuous and virtually free. It follows that
Ms

g;r is a complex analytic variety with only finite quotient singularities. This
analytic structure agrees with the one coming from geometric invariant theory. If
�sg;r is torsion free, then the action is free, andMs

g;r is smooth.
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168 ALEXANDRE I. KABANOV

Notation. We shall omit indices r and s from T s
g;r, �

s
g;r, and Ms

g;r when they
are equal to zero. We shall use both M1

1 and M1 to denote the moduli space of
elliptic curves.

Remark. One can also consider M[s]
g , the moduli space of genus g curves with

a marked set of cardinality s. It is the quotient of Ms
g by the natural action of the

symmetric group on s letters. This action permutes the marked points.

The singular locus of Mg is contained in the locus of curves with non-trivial
automorphisms. When g > 3, we denote by �Mg the locus of curves with only trivial
automorphisms. This is a smooth Zariski open subset of Mg whose complement
has codimension g � 2.

There are natural surjective morphisms between different moduli spaces which
correspond to forgetting marked points and marked tangent vectors [25]. We
will consider the morphisms M1

g!Mg and Mg;1!M1
g. The first morphism

M1
g!Mg is called the ‘universal curve’ [10, p. 218]. Its fiber over a point

[C]2Mg is C=AutC . On the level of the mapping class groups there is a corre-
sponding short exact sequence [4]

1!�1(S)!�1
g!�g! 1:

The morphism Mg;1!M1
g ‘forgets’ the tangent vector, but remembers its

base point. When g > 2 it is the frame bundle of the relative holomorphic tangent
bundle to the universal curve. On the level of the mapping class groups there is a
corresponding short exact sequence [4]

1!Z!�g;1!�1
g! 1:

The composition of the two morphisms discussed above is the morphism
Mg;1!Mg obtained by forgetting the tangent vector. If C is a curve without
non-trivial automorphisms, then the fiber over [C]2Mg is isomorphic to T uC , the
frame bundle of the holomorphic tangent bundle of the curveC . The corresponding
homomorphism of the mapping class groups is �g;1!�g.

One can also consider finite index level subgroups�sg;r[l] of�sg;r for each integer
l. The level l subgroup is defined to be the subgroup of �sg;r which acts trivially on
H1(S;Z=lZ). Consequently, one has a short exact sequence

1!�sg;r[l]!�sg;r!Sp2g(Z=lZ)!1:

The quotient �sg;r[l]nT
s
g;r is isomorphic to Ms

g;r[l], the moduli space of smooth
projective curves with a level l structure which is defined in Section 2.

It is well-known that for all g > 1 and l > 3, the group�sg;r[l] acts freely on T sg;r.
Thus for each l > 3 the moduli space Ms

g;r[l] is a smooth finite cover of Ms
g;r.

WhenMs
g;r is different fromM1 andM2 each representation of�sg;r determines

an orbifold local system over Ms
g;r. When Mg is either M1 or M2 we consider
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only such representations of �g that for each [C]2Mg represented by a curve
with only two automorphisms, the stabilizer of (C; [f ])2Tg acts trivially on the
representation space. These representations give rise to orbifold local systems over
M1 and M2.

Let V be a representation of �sg:r on a rational vector space, and let V be the
associated orbifold local system overMs

g;r. The contractibility of the Teichmüller
space implies that for all g > 1

H�(�sg;r;V ) �= H�(Ms
g;r;V) �= H�(Ms

g;r[l];V[l])
Sp2g(Z=lZ):

2. Compactifications of the moduli space of curves

In this section we recall some basic properties of the Satake compactification
and the Deligne–Mumford compactification of the moduli spaces of curves.

We start with the Deligne–Mumford compactification of Ms
g . A stable curve

is a reduced connected curve which has only nodes as singularities, and a finite
automorphism group [8]. The Deligne–Mumford compactification M

s
g of Ms

g is
the moduli space of stable projective curves. It is a normal projective variety in
which Ms

g is a Zariski open subset [8], [31, Th. 5.1]. The singularities of M
s
g are

contained in the locus of stable curves with non-trivial automorphisms [10, p. 218].
We will describe the boundaryM

s
g�M

s
g in the case when s = 0. The boundary

Mg �Mg is the union of irreducible divisors
[g=2][
i=0

�i;

where each divisor �i has the following property. When i = 0 there is birational

morphism M
[2]
g�1!�0; when 1 6 i < g � i there is birational morphism M

1
i �

M
1
g�i!�i; and when i = g � i there is a birational morphism from the Z=2Z-

quotient of M
1
i �M

1
i to �i.

DEFINITION 2.1 (cf. [36, Def. 10.5]). A level l structure on a stable curve C is
a symplectic monomorphism H1(C;Z=lZ)!(Z=lZ)2g, where (Z=lZ)2g has the
standard symplectic structure.

Note that a level l structure on a smooth curveC is just a choice of a symplectic
basis for H1(C;Z=lZ), or, equivalently, for H1(C;Z=lZ) because the symplectic
form determines the canonical identification between homology and cohomology.
The same is true for a singular stable curveC whose dual graph is a tree.

From now on we assume that l > 3. Denote byMg[l] the moduli space of smooth
curves with a level l structure. It is isomorphic to the quotient of Tg by the action
of �g[l] (cf. Sect. 1). The moduli spaceMg[l] is a smooth quasi-projective variety,
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170 ALEXANDRE I. KABANOV

and the forgetful morphism Mg[l]!Mg is a Galois covering [8, Prop. 5.8], [33,
Thm. 1.8].

When g > 2 and l > 3 there exists the moduli space of stable curves with a level
l structure Mg[l], which is a compactification of Mg[l] [8, p. 106], [29, Bem. 1],
[35, Rem. 2.3.7]. This is a projective variety according to [32, Thm. 4, III.8], and
there is a finite morphismMg[l]!Mg determined by forgetting a level l structure.

In [29] Mostafa proves thatMg[l] is not smooth, at least when g > 3. However,
in this article we are interested in particular strata of the boundary of Mg[l]. The
irreducible component �1 of the boundary of Mg contains a Zariski open subset
isomorphic to M1

1 �M1
g�1. Consider the inverse image of this subset under the

finite morphism above. It is a finite disjoint union of locally closed subvarieties
of codimension one each of which is isomorphic toM1

1[l] �M
1
g�1[l]. According

to [29, Lem. 1], [27, p. 240] all points of this inverse image are smooth points of
Mg[l].

To introduce the Satake compactification fMg of Mg we use the space Ag, the
moduli space of principally polarized abelian varieties of dimension g. It is the
quotient of the Siegel upper-half space by the action of Sp2g(Z). The space Ag is
a quasi-projective variety [30, Th. 7.10]. Among other compactifications, it admits
the Satake compactification Ag which is a projective variety [39].

The moduli spaceMg is isomorphic to the image of the period mapMg!Ag

which is a locally closed subvariety ofAg [33, Cor. 3.2]. The closure fMg ofMg in
the Satake compactificationAg of Ag is called the Satake compactification ofMg

(cf. [2]). There exists a birational morphism �:Mg! fMg which is the identity
onMg, and sends the point [C] corresponding to a stable curve C to the polarized
Jacobian of its normalization [26, p. 211].

The image of the boundary Mg �Mg under � is the boundary fMg �Mg

of the Satake compactification. It follows that when g > 3 the boundary fMg �

Mg has [g=2] irreducible components each of which except one has codimension
three in fMg. The irreducible component �1 which is the image of �1 � Mg

has codimension two. It contains a Zariski open subset isomorphic to M1 �

Mg�1.
One can also construct the Satake compactification fMg[l] of Mg[l]. Denote

by Ag[l] the moduli space of principally polarized abelian varieties with a level
l structure. A point in Ag[l] is represented by an abelian variety A of dimen-
sion g and a symplectic basis of H1(A;Z=lZ). It is a quasi-projective vari-
ety [30, Th. 7.9], [33, Th. 1.8] which is smooth when l > 3. The space Ag[l]
has the Satake compactification Ag[l] which is a normal projective variety [36,
p. 124], [39].

If g = 1; 2, then Mg[l] is isomorphic to a Zariski open subset ofAg[l], and we
define the Satake compactificationAg[l] ofAg[l] to be the Satake compactification
of Mg[l]. If g > 3, then the morphism Mg[l]!Ag[l] is not injective. In this case
we define fMg[l] to be the normalization of fMg with respect to Mg[l].
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It follows from this definition that fMg[l] is a projective variety [32, III.8, Th. 4],
and that the morphism Mg[l]!Mg extends to a finite morphism fMg[l] ! fMg .
One can also show that there is a birational morphism �l:Mg[l]! fMg[l] with
connected fibers which is the identity on Mg[l], and fits into the commutative
diagram

Mg[l]
�l - fMg[l]

Mg

?
� - fMg:

?

The boundary fMg[l] �Mg[l] is the union of irreducible components each of
which has codimension either two, or three in fMg[l]. The image of each component
�
�
1 of codimension two under the morphism fMg[l]! fMg is the codimension two

component �1 of fMg �Mg . One can show that each ��1 contains a Zariski open
subset Z� such that these subsets do not intersect each other, and each of them is
isomorphic to a smooth Zariski open subset ofM1[l]�Mg�1[l].

3. Codimension two stratum of the Satake compactification

In this section we analyze the link of the codimension two boundary stratum �1

inside the Satake compactification of the moduli space fMg. More precisely, we
study the local links of the points in a smooth Zariski open subset of �1, and we
show that fMg is equi-singular along this Zariski open subset. We will need this in
Section 4. For the rest of this section we assume that g > 4.

Recall that �1 contains a Zariski open subset X isomorphic to M1 �Mg�1.
We identify it with M1 �Mg�1. Then a point in X is represented by a pair of
isomorphism classes of curves ([C1]; [C2]). Let X� be a Zariski open subset of
X defined as follows. Recall that in Section 1 we defined �Mg to be the locus of
curves with only trivial automorphisms when g > 3. We define �M1 to be the
locus of elliptic curves with exactly two automorphisms. Then X� is the subset
of X corresponding to �M1 �

�Mg�1. In this section we study the link of X� in
Mg [X

� � fMg.
Let N be a regular neighborhood of X� in Mg [X

�. The complement N� =
N �X� is a deleted regular neighborhood of X�.

Recall thatMg�1;1!Mg�1 is a surjective morphism defined by forgetting the
holomorphic tangent vector. Let L2 be the inverse image of �Mg�1 inMg�1;1, ande�2:L2 !

�Mg�1 be the corresponding map. The fiber of e�2 over [C2] 2
�Mg�1
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172 ALEXANDRE I. KABANOV

is T uC2, the punctured holomorphic tangent bundle. Denote by L the product
�M1 � L2, and by e� the pull-back of e�2 to X�

L = �M1 � L2
pr2 - L2

X� = �M1 �
�Mg�1

e�
?

pr2- �Mg�1:

e�2

?

LEMMA 3.1. The bundle e�:L = �M1�L2!X� is a two-to-one unramified cover
of the punctured regular neighborhoodN�. The corresponding fix point free action
of Z=2Zon L sends a vector v to �v.

Proof. The morphism Mg�1;1!Mg�1 factors as

Mg�1;1!M1
g�1!Mg�1:

Denote by Y2 the inverse image of �Mg�1 under the second morphism. Then the
commutative diagram above factors as

L = �M1 � L2
pr2 - L2

Y = �M1 � Y2

�c

?
pr2 - Y2

�c2

?

X� = �M1 �
�Mg�1

��

?
pr2- �Mg�1;

��2

?

where �c2 (resp. ��2) is the restriction of Mg�1;1!M1
g�1 (resp. M1

g�1!Mg�1)
to L2 (resp. Y2), and �c (resp. ��) is its pull-back along pr2.

At the same time Y = �M1 � Y2 is isomorphic to a smooth Zariski open subset
of the boundary component �1 in the Deligne–Mumford compactification. We
identify Y with this Zariski open subset. Then the morphism ��:Y !X� is the
restriction of the morphism �:Mg! fMg to Y .

The morphism � is the identity when restricted to Mg. Therefore a deleted
regular neighborhood N� of X� in Mg [X

� and a deleted regular neighborhood
of the divisor Y in Mg [ Y �Mg can be chosen to be the same.

The deleted neighborhood of Y is homeomorphic to the punctured normal
bundle of Y in Mg [ Y . Note that the only non-trivial automorphism of a pair
(C1; x1); (C2; x2) representing a point in Y is induced by the elliptic involution
of (C1; x1). It follows that Z=2Z acts on the space of versal deformations of the
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stable curve (C1; x1); (C2; x2), and this action fixes the divisor that is the locus
of the singular curves [1, Chap. 13, Lem. (1.6)]. Therefore the fiber of the normal
bundle of Y � �1 at the point [(C1; x1); (C2; x2)] is isomorphic to the Z=2Z
quotient of Tx1C1 
 Tx2C2, where the generator of Z=2 acts as �id. Thus N� is
the Z=2Zquotient of the C � -bundle L0 over Y whose fiber at [(C1; x1); (C2; x2)] is
Tx1C1 
 Tx2C2 � f0g.

It is well-known that the moduli space of elliptic curves M1 is isomorphic to
C . It contains two distinguished points that correspond to the two elliptic curves
with exceptional automorphisms. It follows that the space �M1 is isomorphic to
C � f2 pointsg. All line bundles over this space are trivial. Therefore the bundle
L0 is the pull-back of the punctured relative tangent bundle of the morphism
Y2!

�Mg�1.
The punctured relative tangent bundle of the morphism Y2 !

�Mg�1 is �c2:
L2!Y2. Hence, one has a commutative diagram

L0 - L2

Y = �M1 � Y2

?
pr2- Y2;

�c2

?

where L0 is the pull-back of L2. We conclude that the bundles L0 and L are
isomorphic, and N� is the Z=2Zquotient of L, where Z=2Zaction sends a vector
in a fiber of �c to its opposite. 2

It follows from the lemma above that fMg is equi-singular alongX�. We expressed
N� as a bundle X� whose fiber over the point ([C1; C2]) is equal to T uC2, the
frame bundle of the holomorphic tangent bundle of C2.

4. Main theorem

In this section we prove the main theorem of this article. The proof consists of a
sequence of lemmas and propositions. We assume that the reader is familiar with
intersection cohomology, and suggest the references [3, 5, 12].

Notation. For the rest of the paper we omit R� from the notation for the derived
functors. For example, if f :X!Y is a continuous map between topological
spaces, then f� = R�f�.

As we mentioned before each representation of the mapping class group �g, at
least when g > 3, determines an orbifold local system over Mg. In this section
we consider only the symplectic local systems, that is local systems arising from
finite dimensional rational representations of the algebraic group Sp2g. We fix a
symplectic representation V of �g, and denote the corresponding orbifold local
system by V.
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THEOREM 4.1. The natural map IHk( fMg;V)!Hk(Mg;V) induced by the
inclusion is an isomorphism, when

k = 0; g > 1;

k = 1; g > 3;

k = 2; g > 6:

The first statement is trivial and included only for the sake of completeness. The
statement concerning the first cohomology is also rather simple. Indeed, in Section2
we saw that if g > 3, then the boundary fMg �Mg of the Satake compactification
has codimension two in fMg. This, and the properties of intersection cohomology
immediately imply the statement of the theorem for k = 1. The non-trivial part of
this theorem concerns the second cohomology.

Remark. If g > 3, then the map IH1( fMg;V)!H1(Mg;V) is an isomorphism
for an arbitrary orbifold local system V determined by a representation of �g on a
rational vector space. This can be easily seen from the above argument.

Combining this with the computations of H1(Mg;V) in [14, 23] one gets the
following corollary.

COROLLARY 4.2. If g > 3 and V(�) is a generically defined local system corre-
sponding to the representation of Sp2g with the highest weight �, then

IH1( fMg;V(�)) �=

(
Q when � = �3;

0 otherwise:
2

The rest of this section is devoted to the proof of the isomorphism in second
cohomology. We assume that g > 4. Recall that we denote by �1 the codimension
two irreducible component of the boundary of fMg, and by X� its Zariski open
subset isomorphic to �M1 �

�Mg�1.

Notation. We denote by S� the intersection cohomology sheaf IC�(V) on fMg

corresponding to the local system V. The following diagram defines the notation
for the inclusions

Mg
�
i- Mg [X

� �j � X�:

First, we use again that the boundary of fMg has only one irreducible compo-
nent of codimension two, namely �1, and all other irreducible components have
codimension three. This and the properties of intersection cohomology imply that
the restriction

IH2( fMg;V)! IH2(Mg [X
�;V)
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is an isomorphism, and there is an exact sequence

0! IH2(Mg [X
�;V)!H2(Mg;V)

�- H3(X�; j!S�)

�= H0(X�;H3j!S�):

Therefore to prove the theorem it suffices to show that � from the exact sequence
above is the zero morphism.

The distinguished triangle

j!S� - j�S�

}Z
Z
Z
Z
Z
Z

[1]
=�
�
�
�
�
�

j�i�V

implies that H3j!S� �= H2j�i�V. Then the morphism � composed with this iso-
morphism can be factored as

H2(Mg;V)!H2(X�; j�i�V)
 - H0(X�;H2j�i�V):

The sheaf j�i�V is called the local link cohomology functor [9, p. 57]. It expresses
the cohomology of N�, the link of X� in Mg [ X

�. We denote by � the corre-
sponding projection N�!X�. Then the morphism  from the sequence above
can be written as

 :H2(N�;V)!H0(X�;H2��V):

One can easily check that  is the edge homomorphism associated to the Leray–
Serre spectral sequence determined by �.

In order to prove the theorem it is enough to show that  is the trivial homo-
morphism when g > 6, and the rest of this section deals with the proof of this
fact.

First we want to understand the behavior of the local system V over N�. We
start with the following lemma.

LEMMA 4.3. The orbifold local system V overN� splits into a direct sum of sym-
plectic orbifold local systems determined by rational representations of Sl2 �
Sp2g�2.

Proof. Recall that a symplectic orbifold local system is determined by a repre-
sentation of �g which is the pull-back of an algebraic representation V of Sp2g.
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Choose a level l > 3. The inverse image of X�� fMg in fMg[l] has several
connected components. Let N�

l be a deleted regular neighborhood of one of them.
Then one has a commutative diagram

N�

l
- Mg[l] - Ag[l]

N�

?
-Mg

?
- Ag:

?

(Recall that Ag stands for the moduli space of principally polarized abelian vari-
eties.) Denote by Vl the pull-back of V to Mg[l], and by V0l the local system over
Ag[l] determined by V . Both Vl and V0l are genuine local systems, and Vl is the
pull-back of V0l under Mg[l]!Ag[l].

The product A1 � Ag�1 is canonically embedded in Ag. Its inverse image
under Ag[l]!Ag consists of several connected component, each of which is
isomorphic to A1[l]�Ag�1[l]. The image of N�

l in Ag[l] is contained in a tubular
neighborhood of one of these connected components. The local systemV0l, restricted
to this connected component, splits according to the branching law of the inclusion
Sl2 � Spg�2 ,! Sp2g. It follows that the local system Vl splits over N�

l according
to the same branching law. In addition,Vl is constant on the fibers of the composite

N�

l �! N� �
�! X�:

Thus the splitting of Vl overN�

l descends to the splitting of V overN�. 2

Our aim is to show that the morphism  is trivial. Therefore without loss of
generality we can assume that V is a local system over N� determined by an
irreducible algebraic representation of Sl2 � Sp2g�2 with highest weight (�; �).
Note that � is just a non-negative integer.

We consider two cases. First, assume that � is odd. The morphismN�

l !N� is
a Galois covering with the Galois group Sl2(Z=lZ)� Sp2g�2(Z=lZ). The element
(�id; id) of this group leaves the fibers of N�

l !N� ! X� fixed because it
corresponds to the involution of the elliptic curve, and acts as �id on the local
system Vl . It follows that H2��V is the trivial local system, and we have nothing
more to prove.

Next, assume that � is even. Then (�id; id) acts trivially on the local systemVl ,
and therefore the local system V extends toX�. This means that V is the restriction
to N� of a local system defined on the whole regular neighborhood N of X�.
Denote the restriction of this local system to X� by V. Then V is isomorphic to
W 1(�)�W 2(�), the symplectic local system over �M1�

�Mg�1 determined by the
highest weight (�; �). The local system V is the pull-back of V under �:N�!X�.
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Lemma 3.1 says that N� is the Z=2Z quotient of the bundle L defined in Sec-
tion 3, and � is induced by the projection e�:L!X�. We denote by eV be the
pull-back of V to L. Then

eV = e��V �= e��(W 1(�) � W 2(�)):

Let B� be the Leray–Serre spectral sequence determined by �, and A� be the
Leray–Serre spectral sequence determined by e�. Let e be the edge homomorphism
H2(L; eV)!H0(X�;H2e��eV) associatedA�. The two-fold covering map L!N�

induces the map of the spectral sequencesB�!A�. One has for each q [6, p. 85]

Hq��V = (Hqe��eV)Z=2Z:

It follows that the induced map B0;q
2 !A

0;q
2 is an inclusion of global Z=2Z invari-

ants. The homomorphism H2(N�;V)!H2(L; eV) is also an inclusion of Z=2Z
invariants, and one has a commutative diagram

H2(L; eV) e - H0(X�;H2e��eV)

H2(N�;V)

6

 - H0(X�;H2��V);

6

where both vertical maps are inclusions. It follows that if e is trivial, then  is
trivial. We shall show that e is trivial.

Note that e��eV is quasi-isomorphic to e��Q
V . It follows thatH2e��eV is isomor-
phic to H2e��Q 
 V.

LEMMA 4.4. The local systemH2e��Q overX� is isomorphic to W 1 (0)�W 2 (�1).
Proof. The bundle e� is the pull-back of the bundle e�2:L2!

�Mg�1 to X� (see
Lemma 3.1). It follows that the local system H2e��Q is the exterior tensor product
of the constant local system W 1(0) over �M1 and H2e�2�Q.

Recall that e�2 factors as

L2
�c2- Y2

��2- �Mg�1;

where ��2 is the restriction of the universal curve to Y2, and �c2 is a punctured
relative tangent bundle to ��2. Therefore we have a Gysin long exact sequence of
local systems

� � � !H0��2�Q
e
�! H2��2�Q!H2e�2�Q !H1��2�Q! 0; (4.1)

where e is the multiplication by the Euler class. The Euler class is non-zero, because
the genus of C2 is greater than one. It follows that e is an isomorphism on rational
cohomology. Thus we conclude that H2e�2�Q is isomorphic to H1��2�Q.
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The local system H1��2�Q is isomorphic to W 2(�1), the local system corre-
sponding to the standard representation of Sp2g�2. It follows that

H2��Q �= W 1 (0) � W 2(�1): 2

The lemma above shows that the edge homomorphism e is of the form

H2(L; e��(W 1(�) � W 2(�)))

!H0(X�;W 1(�) � (W 2 (�1)
 W 2(�))):

LEMMA 4.5. The spaceH0(X�;W 1 (�)� (W 2(�1)
W 2 (�))) is isomorphic to Q
if � = 0 and � = �1, and zero otherwise.

Proof. Applying the Künneth formula one gets

H0(X�;W 1(�) � (W 2 (�1)
 W 2(�)))

�= H0(�M1;W 1 (�))
H0(�Mg�1;W 2 (�1)
 W 2(�)):

The zero cohomology of a space with coefficients in a local system is equal
to the space of global invariants of the local system. An irreducible symplec-
tic local system has no global invariants unless it is constant. This implies that
H0(�M1;W 1 (0)) �= Q, and H0(�M1;W 1(�)) = 0 if � 6= 0.

Similarly,H0(�Mg�1;W 2(�1)
W 2 (�)) is equal to zero, unless the local system
W 2(�1)
W 2 (�) contains a constant local system as a direct summand. This occurs
if and only if the tensor product W2(�1) 
W2(�) of irreducible representations
of Sp2g�2(Q) contains a copy of the trivial representation. It is known that all
irreducible representations of the symplectic group are self-dual. Therefore the
trivial part of that representation is equal to

(W2(�1)
W2(�))
Sp2g�2(Q)

=W2(�1)
Sp2g�2(Q)
W2(�) �= HomSp2g�2(Q)

(W 2(�1);W 2(�)):

By Schur’s lemma the latter term is isomorphic to Q, if � = �1, and 0 other-
wise. 2

It follows that e is trivial unless V �= W 1(0)�W 2 (�1). In the remaining part of this
section we study this case. To simplify the notation we denote W 1(0)�W 2(�1) by
W 2(�1).

LEMMA 4.6. If g > 6, then the homomorphism

e :H2(L; e��W 2(�1))!H0(X�;W 2(�1)

2)

is the zero map.
Proof. Note that e factors through the A0;2

1
term of the spectral sequence

A
p;q
2 = Hp(X�;Hqe��Q 
 W 2(�1))) Hp+q(L; e��W 2 (�1)):
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Therefore, it suffices to prove that A0;2
1

= 0.
The morphism e�2:L2!

�Mg�1 gives rise to the following Leray–Serre spectral
sequence

C
p;q
2 = Hp(�Mg�1;Hqe�2�Q 
 W 2 (�1))) Hp+q(L2; e��2W 2(�1)):

The bundle e�:L!X� is the pull-back of L2, and the local system W 2(�1) over
X� is also the pull-back from the second factor. It follows that the morphism of
spectral sequences C�!A� induced by the projection pr2:X� ! �Mg�1 is an
inclusion of a direct summand. (Here we mean that for each (r; p; q) the term Cp;qr
is a direct summand of Ap;qr , and all differentials dr respect this splitting.)

Note that A0;2
2
�= C

0;2
2 . Indeed,

A
0;2
2 = H0(X�;W 2(�1)


2)

�= H0(�M1;Q) 
H0(�Mg�1;W 2(�1)

2)

�= H0(�Mg�1;W 2 (�1)

2) = C

0;2
2 ;

because H2e�2�Q
�= W 2 (�1) according to exact sequence (4.1). It follows that

A0;2
1

�= C0;2
1

.
The final step is to show that C0;2

1
= 0. There is a surjective homomorphism

H2(L2; e��2W 2(�1))!C0;2
1
;

associated to the spectral sequence C�. Therefore it suffices to show that

H2(L2; e��2W 2(�1)) = 0:

The complement of the Zariski open subset �Mg�1 of Mg�1 has complex
codimension g � 3 (cf. Sect. 1). It follows that L2 also has complex codimension
g � 3 in Mg�1;1. Thus

H2(L2; e��2W 2(�1)) �= H2(Mg�1;1;W 2 (�1))

when g � 3 > 3. The mapping class group of Mg�1;1 is �g�1;1, and their rational
cohomology are the same. In particular,

H2(Mg�1;1;W 2 (�1)) �= H2(�g�1;1;W2(�1))

= H2(�g�1;1;H1(S;Q));

where S is a reference surface of genus g � 1. In Lemma 4.7 below (based on a
result of Harer) we show that H2(�g;1;H1(S;Q)) when g > 5. This implies that
C0;2
1

= 0, and therefore both homomorphisms e and  are zero homomorphisms
when g > 6. 2
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LEMMA 4.7. If g > 5, then H2(�g;1;H1(S;Q)) = 0.
Proof. All cohomology groups are considered with rational coefficients. The

homomorphism �1
g;1!�g;1 is defined by forgetting a fixed point, and therefore is

surjective. We can choose a fixed point in a neighborhood of the base point of a
fixed tangent vector. This determines a splitting of the homomorphism above. As
the associated spectral sequence has two rows, the existence of splitting implies
that the spectral sequence degenerates at E2. Hence, H2(�g;1;H1(S)) is a direct
summand of H3(�1

g;1) [19, Sect. 7]. Thus it suffices to prove that H3(�1
g;1) = 0.

There is a short exact sequence of groups

1!Z!�g;2!�1
g;1! 1:

It determines a Gysin long exact sequence

� � � !H1(�1
g;1)!H3(�1

g;1)!H3(�g;2)! � � �

We know that the last term is trivial according to Theorem 3.1 from [20]. The first
term is trivial by [14, Prop. 5.2]. It follows that the middle term H3(�1

g;1) is also
zero. 2

Remark. In Theorem 3.1 from [20] Harer gives an explicit description of a basis
of H3(�4;2) �= Q. Using this one can deduce that H3(�

1
4;1) is trivial, and therefore

that H2(�4;1;H1(S;Q)) is trivial.

Recall that each irreducible symplectic local system overMg is determined by
its highest weight �. If �1; : : : ; �g is a set of fundamental weights of Sp2g, then �
is uniquely expressed as

Pg
i=1 ai�i for some non-negative integers ai. We defined

j�j to be
Pg
i=1 iai.

DEFINITION 4.8. We say that an irreducible symplectic local system over Mg

determined by the highest weight � is even if j�j is even, and it is odd if j�j is odd.

The following corollary is a consequence of the proof of the main theorem.

COROLLARY 4.9. If V is an even local system, then the natural map

IH2( fMg;V)!H2(Mg;V)

is an isomorphism when g > 4.
Proof. The estimate g > 6, rather than g > 4, appears in the proof of Lemma 4.6.

This lemma deals with the case when a symplectic local system V restricted to
N� has a direct summand isomorphic to the irreducible local system ��(W 1(0) �
W 2(�1)). Note thatV contains such direct summand if and only if the corresponding
algebraic representation V of Sp2g restricted to the subgroup Sl2�Sp2g�2 contains
a copy of W1(0)�W2(�1). The branching rule of Sp2g over Sl2 � Sp2g�2 respects
even and odd components. Therefore ifV is even, then its restriction cannot contain
W1(0) �W2(�1). This implies that in this case e is trivial for all g > 4. 2
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5. Mixed Hodge theory

In this section we consider the mixed Hodge structure on H2(Mg;V) where V is
an irreducible symplectic local system. We prove that the mixed Hodge structure
on H2(Mg;V) is pure when g > 6. We also prove that if g = 3; 4; 5, then the
mixed Hodge structure on H2(Mg;V) has at most two weights. In this section we
assume that g > 3.

We use results of the theory of mixed Hodge modules developed by M. Saito.
For definitions and results we refer the reader to [37, 38]. In this paper we use only
the formal properties of mixed Hodge modules.

Notation. LetH=(HQ;HC ;W�; F
�) be a rational mixed Hodge structure where

W � denotes the weight filtration, and F � denotes the Hodge filtration. Denote the
graded quotient WkHQ=Wk�1HQ by GrWk H . We shall say that an integer m is a
weight of a mixed Hodge structure H if GrWmH 6= 0. We use abbreviations: MHS
for mixed Hodge structure, and MHM for mixed Hodge module.

In [7] Deligne proved that the rational cohomology of every quasi-projective
variety possesses a natural MHS. In [38] Saito proved that the cohomology and
intersection cohomology of an algebraic variety with coefficients in an admissible
variation of MHS carry MHSs. The definition of an admissible variation of MHS
is given for curves in [40], and in general in [24] (also see [37, 2.1]). There is a
strong belief that when both MHSs of Deligne and Saito exist they are the same.

Let V be an irreducible symplectic local system overMg determined by highest
weight �. This is clear that the restriction of the local system V to �Mg underlies a
polarized variation of Hodge structure of geometric origin. Therefore the restriction
of V to �Mg is an admissible variation of Hodge structure. The local system V is
irreducible, therefore the corresponding variation of Hodge structure is unique up
to Tate twist [14, Prop. 8.1]. We fixV as a variation of Hodge structure by decreeing
its weight to be j�j.

According to the theory of MHMs both IHq( fMg;V) and Hq(Mg;V) carry
natural MHSs [37, pp. 146–147]. The MHS on Hq(Mg;V) can be defined using
either the smooth covers Mg[l] for l > 3, or the isomorphism Hq(Mg;V) �=
IHq(Mg;V) where in the second term we consider the restriction of V to �Mg.
This is easy to check that all these ways lead to the same MHS.

THEOREM 5.1. If g > 6, or if g > 4 and V is an even local system, then the mixed
Hodge structure on H2(Mg;V(�)) is pure of weight 2 + j�j.

Proof. The theory of MHM implies that the restriction

IH2( fMg;V)!H2(Mg;V)

is a morphism of MHSs, and according to Theorem 4.1 and Corollary 4.9 this is
an isomorphism. The space fMg is a projective variety. It follows that the MHS
on IH2( fMg;V) is pure of weight 2 + j�j [38, pp. 221–222]. Thus the MHS on
H2(Mg;V) is also pure of weight 2 + j�j. 2
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In the rest of this section we deal with the MHS on H2(Mg[l];V) where Mg[l]
is the moduli space of curves with a level l structure, and V is a symplectic local
system V(�) which underlies a variation of Hodge structure of weight j�j. We
assume that l > 3, and therefore Mg[l] is smooth and V is a genuine (not only
orbifold) local system. There exists a natural MHS on Hq(Mg[l];V) for each
q > 0.

THEOREM 5.2. If l > 3 and g > 3, then GrWk H
2(Mg[l];V) = 0 for k > 3 + j�j

and k < 2 + j�j.
Proof. In the beginning we recall some facts from Section 2. The moduli space

Mg[l] has the Satake compactification fMg[l] which is a projective variety. The
boundary fMg[l] �Mg[l] has codimension two in fMg[l], and each codimension
two irreducible component ��1 has a Zariski open subset Z� such that the subsets
Z� do not intersect each other, and each of them is isomorphic to a smooth Zariski
open subset of M1[l]�Mg�1[l].

Notation. We denote byS� the intersection cohomology sheaf IC�(V) on fMg[l].
The following diagrams defines the notation for the inclusions

Mg[l] �
i- Mg[l] [ ([�Z�) �

j
� [� Z�;

and we denote by j� the restriction of j to Z� . This notation is similar to that in
Section 4.

It follows that one has an exact sequence

0! IH2( fMg[l];V)!H2(Mg[l];V)!H3([�Z�; j!S�);

in the category of MHSs. Taking graded quotients with respect to weight filtration
is an exact functor. Therefore for every k there is an exact sequence

0 ! GrWk IH
2( fMg[l];V)

! GrWk H
2(Mg[l];V) ! GrWk H

3([�Z� ; j!S�):

Since the space fMg[l] is a projective variety, and V is a polarized variation of
Hodge structure of geometric origin of weight j�j, the intersection cohomology
IH2( fMg[l];V) has a pure MHS of weight 2 + j�j. To prove the theorem we will
show that GrWk H

3([�Z� ; j!S�) = 0 unless k = 3 + j�j.
As the setsZ� are disjoint it suffices to show that eachH3(Z�; j!

�S
�) has a pure

MHS of weight 3+ j�j. From now on we fix an arbitrary index �, and omit � from
the notation for Z� and j� .

The sheaf j!S� is constructible, and fMg[l] is equi-singular along Z . Therefore
H3j!S� is a local system over Z . The standard argument implies that there is an
isomorphism of MHSs

H3(Z; j!S�) �= H0(Z;H3j!S�)
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and there is an isomorphism of MHMs

H3j!S� �= H2j�i�V: (5.1)

We will show that these MHMs are pure of weight 3 + j�j.
Recall that j�i�V expresses cohomology of the link of Z in Mg[l] [ Z . The

inverse image of Z under the birational morphism �l:Mg[l]! fMg[l] is a smooth
locally closed divisor. We denote it by Y . Then the link of Z in Mg[l] [ Z is the
same as the link of Y in Mg[l] [ Y . We use this to find the weights on H2j�i�V.

The following commutative diagram introduces the notation

Mg[l]
�-Mg[l] [ Y �

�
Y

Mg[l]

=

?
i - Mg[l] [ Z

�l

?
� j

Z:

��

?

The local link cohomology functor of Y is ����V. Therefore one expects that
j�i�V ' ����

���V. (The sign' denotes an isomorphism in the derived category of
MHMs.) Indeed, both �l and �� are proper maps, therefore �l

�
= �l! and ��� = ��!. It

follows that for an arbitrary sheafF� onMg[l][Y one has that j��l
�
F� ' ����

�F�

[5, Prop. 10.7]. Therefore

j�i�V ' j��l
�
��V ' ����

���V: (5.2)

ThusH2j�i�V �= H2����
���V is an isomorphism of MHMs.

The variation of Hodge structure V on Mg[l] extends to a variation of Hodge
structure onMg[l][Y becauseV is pulled back fromAg[l]. We denote its restriction
to Y by V. Then ����V ' ����Q 
 V where Q denotes the constant variation of
Hodge structure of weight zero with the fiber isomorphic to Q.

Denote by DF� the dual of F� in the derived category of MHMs. The spaces
Mg[l] [ Y and Y are smooth, therefore we have DQ ' Q[2n](n) and DQY '

QY [2n� 2](n� 1). It follows that there is a string of isomorphisms in the derived
category of MHMs

�!
Q ' DY (�

�DQ) ' DY (�
�
Q[2n](n)) ' DY (QY [2n](n))

' (DY QY )[�2n](�n) ' QY [�2](�1):

Using this and the distinguished triangle

�!
Q - Q

}Z
Z
Z
Z
Z
Z

[1]
=�
�
�
�
�
�

����Q;
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one can deduce that

H0����Q �= H0
Q; H1����Q �= H2�!

Q and Hq����Q = 0

for q > 2. It follows that H0����V is a pure Hodge module of weight j�j, and
H1����V is a pure Hodge module of weight 2 + j�j.

According to [37, 1.20], there is a (perverse) spectral sequence in the category
of MHMs

E
p;q
2 = Hp���(H

q����V) )Hp+q����
���V:

As all spaces involved are smooth the perverse spectral sequence coincides with
the ordinary one. It has only two non-zero rows. Thus there is an exact sequence
of MHMs

H2���(H
0����V)!H2����

���V!H1���(H
1����V):

The map �� is proper. Therefore H2���(H
0����V) is pure of weight 2 + j�j, and

H1���(H
1����V) is pure of weight 3 + j�j. Consequently, we have that

GrWk H
2����

���V = 0;

for k > 3 + j�j and k < 2 + j�j.
Since V is a variation of Hodge structure of geometric origin of weight j�j,

the intersection cohomology sheaf S� underlies a pure Hodge module of weight
j�j. Therefore j!S� is a MHM of weight > j�j [37, Prop. 1.7]. It follows that
GrWk H

3j!S� = 0 for k < 3+ j�j. Combining the last two paragraphs, and isomor-
phisms (5.1), (5.2) one gets that H3j!S� is pure of weight 3 + j�j. 2

COROLLARY 5.3. Let V(�) be a symplectic local system over Mg underlying a
variation of Hodge structure of weight j�j. If g > 3, then GrWk H

2(Mg;V) = 0 for
k > 3 + j�j and k < 2 + j�j.

Proof. Choose l > 3. One has as isomorphism

H2(Mg;V) �= H2(Mg[l];V)
Sp2g(Z=lZ)

in the category of MHSs. The weights of the right-hand side are 2 + j�j and
3+ j�j according to the theorem above. Therefore the same is true for the left-hand
side. 2
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4. Birman, J.: Braids, Links and Mapping Class Groups, Ann. of Math. Studies 82, Princeton

University Press, Princeton, 1982.
5. Borel, A. et al.: Intersection Cohomology, Progress in Math. 50, Birkhäuser, Boston, 1984.
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