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ABSTRACT. A flow-line model is presented for calcu­
lating the surface profile and the velocity, strain-rate, and 
stress fields in an ice sheet with given base-elevation 
profile, ice thickness at the dome (divide), flow-law para­
meters, mass-balance distribution, and convergence/ diver­
gence conditions along the flow line . The model, which is 
based on a "quasi-similarity" hypothesis as regards the hori­
zontal velocity-depth profiles, accounts for changes along 
the flow line in the depth distributions of temperature, 
normal stress deviators, and possible enhanced flow of deep 
ice of Wisconsin origin. A curvilinear coordinate system is 
applied with horizontal axes along flow lines and surface­
elevation contours, respectively. The flow equations are 
reduced to two differential equations, one for the surface­
elevation profile, and the other for a profile function that 
determines the depth distributions of velocities and strain­
rates . The two equations are coupled through a profile 
parameter that communicates the influence of velocity­
profile changes to the surface-profile equation . It is shown 
that the variation along the flow line of this parameter 
should also be considered when deriving flow-law 
parameters from ice-sheet flow-line data. For a symmetric 
dome, explicit expressions are derived for the depth 
distributions of the vertical velocity, strain-rates, and 
stresses. The strain-rate profiles display an inflection about 
half-way down the ice sheet, and, in the case of isothermal 
ice, have surface values 2.2 times their depth-averaged 
values. The depth distribution of the vertical velocity 
indicates that a relatively thick layer of almost stagnant ice 
is present at the ice-sheet base below a dome. 

I . INTRODUCTION 

Palaeo-environmental records obtained from ice cores 
have stressed the need for ice-sheet models that can provide 
realistic predictions of age profiles and annual layer­
thickness profiles at drill sites. Also, the increasing amount 
of accurate data collected along flow lines on ice sheets and 
ice caps stresses the need for realistic flow-line models to 
which the data can be compared. Since ice sheets and ice 
caps seldom, if ever, reach a steady state, realistic ice-sheet 
modelling should in principle always include the time 
dimension and, in fact, several models have been designed 
for modelling the evolution of ice sheets in response to a 
changing environment, e.g. Budd and Smith, 1981 ; 
Oerlemanns, 1982; Lingle, 1985. However, in order to keep 
computation time within reasonable limits, these models are 
based on simplified ice dynamics, and therefore can account 
for ice-sheet dynamic behaviour in rather general terms 
only. Models which disregard the time evolution of the ice 
mass have been developed to much higher perfection as far 
as ice dynamics is concerned. There is a significant 
development from the simple ice-sheet profile models of 
Vialov (1958), Haefeli (1961), and Weertman (1961) to the 
flow-line models of Hooke and others (1979), Morland and 
Johnson (1980), Hutter (1983), Paterson and Waddington 
(1984), and Reeh and others (1985). 
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Such time-independent models have contributed a lot to 
our understanding of ice-sheet dynamics. A strong argument 
in their favour is that they do not necessarily pre-suppose 
the ice mass is in a steady state. This is due to the fact 
that , since inertia does not play any significant role in 
ice-sheet dynamics, the velocity and strain-rate fields will 
respond immediately to changing stress configurations caused 
by changes in: e.g. ice thickness, surface slope, or basal 
conditions. Therefore, even in the case of an ice sheet 
which is far from being in a steady state, the velocity and 
strain-rate fields reflect the actual ice-sheet geometry and 
ice-flow properties, and hence can in principle be predicted 
by time-independent modelling , assuming ice-sheet geometry 
and ice-flow properties are known. 

Of course, only quantities that depend solely on the 
present state of the ice sheet can be determined by this 
kind of modelling. To calculate quantttles such as 
layer-thickness and age profiles, knowledge of the strain 
history of the ice sheet is required as far back in time as 
the profiles are needed and, therefore, in principle, requires 
modelling including the time dimension . As far as such 
quantities are concerned , time-independent (steady-state) 
modelling should rather be considered a means of establish­
ing references to which observations can be compared in 
order to evaluate to what extent "irregularities" in the data 
are due to temporal variations. 

Recent developments in ice-sheet flow-line modelling 
seem to follow two different lines: 

I. One approach is the "mathematical" approach, repre­
sented by the work of, for example, Morland and Johnson 
(1980), and Hutter (1983), which is based on the rational 
approximation schemes used in non-Newtonian fluid 
dynamics. Even though this approach has led to a better 
understanding of the approximations behind various ice-flow 
models and also points to a rational manner of improving 
the models, several aspects known to have a major influence 
on ice-sheet dynamics are disregarded. Therefore, in their 
present state of development, the mathematical models, 
however useful they may be for other reasons and in spite 
of mathematical perfection, do not yet provide "realistic" 
solutions to which specific flow-line data can be profitably 
compared. 

2. The other line of development in flow-line modelling 
applies finite-element methods (e.g. Hooke and others, 1979; 
Paterson and Waddington, 1984; Fastook, 1985), which are 
particularly suited for treating differences in ice rheology, 
i.e. varying flow properties due to variations in, for 
example, temperature, ice fabric , ice-crystal size, and 
impurity content. The finite-element models, therefore, have 
the potential of producing "realistic" solutions and have in 
fact been successfully applied to explain observed ice-sheet 
flow-line data (e.g. Hooke and others, 1979). 

The flow-line model to be presented here is an 
alternative to the finite-element models . It is flexible with 
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respect to varying conditions along the flow line, in 
particular to varying flow properties of the ice. It is based 
on the fact that, with certain assumptions to be specified 
later, the integrations of the flow equations horizontally (to 
determine the surface-elevation profile) and vertically (to 
determine the velocity, strain-rate, and stress profiles) are 
coupled through a velocity-profile parameter only, which 
varies along the flow line, but which can be determined at 
any location along the flow line from the depth distribu­
tions of ice temperature, shear stress, normal-stress devia­
tors, and ice-flow-law parameter. No attempt has been 
made to apply the approximation schemes of the "mathem­
atical" approach. However, the velocity and stress solutions 
produced by the model can be checked by substituting the 
solutions into the flow equations. As long as ice-thickness 
gradients are moderate, the residuals turn out to be small 
(see section 3.4 for discussion). For larger ice-thickness 
gradients, the solution can be used as the intial step in an 
iteration scheme (see section 3.4). 

2. DESCRIPTION OF FLOW-LINE MODEL 

The model is developed for calculating the velocity, 
strain-rate, and stress fields in an ice sheet. It has two 
versions: (I) with given surface- and base-elevation profiles, 
estimates of the flow-law parameters n and A can be 
obtained as well; (2) with given base-elevation profile, ice 
thickness at the divide (dome), and flow-law parameters, 
the surface-elevation profile can also be calculated. The 
model is essentially a generalization of Nye's simple uniform 
strain-rate and extending/ compressing glacier-flow model 
(Nye, 1957); all quantities, however, are allowed to vary in 
the direction of the flow line . Normal strain-rates may also 
vary with depth, and the flow-law parameter may vary 
along the flow line and with depth , depending on the 
temperature field (assumed to be known) and a possible 
basal layer of soft ice. All these generalizations, however, 
are introduced at the expense of exact satisfaction of the 
flow equations; the equation of continuity is strictly 
satisfied. However, the stress-equilibrium equations and the 
compatibility conditions are only approximately satisfied. In 
particular, these equations may be violated close to the base 
of the ice sheet at places where the ice-thickness gradient 
is significant and at a possible hard/ soft ice transition (see 
section 3.4). 

The model applies the generalized ice-flow law 

(I) 

Here , E ij' a' jj are strain-rate and stress-deviator 
components, T e IS effective shear stress defined by T e 2 = 
to' ij a' ij' F(T) is a function of temperature, and Ar and n 
are constants. E is the enhancement factor for the 
deformation rate of soft ice relative to hard ice (see section 
3.5). 

Divergence/ convergence of the flow is taken into 
account both in the calculation of the variation of ice flux 
along the flow line and by considering the contribution of 
the transverse normal-stress deviator to the effective shear 
stress. This means that the model can also be used to 
describe the slow flow along divides (ridges) with small 
surface slopes (Reeh and Paterson, 1988). The following 
capabilities of the model should be emphasized: it takes into 
account the influence of the depth variatIOns of 
temperature, effective shear stress, and flow-law parameter 
A on the depth profiles of velocities and strain-rates, and 
on the surface profile of the ice sheet, through a coupling 
between the surface-profile equation and the equations that 
determine the depth variations of velocities, strain-rates, and 
stresses. It is flexible with respect to varying conditions 
along the flow line, in particular, to varying flow properties 
of the ice . Furthermore, it is possible to introduce into the 
model a calculation of the temperature field synchronously 
with the velocity- and stress-field calculations, starting from 
the divide and moving step-by-step along the flow line. 
This facility has not yet been implemented. 

Reeh: Flow-line model [or all ice she 

2.1. Model input 
I. Base elevations. 
2. Mass- balance distribution along the flow line . 
3. Convergence/ divergence conditions along the flow line. 
4. Temperature field in a vertical section along the flow 

line. 
5. Depth along the flow line of the Holocene/ Wisconsinan 

transition (transition from hard to soft ice). 
6. Enhancement factor of soft ice relative to hard ice. 
7. Function F(T) for the temperature dependence of the 

flow-law parameter. 
For T ~ 263.2 K, F(T) is supposed to vary according 
to the Arrhenius equation with a constant value of the 
activation energy QT = 60000 J / mo!. For 
263.2 < T ~ 273.2 K, a similar relation is applied, 
however, with a value of the activation energy that 
increases linearly with T from 60000 J/ mol to 120000 
J/ mo!. Hence 

F(T) = AT/ Ar = exp{(QT - Qr)/ RT_10 

- QT/ RT + Qr/ RTrl. (2) 

Here, AT and Ar are flow-law parameter values 
referring to temperatures T (the actual ice 
temperature) and Tr (a reference temperature) , 
respectively. QT and Q r are activation energies for 
creep corresponding to temperatures T and T r. 
T_ 10 = 263.2 K . QT is calculated from the expression: 

QT 60000 J/ mol for T ~ 263 .2 K , 

QT 60000 {I + 0.1 (T - 263 .2») J/ mol for 
263 .2 K < T ~ 273.2 K, 

R 8.31 J/ moljK is the gas constant. 

8. Either (a) surface-elevation profile or (b) ice thickness 
at the divide and parameters Ar and n of the ice-flow 
law Ee = EArF(T)Te

n , where [e' Te are the effective 
strain-rate and the effective shear stress. 

2.2. Model output 
I. Either (a) flow-law parameters nand Ap or (b) 

surface-elevation profile. 
2. Velocity fields (u and w as functions of x and z) . 

Here, the x-axis is horizontal, pointing down the flow 
line, the z-axis is vertical, positive upward, and u, IV 

are the x- and z-components of velocity (see Fig. 
I). 

3. Strain-rate fields (distribution with x and z of 
longitudinal , tranverse, and vertical strain-rates , and 
shear strain-rates i: xz in a vertical plane). 

4. Stress fields (normal stress deviators, and shear stresses 
T xz in a vertical plane). 

5. Steady-state particle paths in the vertical section along 
the flow line and travel times. 

6. Steady-state age and annual layer-thickness profiles at 
any location along the flow line. 

2.3 Assumptions 
I. Flow lines and surface-elevation contours are 

orthogona!. 
2. The direction of the horizontal flow vector does not 

change with depth. 
3. The shape of the velocity-depth profile varies only 

slowly with x. 
4. The gradient of the longitudinal stress deviator is 

neglected so that T xz is given by the standard formula 
(see section 3.4). All three normal stress deviators, 
however, are taken into account as regards their 
contributions to the effective shear stress. 

5. Horizontal shear (between the flow line and its 
neighbours) is neglected. 

Assumptions (3) and (4), which are closely related, impose 
certain restrictions as regards the roughness of the bed 
topography that can be handled by the model (e.g . Budd, 
1970; Hutter, 1981). This problem will be further discussed 
in section 3.4 
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Fig . 1. a. Shows horizontal. curvilinear coordinate axes x 
and y along flow lines and surface-elevation contours. 
respectively. Rand r are radii of curvature of the 
elevation contour and the flow line at their intersection . b. 
Shows a vertical section along the flow line. c. Shows 
transformed vertical section along the flow line (see text 
for details ). 

With these assumptions, the integrations in the x­
direction (to determine the surface-elevation profile in the 
case of given nand Ar) and in the z-direction (to 
determine the velocity, strain-rate, and stress profiles) are 
coupled through a velocity-profile parameter only, which 
varies with x and which can be determined at each x from 
the depth distributions of the temperature, the depth 
distributions of the shear stress and normal stress deviators, 
the enhancement factor, and the thickness of a possible soft 
basal ice layer. Starting from the divide (dome), the cal­
culations can therefore be performed by integrating alter­
nately in the vertical and horizontal directions. 

If the surface elevations are used as input, the model 
will calculate n and the distribution of Ar along the flow 
line. Experience shows that the Ar distribution calculated in 
this way displays considerable short-distance variations. 
These, however, can be eliminated by moderate changes in 
the basal shear-stress distribution, accomplished, for 
example, by changing the surface-slope distribution slightly, 
without violating the surface-input data. This suggests that 
the calculated Ar variation is not real; in fact, one would 
not expect such a variation. Therefore, a better procedure is 
to choose a constant value of Ap calculate the surface 
profile, compare this to the observed profile, and then 
change Ar until a reasonable fit is obtained. The calculated 
profiles appear to be rather sensitive to changes in Ap so 
that the modelling gives a specific value for it. 

3. FLOW EQUATIONS 

3.1. Coordinate system 
A curvilinear, left-handed coordinate system is applied , 

with a horizontal, curved x-axis following the flow line and 
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oriented in the direction of flow, a horizontal y-axis 
transverse to the flow line along an elevation contour, and 
a vertical z-axis, posItIve upwards (see Fig. I). The 
directions of the x- and y-axes vary along the flow line, as 
indicated by the local unit vectors shown in the map of 
Figure I a. The radii of curvature of the surface-elevation 
contours and the flow lines at their intersection are denoted 
Rand r, respectively. Rand r are considered positive if a 
movement in the direction of the y-axis, respectively the x­
axis, produces an anti-clockwise rotation, when viewed from 
the respective centers of curvature. 

Velocity components in the x- and z-directions are 
denoted u and w, respectively. Due to the definition of the 
flow line, and assumption (2) in section 2.3, the y ­
component of the velocity is zero. However, in general, the 
transverse strain-rate E '# O. 

The upper and fower boundary surfaces of the ice 
mass are denoted S(x,Y) and B(x,y), respectively, while 
H(x,Y) = S(x,y) - B(x,y) denotes ice thickness (see 
Fig. Ib). 

3.2. M ass conservation (continuity equations) 
Local mass conservation is expressed as 

E'X + E y + E z = O. 

In the coordinate system of Figure I, the normal strain-rate 
components are (Jaeger, 1969, p . 45) 

Ex = au/ ax + vi r, Ey = av/ ay + u/ R, E Z = aw/ az 

where rand R are the radii of curvature of the flow lines 
and the surface-elevation contours at their points of inter­
section (see Fig. I a) . Since v = 0, these expressions reduce 
to 

EX = au/ ax, Ey = u/ R, EZ = aw/ az 

and the local mass-conservation equation may be re-written 

au/ ax + u/ R + aw/ az = O. (3) 

s 
An equation for the ice-volume flux q J udz is deter-

B 

mined by integrating this equation vertically: 

dq/ dx + q/ R = as + aB - as/ at (4) 

where as and aB are net mass balances (positive for 
accumulation, negative for ablation) at the ice-sheet surface 
and base, respectively, and as/ at is the rate of change of 
surface elevation. For Equations (3) and (4) to hold, the 
ice-sheet material must be assumed to be incompressible. In 
consequence, ice-equivalent thicknesses are used in the 
model. 

It is convenient to define the "flux-effective" mass 
balance as 

a = as + aB - as/ at . 

If steady state is assumed, as/ at = 0, and a = as + aB is 
simply the net mass balance. 

The distribution along the flow line of R, which can 
be read from a map of surface-elevation contours, 
determines the convergence/ divergence conditions along the 
flow line. With a and R given, q may be obtained from 
Equation (4) at any point along the flow line by standard 
numerical- integration techniques. 

3.3. Velocity and strain-rate components 

Horizontal velocity 
Assumption (3) in section 2.3 allows the horizontal 

velocity component u to be written: 

(5) 
s 

where um J udz/ H is the depth-averaged velocity, and 

B 
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where p is ice density and g is acceleration due to gravity. 
An approximate solution to these equations is given by 

Ox = -pgH(I - z) + 60, (13 ) 

0y = -pgH(I - z) + [(I + 2a) / (2 + a»)6a, ( 14) 

Oz = -pgH(I - z), (15) 

T xz = -T s(l - z) ( 16) 

where 60 = Ox - 0z ' a = Ey/ E'X is the ratio between the 
transverse and longitudinal strain-rates, and 
T s = -pgHaS/ ax is basal shear stress. The second member 
of the expression for 0y is deduced by means of the 
stress-strain-rate relations of section 3.5 and the local 
continuity equation given in section 3.2 . 

The solution given by Equations (13)-(16) is dependent 
on the following conditions to be fulfilled: 

laTXz/axl « pg, 10/1 « pgH, 

« pglas/ ax l · 

and I allo/ ax I « 

The first of these conditions is equivalent to requiring 
(as/ ax)2 « I and Ha2S/ ax2 « I, and is satisfied to a 
very good approximation for most ice-sheet profiles. Also, 
the second condition is generally very well satisfied. The 
third condition , however, which is equivalent to requiri ng 
the normal stresses to be weak function s of x is a more 
restrictive condition. There are different ways of dealing 
with the normal stress-gradient term. Estimates can be made 
for the minimum smoothing distance for ice thicknesses that 
will allow the gradient term to be neglected (Budd, 1970). 
The gradient term can be accounted for by harmonic 
perturbation theory (e.g. Hutter , 1983; Reeh and others, 
1985) or by applying other rational approximation schemes 
for idealized cases (e.g . McMeeking and Johnso n, 1986). In 
the present model the gradient terms are a priori neg lected . 
Therefore, when the stresses have been calculated, they 
should be checked by insertion in the stress-g radient 
condition, and the quality of the solution obtained can then 
be evaluated as to how well this condition is satisfied . If 
the agreement is not satisfactory, the x-gradient of Ox may 
be calculated from the solution, and a first correction to 
the vertical shear-stress distribution can be found by 
integrating this gradient vertically. Also, a first correction to 
the vertical normal stress can be found by vertical integra­
tion of the x-gradient of the shear stress . Corrected velocity 
and strain-rate distributions compatible with the corrected 
stresses can then be found by a procedure similar to that 
described in section 3.6. This iteration process may be 
repeated until the field equations are satisfied to a desired 
accuracy. 

3.5 . Stress- strain-rate r elations 
The relations between strain-rates and stresses, as given 

by the ice-flow law in Equation (I) , are: 

EX ArB(z)Ten-Iox' , 

• A B(-) n-l • 
Ey = r z Te 0y ' 

Ez = ArB(z)Ten- Ioz', 

EXZ B("')T n- IT Ar ~ e xz 

( 17) 

( 18) 

where B(z) = E(z)F(T(z» accounts for the depth variatIOn 
of the flow-law parameter due to temperature variations 
(F(T), see Equation (2» and possible enhanced flow (E(z» . 
The E('i) function used in the model is a step function 
jumping from the value E below the level zE to I above 
this level (see Fig. 2). This E-variation is introduced to 
model the different flow properties of soft ice of 
Wisconsinan origin and hard ice of Holocene origin 
(Paterson, 1977; Gundestrup and Hansen, 1984; Dahl-Jensen, 
1985), and thus zE represents the level of the Holocene/ 
Wisconsinan transition, i.e. the 10700 year age horizon 
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Fig . 2. Quantities affecting the depth distribution of ice-flow 
properties. a. Temperature distribution . b. Functioll 
F( T(z)) (see Equation (2)). c. Enhancement faclOr E(z). 
d . B(z) = E(z )F( T(z)). 

(Hammer and others, 1986). Softening of the ice due to the 
gradual development of a fabric, favorable for shear motion, 
could also be included in the E factor which in that case 
should be allowed to vary also in the x-direction. Since T 
and z E are allowed to vary with x, so will B. However, it 
is assumed that the aB/ ax terms are negligible . 

The normal stress deviators are obtained by means of 
Equations (13), (14), and (15): 

Ox ' = l(20x - 0y - oz) = 60/ (2 + a), (19) 

Oy' = l(20y - Ox - oz) = 6aa/ (2 + a) , 

oz ' = l(20z - Ox - Oy) = 6a(1 + a)/ (2 + a) 

where 60 and a are explained in connection with Equations 
(13)-( 16). The effective shear stress is determined by the 
expression 

where 
~ = (I 

T 2 
e T xz2 + (H6a)2 

T xz if given 
+ a + a2

) /p + tal, 
by Equation 

(20) 

(16) and 

3.6. Differential equations for the surface - elevation profile 
and the horizontal velocity-depth profile 

Combining Equations (16), (18), and (20) yie lds 

au/ az = 2A r Bx (Z)Ts(X)n«(I - z)2 + 

+ [H x60x(Z )/ T s(x)]2}(n-I)/ 2(1 - z) (21) 

where the subscript x on B, C and 60 indicates their weak 
x-dependence. Another expression for au/ az is obtained 
by means of Equation (11): 

au/ az = [um(x)/ H(x») ~. (z) . 

The right-hand member of this equation is the product of 
an x-dependent term um(x) / H(x) and a z-dependent term 
~. (z) . Similarly, Equation (21) may be separated into an x­
dependent term 2ArTs(x)n and a term that is mainly z­
dependent, i.e. 

Bx(z)(1 - z)2 + [Hx60x(Z)/Ts (X)]2}(n-I )(1 z). 

Since Tb = -pgHaS/ ax, this suggests a separation of 
the variables, writing 

um(x) / H(x) = 2C xAr(-pgH(x)aS/ ax)n (22) 

which is the differential equation that determines the 
surface-elevation profile of the ice sheet, and 

~. (z) = (I / C x)Bx(z){( 1 - Z)2 + 

+ [H x6ax(Z)/ T s(x)]2}(n-I)/2(1 - z) (23) 
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1 = (z - B(x,y» / H(x,y) (6) 

is a dimensionless vertical coordinate, standardized to the 
range 0-1 . 4l(1), which in the general case varies with x 
and y, is the shape function of the horizontal velocity/ depth 

1 

profile. It is subject to the condition f 4l(1)d1 = I. Further­
o 

more, if the ice sheet does not slide over the base, 
4l(0) = O. 

By means of the coordinate transformation given in 
Equation (6), the vertical section along the flow line 
bounded by the irregularly shaped bed and surface curves 
z = B(x,O) and z = S(x,O) is mapped on to the parallel­
sided strip bounded by the straight lines 'Z = 0 and 1 = I 
(see Fig. lc). This transformation, which has been applied 
by, for example, Philberth and Federer (1971) and Jenssen 
(1982), implies significant simplifications in the determina­
tion of particle paths in a vertical section along the flow 
line (see section 4), and also simplifies problems involving 
the heat-transport equation (Jenssen, 1982). 

The change of 41 along the flow line is given by 
dq,/ dx = Bq,/ Bx + Bq,/ B'Z d'Z / dx. In accordance with 
assumption (3) of section 2.3, Bq,/ Bx is assumed to be 
negligible. This quasi-similarity hypothesis for the shape of 
the horizontal velocity profile, however, does not imply that 
dq,/ dx can be neglected; by means of Equation (6) , we get 

d'Z / dx = --(BB/ Bx + 'ZBH/ Bx) / H (7) 

which (unless Band H do not vary with x, i.e. a constant­
thickness ice sheet on a horizontal bed, or Bq,/ Oz 0 (i.e. 
uniform velocity/ depth distribution) contributes a non­
negligible term to dq,/ dx. 

Normal strain-rates 
By differentiating Equation (5) with respect to x and 

applying Equation (7), we get 

Ex = Bu/ Bx = Bum/ Bx4l('Z) - (um/ H)q,'('Z)(BB/ Bx + 'Z BH/ Bx) 

where 41' ('Z) denotes dq,/ d'Z. Furthermore, by means of 
Equation (4), we obtain Bum/ Bx = a/ H - (um/ H)BH/ Bx 
um/ R, and hence the longitudinal strain-rate becomes 

EX = (a/ H - (um / H)BH/ Bx - um/ R)4l('Z) - (um / H)(BB/ Bx + 

+ 'ZBH/ Bx)cP' ('Z). (8) 

Since E Y u/ R, the transverse strain-rate is simply 

E Y = (um/ R)4l('Z). (9) 

The vertical strain-rate is obtained by means of Equations 
(3), (8), and (9): 

EZ = - (a / H - (um /H)BH/ Bx)4l('Z) + (um / H)(BB/ Bx + 

+ 'ZBH/ BxW (1 ). (10) 

It appears from Equations (8) and (J 0) that the longi­
tudinal and vertical strain-rates are composed of a cP-term 
and a 41' -term. The q,-term is distributed with depth in the 
same manner as the horizontal velocity, while the cP' -term 
is twice the product of the shear strain-rate (see Equation 
(11)) and a slope term that varies linearly with depth 
between surface slope ('Z = I) and bed slope (1 = 0). Where 
the horizontal velocity changes slowly with depth, i.e. where 
cP' - 0, which is the case in the upper part of an ice 
sheet, only the q,-term contributes significantly to the 
strain-rates. However, near the base, where the shear rate is 
generally large (unless ice motion is mainly due to basal 
sliding) and the slope term approaches the bed slope, which 
may also be large, the 41' -term becomes important, and may 
even dominate the q,-term. 

Shear strain-rates 
In the coordinate system shown in Figure I, the shear 

Reeh: Flow-lille model/or all ice sheet 

strain-rates become 

and 

EXY = (I / 2)(Bu/ By - vi R + av/ Bx - u/ r), 

E X Z = (I / 2)(Bu/ Bz + Bw/ ax), 

Eyz (I / 2)(av/ Bz + Bw/ ay). 

Since v = 0 and aw/ ax and Bw/ ay can be shown to be 
second-order terms in the surface and base gradients, and 
therefore are neglected, the shear strain-rates become 

EXY = (l / 2)(Bu/ ay - u/ r), E xz = (1 / 2)au/ Bz , and Eyz = o. 

For flow along a divide between drainage bas ins and 
along the center line of a drainage basin, Bu/ ay is zero , 
since the xy- distribution of the horizontal velocity attains a 
local minimum and a local maximum along these lines . 
Moreover, if the divide or center line is a straight line or 
displays a moderate curvature only, u/ r can also be 
neglected, and the horizontal shear rate E xy vanishes. In all 
other cases, horizontal shear may be important. The 
importance of horizontal shear in ice-sheet flow will be 
discussed elsewhere. Here, horizontal shear will be neglected 
as stated in assumption (5) of section 2.3. Therefore, the 
only non-vanishing shear strain-rate is i: X Z ' which by 
differentiating Equation (5) is obtained as 

EXZ = (J / 2)(um/ H)cP' (1 ). (11 ) 

Vertical velocity 
Integration of Equation (10) with respect to z yields 

the vertical velocity--depth distribution 

w = -Ql/I(}) + um 4l('Z)(BB/ ax + 1BH/ Bx) + aB (12) 

'Z 
where I/I{'Z) f 4l('Z)d1, and aB is the rate of melting or 

o 

freeze-on of ice at the ice-sheet base. Notice that a = as + 
aB - BS / Bt includes the mass balances at both the surface 
and the base of the ice sheet, as well as the time rate of 
change of the surface elevation. 

The profile function I/I{'Z) is subject to the conditions 
1/1(0) = 0 and 1/1( I) = I. 

Equation (12) shows that the vertical velocity is 
composed of a IP term and a 41 term. The former accounts 
for the vertical transport of material within the ice sheet, 
whereas the latter is related to the flow caused by 
ice-thickness changes. The latter term may be interpreted as 
the product of the horizontal velocity and the slope term 
discussed in connection with the normal strain-rates, and 
may dominate the former term near the base of the ice 
sheet if the basal gradient is large. 

Up till now, the theory has been purely kinematic. It 
has been based on the quasi-similarity hypothesis for the 
horizontal velocity profiles and on the principle of mass 
conservation, and may be considered as an extension of the 
kinematic ice-sheet models of Dansgaard and Johnsen (1969) 
and Philberth and Federer (1971) to the case of non­
uniform distributions of ice thickness and accumulation rate 
along the flow line; for any prescribed shape function 4l('Z) 
of the horizontal velocity profile, the velocity and strain­
rate fields can be determined by the above equations. In 
the present theory, the velocity-profile function is 
determined by means of the force-balance equation and the 
flow law of ice, as shown in the following sections. 

3.4 . Stress-equilibrium equations 
The form of the stress-equilibrium equations valid in 

the xyz-coordinate system shown in Figure will be 
discussed elsewhere. It can be shown that for slightly 
curved flow lines and along symmetric ridges and center 
lines of drainage basins, the equilibrium equations reduce to 
those for two-dimensional flow. Moreover, since transverse 
shear in vertical planes is neglected (assumption (5) in 
section 2.3), the equations become: 

Bux/ Bx + Br xz/ az = 0, BUy/ By = 0, and Br xz / Bx + 

+ Buz/ Oz = pg 
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which is the differential equation for the profile function cP 
that determines the depth distributions of velocity 
components and strain-rates. 

The parameter ex that occurs in both of Equations 
(22) and (23) is determined by means of the condition IP(I) 

1 

J cP(z)dz = I : 
o 

lZ 
ex J J I3x(z)t l - z)2 + [H x t.ax (z) / TB(X)]2}tn-l) / 2 

o 0 
(I - z)dzdz / [ I - cP(0)]. (24) 

Since 13 and ~t.a/ T B are weakly dependent on x, so is e as 
indicated by the subscript x. The ex parameter is the link 
between the surface-profile equation and the shape-function 
equation and, thus, being a function of x, communicates the 
influence of velocity-profile changes to the surface-profile 
equation. 

It appears from Equation (24) that the value of ex 
depends on the depth distribution of the flow-law parameter 
given by I3x(Z) = £(z)F(T(z», on the ratio of the longitudi­
nal stress deviator to the basal shear stress, and on the 
degree of basal sliding. Consequently, any change in the 
£-z distribution (for example, due to a change in the 
relative depth to the Holocene/ Wisconsinan transition), any 
change in the temperature-depth distribution, any change in 
the ratio of longitudinal stress to basal shear stress, and any 
change in the ratio of sliding velocity to average velocity, 
will change the value of ex' Even though in general the 
gradient BC x / Bx is small, nevertheless large changes in ex 
are to be expected along an extended flow line. This has 
consequences for the established method for deriving 
ice-flow-law parameters from ice-sheet flow-line studies 
based on log-log plots of um(x)/ H(x) against T B(x) (e.g. 
Budd and Smith, 1981; Hamley and others, 1985). As indi­
cated by Equation (22), proper derivation of flow-law 
parameters by this method must consider the magnitude and 
the variation of ex along the flow-line section in question. 
This problem and other consequences of the ex variation 
will be discussed in more detail elsewhere. 

In the discussion up to now it has been tacitly assumed 
that t.a was known as a function of Z. In fact, this 
function remains to be determined. This is done by 
combining Equations (8), (17) , (19), and (20) to obtain 

0r13x(Z)TBlI((I - z)2 + [HxMx(Z)/ TB12}(1I-1)/2/ (2 + a)} 

t.ax(Z)/ TB = (a / H - (um / H)BH/ Bx - um / R)cP(z) 

- (um / H)(BB/ Bx + zBH/ Bx)cP' (z). (25) 

For given x, the depth distributions of t.a x and cP can be 
obtained from Equations (23) and (25) by combined 
numerical integration in the vertical direction starting at the 
ice-sheet base, and iteration at each step of integration to 
determine t.a and a at the corrresponding z-Ievel. Next, 
with ex calculated from Equation (24), the integration of 
the surface-profile Equation (22) in the horizontal direction 
can be carried on one step further. In this manner, the 
depth distributions of velocity components, strain-rates, and 
stresses, and the surface-elevation profile are determined by 
integrating alternately in the vertical and horizontal 
directions. 

4. PARTICLE PATHS AND TRAVEL TIMES 

With the velocity components given by Equations (5) 
and (12), the particle paths in the vertical section along the 
flow line are determined by the equations 

(26) 
and 

dz / dt -aoJi(z) + um(x)cP(z)(BB/ Bx + zBH/ Bx) + aB' 
(27) 

As mentioned in the introduction, the expressions for 
velocity components, strain-rates, and stresses do not pre-

Reeh: FlolV-line model for an ice sheel 

suppose a steady-state assumption. However, for the calcu­
lation of particle paths and travel times, steady state must 
be assumed. It appears that Equation (27) can be replaced 
by a simpler equation in terms of the transformed 
coordinate Z. The time derivative of z may be expanded as 
follows: 

dz/dl = dz/dz dz / dl + dz / dx dx/ dl . 

Using the identities dz / dz = H- 1, dz/dt = w, and 
dx/ dl u, and substituting for dz / dx by means of 
Equation (7), the above equation may be rewritten 

dz / dt = w/H - (u/ H)(BB/ Bx + zBH/ Bx). 

Substituting for u and w by means of Equations (5) and 
(12), respectively, this equation is simplified to 

dz / dt - [a(x) / H(x») oJi(z) + aB(x)/ H(x). (28) 

Equations (26) and (28) can be solved for x and z as 
functions of time I, by standard numerical integration 
techniques, to determine travel times and particle paths in 
the transformed xz -coordinate system. In the actual x z ­
coordinate system, travel times are unchanged, while the 
particle paths are found by changing z into z by means of 
the transformation z = B(x) + zH(x). 

5. THE SOLUTION FOR A SYMMETRICAL DOME 

At a dome with the xz- and yz-planes as symmetry 
planes, special conditions prevail, since in that case R = 0, 
urn = 0, and TB = O. Generally, the expressions for velocity 
components, strain-rates, and stresses are considerably 
simplified. The expressions for velocities, strain-rates, and 
stresses can be found by studying the expressions deduced 
in section 3 at the limit of vanishing R, urn' and TB' The 
components of velocilY (Equations (5) and (12» become 

u = 0, w = -aoJi(z) + aB' 

The expressions for the slrain-rales are also considerably 
simplified. Obviously, at the dome i: xz = O. Furthermore, 
from Equations (8), (9), and (10), we get 

i: x = (a/ H)cP(z)/ ( I + a), E y = (a / H)cP(z)a/ (I + a), and 

E z -(a/ H)cP(z). 

It is worth notlcmg that at the dome the depth distribu­
tions of all normal strain-rates have the same shape, 
determined by the profile function cP(z). Moreover, an 
explicit expression can be found for this profile function: in 
the limit of T B ~ 0, Equations (23) and (24) yield 

1 Z 
where ex J J l3(z)[Ht.a(z)t-1(l - z)dzdz. 

o 0 

Also, for TB ~ 0, urn ~ 0, and R ~ 0, Equation (25) is 
simplified to 

This equation can be explicitly solved for t.a(z): 

t.a(z) = (a/ H)(t01- n cP(z)(2 + a)/ (A r l3(z)(1 + a»}l/Il 
(30) 

Substituting this solution into Equation (29) yields 

(31 ) 

1 z 
where ex' = J J l3(z)1/1IcP(z)(1I-1)/Il(l - z)dzdz. 

o 0 

The solution of the differential Equation (31) is 
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Joumal 0/ Claciology 

1 
4>(1) U 13(1)I/n(l (32) 

o 

For isothermal, non-enhanced ice, 13(1) = I. Applying this 13 
distribution and taking n = 3, Equation (32) yields 

~13(1 3 3 -2 I 
4>(1) = -1 + - z - 1 3 ) 

2 2 4 8 
(33) 

from which 4>(1) = 2.1875 and 4>(0.5) = 0.923. Hence, at the 
dome of an isothermal ice sheet, the surface strain-rates are 
approximately 2.2 times their depth-averaged values. Half­
way down the ice sheet, the strain-rates are 92% their 
average values, as illustrated in Figure 3a. The strain-rate 
distribution shown in this figure deviates considerably from 
the linear distribution suggested by Raymond (1983) as an 
approximation to the strain-rate variation at the dome. 
Raymond (1983) pointed out that a linear distribution does 
not fit the boundary conditions of vanishing shear stress 
(shear strain) at the base and surface of the ice sheet, i.e. 
rP' (0) = 0 and rP' (I) = 0, and that the true distribution 
must be concave-up near the surface and concave-down 
near the base, and thus have an inflection as indicated by 
Raymond's precise profile as well as by the present analysis. 
However, even though there is a qualitative agreement 
between the profile calculated by Raymond and that of the 
present analysis, there appears to be a quantitative 
difference. 

One might think of explaining the difference as being 
due to break-down of the basic assumptions of the present 
analysis, making this a poor approximation at the divide. 
However, a more detailed analysis to be given elsewhere 
shows that this is not the case. Even the gradient of the 
longitudinal stress deviator vanishes at the divide for reasons 
of symmetry. The normal-stress distributions are slightly 
changed by a term that depends on ice thickness and the 
curvature of the ice-sheet surface in a vertical plane, but 
strain-rates are essentially unchanged. Raymond (personal 
communication) has suggested that the spatial resolution in 
his finite-element model might have smeared out some of 
the real spatial variatIOns. This might explain the 
quantitative difference between his calculated profile and 
the profile of the present analysis. 

The depth profile of the vertical velocity 1/1(1) is found 
by integrating Equation (33): 

35 6 I 
1/1(1) - 14(1 - - 1 + t12 - -13 ) (34) 

8 5 14 

which is shown in Figure 3b. It is evident from this figure 
that there is a relatively thick layer of almost stagnant ice 
at the ice-sheet base below a symmetric isothermal dome. 

If the dome is supposed to be in a steady state, the 
annual layer thickness varies with depth in the same manner 
as the vertical velocity , and so Figure 3b also represents the 
annual layer-thickness profile. 

The age-depth profile at the dome is obtained from 
the equation 

dz / dt = w. 

Assuming stready state and zero mass balance at the ice­
sheet base (aB = 0), the time-scale therefore becomes 

1 

H/ asJ rJ!(zr1dz. 

1 

This time-scale is plotted in Figure 4 together with the 
Raymond (1983) time-scale and the classical logarithmic Nye 
(1963) time-scale, which assumes constant vertical strain­
rate. The three time-scales show distinctly different 
assymptotic behaviour for 1 .... 0, i.e. 1 -3, Z-l, and In(1), 
respectively. This results in order-of-magnitude different age 
estimates for the deep ice when applying the different 
time-scales, the time-scale of this work predicting the oldest 
ages, and the Nye time-~cale the youngest ages. For 
example, using present-day central Greenland accumulation 
rate and ice thickness, the age of the ice 300 m above the 
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Fig. 3. Depth distribution 0/ strain-rates (a). and vertical 
velocity (b) at the dome 0/ a symmetrical. isothermal ice 
sheet consisting 0/ nOli-enhanced ice throughout. 

bottom is predicted as c. 1 000000, 100000, and 20000 
years by the three models. At a depth of 150 m above the 
bottom, the differences become even larger, i.e. 
c. 6500000, 200000, and 30000 years. The ages estimated 
by the time-scale of this work, are much too old (the 
Greenland ice sheet is supposed to be of Quaternary age, 
i.e. at most c. 2.5 Ma old). There are many reasons for the 
ages to be too old, since several factors tending to decrease 
the age of the deep ice have been neglected, e.g. the non­
uniform temperature-depth profile, enhanced flow of 
ice-age ice, and, what is probably the main reason, 
temporal variations of accumulation rate, ice temperature, 
ice thickness, and dome position . Also, the possibility of 
basal melting in shorter or longer periods during the 
glacial! interglacial cycles must be considered . A more 
detailed discussion of the influence of these factors on the 
time-scale at the dome will be given elsewhere. 

6. CONCLUSIONS 

A model study of the flow line from the dome of 
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Fig . 4. Age profile at the dome of a symmetrical, 
isothermal. steady-state ice sheet ( 1). The age profiles 
resulting from Raymond's (1983) linear strain-rate 
distribution (2), and Nye's (1963) uniform strain-rate 
distribution (3) are also shown for comparison . 

Devon Island Ice Cap along a divide (ridge), with low 
surface slope and through a bore-hole location off the 
ridge, shows good agreement between observations and the 
predicted surface-profile and strain-rate variations along the 
ridge. Also, the observed depth profiles of the horizontal 
and vertical velocities at the drill site are reasonably well 
predicted by the model. The details of this study are 
presented elsewhere (Reeh and Paterson, 1988). 

Moreover, there are several "spin-offs" from the model 
that seem to deserve more detailed investigation: 

I. The curvilinear coordinate system with horizontal axes 
along flow lines and surface-elevation contours, respectively , 
is very suitable for studying the dynamics of ice flow at 
domes displaying various degrees of divergence, ranging 
from the conditions prevailing at a circular dome (E yl t x = 
I) to those prevailing at a straight horizontal ice divide 
(tylE x = 0) and, similarly, for studying the dynamics of ice 
flow near a saddle point with negative E y/ E x ratios. 

2. Horizontal shear in ice-sheet flow can also be studied 
profitably by applying the curvilinear coordinate system. 

3. The model also provides explicit expressions for the 
depth distributions of the vertical velocity, the strain-rates, 
and stresses at the dome with due consideration of the 
temperature profile and possible enhanced flow . This opens 
up for study the annual-layer thickness and age profiles at 
the dome, and even considering the influence of time 
variations of ice temperature, ice thickness, accumulation 
rate, and enhancement factor on these profiles. 

4. The model indicates how to improve the established 
method of deriving ice-flow-Iaw parameters from flow-line 
data by considering the hitherto neglected influence of 
changing velocity-depth profiles along the flow line. 
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