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SMOOTHING SPLINE IN A
CONVEX CLOSED SET OF HILBERT SPACE

NATASHA DICHEVA

A characterisation of a smoothing spline is sought in a convex closed set C of Hilbert
space: min{a||Tz||y + ||.Aa; — z | | | ,z e C}, T and A are linear operators. A represen-
tation of the solution is obtained in the terms of the kernels of the above operators,
of the dual operators T*, A* and of the dual cone C°. A particular case is considered
when T is the differential operator and A is the operator-trace of a function.

Let X, Y, Z be Hilbert spaces with scalar products respectively (, ) x , (, )Y, (, )z- We
are given linear bounded operators

A : X -> Z, T:X->Y.

Consider the operator equation Ax = ZQ,ZQ 6 Z.

1. If A~1(ZQ) ^ 0, then a € X is called an interpolating spline, if the following
minimum is reached

(1) | | T a | £ = min \\Tx\\\.

2. If A~l(z0) = 0, we introduce a real parameter a >.O and construct a
quadratic functional

(2) 4>a(*) = <*\\Tx\\2
Y + \\Ax - zo|| |.

We say that a, € X is a smoothing spline, if

(3) <f>a(a,)=mm<f>a(x).
xex

Characterisations of the solutions of problems (1) and (3) are given in [5].

A certain shape of the interpolating or smoothing spline is required in many applied
problems. The characterisation of such conditions can be often described by a set C C X,
which is convex and closed.
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Chui, Deutsch and Ward give a characterisation of the solution of the problem for
an interpolating spline in a convex set of Hilbert space ([3, 4])

(4) min \\x
v ' Ax=z0, x<EC

|2

In [2] a particular case of monotonicity is considered for both interpolating and
smoothing splines. The characterisation is done from the point of view of a general
optimisation problem in the terms of the Frechet-derivative and the polar cone.

We shall consider here the problem of finding a smoothing spline in a convex closed
set of Hilbert space. That is, <r, is sought so that

(5) <f>a(a.) = min <j>a(x),
XfcCCA

where 4>a{x) is the functional in (2). This problem arises for example, if the data are
corrupted by noise and one does not require exact interpolation, but a special form of
spline is required.

A new linear operator L can be defined ([5]), which is acting on F = Y x Z. If
/ i = [j/ii zi], 2/i S Y, Zi € Z, f2 = [2/2, z2], y2 S Y, z2 e Z, we define a scalar product in
F b y

(/1, h)F = ([yi, Zi], [2/2, z2])F := a(yu y2)Y + (zuz2)z.

Let L be the linear bounded operator

L:X->F,Lx=[Tx,Ax],

and let a — [0Y, z0] be an element of F.

LEMMA 1 . <j>a(x) = \\Lx - a\\2
F, where a = [0y , z0].

P R O O F : By the definitions

{Lx -a,Lx- a)P = ([Tx, Ax] - [0Y, z0], [Tx, Ax] - [0Y, zo])F

= ([Tx, Ax - z0], [Tx, Ax - zo])F = a{Tx, Tx)Y + (Ax - z0, Ax - zo)z

Therefore <t>a{x) = (Lx - a,Lx - a)F = \\Lx — a\\2
F.

Then the problem (5) is equivalent to

(6) min | | / - a | | 2 ,
/en

where K = L(C) = {[y,z] € Y x Z : y = Tx,z = Ax,x 6 C}.
Denote the kernels of T and A respectively by

kerT = {x 6 X : Tx = 0Y}, kevA = {x e X : Ax = 0z}.
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LEMMA 2 . If T and A are linear bounded operators and k e r T n k e r A = {Ox}, then

L is a linear bounded continuous operator and kerL = { O x }

PROOF: L is a linear bounded operator, obviously. It follows it is continuous.

Let us show that ker L = {Ox}- If x € ker L, that is, Lx = OF, then Lx = [Tx, Ax]

= [0y,0z], therefore Tx = 0Y,Ax = 02, and x e ke rTn ker/I = Ox, or kerL = Ox-

The following lemma follows from the inverse operator theorem.

LEMMA 3 . If T and A are linear bounded operators, ke rTn ker A = Ox, and L(X)

is closed, then there exists L~l : L(X) C F —t X and L~l is a linear bounded continuous

operator, too.

HereL{X) = {[y,z] : y = Tx,z = Ax,x € X}.

We shall find conditions for closeness of L(X) to be closed.

LEMMA 4 . L(X) is closed if and only if ker T + ker A is closed.

PROOF: L(X) is closed if and only if L*{F) = T*{Y) + A*{Z) is closed in X, if and
only if ker Tx + ker AL is closed if and only if ker T + ker A is closed. D

LEMMA 5 . If C is a closed convex subset of X, kerT (~l ker A = {Ox}, and keiT
+ ker A is closed, then K = L(C) is a closed and convex subset of F.

PROOF: Let fuf2 € L(C),\X ^ 0, A2 ^ 0, Ax + A2 = 1. We shall show that
Ai/i + A2/2 € L(C),too. There exists unique x\ € C : f\ — Lxi, and x2 € C : / 2 = Lx2.

We have Ai/! + A2/2 = X\Lxi+X2Lx2 = L(AIXI + A2:E2) G L(C), because Ax:ri + A2:r2 € C.

Let's show, that L(C) is closed. If {/„} -> / , / „ € L(C), we shall show that /
€ L(C).

There exists unique xn S C : /„ = Lxn, Lxn —> f. Applying the inverse continuous
operator L"1, it follows L~1Lxn —»• L~l f = x.

So we have xn —)• x, but C is closed, therefore x e C. It means / = Lx G L(C). D

THEOREM 1 . If C is a convex closed subset of X, kerT n ker.4 = Ox and kerT
+ ker A is closed, then the problem (5) has t ie unique solution

a. = L-lPL{C){a),

where PL(C){O) denotes the orthogonal projection of a on L(C).

PROOF: A classical result ([5, Theorem 2.1.2]) shows, that there exist unique solu-
tion of the problem (6) / , e K, such that

| | / . | | | | / | |

The point / , € L(C), in which min \\f — a\\ is reached, is the orthogonal projection

of a on L(C), t ha t is, /» = Pnc)(fl)- But /« = La, for some a,, and L is converse, (in

according with Lemma 3 and 4), therefore the solution has the form

(7) a. = L
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D
Further we shall omit the brackets in L(C) and denote LC := L(C). Define the dual

operator A* of A by
(z,Ax) = (A*z,x)

for all z G Z, x G X.

We denote the dual cone of C by

It is easy to see, that

(8) / . = PLC{O) if and only if a - / . € (LC - f,)° = (LC)° n A^.

THEOREM 2 . Problem (5) has the unique solution a, if and only if

(9) - a T ' J V , + A*(z0 - Aat) 6 C°,

and

(10) #a(a.) = («b-^. .2b)-

PROOF: By (8), a - / , e (£C)° means, that

(a-ft,La) ^0,Va€C.

But /» G ̂ (C) , therefore there exist unique at such that /» = La, = [Tat,Aa*]. Then

(a - / . , La) = ([0y, ZQ] - [Tat, Aat], [Ta, Aa)) = ([-Tat, z0 - Aat], [Ta, Aa})

(11) = -a(Ta,, Ta) + {z0 - Aa,, Aa) < 0.

Therefore
(-aT*Ta,,a) + {A*{za - Aa,),a) ^ 0, a € C.

This means, that

-aT'Ta, + A'(z0 - Aa,) G C°,

and (9) has been proved.

Again from (8) a-f,e / ,x . It follows, that (a - / „ f , ) F = 0. But f, = (Ta,, Aa,),
so

([0y, 2b] - [r<r., i4<7.], [Ta,, Aa,}) = ([-Ta,, z0 - Aa,}, [Ta,, Aa,})

=-a\\Ta,\\2 + (z0 - Aa,, Aa,)

= -a | |7V, | | 2 - (Aa, - z0, Aa, - ZQ) - (Aa, - z0, z0)

= - $ a ( a » ) - (Aa, - z0, Z0) = 0.
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Therefore $a(a,) = (20 - Aa,,z0). Note that equality in (11) is reached only for the
solution a,. We obtain then equation (10), and the theorem has been proved. D

We shall look for the solution of problem (5) in a proper basis.

Let ki,k2,...,kN be linearly independent elements of X, and A : X -» Z = ZN.
The action of the operator A may be represented by

Aa= ((kuo),{k2,a),... ,(kN,o)).

Let K be the space of linear combinations of k\, k2,..., k^. The dual operator satisfies

The Hilbert space Y may be represented as a direct sum

Y=(TkeiA)®{TkerA)±.

For the solution a, £ X there exists y0 £ Tker^l, with y0 = Tx0 for some element
xQ € ker A, and there exists y 6 (TkerA)L, so that

(12) Ta.=yo + y = Txo + y.

The following equations can be proved easily.

LEMMA 6 .

(1) kerA = K±.

(2) {TKX)X = T*-l(H), where H = Kn (kerT)1.

(3) If ker T D ker A = 0x and dim ker T = q < 00, then

dim H = dim K - dim(ker T) = N - q.

(4) (T-^X*) = (h(x),G+(x - t))x, where h 6 (kerT)-1.

Here G+(x-t) is the Green's function with TG+(x — t) — St, and 6t(v) = v(t), v S X.

An algorithm for finding a basis in (Tker A)L follows if we use Lemma 6.

(1) A basis for H = K D (kerT) 1 is looked for

(2) If d , e2 , . . . , e, is a basis for kerT, then

N

0 = (hi, ek) = Y^ hij{kh ek), i = 1,2,..., N - q, k = 1, 2 , . . . , q.
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(3) ft = T-\hi),i = 1,2,. ..,N - q is a basis for T*~l{H) = {TKX)L

= (TkerA)-1.

(4) For every y G (Tker A)1- there exist Ai, A2,. •., A^_,, so that

A T - ,

Now from (12) we have the representation

(13) Tat=Tx0

Let's introduce the matrices

(14) H = (hij)izl:j_q, F = ( ( / i l / i ) ) £ ^ .
( 1 5 ) A = ( A i , A 2 , . . . , A j v _ , ) , r = ( r i , r 2 , . . . , r j v ) .

LEMMA 7 . For every y € (T ker / I ) 1 tiere exists r € ZN, so that

T*y = A*r, r = XH.

P R O O F : From the above there exist Ai, A2,. • •, XN_q, so that y = ^ Ai/j. Thus

^ = r* ( E x<f<) = E A'(T^-)= E A«^ = E A« E -̂*>
^2 X ] »fty% = E riki = A'r'r = (ri) r2' • • •'

Here
N-q

/

or, using a matrix form,

(16) r = XH. rj

Let us denote v = Aat = ((fci, at),..., (kN, o,)). There exists a relation between A
and v.

LEMMA 8 . XF = vHT.

P R O O F : We have in (13) To, = Tx0 + EAi/«- T h u s

/-i y\ (TrT f \ CVT f \ -X- I \ ^ i f f \ ^T T1* M J. ^ ^ \ ( f f \

But (xo,T*fj) = (xo,hj) - 0 because of x0 € ker A = Kx,hj e H c K. On the
other hand,

(18) (Ta*,fj) = (at,hj) = \ot,2_^hjikA = 2_^hji(ki,o*) = / yhjiVj.
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Comparing the right sides of (17) and (18), it follows

(19) XF = vHT. rj

LEMMA 9 . If e 1 , e 2 , . . . ) e , is a basis for k e r T and B — (&j,0j=i,2,'.'.",1v>
= {kj,ek). then rB = 0.

PROOF: From (2) and (1) of the algorithm above, it follows that

0 = ^2 Xi(hi, ejt) = ^2 Xi ( E hiiki'e*) = 5Z A*^>(fc>>e*) = XI rJ6*i> ̂  = 1,2,..., 9.

Therefore r B = 0. D

From the representation (13) of the solution and Lemma 7 it follows that there exist

£0 € ker A and r £ Z N , so that

T*TCT, = T*Tz0 + A*r.

The conditions (9) and (10) take the form

-aT'Txo + A*(-ar + z0 - v) G C°,

|| ( )

Let us remark

The following theorem is a consequence of Lemmas 7, 8 and 9.

THEOREM 3 . Tie solution an of the problem (5) may be represented in the form

Tam = Tx0 + Y^ Ai/i . *o S ker A,

if and only if XQ and X satisfy

-aT*Tx0 + A*{-ar + z0 - v) 6 C°

where r 6 ZN, v € ZN are related to X by

r = XH, XF = vHT, rB = 0.

Let us consider problem (5) in the following situation. The knots

a = ti < t2 < ... < tN = b
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and values z\,Z2,..., z^ are given in the interval [a, b]. Let X = WJ*[a, b] be the Sobolev
space of functions with the usual norm

2 _

3=0

dn

Let Y = L2[a, b] be the space of square integrable functions. Let T = -— and let

A : W£ —> Z = ZN be the operator-trace of the function,

Let
the subset of m— convex functions in X, where m ^ n.

LEMMA 1 0 .

(1) A and T are linear bounded operators.

(2) C is a closed convex subset of X.

(3) If the number of the knots N is greater or equal to the order of the differ-
entiation n, then

ker{ —}nker^l-0x,

and ker T + ker A is closed in X.
dn ( dnx "i

PROOF: TO prove (3) note ker -j-^ = < x : -j-^ = 0 > consists of polynomials of order

smaller then n; while ker^4 = {u : u(ti) = 0, i = 1,2, ...,./V} contains functions with
zeros at these TV points. The intersection of these kernels is empty, because a polynomial
of degree smaller than n cannot have N > n- 1 zeros.

Obviously kerX1 and ker^4 are closed, their sum is also closed. D

Lemma 10 and Theorem 3 give the following result.

THEOREM 4 . The problem

(20) 0o(a.) - mm : j 2 1

has unique solution a, for N ^ n. When <r(m' ^ 0,

N

t=i

with equality only for the solution
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P R O O F : The problem has unique solution by the previous results. The condition

(9) in this case is

dn

From (11) it follows, that for all a with a^ ^ 0 it must be performed

N

Equality is acheived only for the solution a — <r»

In fact this equality is equivalent to the condition (10).
d"

For T = —— it is known, that
dtn

A basis for k e r T is {l,t,t2,... , t " ~ 1 } , and therefore d i m k e r T = q = n. Then

N

so that (hi, tk) = 0, i = 1,2,..., N - n, k = 0 , 1 , . . . , n - 1. It follows, that

N

^2 hijtj = 0, i = 1,2,.. . , TV - n, A; = 0 , 1 , . . . , n - 1.

We have

By Theorem 3 the solution of (20) has the representation

where the condition rB — 0 is equivalent to

N

(21)
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On integrating n times,

\2n-l

The function

under the constraints (21) is a natural spline ([1]) of degree 2 n - l with knots t\, t2,..., tff.

Since the restriction of s(t) over (—oo, a = t\) and (tN = 6, oo) is the polynomial Yl ckt
k

of degree n — 1, we have the following result.

THEOREM 5 . The solution of the problem (20) is a sum of a function xo(t) with

zero-crossings t\, £2, • • •, *AT and a natural spline s(t) of degree In — 1 with knots in these

points.
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