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Abstract

For any generalized ordered space X with the underlying linearly ordered topological space X,,, let X* be
the minimal closed linearly ordered extension of X and X be the minimal dense linearly ordered extension
of X. The following results are obtained.

(1)  The projection mapping 7 : X* — X, w({x, i)) = x, is closed.

(2)  The projection mapping ¢ : X — X,,, ¢ ({x, i)) = x, is closed.

(3)  X*isamonotone D-space if and only if X is a monotone D-space.

(4) X is a monotone D-space if and only if X,, is a monotone D-space.

(5)  For the Michael line M, M is a paracompact p-space, but not continuously Urysohn.
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1. Preliminaries

A topological space X is continuously Urysohn if there is a continuous function
Q0 X2 \ A — C(X) such that ¢(x, y)(x) # ¢(x, y)(y), where A = {{x, x) : x € X}
and C(X) is the space of bounded continuous real-valued functions with the norm
topology. The concept was first explored in [10] and was named in [4]. The
family {@(x, y): (x, y) € X>\ A} is called a continuous separating family for X.
A submetrizable space is continuously Urysohn, and paracompact p-spaces in the
sense of Arhangel’skii (the preimages of metric spaces under perfect mappings) are
metrizable if and only if they are continuously Urysohn [10].

A topological space X = (X, t) is a D-space [I1] if for each neighborhood
assignment ¢ : X — 7, x € ¢(x) for all x € X, there is a closed discrete subset F(¢)
of X such that X = [ J{p(x) : x € F(p)}, where 7 is the topology on X. If, moreover,
for any two neighborhood assignments ¢ and i for X satisfying ¢(x) C v (x) for all
x € X, F(¥) C F(p), then X is said to be monotonically D [6]. Monotone D-spaces
are D-spaces, but the converse does not hold.
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Let X be a generalized ordered (GO) space with the underlying linearly ordered
topological space X,,, let X* be the minimal closed linearly ordered extension of X
and X be the minimal dense linearly ordered extension of X. Clearly, separability,
countable chain condition and Lindelofness of X can be preserved by X. It is
well known that paracompactness, metrizability and quasi-developability of X are
preserved by X*. However, these properties of X are not hereditary to X (see [5]).
Since the Sorgenfrey line S and the Michael line M are submetrizable they have the
continuous Urysohn property &2. M* has & [2], but $* and S do not have 2 [8].

Recall that a GO space is a triple (X, 7, <) where t is a topology on the linearly
ordered set (X, <) with 7 D X and has a base consisting of convex sets, here A is the
open interval topology of the order <. If T = A, (X, A, <) is called a linearly ordered
topological space (LOTS) and, for any GO space (X, 7, <), (X, A, <) is called
its underlying LOTS. Let R, ={x e X:[x,>)et —A}, Ly ={xe X : (<, x] €
T — XA} and Z be the set of integers. Put

X = (X x{0) U(R; x {—1) U (Ly x {1}),
X*=(X><{O})U(R,x{ieZ:i<0})U(L,x{ieZ:i>O}).

Equip X (respectively X*) with the open interval topology of the lexicographical order
on it; then X has a dense subspace X x {0} homeomorphic to X and X™* has a closed
subspace X x {0} homeomorphic to X. By [5, Proposition 2.7], X is the minimal
dense linearly ordered extension of X and, by [7, Theorem 9], X* is the minimal
closed linearly ordered extension of X.
Let X = (X, 7, <) be a GO space with the underlying LOTS X, = (X, A, <). The
main results of the note are as follows.
(1) The projection mapping 7 : X* — X, w({x, i)) = x, is closed.
(2) The projection mapping ¢ : X — X, ¢((x, i)) = x, is closed.
(3) X* is a monotone D-space if and only if X is a monotone D-space.
(4) X is a monotone D-space if and only if X, is a monotone D-space.
(5) For the Michael line M and the Cantor line C, M (respectively i’) is a
paracompact p-space, but not continuously Urysohn. Hence any dense linearly
ordered extension of M and C is not continuously Urysohn.

Throughout this paper, spaces are topological spaces and are Hausdorff, mappings
are continuous and surjective and [0, 1] is the usual unit closed interval. By R, P and Q
we mean the sets of reals, irrationals and rationals, respectively. The Sorgenfrey line
S is R with half-open intervals of the form [a, b) as a basis for the topology and
the Michael line M is R with points in P isolated and points in Q having their usual
neighborhoods. By the spaces [0, w1) and [0, w;] we mean the usual ordinal spaces,
where w is the first uncountable ordinal.

2. Results

Let X = (X, 7, <) be a GO space with the underlying LOTS X, = (X, A, <),
and R; and L, be defined as in Section 1. For the sake of simplicity, we use the
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following notation: L=L; — R, R=R; — L, I=R, NL;, E=X— (R, ULy)
and, for AC X, A*={(x, k) e X*:x € A}.

THEOREM 2.1. Let X be a GO space with the underlying LOTS X,,. Then:

(1) the projection mapping 7 : X* — X, w({x, i)) = x, is closed;
(2) the projection mapping ¢ : X — X, ¢ ({x, i}) = x, is closed.

PROOF. (1) Let X = (X, 7, <) and X,, = (X, A, <). To show the continuity of m, let
V be a nonempty open convex subset of X. Note that 7 =1 (V) = V*, and we will show
that V*is openin X*. If V = {c}, then (c, 0) has both an immediate predecessor and an
immediate successor and thus {(c, 0)} is open in X*. Clearly if k # 0 and (c, k) € X*,
then {{c, k)} isopen. Let |V| > 2 and x* = (x, k) € V*. If k # 0, x* is an interior point
of V*. Let k =0. If x is a minimal point of V, (x, 0) has an immediate predecessor
a* in X*. Take y € V such that x < y. Since V is convex, x* € (a*, (y, 0)) C V*
and so x* is an interior point of V*. Similarly, if x is a maximal point of V, x* is an
interior point of V*. If x € V is neither minimal nor maximal, there are x1, x, € V
such that x| < x < xp and x* € ((x1, 0)), (x2, 0)) C V* and thus x™* is also an interior
point of V*.

To show that 7 is closed, let F be a closed subset of X* and x € X — 7 (F). Then
71 (x) N F =¢. We will find an open neighborhood of x in X without meeting 7 (F).
If x €I, {x}is open and {x} N (F)=@. If xeR, 7~ (x)={(x,i):i <0} and
({x, —1), (b, 0)) N F =@ for some b > x. Then [x, b) is open and [x, b) N (F) = .
Ifxel, 7w (x)={(x,i):i >0} and ((a, 0), (x, 1)) N F = ¢ for some a < x. Then
(a, x]isopen and (a, x] N7 (F)=0. If x € E, 7~ 1(x) = {{x, 0)} and there are c, d
with ¢ < x < d such that ({c, 0), {d,0)) N F =@ and so (¢, d) N (F) = 0.

(2) To show that ¢ is continuous, let (a, b) be an open interval in X,. Then
U= ¢_1((a, b)) must be one of the four open intervals of X:U= ({a, 0), (b, 0)
ifa¢L;, b¢ R;; U=(a,l),(b,0) ifaelL,, b¢ R;; U= (a,O0), (b, —1)) if
a¢ L, beR;U=C(a,l), (b, —1))ifaecL;,beR;.

We will now show that ¢ is closed. Let F be a closed subset of X and x €
X — ¢(F). Then ¢~ (x) N F =¢@. We will find an open interval in X,, containing x
without meeting F. If x € E, ¢~ '(x) = {(x, 0)} and thus there are a,, b, € X with
ay < x < by such that ({ay, 0), (by,0)) N F =@. Hence (ay, by) N¢p(F)=0@. If
X €R, then ¢_](x) ={(x, —1), (x, 0)} and there are c,, dr € X with ¢, <x < dy
such that ({cy, 0), (x, 0)) N F =@ and ({x, —1), (dy, 0)) N F = @ and thus (¢, dy) N
$(F)=¢. If x € L, then ¢~ (x) = {(x, 0), (x, 1)} and there are e, f, € X with
ex <Xx < fy such that ({(ex, 0), (x, 1)) N F =0 and ({x,0), (fx,0)NF=@. So
(ex, f[)NP(F)=0. If x €I, ¢~ (x) ={{x, —1), (x,0), (x, 1)}. Take gy, hy € X
with g, < x < hy such that ((gy, 0), (x,0)) N F =@ and ({(x, 0), (hy, 0)) N F =0.
Therefore (gx, hy) NP (F) = 1. O

Let K be the Cantor set and A the usual open interval topology on R. Put
T =UJ{K;:q €Q}, where K, ={x + ¢ :x € K}. Define a topology v on R with
the base {[x,x +€):e>0,x ¢ T} U {{x}:x € T} and call the space (R, v, <) the
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Cantor line C. Having a o-discrete dense subset 7', by [1, Proposition 3.1] C is perfect
(open sets are Fy-sets). By [9], any orderable dense extension of C is not perfect.

In the following corollary, R is the Euclidean line, « is an inverse invariant under
countable-to-one closed mappings and § is an inverse invariant under finite-to-one
closed mappings.

COROLLARY 2.2. Let X be a GO space with the underlying LOTS X,,. Then:

(1) X* has o whenever X has o and X has B whenever X, has B;

(2)  whenever X, isR, X isa locally compact paracompact p-space;

(3) M and C are not continuously Urysohn, where M is the Michael line and C is
the Cantor line.

PROOF. (1) follows directly from Theorem 2.1 since 7 is countable-to-one and ¢
is finite-to-one. For (2), note that paracompact p-spaces are precisely preimages of
metric spaces under perfect mappings and X =¢'(R). (3) Since M has a dense
subspace M x {0} (homeomorphic to M) which is not perfect, M is not perfect and
thus it is not metrizable. By [5] C is not perfect and thus not metrizable. Since
M and C have the underlying LOTS R, by Theorem 2.1, the projection mappmgs
b1 ‘M —> R and b : C — Rare (finite-to-one) closed mappings. Hence M= o (R)

and C = o, '(R) are preimages of metric spaces and thus are paracompact p-spaces.
Hence they are not continuously Urysohn. a

COROLLARY 2.3. Let X be a GO space with the underlying LOTS X,. If &
is local compactness, countable compactness, compactness, paracompactness or
Lindeldfness, then X has & if and only if X, has 2.

REMARK 2.4. (1) Let X be a GO space with the underlying LOTS X,,. The projection
mapping ¢’ : X — X may not be continuous. The projection mapping 7, : X* — X,
is continuous, but it may be not open or closed. In Theorem 2.1 the projection
mappings 7 : X* — X and ¢: X — X, need not be open. In fact, the continuity of =,
is clear. Let S be the Sorgenfrey line, M be the Michael line and R be the Euclidean
space. Let X, =R. If X = §, {{x, —1)} is open in S*, but {x} is not open in S or R
and thus 7 and 7, are not open. If X = M, for p € P, {{p, 0)} is open in M, but {p}
is not open in R and thus ¢ is not open. Q x {0} is closed in M*, but Q is not closed
in R. Hence 7, is not closed.

(2) By Theorem 2.1 and Corollary 2.2, the continuous Urysohn property is not an
inverse invariant under finite-to-one closed mappings.

LEMMA 2.5. Let X be a GO space and F C X. If F is a closed discrete subspace of
X, then F* is a closed discrete subspace of X*.

PROOF. Let X = (X, 7, <). By Theorem 2.1 the projection mapping 7 : X* — X,
7({x,i)) =x, is continuous, so F* = ~"!(F) is closed in X*. To show that F*
is discrete, let x* = (x, k) € F*. If k #0, {x*} is open. Let k =0. Then there is
an open convex V C X with x e V. and VNF = {x}. If V ={x}, {x*} is clearly
open. Let |V|> 2. If x is the minimal point, x* has an immediate predecessor p*
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in X*. If x € L, (p*, (x, 1)) ={x*} is open. If x ¢ L., (p*, (g, 0)) N F* = {x*}
for some g € V with x <¢g. The proof for x being maximal is analogous. Now
let x be neither minimal nor maximal. We can take an open U with x* € U and
U N F*={x*} as follows: U = ({x, —1), (x, 1)) if x € T; U = ({x, —1), {gq, 0)) if
xe€R,whereqge Vandx <q; U = ((p, 0), (x, 1))ifx € L, where p € V and p < x;
U=({p,0),{q,0)ifx €eE, where p,ge Vand p <x <gq. O

THEOREM 2.6. Let X be any GO space with the underlying LOTS X,,. Then:

(1) X* is a monotone D-space if and only if X is a monotone D-space;
(2) X is a monotone D-space if and only if X,, is a monotone D-space.

PROOF. Let X = (X, 7, <) and X, = (X, A, <). If X* is monotonically D, then
since the projection mapping 7 : X* — X is closed, by [6, Theorem 1.7(c)] X is
monotonically D. Let X be monotonically D. To show that X* is monotonically D,
let ¢’ be a neighborhood assignment for X*. Define a neighborhood assignment
@* for X* such that ¢*(z) C ¢/(z) for z € X* as follows. Let x* = (x, k) € X*. If
k #0, define ¢*(x*) = {x*}. Let k=0. If x € I, define p*(x*) ={x*}. If x ¢ I,
let C, = J{C:x*eC C¢'(x*), Cisopenand convex}. Define ¢*(x*)={(y,i):
t <y < x for some ¢ for which there is j with {z, j) € C,} U {x*} if x € L; ¢p*(x™) =
{x*} U {{y, i) : x <y < z for some z for which there is k with (z, k) € C,} if x €R;
e *(x*) ={{y, i) :t <y < z for some ¢ for which there is j with (¢, j), (z, k) € C,}if
x € E. Define ¢({(x, 0)) = ¢*({x, 0)) N (X x {0}) for x € X. Then ¢ is a neighbor-
hood assignment for the subspace X x {0} (homeomorphic to the monotone D-space
X) of X*. So there is a closed discrete subset F, of X such that X x {0} = ¢(F, x
{O}). If ¥ is also a neighborhood assignment for X x {0} such that ¢ (w) C ¥ (w), then
Fy x {0} C Fy x {0}. By Lemma 2.5, (F,)* is closed and discrete in X*. Put Fy« =
(F,)*. We will show that {¢*(y*) : y* € Fy«} covers X*. Let y* = (y, k) € X* — Fx.
Since y ¢ Fy, and ¢(F, x {0}) = X x {0}, there is (x, 0) € Fj, x {0} C Fy+ such that
(v, 0) € ({x, 0)) with x #y. Without loss of generality we assume that y < x.
By the definition of @, y* = (y, k) € ¢*({x, 0)). So ¢*(Fyx) = X*. Put Fyy = Fy~.
Then {¢'(y*) : y* € Fy} covers X* since ¢*(z) C ¢'(z) for z € X*. If ¢ is also a
neighborhood assignment for X* such that ¢’(z) C v¥’(z), then we have ¢*(z) C ¥*(z)
for z € X*. So Fyy C Fy and thus Fy+ C F,. Hence X* is monotonically D.

If X is monotonically D, then since the projection mapping ¢ : X — X, is closed,
by [6, Theorem 1.7(c)] X, is monotonically D. If X, is monotonically D, since
the projection mapping ¢ : X — X, is closed and finite-to-one and the monotone
D-property is an inverse invariant under finite-to-one closed mappings [3, Theorem 4],
X is monotonically D. O

EXAMPLE 2.7. The lexicographic rectangle X =R x [0, 1] (respectively, the
lexicographic square Y =0, 1] x [0, 1]) is a paracompact p-space, but not
continuously Urysohn.
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PROOF. Since the projection mappings f] : X — Rand f, : X — [0, 1]), fi({x, y)) =
x and f>({x, y)) = x, are perfect, X and Y are paracompact p-spaces. Because the
subspace Y of X is not perfect, Y is not continuously Urysohn, so neither is X. O

Recall that the long line L, is the set [0, 1) x [0, 1) with the linearly ordered
topology of the lexicographical order. The extended long line Lj)l is the set
Ly, U{w1} (for any x € L, x < w1) equipped with the open interval topology, or
equivalently the one-point compactification of L,,. The set R x [0, 1] with the
lexicographical order topology is called the lexicographic rectangle and its subspace
[0, 1] x [0, 1] is called the lexicographic square. The set [0, w;) X Z U {{w1, 0)} with
the lexicographical-order topology is denoted by Z,,, .

EXAMPLE 2.8. Let X be any GO space with the underlying LOTS X,,. Then:

(1) whenever X,, is [0, w1) or L,,,, X is countably compact;
(2) whenever X, is [0, w1], LZ‘UI or the lexicographic square, X is compact;
(3) whenever X, is Z,, or the lexicographic rectangle, X is Lindeldf.

PROOF. Note that the ordinal space [0, w1], the extended long line L;“Ul and the
lexicographic square [0, 1] x [0, 1] are compact; the ordinal space [0, w;) and the
long line L,,, are countably compact; Z,,, and the lexicographic rectangle R x [0, 1]
are Lindelof. O

By [10], the one-point compactification C(w) of the discrete uncountable space
[0, w1) is not continuously Urysohn.

EXAMPLE 2.9. The one-point Lindelofication L(w;) of the discrete uncountable
space [0, w1) is continuously Urysohn.

PROOF. Note that L(w;) is homeomorphic to Z,, which is continuously Urysohn
by [2, Example 3.1]. O

By [8, Theorem 4], any linearly ordered extension the Sorgenfrey line S is not
continuously Urysohn, so not submetrizable. Now we have the following example.

EXAMPLE 2.10. Let S be the Sorgenfrey line, M be the Michael line and C be the
Cantor line. Then:

(1) S, M and C are locally compact paracompact p-spaces, and are Lindelof;
(2) any dense linearly ordered extension of the Michael line M or the Cantor line C
is not continuously Urysohn, so not submetrizable.

PROOF. (1) Noticing that S, M and C have the Euclidean space R as their underlying
LOTS, the conclusion is true from Theorem 2.1(2) and Corollary 2.2. (2) Suppose that
a dense linearly ordered extension L (M) of M is continuously Urysohn. By [5], L(M)
has a subspace homeomorphic to M and thus M is a continuously Urysohn space. This
contradicts Corollary 2.2. The proof for C is similar. O
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