Bull. Aust. Math. Soc. 83 (2011), 463–469 doi:10.1017/S0004972710001991

A NOTE ON PARACOMPACT *p*-SPACES AND THE MONOTONE *D*-PROPERTY

YIN-ZHU GAO[™] and WEI-XUE SHI

(Received 22 August 2010)

Abstract

For any generalized ordered space X with the underlying linearly ordered topological space X_u , let X^* be the minimal closed linearly ordered extension of X and \tilde{X} be the minimal dense linearly ordered extension of X. The following results are obtained.

- (1) The projection mapping $\pi : X^* \to X$, $\pi(\langle x, i \rangle) = x$, is closed.
- (2) The projection mapping $\phi : X \to X_u, \phi(\langle x, i \rangle) = x$, is closed.
- (3) X^* is a monotone *D*-space if and only if *X* is a monotone *D*-space.
- (4) \tilde{X} is a monotone *D*-space if and only if X_u is a monotone *D*-space.

(5) For the Michael line M, M is a paracompact *p*-space, but not continuously Urysohn.

2010 *Mathematics subject classification*: primary 54C10; secondary 54C25, 54D20, 54D30, 54F05. *Keywords and phrases*: paracompactness, continuously Urysohn, compactness, monotone D, generalized ordered spaces.

1. Preliminaries

A topological space X is continuously Urysohn if there is a continuous function $\varphi: X^2 \setminus \Delta \to C(X)$ such that $\varphi(x, y)(x) \neq \varphi(x, y)(y)$, where $\Delta = \{\langle x, x \rangle : x \in X\}$ and C(X) is the space of bounded continuous real-valued functions with the norm topology. The concept was first explored in [10] and was named in [4]. The family $\{\varphi(x, y) : (x, y) \in X^2 \setminus \Delta\}$ is called a continuous separating family for X. A submetrizable space is continuously Urysohn, and paracompact *p*-spaces in the sense of Arhangel'skii (the preimages of metric spaces under perfect mappings) are metrizable if and only if they are continuously Urysohn [10].

A topological space $X = (X, \tau)$ is a *D*-space [11] if for each neighborhood assignment $\varphi : X \to \tau, x \in \varphi(x)$ for all $x \in X$, there is a closed discrete subset $F(\varphi)$ of *X* such that $X = \bigcup \{\varphi(x) : x \in F(\varphi)\}$, where τ is the topology on *X*. If, moreover, for any two neighborhood assignments φ and ψ for *X* satisfying $\varphi(x) \subset \psi(x)$ for all $x \in X, F(\psi) \subset F(\varphi)$, then *X* is said to be monotonically *D* [6]. Monotone *D*-spaces are *D*-spaces, but the converse does not hold.

This project is supported by NSFC (No. 10971092).

© 2011 Australian Mathematical Publishing Association Inc. 0004-9727/2011 \$16.00

Let X be a generalized ordered (GO) space with the underlying linearly ordered topological space X_u , let X^* be the minimal closed linearly ordered extension of X and \tilde{X} be the minimal dense linearly ordered extension of X. Clearly, separability, countable chain condition and Lindelöfness of X can be preserved by \tilde{X} . It is well known that paracompactness, metrizability and quasi-developability of X are preserved by X^* . However, these properties of X are not hereditary to \tilde{X} (see [5]). Since the Sorgenfrey line S and the Michael line M are submetrizable they have the continuous Urysohn property \mathcal{P} . M^* has \mathcal{P} [2], but S^* and \tilde{S} do not have \mathcal{P} [8].

Recall that a GO space is a triple $(X, \tau, <)$ where τ is a topology on the linearly ordered set (X, <) with $\tau \supset \lambda$ and has a base consisting of convex sets, here λ is the open interval topology of the order <. If $\tau = \lambda$, $(X, \lambda, <)$ is called a linearly ordered topological space (LOTS) and, for any GO space $(X, \tau, <)$, $(X, \lambda, <)$ is called its underlying LOTS. Let $R_{\tau} = \{x \in X : [x, \rightarrow) \in \tau - \lambda\}, L_{\tau} = \{x \in X : (\leftarrow, x] \in \tau - \lambda\}$ and \mathbb{Z} be the set of integers. Put

$$\tilde{X} = (X \times \{0\}) \cup (R_{\tau} \times \{-1\}) \cup (L_{\tau} \times \{1\}), X^* = (X \times \{0\}) \cup (R_{\tau} \times \{i \in \mathbb{Z} : i < 0\}) \cup (L_{\tau} \times \{i \in \mathbb{Z} : i > 0\}).$$

Equip \tilde{X} (respectively X^*) with the open interval topology of the lexicographical order on it; then \tilde{X} has a dense subspace $X \times \{0\}$ homeomorphic to X and X^* has a closed subspace $X \times \{0\}$ homeomorphic to X. By [5, Proposition 2.7], \tilde{X} is the minimal dense linearly ordered extension of X and, by [7, Theorem 9], X^* is the minimal closed linearly ordered extension of X.

Let $X = (X, \tau, <)$ be a GO space with the underlying LOTS $X_u = (X, \lambda, <)$. The main results of the note are as follows.

- (1) The projection mapping $\pi : X^* \to X$, $\pi(\langle x, i \rangle) = x$, is closed.
- (2) The projection mapping $\phi : \tilde{X} \to X_u, \phi(\langle x, i \rangle) = x$, is closed.
- (3) X^* is a monotone *D*-space if and only if *X* is a monotone *D*-space.
- (4) \tilde{X} is a monotone *D*-space if and only if X_u is a monotone *D*-space.
- (5) For the Michael line M and the Cantor line C, \tilde{M} (respectively \tilde{C}) is a paracompact *p*-space, but not continuously Urysohn. Hence any dense linearly ordered extension of M and C is not continuously Urysohn.

Throughout this paper, spaces are topological spaces and are *Hausdorff*, mappings are continuous and surjective and [0, 1] is the usual unit closed interval. By \mathbb{R} , \mathbb{P} and \mathbb{Q} we mean the sets of reals, irrationals and rationals, respectively. The Sorgenfrey line *S* is \mathbb{R} with half-open intervals of the form [a, b) as a basis for the topology and the Michael line *M* is \mathbb{R} with points in \mathbb{P} isolated and points in \mathbb{Q} having their usual neighborhoods. By the spaces $[0, \omega_1)$ and $[0, \omega_1]$ we mean the usual ordinal spaces, where ω_1 is the first uncountable ordinal.

2. Results

Let $X = (X, \tau, <)$ be a GO space with the underlying LOTS $X_u = (X, \lambda, <)$, and R_{τ} and L_{τ} be defined as in Section 1. For the sake of simplicity, we use the following notation: $L = L_{\tau} - R_{\tau}$, $R = R_{\tau} - L_{\tau}$, $I = R_{\tau} \cap L_{\tau}$, $E = X - (R_{\tau} \cup L_{\tau})$ and, for $A \subset X$, $A^* = \{\langle x, k \rangle \in X^* : x \in A\}$.

THEOREM 2.1. Let X be a GO space with the underlying LOTS X_u . Then:

- (1) the projection mapping $\pi : X^* \to X$, $\pi(\langle x, i \rangle) = x$, is closed;
- (2) the projection mapping $\phi : \tilde{X} \to X_u$, $\phi(\langle x, i \rangle) = x$, is closed.

PROOF. (1) Let $X = (X, \tau, <)$ and $X_u = (X, \lambda, <)$. To show the continuity of π , let V be a nonempty open convex subset of X. Note that $\pi^{-1}(V) = V^*$, and we will show that V^* is open in X^* . If $V = \{c\}$, then $\langle c, 0 \rangle$ has both an immediate predecessor and an immediate successor and thus $\{\langle c, 0 \rangle\}$ is open in X^* . Clearly if $k \neq 0$ and $\langle c, k \rangle \in X^*$, then $\{\langle c, k \rangle\}$ is open. Let $|V| \ge 2$ and $x^* = \langle x, k \rangle \in V^*$. If $k \neq 0, x^*$ is an interior point of V^* . Let k = 0. If x is a minimal point of V, $\langle x, 0 \rangle$ has an immediate predecessor a^* in X^* . Take $y \in V$ such that x < y. Since V is convex, $x^* \in (a^*, \langle y, 0 \rangle) \subset V^*$ and so x^* is an interior point of V^* . Similarly, if x is a maximal point of V, x^* is an interior point of V^* . If $x \in V$ is neither minimal nor maximal, there are $x_1, x_2 \in V$ such that $x_1 < x < x_2$ and $x^* \in (\langle x_1, 0 \rangle), \langle x_2, 0 \rangle) \subset V^*$ and thus x^* is also an interior point of V^* .

To show that π is closed, let F be a closed subset of X^* and $x \in X - \pi(F)$. Then $\pi^{-1}(x) \cap F = \emptyset$. We will find an open neighborhood of x in X without meeting $\pi(F)$. If $x \in I$, $\{x\}$ is open and $\{x\} \cap \pi(F) = \emptyset$. If $x \in R$, $\pi^{-1}(x) = \{\langle x, i \rangle : i \leq 0\}$ and $(\langle x, -1 \rangle, \langle b, 0 \rangle) \cap F = \emptyset$ for some b > x. Then [x, b) is open and $[x, b) \cap \pi(F) = \emptyset$. If $x \in L$, $\pi^{-1}(x) = \{\langle x, i \rangle : i \geq 0\}$ and $(\langle a, 0 \rangle, \langle x, 1 \rangle) \cap F = \emptyset$ for some a < x. Then (a, x] is open and $(a, x] \cap \pi(F) = \emptyset$. If $x \in E$, $\pi^{-1}(x) = \{\langle x, 0 \rangle\}$ and there are c, d with c < x < d such that $(\langle c, 0 \rangle, \langle d, 0 \rangle) \cap F = \emptyset$ and so $(c, d) \cap \pi(F) = \emptyset$.

(2) To show that ϕ is continuous, let (a, b) be an open interval in X_u . Then $U = \phi^{-1}((a, b))$ must be one of the four open intervals of $\tilde{X} : U = (\langle a, 0 \rangle, \langle b, 0 \rangle)$ if $a \notin L_{\tau}$, $b \notin R_{\tau}$; $U = (\langle a, 1 \rangle, \langle b, 0 \rangle)$ if $a \in L_{\tau}$, $b \notin R_{\tau}$; $U = (\langle a, 0 \rangle, \langle b, -1 \rangle)$ if $a \notin L_{\tau}$, $b \in R_{\tau}$; $U = (\langle a, 1 \rangle, \langle b, -1 \rangle)$ if $a \notin L_{\tau}$, $b \in R_{\tau}$.

We will now show that ϕ is closed. Let F be a closed subset of \tilde{X} and $x \in X - \phi(F)$. Then $\phi^{-1}(x) \cap F = \emptyset$. We will find an open interval in X_u containing x without meeting F. If $x \in \mathbb{E}$, $\phi^{-1}(x) = \{\langle x, 0 \rangle\}$ and thus there are $a_x, b_x \in X$ with $a_x < x < b_x$ such that $(\langle a_x, 0 \rangle, \langle b_x, 0 \rangle) \cap F = \emptyset$. Hence $(a_x, b_x) \cap \phi(F) = \emptyset$. If $x \in \mathbb{R}$, then $\phi^{-1}(x) = \{\langle x, -1 \rangle, \langle x, 0 \rangle\}$ and there are $c_x, d_x \in X$ with $c_x < x < d_x$ such that $(\langle c_x, 0 \rangle, \langle x, 0 \rangle) \cap F = \emptyset$ and there are $c_x, d_x \in X$ with $c_x < x < d_x$ such that $(\langle c_x, 0 \rangle, \langle x, 0 \rangle) \cap F = \emptyset$ and $(\langle x, -1 \rangle, \langle d_x, 0 \rangle) \cap F = \emptyset$ and thus $(c_x, d_x) \cap \phi(F) = \emptyset$. If $x \in \mathbb{L}$, then $\phi^{-1}(x) = \{\langle x, 0 \rangle, \langle x, 1 \rangle\}$ and there are $e_x, f_x \in X$ with $e_x < x < f_x$ such that $(\langle e_x, 0 \rangle, \langle x, 1 \rangle) \cap F = \emptyset$ and $(\langle x, 0 \rangle, \langle f_x, 0 \rangle) \cap F = \emptyset$. So $(e_x, f_x) \cap \phi(F) = \emptyset$. If $x \in \mathbb{I}$, $\phi^{-1}(x) = \{\langle x, -1 \rangle, \langle x, 0 \rangle, \langle x, 1 \rangle\}$. Take $g_x, h_x \in X$ with $g_x < x < h_x$ such that $(\langle g_x, 0 \rangle, \langle x, 0 \rangle) \cap F = \emptyset$ and $(\langle x, 0 \rangle, \langle h_x, 0 \rangle) \cap F = \emptyset$. Therefore $(g_x, h_x) \cap \phi(F) = \emptyset$.

Let *K* be the Cantor set and λ the usual open interval topology on \mathbb{R} . Put $T = \bigcup \{K_q : q \in \mathbb{Q}\}$, where $K_q = \{x + q : x \in K\}$. Define a topology ν on \mathbb{R} with the base $\{[x, x + \epsilon) : \epsilon > 0, x \notin T\} \cup \{\{x\} : x \in T\}$ and call the space $(\mathbb{R}, \nu, <)$ the

Cantor line C. Having a σ -discrete dense subset T, by [1, Proposition 3.1] C is perfect (open sets are F_{σ} -sets). By [9], any orderable dense extension of C is not perfect.

In the following corollary, \mathbb{R} is the Euclidean line, α is an inverse invariant under countable-to-one closed mappings and β is an inverse invariant under finite-to-one closed mappings.

COROLLARY 2.2. Let X be a GO space with the underlying LOTS X_u . Then:

- (1) X^* has α whenever X has α and \tilde{X} has β whenever X_u has β ;
- (2) whenever X_u is \mathbb{R} , \tilde{X} is a locally compact paracompact p-space;
- (3) \tilde{M} and \tilde{C} are not continuously Urysohn, where M is the Michael line and C is the Cantor line.

PROOF. (1) follows directly from Theorem 2.1 since π is countable-to-one and ϕ is finite-to-one. For (2), note that paracompact *p*-spaces are precisely preimages of metric spaces under perfect mappings and $\tilde{X} = \phi^{-1}(\mathbb{R})$. (3) Since \tilde{M} has a dense subspace $M \times \{0\}$ (homeomorphic to M) which is not perfect, \tilde{M} is not perfect and thus it is not metrizable. By [5] \tilde{C} is not perfect and thus not metrizable. Since M and C have the underlying LOTS \mathbb{R} , by Theorem 2.1, the projection mappings $\phi_1 : \tilde{M} \to \mathbb{R}$ and $\phi_2 : \tilde{C} \to \mathbb{R}$ are (finite-to-one) closed mappings. Hence $\tilde{M} = \phi_1^{-1}(\mathbb{R})$ and $\tilde{C} = \phi_2^{-1}(\mathbb{R})$ are preimages of metric spaces and thus are paracompact *p*-spaces. Hence they are not continuously Urysohn. \Box

COROLLARY 2.3. Let X be a GO space with the underlying LOTS X_u . If \mathscr{P} is local compactness, countable compactness, compactness, paracompactness or Lindelöfness, then \tilde{X} has \mathscr{P} if and only if X_u has \mathscr{P} .

REMARK 2.4. (1) Let X be a GO space with the underlying LOTS X_u . The projection mapping $\phi': \tilde{X} \to X$ may not be continuous. The projection mapping $\pi_u: X^* \to X_u$ is continuous, but it may be not open or closed. In Theorem 2.1 the projection mappings $\pi: X^* \to X$ and $\phi: \tilde{X} \to X_u$ need not be open. In fact, the continuity of π_u is clear. Let S be the Sorgenfrey line, M be the Michael line and \mathbb{R} be the Euclidean space. Let $X_u = \mathbb{R}$. If X = S, $\{\langle x, -1 \rangle\}$ is open in S^* , but $\{x\}$ is not open in S or \mathbb{R} and thus π and π_u are not open. If X = M, for $p \in \mathbb{P}$, $\{\langle p, 0 \rangle\}$ is open in \tilde{M} , but $\{p\}$ is not open in \mathbb{R} and thus ϕ is not open. $\mathbb{Q} \times \{0\}$ is closed in M^* , but \mathbb{Q} is not closed in \mathbb{R} . Hence π_u is not closed.

(2) By Theorem 2.1 and Corollary 2.2, the continuous Urysohn property is not an inverse invariant under finite-to-one closed mappings.

LEMMA 2.5. Let X be a GO space and $F \subset X$. If F is a closed discrete subspace of X, then F^* is a closed discrete subspace of X^* .

PROOF. Let $X = (X, \tau, <)$. By Theorem 2.1 the projection mapping $\pi : X^* \to X$, $\pi(\langle x, i \rangle) = x$, is continuous, so $F^* = \pi^{-1}(F)$ is closed in X^* . To show that F^* is discrete, let $x^* = \langle x, k \rangle \in F^*$. If $k \neq 0$, $\{x^*\}$ is open. Let k = 0. Then there is an open convex $V \subset X$ with $x \in V$ and $V \cap F = \{x\}$. If $V = \{x\}$, $\{x^*\}$ is clearly open. Let $|V| \ge 2$. If x is the minimal point, x^* has an immediate predecessor p^*

in X*. If $x \in L_{\tau}$, $(p^*, \langle x, 1 \rangle) = \{x^*\}$ is open. If $x \notin L_{\tau}$, $(p^*, \langle q, 0 \rangle) \cap F^* = \{x^*\}$ for some $q \in V$ with x < q. The proof for x being maximal is analogous. Now let x be neither minimal nor maximal. We can take an open U with $x^* \in U$ and $U \cap F^* = \{x^*\}$ as follows: $U = (\langle x, -1 \rangle, \langle x, 1 \rangle)$ if $x \in I$; $U = (\langle x, -1 \rangle, \langle q, 0 \rangle)$ if $x \in \mathbb{R}$, where $q \in V$ and x < q; $U = (\langle p, 0 \rangle, \langle x, 1 \rangle)$ if $x \in L$, where $p \in V$ and p < x; $U = (\langle p, 0 \rangle, \langle q, 0 \rangle)$ if $x \in \mathbb{E}$, where $p, q \in V$ and p < x < q.

THEOREM 2.6. Let X be any GO space with the underlying LOTS X_u . Then:

- (1) X^* is a monotone *D*-space if and only if *X* is a monotone *D*-space;
- (2) X is a monotone D-space if and only if X_u is a monotone D-space.

PROOF. Let $X = (X, \tau, <)$ and $X_u = (X, \lambda, <)$. If X^* is monotonically D, then since the projection mapping $\pi: X^* \to X$ is closed, by [6, Theorem 1.7(c)] X is monotonically D. Let X be monotonically D. To show that X^* is monotonically D, let φ' be a neighborhood assignment for X^{*}. Define a neighborhood assignment φ^* for X^* such that $\varphi^*(z) \subset \varphi'(z)$ for $z \in X^*$ as follows. Let $x^* = \langle x, k \rangle \in X^*$. If $k \neq 0$, define $\varphi^*(x^*) = \{x^*\}$. Let k = 0. If $x \in I$, define $\varphi^*(x^*) = \{x^*\}$. If $x \notin I$, let $C_x = \bigcup \{C : x^* \in C \subset \varphi'(x^*), C \text{ is open and convex} \}$. Define $\varphi^*(x^*) = \{\langle y, i \rangle :$ t < y < x for some t for which there is j with $\langle t, j \rangle \in C_x \} \cup \{x^*\}$ if $x \in L$; $\varphi^*(x^*) =$ $\{x^*\} \cup \{\langle y, i \rangle : x < y < z \text{ for some } z \text{ for which there is } k \text{ with } \langle z, k \rangle \in C_x \}$ if $x \in \mathbb{R}$; $\varphi^*(x^*) = \{\langle y, i \rangle : t < y < z \text{ for some } t \text{ for which there is } j \text{ with } \langle t, j \rangle, \langle z, k \rangle \in C_x \}$ if $x \in \mathbb{E}$. Define $\varphi(\langle x, 0 \rangle) = \varphi^*(\langle x, 0 \rangle) \cap (X \times \{0\})$ for $x \in X$. Then φ is a neighborhood assignment for the subspace $X \times \{0\}$ (homeomorphic to the monotone D-space X) of X^{*}. So there is a closed discrete subset F_{φ} of X such that $X \times \{0\} = \varphi(F_{\varphi} \times$ $\{0\}$). If ψ is also a neighborhood assignment for $X \times \{0\}$ such that $\varphi(w) \subset \psi(w)$, then $F_{\psi} \times \{0\} \subset F_{\varphi} \times \{0\}$. By Lemma 2.5, $(F_{\varphi})^*$ is closed and discrete in X^* . Put $F_{\varphi^*} =$ $(F_{\varphi})^*$. We will show that $\{\varphi^*(y^*): y^* \in F_{\varphi^*}\}$ covers X^* . Let $y^* = \langle y, k \rangle \in X^* - F_{\varphi^*}$. Since $y \notin F_{\varphi}$ and $\varphi(F_{\varphi} \times \{0\}) = X \times \{0\}$, there is $\langle x, 0 \rangle \in F_{\varphi} \times \{0\} \subset F_{\varphi^*}$ such that $\langle y, 0 \rangle \in \varphi(\langle x, 0 \rangle)$ with $x \neq y$. Without loss of generality we assume that y < x. By the definition of φ , $y^* = \langle y, k \rangle \in \varphi^*(\langle x, 0 \rangle)$. So $\varphi^*(F_{\varphi^*}) = X^*$. Put $F_{\varphi'} = F_{\varphi^*}$. Then $\{\varphi'(y^*): y^* \in F_{\varphi'}\}$ covers X^* since $\varphi^*(z) \subset \varphi'(z)$ for $z \in X^*$. If ψ' is also a neighborhood assignment for X^* such that $\varphi'(z) \subset \psi'(z)$, then we have $\varphi^*(z) \subset \psi^*(z)$ for $z \in X^*$. So $F_{\psi} \subset F_{\varphi}$ and thus $F_{\psi'} \subset F_{\varphi'}$. Hence X^* is monotonically D.

If \tilde{X} is monotonically D, then since the projection mapping $\phi : \tilde{X} \to X_u$ is closed, by [6, Theorem 1.7(c)] X_u is monotonically D. If X_u is monotonically D, since the projection mapping $\phi : \tilde{X} \to X_u$ is closed and finite-to-one and the monotone D-property is an inverse invariant under finite-to-one closed mappings [3, Theorem 4], \tilde{X} is monotonically D.

EXAMPLE 2.7. The lexicographic rectangle $X = \mathbb{R} \times [0, 1]$ (respectively, the lexicographic square $Y = [0, 1] \times [0, 1]$) is a paracompact *p*-space, but not continuously Urysohn.

PROOF. Since the projection mappings $f_1 : X \to \mathbb{R}$ and $f_2 : X \to [0, 1]$, $f_1(\langle x, y \rangle) = x$ and $f_2(\langle x, y \rangle) = x$, are perfect, X and Y are paracompact *p*-spaces. Because the subspace Y of X is not perfect, Y is not continuously Urysohn, so neither is X. \Box

Recall that the long line L_{ω_1} is the set $[0, \omega_1) \times [0, 1)$ with the linearly ordered topology of the lexicographical order. The extended long line $L_{\omega_1}^*$ is the set $L_{\omega_1} \cup \{\omega_1\}$ (for any $x \in L_{\omega_1}, x < \omega_1$) equipped with the open interval topology, or equivalently the one-point compactification of L_{ω_1} . The set $\mathbb{R} \times [0, 1]$ with the lexicographical order topology is called the lexicographic rectangle and its subspace $[0, 1] \times [0, 1]$ is called the lexicographic square. The set $[0, \omega_1) \times \mathbb{Z} \cup \{\langle \omega_1, 0 \rangle\}$ with the lexicographical-order topology is denoted by Z_{ω_1} .

EXAMPLE 2.8. Let X be any GO space with the underlying LOTS X_u . Then:

- (1) whenever X_u is $[0, \omega_1)$ or L_{ω_1} , \tilde{X} is countably compact;
- (2) whenever X_u is $[0, \omega_1]$, $L^*_{\omega_1}$ or the lexicographic square, \tilde{X} is compact;
- (3) whenever X_u is Z_{ω_1} or the lexicographic rectangle, \tilde{X} is Lindelöf.

PROOF. Note that the ordinal space $[0, \omega_1]$, the extended long line $L_{\omega_1}^*$ and the lexicographic square $[0, 1] \times [0, 1]$ are compact; the ordinal space $[0, \omega_1)$ and the long line L_{ω_1} are countably compact; Z_{ω_1} and the lexicographic rectangle $\mathbb{R} \times [0, 1]$ are Lindelöf.

By [10], the one-point compactification $C(\omega_1)$ of the discrete uncountable space $[0, \omega_1)$ is not continuously Urysohn.

EXAMPLE 2.9. The one-point Lindelöfication $L(\omega_1)$ of the discrete uncountable space $[0, \omega_1)$ is continuously Urysohn.

PROOF. Note that $L(\omega_1)$ is homeomorphic to Z_{ω_1} which is continuously Urysohn by [2, Example 3.1].

By [8, Theorem 4], any linearly ordered extension the Sorgenfrey line S is not continuously Urysohn, so not submetrizable. Now we have the following example.

EXAMPLE 2.10. Let S be the Sorgenfrey line, M be the Michael line and C be the Cantor line. Then:

- (1) \tilde{S} , \tilde{M} and \tilde{C} are locally compact paracompact *p*-spaces, and are Lindelöf;
- (2) any dense linearly ordered extension of the Michael line M or the Cantor line C is not continuously Urysohn, so not submetrizable.

PROOF. (1) Noticing that *S*, *M* and *C* have the Euclidean space \mathbb{R} as their underlying LOTS, the conclusion is true from Theorem 2.1(2) and Corollary 2.2. (2) Suppose that a dense linearly ordered extension L(M) of *M* is continuously Urysohn. By [5], L(M) has a subspace homeomorphic to \tilde{M} and thus \tilde{M} is a continuously Urysohn space. This contradicts Corollary 2.2. The proof for *C* is similar.

Acknowledgement

The authors are grateful to the referee for helpful suggestions.

References

- H. R. Bennett and D. J. Lutzer, 'Problems in perfect ordered spaces', in: *Open Problems in Topology*, (eds. J. van Mill and G. M. Reed) (Elsevier Science, Amsterdam, 1990), pp. 231–236.
- [2] H. R. Bennett and D. J. Lutzer, 'Continuous separating families in ordered spaces and strong base conditions', *Topology Appl.* 119 (2002), 305–314.
- [3] Y.-Z. Gao and W.-X. Shi, 'The *D*-property and the Sorgenfrey line', *Bull. Aust. Math. Soc.* **80** (2009), 233–236.
- [4] L. Halbeisen and N. Hungerbühler, 'On continuously Urysohn and strongly separating spaces', Topology Appl. 118 (2002), 329–335.
- [5] T. Miwa and N. Kemoto, 'Linearly ordered extensions of GO-spaces', *Topology Appl.* 54 (1993), 133–140.
- [6] S. G. Popvassilev and J. E. Porter, 'Monotonically D-spaces', Topology Proc. 30 (2006), 355–365.
- [7] W.-X. Shi, 'Perfect GO-spaces which have a perfect linearly ordered extension', *Topology Appl.* 81 (1997), 23–33.
- [8] W.-X. Shi and Y.-Z. Gao, 'Sorgenfrey line and continuous separating families', *Topology Appl.* 142 (2004), 89–94.
- [9] W.-X. Shi, T. Miwa and Y.-Z. Gao, 'A perfect GO-space which cannot densely embed in any perfect orderable space', *Topology Appl.* 66 (1995), 241–249.
- [10] E. N. Stepanova, 'Extension of continuous functions and metrizability of paracompact *p*-spaces', *Math. Notes (Mat. Zametki)* 53 (1993), 308–314.
- [11] E. K. van Douwen and W. F. Pfeffer, 'Some properties of the Sorgenfrey line and related spaces', *Pacific J. Math.* 81 (1979), 371–377.

YIN-ZHU GAO, Department of Mathematics, Nanjing University, Nanjing 210093, PR China

e-mail: yzgao@nju.edu.cn

WEI-XUE SHI, Department of Mathematics, Nanjing University, Nanjing 210093, PR China

e-mail: wxshi@nju.edu.cn