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Abstract

For any generalized ordered space X with the underlying linearly ordered topological space Xu , let X∗ be
the minimal closed linearly ordered extension of X and X̃ be the minimal dense linearly ordered extension
of X . The following results are obtained.

(1) The projection mapping π : X∗→ X , π(〈x, i〉)= x , is closed.
(2) The projection mapping φ : X̃→ Xu , φ(〈x, i〉)= x , is closed.
(3) X∗ is a monotone D-space if and only if X is a monotone D-space.
(4) X̃ is a monotone D-space if and only if Xu is a monotone D-space.
(5) For the Michael line M , M̃ is a paracompact p-space, but not continuously Urysohn.
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1. Preliminaries

A topological space X is continuously Urysohn if there is a continuous function
ϕ : X2

\ 4→ C(X) such that ϕ(x, y)(x) 6= ϕ(x, y)(y), where 4= {〈x, x〉 : x ∈ X}
and C(X) is the space of bounded continuous real-valued functions with the norm
topology. The concept was first explored in [10] and was named in [4]. The
family {ϕ(x, y) : (x, y) ∈ X2

\ 4} is called a continuous separating family for X .
A submetrizable space is continuously Urysohn, and paracompact p-spaces in the
sense of Arhangel’skii (the preimages of metric spaces under perfect mappings) are
metrizable if and only if they are continuously Urysohn [10].

A topological space X = (X, τ ) is a D-space [11] if for each neighborhood
assignment ϕ : X→ τ , x ∈ ϕ(x) for all x ∈ X , there is a closed discrete subset F(ϕ)
of X such that X =

⋃
{ϕ(x) : x ∈ F(ϕ)}, where τ is the topology on X . If, moreover,

for any two neighborhood assignments ϕ and ψ for X satisfying ϕ(x)⊂ ψ(x) for all
x ∈ X , F(ψ)⊂ F(ϕ), then X is said to be monotonically D [6]. Monotone D-spaces
are D-spaces, but the converse does not hold.
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Let X be a generalized ordered (GO) space with the underlying linearly ordered
topological space Xu , let X∗ be the minimal closed linearly ordered extension of X
and X̃ be the minimal dense linearly ordered extension of X . Clearly, separability,
countable chain condition and Lindelöfness of X can be preserved by X̃ . It is
well known that paracompactness, metrizability and quasi-developability of X are
preserved by X∗. However, these properties of X are not hereditary to X̃ (see [5]).
Since the Sorgenfrey line S and the Michael line M are submetrizable they have the
continuous Urysohn property P . M∗ has P [2], but S∗ and S̃ do not have P [8].

Recall that a GO space is a triple (X, τ, <) where τ is a topology on the linearly
ordered set (X, <) with τ ⊃ λ and has a base consisting of convex sets, here λ is the
open interval topology of the order <. If τ = λ, (X, λ, <) is called a linearly ordered
topological space (LOTS) and, for any GO space (X, τ, <), (X, λ, <) is called
its underlying LOTS. Let Rτ = {x ∈ X : [x,→) ∈ τ − λ}, Lτ = {x ∈ X : (←, x] ∈
τ − λ} and Z be the set of integers. Put

X̃ = (X × {0}) ∪ (Rτ × {−1}) ∪ (Lτ × {1}),

X∗ = (X × {0}) ∪ (Rτ × {i ∈ Z : i < 0}) ∪ (Lτ × {i ∈ Z : i > 0}).

Equip X̃ (respectively X∗) with the open interval topology of the lexicographical order
on it; then X̃ has a dense subspace X × {0} homeomorphic to X and X∗ has a closed
subspace X × {0} homeomorphic to X . By [5, Proposition 2.7], X̃ is the minimal
dense linearly ordered extension of X and, by [7, Theorem 9], X∗ is the minimal
closed linearly ordered extension of X .

Let X = (X, τ, <) be a GO space with the underlying LOTS Xu = (X, λ, <). The
main results of the note are as follows.

(1) The projection mapping π : X∗→ X , π(〈x, i〉)= x , is closed.
(2) The projection mapping φ : X̃→ Xu , φ(〈x, i〉)= x , is closed.
(3) X∗ is a monotone D-space if and only if X is a monotone D-space.
(4) X̃ is a monotone D-space if and only if Xu is a monotone D-space.
(5) For the Michael line M and the Cantor line C , M̃ (respectively C̃) is a

paracompact p-space, but not continuously Urysohn. Hence any dense linearly
ordered extension of M and C is not continuously Urysohn.

Throughout this paper, spaces are topological spaces and are Hausdorff, mappings
are continuous and surjective and [0, 1] is the usual unit closed interval. By R, P and Q
we mean the sets of reals, irrationals and rationals, respectively. The Sorgenfrey line
S is R with half-open intervals of the form [a, b) as a basis for the topology and
the Michael line M is R with points in P isolated and points in Q having their usual
neighborhoods. By the spaces [0, ω1) and [0, ω1] we mean the usual ordinal spaces,
where ω1 is the first uncountable ordinal.

2. Results

Let X = (X, τ, <) be a GO space with the underlying LOTS Xu = (X, λ, <),
and Rτ and Lτ be defined as in Section 1. For the sake of simplicity, we use the
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following notation: L= Lτ − Rτ , R= Rτ − Lτ , I= Rτ ∩ Lτ , E= X − (Rτ ∪ Lτ )
and, for A ⊂ X , A∗ = {〈x, k〉 ∈ X∗ : x ∈ A}.

THEOREM 2.1. Let X be a GO space with the underlying LOTS Xu . Then:

(1) the projection mapping π : X∗→ X, π(〈x, i〉)= x, is closed;
(2) the projection mapping φ : X̃→ Xu , φ(〈x, i〉)= x, is closed.

PROOF. (1) Let X = (X, τ, <) and Xu = (X, λ, <). To show the continuity of π , let
V be a nonempty open convex subset of X . Note that π−1(V )= V ∗, and we will show
that V ∗ is open in X∗. If V = {c}, then 〈c, 0〉 has both an immediate predecessor and an
immediate successor and thus {〈c, 0〉} is open in X∗. Clearly if k 6= 0 and 〈c, k〉 ∈ X∗,
then {〈c, k〉} is open. Let |V | ≥ 2 and x∗ = 〈x, k〉 ∈ V ∗. If k 6= 0, x∗ is an interior point
of V ∗. Let k = 0. If x is a minimal point of V , 〈x, 0〉 has an immediate predecessor
a∗ in X∗. Take y ∈ V such that x < y. Since V is convex, x∗ ∈ (a∗, 〈y, 0〉)⊂ V ∗

and so x∗ is an interior point of V ∗. Similarly, if x is a maximal point of V , x∗ is an
interior point of V ∗. If x ∈ V is neither minimal nor maximal, there are x1, x2 ∈ V
such that x1 < x < x2 and x∗ ∈ (〈x1, 0〉), 〈x2, 0〉)⊂ V ∗ and thus x∗ is also an interior
point of V ∗.

To show that π is closed, let F be a closed subset of X∗ and x ∈ X − π(F). Then
π−1(x) ∩ F = ∅. We will find an open neighborhood of x in X without meeting π(F).
If x ∈ I, {x} is open and {x} ∩ π(F)= ∅. If x ∈ R, π−1(x)= {〈x, i〉 : i ≤ 0} and
(〈x,−1〉, 〈b, 0〉) ∩ F = ∅ for some b > x . Then [x, b) is open and [x, b) ∩ π(F)= ∅.
If x ∈ L, π−1(x)= {〈x, i〉 : i ≥ 0} and (〈a, 0〉, 〈x, 1〉) ∩ F = ∅ for some a < x . Then
(a, x] is open and (a, x] ∩ π(F)= ∅. If x ∈ E, π−1(x)= {〈x, 0〉} and there are c, d
with c < x < d such that (〈c, 0〉, 〈d, 0〉) ∩ F = ∅ and so (c, d) ∩ π(F)= ∅.

(2) To show that φ is continuous, let (a, b) be an open interval in Xu . Then
U = φ−1((a, b)) must be one of the four open intervals of X̃ :U = (〈a, 0〉, 〈b, 0〉)
if a /∈ Lτ , b /∈ Rτ ; U = (〈a, 1〉, 〈b, 0〉) if a ∈ Lτ , b /∈ Rτ ; U = (〈a, 0〉, 〈b,−1〉) if
a /∈ Lτ , b ∈ Rτ ; U = (〈a, 1〉, 〈b,−1〉) if a ∈ Lτ , b ∈ Rτ .

We will now show that φ is closed. Let F be a closed subset of X̃ and x ∈
X − φ(F). Then φ−1(x) ∩ F = ∅. We will find an open interval in Xu containing x
without meeting F . If x ∈ E, φ−1(x)= {〈x, 0〉} and thus there are ax , bx ∈ X with
ax < x < bx such that (〈ax , 0〉, 〈bx , 0〉) ∩ F = ∅. Hence (ax , bx ) ∩ φ(F)= ∅. If
x ∈ R, then φ−1(x)= {〈x,−1〉, 〈x, 0〉} and there are cx , dx ∈ X with cx < x < dx
such that (〈cx , 0〉, 〈x, 0〉) ∩ F = ∅ and (〈x,−1〉, 〈dx , 0〉) ∩ F = ∅ and thus (cx , dx ) ∩

φ(F)= ∅. If x ∈ L, then φ−1(x)= {〈x, 0〉, 〈x, 1〉} and there are ex , fx ∈ X with
ex < x < fx such that (〈ex , 0〉, 〈x, 1〉) ∩ F = ∅ and (〈x, 0〉, 〈 fx , 0〉) ∩ F = ∅. So
(ex , fx ) ∩ φ(F)= ∅. If x ∈ I, φ−1(x)= {〈x,−1〉, 〈x, 0〉, 〈x, 1〉}. Take gx , hx ∈ X
with gx < x < hx such that (〈gx , 0〉, 〈x, 0〉) ∩ F = ∅ and (〈x, 0〉, 〈hx , 0〉) ∩ F = ∅.
Therefore (gx , hx ) ∩ φ(F)= ∅. 2

Let K be the Cantor set and λ the usual open interval topology on R. Put
T =

⋃
{Kq : q ∈Q}, where Kq = {x + q : x ∈ K }. Define a topology ν on R with

the base {[x, x + ε) : ε > 0, x /∈ T } ∪ {{x} : x ∈ T } and call the space (R, ν, <) the
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Cantor line C . Having a σ -discrete dense subset T , by [1, Proposition 3.1] C is perfect
(open sets are Fσ -sets). By [9], any orderable dense extension of C is not perfect.

In the following corollary, R is the Euclidean line, α is an inverse invariant under
countable-to-one closed mappings and β is an inverse invariant under finite-to-one
closed mappings.

COROLLARY 2.2. Let X be a GO space with the underlying LOTS Xu . Then:

(1) X∗ has α whenever X has α and X̃ has β whenever Xu has β;
(2) whenever Xu is R, X̃ is a locally compact paracompact p-space;
(3) M̃ and C̃ are not continuously Urysohn, where M is the Michael line and C is

the Cantor line.

PROOF. (1) follows directly from Theorem 2.1 since π is countable-to-one and φ
is finite-to-one. For (2), note that paracompact p-spaces are precisely preimages of
metric spaces under perfect mappings and X̃ = φ−1(R). (3) Since M̃ has a dense
subspace M × {0} (homeomorphic to M) which is not perfect, M̃ is not perfect and
thus it is not metrizable. By [5] C̃ is not perfect and thus not metrizable. Since
M and C have the underlying LOTS R, by Theorem 2.1, the projection mappings
φ1 : M̃→ R and φ2 : C̃→ R are (finite-to-one) closed mappings. Hence M̃ = φ−1

1 (R)
and C̃ = φ−1

2 (R) are preimages of metric spaces and thus are paracompact p-spaces.
Hence they are not continuously Urysohn. 2

COROLLARY 2.3. Let X be a GO space with the underlying LOTS Xu . If P
is local compactness, countable compactness, compactness, paracompactness or
Lindelöfness, then X̃ has P if and only if Xu has P .

REMARK 2.4. (1) Let X be a GO space with the underlying LOTS Xu . The projection
mapping φ′ : X̃→ X may not be continuous. The projection mapping πu : X∗→ Xu
is continuous, but it may be not open or closed. In Theorem 2.1 the projection
mappings π : X∗→ X and φ: X̃→ Xu need not be open. In fact, the continuity of πu
is clear. Let S be the Sorgenfrey line, M be the Michael line and R be the Euclidean
space. Let Xu = R. If X = S, {〈x,−1〉} is open in S∗, but {x} is not open in S or R
and thus π and πu are not open. If X = M , for p ∈ P, {〈p, 0〉} is open in M̃ , but {p}
is not open in R and thus φ is not open. Q× {0} is closed in M∗, but Q is not closed
in R. Hence πu is not closed.

(2) By Theorem 2.1 and Corollary 2.2, the continuous Urysohn property is not an
inverse invariant under finite-to-one closed mappings.

LEMMA 2.5. Let X be a GO space and F ⊂ X. If F is a closed discrete subspace of
X, then F∗ is a closed discrete subspace of X∗.

PROOF. Let X = (X, τ, <). By Theorem 2.1 the projection mapping π : X∗→ X ,
π(〈x, i〉)= x , is continuous, so F∗ = π−1(F) is closed in X∗. To show that F∗

is discrete, let x∗ = 〈x, k〉 ∈ F∗. If k 6= 0, {x∗} is open. Let k = 0. Then there is
an open convex V ⊂ X with x ∈ V and V ∩ F = {x}. If V = {x}, {x∗} is clearly
open. Let |V | ≥ 2. If x is the minimal point, x∗ has an immediate predecessor p∗
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in X∗. If x ∈ Lτ , (p∗, 〈x, 1〉)= {x∗} is open. If x /∈ Lτ , (p∗, 〈q, 0〉) ∩ F∗ = {x∗}
for some q ∈ V with x < q . The proof for x being maximal is analogous. Now
let x be neither minimal nor maximal. We can take an open U with x∗ ∈U and
U ∩ F∗ = {x∗} as follows: U = (〈x,−1〉, 〈x, 1〉) if x ∈ I;U = (〈x,−1〉, 〈q, 0〉) if
x ∈ R, where q ∈ V and x < q; U = (〈p, 0〉, 〈x, 1〉) if x ∈ L, where p ∈ V and p < x ;
U = (〈p, 0〉, 〈q, 0〉) if x ∈ E, where p, q ∈ V and p < x < q . 2

THEOREM 2.6. Let X be any GO space with the underlying LOTS Xu . Then:

(1) X∗ is a monotone D-space if and only if X is a monotone D-space;
(2) X̃ is a monotone D-space if and only if Xu is a monotone D-space.

PROOF. Let X = (X, τ, <) and Xu = (X, λ, <). If X∗ is monotonically D, then
since the projection mapping π : X∗→ X is closed, by [6, Theorem 1.7(c)] X is
monotonically D. Let X be monotonically D. To show that X∗ is monotonically D,
let ϕ′ be a neighborhood assignment for X∗. Define a neighborhood assignment
ϕ∗ for X∗ such that ϕ∗(z)⊂ ϕ′(z) for z ∈ X∗ as follows. Let x∗ = 〈x, k〉 ∈ X∗. If
k 6= 0, define ϕ∗(x∗)= {x∗}. Let k = 0. If x ∈ I, define ϕ∗(x∗)= {x∗}. If x /∈ I,
let Cx =

⋃
{C : x∗ ∈ C ⊂ ϕ′(x∗), C is open and convex}. Define ϕ∗(x∗)= {〈y, i〉 :

t < y < x for some t for which there is j with 〈t, j〉 ∈ Cx } ∪ {x∗} if x ∈ L; ϕ∗(x∗)=
{x∗} ∪ {〈y, i〉 : x < y < z for some z for which there is k with 〈z, k〉 ∈ Cx } if x ∈ R;
ϕ∗(x∗)= {〈y, i〉 : t < y < z for some t for which there is j with 〈t, j〉, 〈z, k〉 ∈ Cx } if
x ∈ E. Define ϕ(〈x, 0〉)= ϕ∗(〈x, 0〉) ∩ (X × {0}) for x ∈ X . Then ϕ is a neighbor-
hood assignment for the subspace X × {0} (homeomorphic to the monotone D-space
X ) of X∗. So there is a closed discrete subset Fϕ of X such that X × {0} = ϕ(Fϕ ×
{0}). Ifψ is also a neighborhood assignment for X × {0} such that ϕ(w)⊂ ψ(w), then
Fψ × {0} ⊂ Fϕ × {0}. By Lemma 2.5, (Fϕ)∗ is closed and discrete in X∗. Put Fϕ∗ =
(Fϕ)∗. We will show that {ϕ∗(y∗) : y∗ ∈ Fϕ∗} covers X∗. Let y∗ = 〈y, k〉 ∈ X∗ − Fϕ∗ .
Since y /∈ Fϕ and ϕ(Fϕ × {0})= X × {0}, there is 〈x, 0〉 ∈ Fϕ × {0} ⊂ Fϕ∗ such that
〈y, 0〉 ∈ ϕ(〈x, 0〉) with x 6= y. Without loss of generality we assume that y < x .
By the definition of ϕ, y∗ = 〈y, k〉 ∈ ϕ∗(〈x, 0〉). So ϕ∗(Fϕ∗)= X∗. Put Fϕ′ = Fϕ∗ .
Then {ϕ′(y∗) : y∗ ∈ Fϕ′} covers X∗ since ϕ∗(z)⊂ ϕ′(z) for z ∈ X∗. If ψ ′ is also a
neighborhood assignment for X∗ such that ϕ′(z)⊂ ψ ′(z), then we have ϕ∗(z)⊂ ψ∗(z)
for z ∈ X∗. So Fψ ⊂ Fϕ and thus Fψ ′ ⊂ Fϕ′ . Hence X∗ is monotonically D.

If X̃ is monotonically D, then since the projection mapping φ : X̃→ Xu is closed,
by [6, Theorem 1.7(c)] Xu is monotonically D. If Xu is monotonically D, since
the projection mapping φ : X̃→ Xu is closed and finite-to-one and the monotone
D-property is an inverse invariant under finite-to-one closed mappings [3, Theorem 4],
X̃ is monotonically D. 2

EXAMPLE 2.7. The lexicographic rectangle X = R× [0, 1] (respectively, the
lexicographic square Y = [0, 1] × [0, 1]) is a paracompact p-space, but not
continuously Urysohn.
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PROOF. Since the projection mappings f1 : X→ R and f2 : X→ [0, 1]), f1(〈x, y〉)=
x and f2(〈x, y〉)= x , are perfect, X and Y are paracompact p-spaces. Because the
subspace Y of X is not perfect, Y is not continuously Urysohn, so neither is X . 2

Recall that the long line Lω1 is the set [0, ω1)× [0, 1) with the linearly ordered
topology of the lexicographical order. The extended long line L∗ω1

is the set
Lω1 ∪ {ω1} (for any x ∈ Lω1, x < ω1) equipped with the open interval topology, or
equivalently the one-point compactification of Lω1 . The set R× [0, 1] with the
lexicographical order topology is called the lexicographic rectangle and its subspace
[0, 1] × [0, 1] is called the lexicographic square. The set [0, ω1)× Z ∪ {〈ω1, 0〉} with
the lexicographical-order topology is denoted by Zω1 .

EXAMPLE 2.8. Let X be any GO space with the underlying LOTS Xu . Then:

(1) whenever Xu is [0, ω1) or Lω1 , X̃ is countably compact;
(2) whenever Xu is [0, ω1], L∗ω1

or the lexicographic square, X̃ is compact;

(3) whenever Xu is Zω1 or the lexicographic rectangle, X̃ is Lindelöf.

PROOF. Note that the ordinal space [0, ω1], the extended long line L∗ω1
and the

lexicographic square [0, 1] × [0, 1] are compact; the ordinal space [0, ω1) and the
long line Lω1 are countably compact; Zω1 and the lexicographic rectangle R× [0, 1]
are Lindelöf. 2

By [10], the one-point compactification C(ω1) of the discrete uncountable space
[0, ω1) is not continuously Urysohn.

EXAMPLE 2.9. The one-point Lindelöfication L(ω1) of the discrete uncountable
space [0, ω1) is continuously Urysohn.

PROOF. Note that L(ω1) is homeomorphic to Zω1 which is continuously Urysohn
by [2, Example 3.1]. 2

By [8, Theorem 4], any linearly ordered extension the Sorgenfrey line S is not
continuously Urysohn, so not submetrizable. Now we have the following example.

EXAMPLE 2.10. Let S be the Sorgenfrey line, M be the Michael line and C be the
Cantor line. Then:

(1) S̃, M̃ and C̃ are locally compact paracompact p-spaces, and are Lindelöf;
(2) any dense linearly ordered extension of the Michael line M or the Cantor line C

is not continuously Urysohn, so not submetrizable.

PROOF. (1) Noticing that S, M and C have the Euclidean space R as their underlying
LOTS, the conclusion is true from Theorem 2.1(2) and Corollary 2.2. (2) Suppose that
a dense linearly ordered extension L(M) of M is continuously Urysohn. By [5], L(M)
has a subspace homeomorphic to M̃ and thus M̃ is a continuously Urysohn space. This
contradicts Corollary 2.2. The proof for C is similar. 2
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