ON THE IRREDUCIBLE LATTICES OF ORDERS

KLAUS W. ROGGENKAMP

1. Introduction. We shall use the following notation:

- \(R = \) Dedekind domain;
- \(K = \) quotient field of \(R; \)
- \(R_p = \) ring of \(p \)-adic integers in \(K, \) \(p \) being a prime ideal in \(R; \)
- \(A = \) finite-dimensional separable \(K \)-algebra;
- \(G = \) \(R \)-order in \(A \) (for the definition cf. (3)).

All modules that occur are assumed to be finitely generated unitary left modules, unless otherwise specified. By a \(G \)-lattice we mean a \(G \)-module which is torsion-free as \(R \)-module. A \(G \)-lattice is called irreducible if it does not contain a proper \(G \)-submodule of smaller \(R \)-rank. If \(\mathfrak{p} \) is a prime ideal in \(R \) we shall write \(G_{\mathfrak{p}} = R_{\mathfrak{p}} \otimes_R G; \) \(M_{\mathfrak{p}} = R_{\mathfrak{p}} \otimes_R M \) for a \(G \)-lattice \(M, \) and \(K_M = K \otimes_R M. \) Two \(G \)-lattices \(M \) and \(N \) are said to lie in the same genus (notation \(M \sim^G N \)) if \(M_{\mathfrak{p}} \cong N_{\mathfrak{p}} \) for every prime ideal \(\mathfrak{p} \) in \(R. \)

For any \(A \)-module \(L, \) let \(S(L) \) be the collection of \(G \)-lattices \(M, \) for which \(K_M = L. \) Suppose that \(S(L) \) splits into \(r_g(L) \) genera, and into \(r_t(L) \) classes under \(G \)-isomorphism. Maranda (6) has shown: If \(L \) is an absolutely irreducible \(A \)-module, then

\[
(1) \quad r_t(L) = h \cdot r_g(L),
\]

where \(h \) is the class number of \(K. \) Moreover, he listed all \(G \)-lattices which are in the same genus as \(M \in S(L). \)

Our aim in this paper is to extend the results of Maranda (6). We shall describe (for a certain type of \(R \)-orders) all irreducible \(G \)-lattices in terms of irreducible lattices over maximal orders containing \(G. \) In § 2 we show that for considerations of irreducible \(G \)-lattices it suffices to look at orders in simple separable algebras. In § 3 we show that the irreducible \(G \)-lattices are also lattices over maximal orders in \(A, \) if for all irreducible \(G \)-lattices, \(\text{End}_G(M) \) is the same maximal order. In § 4 we apply the results of § 3 to extend Maranda’s results; if \(L \) is an absolutely irreducible \(G \)-lattice, then we describe \(S(L) \) explicitly. However, the applications are not restricted to absolutely irreducible \(A \)-modules.

Convention. Homomorphisms will be written opposite to the scalars.

2. Reduction to orders in simple algebras. If \(H \) is any \(R \)-order in \(A \) containing \(G, \) and if \(M \) is an \(H \)-lattice, we write \(M_H \) and \(M_G \) to indicate whether \(M \) should be considered as an \(H \)-lattice or as a \(G \)-lattice, respectively.

Received February 19, 1968.
PROPOSITION 1. If M and N are H-lattices, then
\[\text{Hom}_H(M, N) = \text{Hom}_G(M, N). \]

Proof. We have the inclusion
\[\text{Hom}_H(M, N) \subset \text{Hom}_G(M, N). \]

To show the reverse inclusion, we pick $0 \neq r \in R$ such that $rH \subset G$. For $f \in \text{Hom}_G(M, N)$ we have:
\[r((xm)f) = (rxm)f = rx(mf), \quad x \in H, m \in M. \]

Since N is R-torsion-free, $f \in \text{Hom}_H(M, N)$.

For the remainder of this section we shall denote by $\text{Irr}(G)$ the set of isomorphism classes of irreducible G-lattices.

PROPOSITION 2. We have an injection
\[F: \text{Irr}(H) \rightarrow \text{Irr}(G), \quad F: (M) \rightarrow (M), \]
where (M) denotes the isomorphism class of M.

Proof. This map is well-defined, and $(M) \in \text{Irr}(G)$ if $(M) \in \text{Irr}(H)$, since M is an irreducible G-lattice if and only if KM is an irreducible A-module. Using Proposition 1, we conclude that F is injective.

LEMMA 3. Let e_i, $i = 1, \ldots, n$, be the set of mutually orthogonal central primitive idempotents in A. Then
\[H = \sum_{i=1}^{n} \oplus Ge_i \]
is an R-order in A containing G, and $F: \text{Irr}(H) \rightarrow \text{Irr}(G)$ is a bijection.

Proof. The e_i are integral over R, and $\sum_{i=1}^{n} e_i = 1$; therefore H is an R-order in A containing G. Because of Proposition 2, it only remains to show that F is surjective. Let M be an irreducible G-lattice such that KM corresponds to e_k. Then
\[e_i m' = \delta_{ik} m' \quad \text{for every } m' \in KM, \]
\[\delta_{ik} \text{ is the Kronecker symbol.} \]
Since $1 \otimes_R M$ is canonically isomorphic to M, we may assume that $M \subset KM$, so that
\[e_i m = \delta_{ik} m \quad \text{for every } m \in M, \]
i.e., M is an H-lattice, and F is surjective.

Remark 4. By means of Lemma 3, one knows all irreducible G-lattices once the irreducible H-lattices are known, where
\[H = \sum_{i=1}^{n} \oplus Ge_i. \]
However, \[\text{Irr}(H) = \bigcup_{i=1}^{n} \text{Irr}(Ge_i) \]
is the disjoint union of a finite number of sets. Therefore we may restrict our
attention to orders in simple algebras.

Example 5. Let \(\mathfrak{G} \) be a finite abelian group of order \(g \), and suppose that \(K \)
splits \(\mathfrak{G} \). If \(\chi \approx \mathfrak{G} \) is the character group of \(\mathfrak{G} \), then
\[\text{Irr}(R\mathfrak{G}) = \{ (I_k e_x) : x \in X, I_k \text{ are representatives of the different ideal classes in } R, \text{ and } e_x \text{ is the primitive idempotent to } \chi \}. \]

Proof.
\[e_x = \frac{1}{g} \sum_{\bar{g} \in \mathfrak{G}} \chi(\bar{g}^{-1}) e_x, \quad \chi \in X. \]

We use the bijection in Lemma 3:
\[\text{Irr}(H) \to \text{Irr}(R\mathfrak{G}), \]
where \(H = \sum_{\chi \in X} \oplus R\mathfrak{G} e_x \). However, \(R\mathfrak{G} e_x = Re_x \) is the maximal \(R \)-order in \(Ke_x \). Thus
\[\text{Irr}(Re_x) = \{ (I_k e_x), k = 1, \ldots \text{ (class number of } R) \}, \]
and by Remark 4 we conclude that
\[\text{Irr}(R\mathfrak{G}) = \{ (I_k e_x) : x \in X, k = 1, \ldots \text{ (class number of } R) \}. \]

3. Irreducible lattices of orders in simple algebras. Let \(G \) be an \(R \)-order in the simple separable finite-dimensional \(K \)-algebra \(A = (D)_n \), \(D \) a skew-
field of finite dimension over \(K \). We put \(C = G \cap D \), viewing \(D \) as embedded
in \(A \). Then \(C \) is an \(R \)-order in \(D \). Let
\[\{ B_j \} (j \in J) = \text{different maximal } R \text{-orders in } A \text{ containing } G, \]
\[M_j = \text{a fixed irreducible } B_j \text{-lattice, for every } j \in J. \]

Then
\[\text{End}_{B_j}(M_j) \text{ is a maximal } R \text{-order in } D; \]
\[\{ I_k \}, k \in J(C_j) = \text{representatives of the different classes of left } C_j \text{-ideals in } D. \]

With this notation we can write down a full set of non-isomorphic irreducible
\(B_j \)-lattices for every \(j \in J \):
\[(2) \quad \text{Irr}(B_j) = \{ (M_j \otimes_{C_j} I_k) : k \in J(C_j) \}; \]
cf. (1; 8).
THEOREM 6. Let \(\text{Irr}(G) \) denote the set of isomorphism classes of irreducible \(G \)-lattices. Then

(i) \(\text{card}(\text{Irr}(G)) \geq \sum_{j \in J} \text{card}(J(C)_j) \);

(ii) We have equality in (i) if \(C = \text{End}_G(M) \) for every irreducible \(G \)-lattice \(M \);

(iii) In the latter case, we can give all irreducible \(G \)-lattices explicitly: Let \(\{I_k\}, k \in J(C), \) be representatives of the different classes of left \(C \)-ideals in \(D \); then

\[
\text{Irr}(G) = \{(M \otimes_C I_k): j \in J, k \in J(C)\}.
\]

Moreover, in this case we have:

\(\text{card}(\text{Irr}(G)) = \text{card}(J)(\text{card}(J(C))) \);

(iv) If we have equality in (i), then there are \(\text{card}(J) \) genera of irreducible \(G \)-lattices, and in each genus there are \(\text{card}(J(C)) \) different isomorphism classes of irreducible \(G \)-lattices. Moreover,

\[
\{M \otimes_C I_k: k \in J(C)\}
\]

are the non-isomorphic irreducible \(G \)-lattices which lie in the same genus as the irreducible \(G \)-lattice \(M \), and representatives of the different genera of irreducible \(G \)-lattices are the \(G \)-lattices

\[
\{M_j: j \in J\}.
\]

The proof of Theorem 6 is done in several steps, as follows.

PROPOSITION 7. Let \(M \) be an irreducible \(B_j \)-lattice, \(N \) an irreducible \(B_k \)-lattice, \(j, k \in J, j \neq k \), then \(M \otimes \alpha N \) and \(N \otimes \alpha M \) are not isomorphic as \(G \)-lattices.

Proof. Assume that \(M \otimes \alpha N \) and \(N \otimes \alpha M \) are isomorphic, and let \(\phi: M \otimes \alpha N \to N \otimes \alpha M \) be a \(G \)-isomorphism. Then we make \(M \) into a \(B_k \)-lattice, denoted by \(M_k \), by defining

\[
b_k m_k = (b k(m f)) f^{-1}, \quad b_k \in B_k, m_k \in M_k, m_k = m.
\]

It is easily checked that the action of \(B_j \) on \(M \) and the action of \(B_k \) on \(M_k \) coincide on \(B_j \cap B_k \supset G \). From (1, Theorem 3.9) it follows that

\[
C_j = \text{End}_{B_j}(M), \quad B_j = \text{End}_{C_j}(M),
\]

\[
C_k = \text{End}_{B_k}(M_k), \quad B_k = \text{End}_{C_k}(M_k).
\]

Now we apply Proposition 1 and conclude that

\[
C_j = \text{End}_{B_j}(M) = \text{End}_\alpha(M) = \text{End}_{B_k}(M_k) = C_k;
\]

thus \(B_j = B_k \), and we have deduced a contradiction.

Proof of Theorem 6(i). Because of (2) and Proposition 7, the \(G \)-lattices

\[
\{M_j \otimes_{C_j} I_k, k \in J(C)_j, j \in J\}
\]

are non-isomorphic irreducible \(G \)-lattices, whence the inequality (i) in Theorem 6 follows.
Proof of Theorem 6(ii). If \(C = \text{End}_G(M) \) for every irreducible \(G \)-lattice \(M \), then we have equality in Theorem 6(i). The hypothesis implies that \(C \) is maximal: Let \(M \) be an irreducible \(B_j \)-lattice for some \(j \in J \); then \(\text{End}_{B_j}(M) = \text{End}_G(M) = C \) is a maximal \(R \)-order in \(D \). To prove Theorem 6(ii) we have to show that every irreducible \(G \)-lattice is a \(B_j \)-lattice for some maximal order \(B_j, j \in J \). Let \(M \) be an irreducible \(G \)-lattice. Then \(M \) is a right \(C \)-lattice, since \(C = \text{End}_G(M) \), and \(B = \text{End}_C(M) \) is a maximal \(R \)-order in

\[
K \otimes_R \text{End}_C(M) = \text{End}_D(KM) = A;
\]
cf. (1, Theorem 3.9). Since \(M \) was a \(G \)-lattice to start with, \(G \subset B = \text{End}_C(M) \), and \(M \) is a \(B \)-lattice in the usual fashion.

Proof of Theorem 6(iii). If Theorem 6(ii) holds, then \(C_j = C \) for every \(j \in J \) (\(C_j = \text{End}_{B_j}(M_j) \)), cf. the beginning of § 3), and a full set of non-isomorphic irreducible \(G \)-lattices is given by

\[
\{ M_j \otimes_C I_k; j \in J, k \in J(C) \}.
\]

Proof of Theorem 6(iv). We shall prove the following lemma, which is of interest in itself.

Lemma 8. Let \(M \) be an irreducible \(G \)-lattice such that \(M \) is also a \(B_j \)-lattice for some \(j \in J \); let \(C_j = \text{End}_{B_j}(M) \). Then

\[
\{ M \otimes_{C_j} I_k; k \in J(C_j) \}
\]
are all the non-isomorphic \(G \)-lattices in the same genus as \(M \).

For the notation, compare the beginning of § 3.

Proof. Since \(C_j \) is a maximal \(R \)-order in \(D \), all the \(G \)-lattices \(M \otimes_{C_j} I_k \) are non-isomorphic, and they lie in the same genus as \(M \). Now let \(N \) be a \(G \)-lattice in the same genus as \(M \). Then \(N_p \) is a \((B_j)_p \)-lattice for every prime ideal \(p \) in \(R \). However, this can only be if \(N \) is a \(B_j \)-lattice itself. Therefore, \(N \cong M \otimes_{C_j} I_k \) for some \(k \in J(C_j) \).

Corollary 9. If \(M \) and \(N \) are irreducible \(G \)-lattices such that \(M \) is a \(B_j \)-lattice for some \(j \in J \) and \(N \) is a \(B_k \)-lattice for some \(k \in J \), then \(N_0 \) is in the same genus as \(N \) if and only if \(B_j = B_k \).

Corollary 10. If \(L \) is an irreducible \(A \)-module, then

\[
r_0(L) \geq \text{card}(J).
\]

For the definition of \(r_0(L) \), compare § 1.

The proof of Theorem 6(iv) follows now easily if one observes that we have equality in Theorem 6(i), i.e. every irreducible \(G \)-lattice is isomorphic to some \(B_j \)-lattice.

This completes the proof of Theorem 6.
4. Applications of Theorem 6 to some special orders. Let \(A \) be a separable finite-dimensional \(K \)-algebra.

Lemma 11. If \(R \) is a Dedekind domain such that the class number of \(R \) is finite and such that \((R:p)\) is finite for every prime ideal \(p \) in \(R \), then there are only finitely many different maximal \(R \)-orders in \(A \) containing a fixed \(R \)-order \(G \) in \(A \).

Proof. There is only a finite number of non-isomorphic irreducible \(A \)-modules, say \(L_1, \ldots, L_t \). Under the hypotheses on \(R \), the Jordan-Zassenhaus theorem is valid (cf. §10), i.e. for the \(R \)-order \(G \), \(S(L_i) \) (cf. §1) contains only a finite number of non-isomorphic irreducible \(G \)-lattices. Now the result follows from Proposition 7 if one observes that every maximal \(R \)-order in \(A \) decomposes into a direct sum of maximal orders in the simple components of \(A \). The main applications of Theorem 6 can be gained by using the following result.

Lemma 12. Let \(G \) be an \(R \)-order in the simple separable \(K \)-algebra \(A = (K')_n \), \(K' \) an extension field of finite dimension over \(K \). If \(G \subseteq K = C \) is the maximal \(R \)-order in \(K' \), then every irreducible \(G \)-lattice is an irreducible lattice for some maximal \(R \)-order in \(A \) containing \(G \), i.e. Theorem 6(iii), (iv) can be applied.

Proof. It only remains to show that \(\text{End}_G(M) = C \) for every irreducible \(G \)-lattice \(M \); then the lemma follows from Theorem 6(ii). Since \(C \) is the only maximal \(R \)-order in \(D \), \(\text{End}_G(M) \subseteq C \) for every irreducible \(G \)-lattice \(M \). But since \(C \) is commutative and is contained in the centre of \(G \), \(\text{End}_G(M) = C \).

For the remainder of the paper we adopt the following notation:
\(A \) is a separable finite-dimensional \(K \)-algebra;
\(L \) = irreducible \(A \)-module;
\(D_L = \text{End}_A(L) \);
\(e_L \) = central primitive idempotent corresponding to \(L \);
\(A e_L = \text{End}_G(L) \) = simple component of \(A \) corresponding to \(L \).

For an \(R \)-order \(G \) in \(A \) we let:
\(C_L = Ge_L \cap D_L \);
\(B^L_j, j \in J_L \) = different maximal \(R \)-orders in \(A e_L \) containing \(Ge_L \);
\(M^L_j \) = irreducible \(B^L_j \)-lattice, \(j \in J_L \);
\(I^L_k, k \in J(C_L) \) = representatives of the classes of left \(C_L \)-ideals in \(D \);
\(S(L) = \{ M : M = G \text{-lattice}, KM \cong L \} \).

Theorem 13. If \(D_L \) is commutative and if \(C_L \) is the maximal \(R \)-order in \(D \), then

(i) all irreducible non-isomorphic \(G \)-lattices in \(S(L) \) are given by
\[\{ M^L_j \otimes e_L I^L_k, j \in J_L, k \in J(C_L) \}, \]

(ii) \(S(L) \) splits into \(\text{card}(J_L) \) genera:
\[\{ M^L_j \otimes e_L I^L_k, k \in J(C_L) \}, \quad j \in J_L, \]

(iii) \(r_t(L) = (\text{card}(J(C))) r_t(L), r_t(L) = \text{card}(J_L), \quad (\text{this is an extension of Maranda's results (6))}. \)

https://doi.org/10.4153/CJM-1969-106-x Published online by Cambridge University Press
Remark 14. In the special case where \(L \) is an absolutely irreducible \(A \)-module, we obtain the well-known formula (1).

References

Université de Montréal,
Montréal, Québec