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Abstract. We derive the almost sure Assouad spectrum and quasi-Assouad dimension of

one-variable random self-affine Bedford–McMullen carpets. Previous work has revealed

that the (related) Assouad dimension is not sufficiently sensitive to distinguish between

subtle changes in the random model, since it tends to be almost surely ‘as large as

possible’ (a deterministic quantity). This has been verified in conformal and non-conformal

settings. In the conformal setting, the Assouad spectrum and quasi-Assouad dimension

behave rather differently, tending to almost surely coincide with the upper box dimension.

Here we investigate the non-conformal setting and find that the Assouad spectrum and

quasi-Assouad dimension generally do not coincide with the box dimension or Assouad

dimension. We provide examples highlighting the subtle differences between these notions.

Our proofs combine deterministic covering techniques with suitably adapted Chernoff

estimates and Borel–Cantelli-type arguments.
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1. Assouad spectrum and quasi-Assouad dimension

The Assouad dimension is an important notion of dimension designed to capture extreme

local scaling properties of a given metric space. Its distance from the upper box dimension,

which measures average global scaling, can be interpreted as a quantifiable measure of

inhomogeneity. Motivated by this idea, Fraser and Yu introduced the Assouad spectrum,

which is designed to interpolate between the upper box dimension and the Assouad

dimension and thus reveal more precise geometric information about the set; see [6].

Here we recall the basic definitions and, for concreteness, we consider non-empty compact
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sets F ⊆ R
d , although the general theory extends beyond this setting. For a bounded set

E ⊆ R
d and a scale r > 0 we let N(E, r) be the minimum number of sets of diameter r

required to cover E. The Assouad dimension of F is defined by

dimAF = inf

{

α : (∃ C > 0) (∀ 0 < r < R < 1)

(∀x ∈ F) N
(

B(x, R) ∩ F , r
)

6 C

(

R

r

)α}

.

The Assouad spectrum is the function defined by

θ 7→ dimθ
AF = inf

{

α : (∃C > 0) (∀0 < R < 1)

(∀x ∈ F) N
(

B(x, R) ∩ F , R1/θ
)

6 C

(

R

R1/θ

)α}

,

where θ varies over (0, 1). The related quasi-Assouad dimension is defined by

dimqAF = lim
θ→1

inf

{

α : (∃C > 0) (∀0 < r 6 R1/θ
6 R < 1)

(∀x ∈ F) N(B(x, R) ∩ F , r) 6 C

(

R

r

)α}

and the upper box dimension is defined by

dimBF = inf

{

α : (∃ C) (∀ 0 < R < 1) N(F , r) 6 C

(

1

r

)α}

.

These dimensions are all related, but their relative differences can be subtle. We summarize

some important facts to close this section. For any θ ∈ (0, 1), we have

dimBF 6 dimθ
AF 6 dimqAF 6 dimAF

and any of these inequalities can be strict. Moreover, the Assouad spectrum is a continuous

function of θ and also satisfies

dimθ
AF 6

dimBF

1 − θ
. (1.1)

We also note that for a given θ it is not necessarily true that the Assouad spectrum is

given by the expression after the limit in the definition of the quasi-Assouad dimension:

this notion is by definition monotonic in θ , but the spectrum is not necessarily monotonic

[6, §8]. However, it has recently been shown in [4] that dimqA F = limθ→1 dimθ
A F and,

combining this with (1.1), we see that the Assouad spectrum necessarily interpolates

between the upper box dimension and the quasi-Assouad dimension.

For more information, including basic properties, concerning the upper box dimension,

see [2, Chs 2 and 3]. For the Assouad dimension, see [3, 11, 14], for the quasi-Assouad

dimension, see [8], and for the Assouad spectrum, see [4, 6, 7].

https://doi.org/10.1017/etds.2020.93 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2020.93


The Assouad spectrum of random self-affine carpets 2929

2. Self-affine carpets: random and deterministic

In this paper we consider random self-affine carpets. More specifically, one-variable

random analogues of the self-affine sets introduced by Bedford and McMullen in the 1980s,

where the subdivision is chosen independently and applied uniformly at every iteration

of the construction. In the deterministic setting, the box dimensions were computed

independently by Bedford and McMullen [1, 13] and the Assouad dimension was

computed by Mackay [12]. The Assouad spectrum was computed by Fraser and Yu [7], and

these results also demonstrated that the quasi-Assouad and Assouad dimensions coincide

by virtue of the spectrum reaching the Assouad dimension. Gatzouras and Lalley [9] first

considered stochastically self-affine sets and computed their Hausdorff and box-counting

dimensions. This stochastically self-affine model is also known as the random recursive

or the ∞-variable random model. In the one-variable random setting, the (almost sure)

box dimensions were first computed by Gui and Li [10] for fixed subdivisions and by

Troscheit [15] in the most general setting that we are aware of. The (almost sure) Assouad

dimension was computed by Fraser, Miao and Troscheit [5]. In this article we compute

the quasi-Assouad dimension and the Assouad spectrum in the random setting. Unlike in

the deterministic case, we find that the quasi-Assouad dimension and Assouad dimension

are usually almost surely distinct. Further, the quasi-Assouad dimension is in general also

distinct from the box dimension. This is in stark contrast to the conformal setting, where it

was shown that the quasi-Assouad dimension (and thus Assouad spectrum) is almost surely

equal to the upper box dimension (and distinct from the Assouad dimension); see [16].

We close this section by describing our model. Let 3 = {1, . . . , |3|} be a finite index

set and, for each i ∈ 3, fix integers ni > mi > 2 and divide the unit square [0, 1]2 into a

uniform mi × ni grid. For each i ∈ 3, let Ii be a non-empty subset of the set of m−1
i × n−1

i

rectangles in the grid and let Ni = |Ii |. Let Bi be the number of distinct columns which

contain rectangles from Ii , and Ci be the maximum number of rectangles in Ii which are

contained in a particular column. Note that 1 6 Bi 6 mi , 1 6 Ci 6 ni , and Ni 6 BiCi .

For each rectangle j ∈ Ii , let Sj be the unique orientation-preserving affine map which

maps the unit square [0, 1]2 onto the rectangle j.

Let � = 3N and, for each ω = (ω1, ω2, . . .) ∈ �, we are interested in the correspond-

ing attractor

Fω =
⋂

k>1

⋃

j1∈Iω1
,...,jk∈Iωk

Sj1
◦ · · · ◦ Sjk

([0, 1]2).

By randomly choosing ω ∈ �, we randomly choose an attractor Fω and we wish to make

statements about the generic nature of Fω. For this, we need a measure on �. Let {pi}i∈3

be a set of probability weights, that is, for each i ∈ 3, 0 < pi < 1 and
∑

i∈3 pi = 1. We

extend these basic probabilities to a Borel measure P on � in the natural way, which can

be expressed as the infinite-product measure

P =
∏

k∈N

∑

i∈3

piδi ,

where � is endowed with the product topology and δi is a unit mass concentrated at i ∈ 3.

Note that the deterministic model can be recovered if |3| = 1, that is, there is only one

‘pattern’ available, which is therefore chosen at every stage in the process. In this case, the
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deterministic attractor is the unique non-empty set F ⊆ [0, 1]2 satisfying

F =
⋃

j∈I1

Sj (F ).

3. Results

Our main result is an explicit formula which gives the Assouad spectrum of our random

self-affine sets almost surely.

THEOREM 3.1. For P almost all ω ∈ �, we have

dimθ
AFω =



























































1

1 − θ

(
∑

i pi log(BiC
θ
i N−θ

i )
∑

i pi log mi

+

∑

i pi log(NiB
−1
i C−θ

i )
∑

i pi log ni

)

for 0<θ6

∑

i pi log mi
∑

i pi log ni

,

∑

i pi log Bi
∑

i pi log mi

+

∑

i pi log Ci
∑

i pi log ni

for

∑

i pi log mi
∑

i pi log ni

< θ < 1,

where Fω is the one-variable random Bedford–McMullen carpet associated with ω ∈ �.

As an immediate consequence of Theorem 3.1, we obtain a formula for the

quasi-Assouad dimension which holds almost surely.

COROLLARY 3.2. For P almost all ω ∈ �, we have

dimqA Fω =

∑

i pi log Bi
∑

i pi log mi

+

∑

i pi log Ci
∑

i pi log ni

,

where Fω is the one-variable random Bedford–McMullen carpet associated with ω ∈ �.

Proof. This follows immediately from Theorem 3.1 and the fact that dimθ
AE → dimqAE

as θ → 1 for any set E ⊆ R
d ; see [4, Corollary 2.2]. �

Note that the result in [5] states that for P almost all ω ∈ �, we have

dimAFω = max
i∈3

log Bi

log mi

+ max
i∈3

log Ci

log ni

.

Therefore, Corollary 3.2 demonstrates the striking difference between the Assouad and

quasi-Assouad dimensions in the random setting. In particular, the almost sure value of the

Assouad dimension does not depend on the weights {pi}i∈3, whereas the quasi-Assouad

dimension depends heavily on them. The almost sure value of the Assouad dimension is

also extremal in the sense that it is the maximum over all realizations ω ∈ �, whereas

the quasi-Assouad dimension is an average. Recall that the quasi-Assouad and Assouad

dimensions always coincide for deterministic self-affine carpets; see [7].

It is worth noting that the Assouad dimension of the random attractor is bounded below

by the maximal Assouad dimension of the constituent deterministic attractors, whereas the

quasi-Assouad dimension is bounded above by the dimension of the individual attractors.
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FIGURE 1. The Assouad spectra of the sets in the example of §3.1. The deterministic spectra are shown in dashed

lines and the almost sure spectrum in the random case is given by a solid line

That is, letting i = (i, i, i, . . .),

dimAFω > max
i∈3

dimAFi (a.s.) and dimqAFω 6 max
i∈3

dimqAFi (a.s.).

Typically these inequalities are strict and it is further possible that dimqA Fω <

mini∈3 dimqA Fi almost surely; see Figure 1 and the example in Section 3.2.

Finally, note that the almost sure values of the Assouad and quasi-Assouad dimen-

sions coincide if and only if there exist α, β ∈ (0, 1] such that for all i ∈ 3, we have

(log Bi)/(log mi) = α and (log Ci)/(log ni) = β. This follows by considering ‘weighted

mediants’. In particular, the two terms giving the quasi-Assouad dimension are weighted

mediants of the fractions (log Bi)/(log mi) and (log Ci)/(log ni), respectively. It is

well known that weighted mediants are equal to the maximum if and only if all the

fractions coincide. In particular, coincidence of all of the deterministic Assouad (and

quasi-Assouad) dimensions is not sufficient to ensure almost sure coincidence of the

Assouad and quasi-Assouad dimensions in the random case.

Simple algebraic manipulation yields the following random analogue of [7, Corollary

3.5]. In particular, the random variable dimθ
A Fω can be expressed in terms of the random

variables dimBFω and dimqA Fω.

COROLLARY 3.3. For P almost all ω ∈ �, we have

dimθ
AFω

= min

{

dimBFω − θ (dimqAFω − (dimqAFω − dimBFω)(
∑

i pi log ni)/(
∑

i pi log mi))

1 − θ
,

dimqAF

}

,

where Fω is the one-variable random Bedford–McMullen carpet associated with ω ∈ �.
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FIGURE 2. The attractors F1, F2, and Fω for ω = (2, 1, 1, 2, 1, . . .) as used in the example in §3.1

Note that [7, Corollary 3.5] is formulated using the Assouad dimension instead of the

quasi-Assouad dimension (although they are equal in the deterministic case). Our result

shows that the quasi-Assouad dimension is really the ‘correct’ notion to use here.

3.1. Generic example. For illustrative purposes, we exhibit a representative example

and provide pictures of the random and deterministic carpets along with their spectra.

Let 3 = {1, 2} and P be the 1/2–1/2 Bernoulli probability measure on � = 3N. That is,

we consider two iterated function systems that we choose with equal probability.

The first iterated function system consists of N1 = 20 maps, where the unit square is

divided into m1 = 19 by n1 = 21 rectangles. There are B1 = 10 columns containing at

least one rectangle and the maximal number of rectangles in a particular column is C1 = 8.

For the attractor of this deterministic Bedford–McMullen carpet, we obtain

dimA F1 = dimqA F1 =
log 10

log 19
+

log 8

log 21
≈ 1.465 and

dimBF1 =
log 10

log 19
+

log 2

log 21
≈ 1.010

and the spectrum interpolates between these two values with a phase transition at

log 19/ log 21 ≈ 0.967. The spectrum is plotted in Figure 1 and the attractor is shown

in Figure 2.

The second iterated function system consists of N2 = 5 maps, where the unit square is

divided into m2 = 2 by n2 = 15 rectangles. There are B2 = 2 columns containing at least

one rectangle and the maximal number of rectangles in a particular column is C2 = 4. For

the attractor of this deterministic Bedford–McMullen carpet, we obtain

dimAF2 = dimqA F2 = 1 +
log 4

log 15
≈ 1.512 and dimBF2 = 1 +

log(5/2)

log 15
≈ 1.338

and the spectrum interpolates between these two values with a phase transition at

log 2/ log 15 ≈ 0.256. The spectrum is plotted in Figure 1 and the attractor is shown in

Figure 2.
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Our results now give the following values for almost every ω ∈ �:

dimAFω = 1 +
log 8

log 21
≈ 1.683, dimqA Fω =

log 20

log 38
+

log 32

log 315
≈ 1.426,

and dimBFω =
log 20

log 38
+

log 5

log 315
≈ 1.103.

We note that in this example the almost sure value of the Assouad dimension exceeds that

of the individual attractors, that the almost sure quasi-Assouad dimension is less than the

quasi-Assouad dimensions of the individual attractors, and that the phase transition in the

spectrum occurs at log 38/ log 315 ≈ 0.632.

3.2. An extremal example. By constructing explicit examples, we demonstrate the

following interesting phenomenon, which highlights the subtle difference between the

quasi-Assouad and Assouad dimensions. For all ε ∈ (0, 1), there exist two determinis-

tic self-affine carpets E, F with dimBE = dimBF = dimqA E = dimqA F = dimA E =

dimA F = 1 such that when one mixes the two constructions by randomizing as above,

one finds that almost surely

dimqAFω 6 ε < 2 = dimAFω.

Let ε ∈ (0, 1), 3 = {1, 2}, m1 = 2, n1 = n, m2 = m, and n2 = m + 1, where m, n are

large integers which will be chosen later depending only on ε. Let I1 consist of both

rectangles from a particular row in the first grid and I2 consist of all m + 1 rectangles

in a particular column of the second grid. The deterministic carpets associated with these

systems are both unit line segments: a horizontal line in the first case and a vertical line

in the second. Therefore, both have all the dimensions we consider being equal to 1. Let

p1 = p2 = 1/2, although the precise choice of weights is not particularly important. It

follows that for P almost all ω ∈ �, we have

dimqAFω =
(1/2) log 2 + (1/2) log 1

(1/2) log 2 + (1/2) log m
+

(1/2) log 1 + (1/2) log(m + 1)

(1/2) log n + (1/2) log(m + 1)

=
log 2

log(2m)
+

log(m + 1)

log n(m + 1)
.

Choose m sufficiently large to ensure that (log 2)/(log(2m)) 6 ε/2 and, now that m is

fixed, choose n sufficiently large to ensure that (log(m + 1))/(log n(m + 1)) 6 ε/2. The

main result in [5, Theorem 3.2] gives that for any choice of m, n > 2, dimA Fω = 2 almost

surely and therefore the desired result follows.

4. Proofs

4.1. Approximate squares. In this section we introduce (random) approximate squares,

which are a common object in the study of self-affine carpets. Fix ω = (ω1, ω2, . . .) ∈ �,

R ∈ (0, 1), and let kω
1 (R) and kω

2 (R) be the unique positive integers satisfying

kω
1 (R)
∏

l=1

m−1
ωl

6 R <

kω
1 (R)−1
∏

l=1

m−1
ωl

(4.1)
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and

kω
2 (R)
∏

l=1

n−1
ωl

6 R <

kω
2 (R)−1
∏

l=1

n−1
ωl

, (4.2)

respectively. Also, let

mmax = max
i∈3

mi and nmax = max
i∈3

ni .

A rectangle [a, b] × [c, d] ⊆ [0, 1]2 is called an approximate R-square if it is of the form

S([0, 1]2) ∩ (π1(T ([0, 1]2)) × [0, 1]),

where π1 : (x, y) 7→ x is the projection onto the first coordinate and

S = Si1 ◦ · · · ◦ Sikω
2

(R)

and

T = Si1 ◦ · · · ◦ Sikω
1

(R)

for some common sequence i1, i2, . . . with ij ∈ Iωj
for all j. Here we say that Q is

associated with the sequence i1, i2, . . . , noting that the entries i1, i2, . . . , ikω
1 (R) determine

Q. In particular, the base

b − a =

kω
1 (R)
∏

i=1

m−1
ωi

∈ (m−1
maxR, R] by (4.1)

and the height

d − c =

kω
2 (R)
∏

i=1

n−1
ωi

∈ (n−1
maxR, R] by (4.2)

and so approximate R-squares are indeed approximately squares with base and height

uniformly comparable to R and therefore to each other.

4.2. Proof strategy and notation. In order to simplify the exposition of our proofs, we

define the following weighted geometric averages of the important parameters:

N =
∏

i∈3

N
pi

i , B =
∏

i∈3

B
pi

i , C =
∏

i∈3

C
pi

i , m =
∏

i∈3

m
pi

i , n =
∏

i∈3

n
pi

i .

Using this notation, in order to prove our result it is sufficient to prove the following two

statements.

(1) For all log m/ log n < θ < 1, we have that for P almost all ω ∈ �,

dimθ
AFω 6

log B

log m
+

log C

log n
.
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(2) For all 0 < θ < log m/ log n, we have that for P almost all ω ∈ �,

dimθ
AFω =

1

1 − θ

(

log B

log m
+

log N/B

log n

)

−
θ

1 − θ

(

log(N/C)

log m
+

log C

log n

)

.

To see why this is sufficient, first note that since the Assouad spectrum is a continuous

function in θ , see [6, Corollary 3.5], it is determined by its values on a countable dense

set and so the above statements imply the a priori stronger statements that for P almost

all ω ∈ �, we have the given estimates for all θ . Secondly, since the Assouad spectrum

necessarily approaches the quasi-Assouad dimension as θ → 1, (1) demonstrates that the

quasi-Assouad dimension is at most

log B

log m
+

log C

log n

and, since (2) demonstrates that the Assouad spectrum attains this value at θ =

log m/ log n, it follows from [6, Corollary 3.6] that it is constant in the interval

[log m/ log n, 1). Technically speaking, [6, Corollary 3.6] proved that if the Assouad

spectrum is equal to the Assouad dimension at some θ ′ ∈ (0, 1), then it is constant in the

interval [θ ′, 1), but the same proof allows one to replace the Assouad dimension with the

quasi-Assouad dimension in this statement.

Finally, note that to establish estimates for dimθ
A Fω, it suffices to replace balls of radius

R with approximate R-squares in the definition. That is, to estimate N(Q ∩ Fω, R1/θ ),

where Q is associated to i1, i2, . . . with ij ∈ Iωj
for all j instead of N(B(x, R) ∩ Fω, R1/θ )

for x ∈ Fω. This is because balls and approximate squares are comparable and one can

pass covering estimates concerning one to covering estimates concerning the other up to

constant factors. This duality is standard and we do not go into the details.

4.3. Covering estimates. Let ω ∈ �, θ ∈ (0, 1), R ∈ (0, 1), and Q be an approximate

R-square associated with the sequence i1, i2, . . . with ij ∈ Iωj
for all j. In what follows we

describe sets of the form Sj1
◦ · · · ◦ Sjl

(Fω) as level-l cylinders and level-(l + 1) cylinders

lying inside a particular level-l cylinder will be referred to as children. Moreover, iteration

will refer to moving attention from a particular cylinder, or collection of cylinders, to the

cylinders at the next level.

We wish to estimate N(Q ∩ Fω, R1/θ ) and to do this we decompose Q ∩ Fω into

cylinders at level kω
2 (R1/θ ) and cover each cylinder independently. Therefore, we first need

to count how many level-kω
2 (R1/θ ) cylinders lie inside Q. There are two cases, which we

describe separately.

Case (i): kω
1 (R) < kω

2 (R1/θ ). We start by noting that Q lies inside a (unique)

level-kω
2 (R) cylinder. As we move to the next level only the children of this cylinder

lying in a particular ‘column’ will also intersect Q. Iterating inside cylinders intersecting

Q until level kω
1 (R) yields a decomposition of Q into several cylinders arranged in a single

column each of which has base the same length as that of Q. The number of these cylinders

is at most
kω

1 (R)
∏

l=kω
2 (R)+1

Cωl
,
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since each iteration from the (l − 1)th level to the lth multiplies the number of cylinders

intersecting Q at the previous level by the number of rectangles in a particular column of

an Iωl
system, which is, in particular, bounded above by Cωl

. The situation is simpler from

this point on. We continue to iterate inside each of the level-kω
1 (R) cylinders until level

kω
2 (R1/θ ), but this time all of the children remain inside Q at every iteration. Therefore,

we find precisely

kω
2 (R1/θ )
∏

l=kω
1 (R)+1

Nωl

level-kω
2 (R1/θ ) cylinders inside each level-kω

1 (R) cylinder. As mentioned above, we now

cover each of these cylinders individually. To do this, we further iterate inside each such

cylinder until level kω
1 (R1/θ ) and group together cylinders at this level which lie in the same

column. This decomposes the level-kω
1 (R1/θ ) cylinders into approximate R1/θ -squares,

each of which can be covered by four balls of diameter R1/θ . Therefore, it only remains

to count the number of distinct level-kω
1 (R1/θ ) columns inside a level-kω

2 (R1/θ ) cylinder.

Iterating from the (l − 1)th level to the lth level multiplies the number of columns by Bωl

and therefore the number is

kω
1 (R1/θ )
∏

l=kω
2 (R1/θ )+1

Bωl
.

Combining the three counting arguments from above yields

N(Q ∩ Fω, R1/θ ) 6 4

( kω
1 (R)
∏

l=kω
2 (R)+1

Cωl

) ( kω
2 (R1/θ )
∏

l=kω
1 (R)+1

Nωl

) ( kω
1 (R1/θ )
∏

l=kω
2 (R1/θ )+1

Bωl

)

. (4.3)

Moreover, this estimate is sharp in the sense that we can always find a particular

approximate R-square Q such that

N(Q ∩ Fω, R1/θ ) > K

( kω
1 (R)
∏

l=kω
2 (R)+1

Cωl

) ( kω
2 (R1/θ )
∏

l=kω
1 (R)+1

Nωl

) ( kω
1 (R1/θ )
∏

l=kω
2 (R1/θ )+1

Bωl

)

(4.4)

for some constant K > 0 depending on mmax and nmax. Such a Q is provided by any

approximate R-square where T = Si1 ◦ · · · ◦ Sikω
1

(R)
is chosen such that each map ij lies in

a maximal column of Ij , that is, a column consisting of Cj rectangles. Finally, the small

constant K in the lower bound appears since a single ball of diameter R1/θ can only inter-

sect at most a constant number of the approximate R1/θ -squares found above and therefore

counting approximate R1/θ -squares is still comparable to counting optimal R1/θ covers.

Case (ii): kω
1 (R) > kω

2 (R1/θ ). The distinctive feature of this case is that when one

iterates inside the level-kω
2 (R) cylinder containing Q, one reaches the situation where the

height of the cylinders is roughly R1/θ (level kω
2 (R1/θ )) before the cylinders lie completely

inside Q (level kω
1 (R)). This means that the middle term in the above product no longer
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appears. The rest of the argument is similar, however, and we end up with

N(Q ∩ Fω, R1/θ ) 6 4

( kω
2 (R1/θ )
∏

l=kω
2 (R)+1

Cωl

) ( kω
1 (R1/θ )
∏

l=kω
1 (R)+1

Bωl

)

. (4.5)

One subtle feature of this estimate is that we appear to skip from level kω
2 (R1/θ ) to level

kω
1 (R). This is to avoid over-counting due to the fact that, inside a level-kω

2 (R1/θ ) cylinder

intersecting Q, only a single level-kω
1 (R) column actually lies inside Q and can thus

contribute to the covering number. This column comprises several kω
1 (R) cylinders and,

since the height of this column is comparable to R1/θ , to cover this column efficiently one

only needs to count the number of level-kω
1 (R1/θ ) columns inside a single level-kω

1 (R)

cylinder. This gives the second multiplicative term in the estimate, which concerns the

terms Bωl
.

Once again, this bound is sharp in the sense that there exists an approximate R-square

Q such that

N(Q ∩ Fω, R1/θ ) > K

( kω
2 (R1/θ )
∏

l=kω
2 (R)+1

Cωl

) ( kω
1 (R1/θ )
∏

l=kω
1 (R)+1

Bωl

)

.

4.4. Proof of the main theorem. We start our proof with this lemma, which is a simple

variant of a Chernoff bound for stopped sums of random variables. We write P{a > b} to

denote P({ω ∈ � : a > b}) and write E(·) for the expectation of a random variable with

respect to P.

LEMMA 4.1. Let {Xi} be a sequence of non-negative discrete independent and identically

distributed random variables with finite expectation 0 < X = E(X) < ∞. Let k̂ ∈ N and

let k 6 k̂ be a random variable. Let τ > k̂ be a stopping time with finite expectation. Then,

for all ε, t > 0,

P

{ τ
∑

i=k

Xi > (1 + ε)(τ − k + 1)X

}

6 E
(

E(et (X−(1+ε)X))τ−k
)

(4.6)

and

P

{ τ
∑

i=k

Xi 6 (1 − ε)(τ − k + 1)X

}

6 E
(

E(et (X−(1+ε)X))τ−k
)

. (4.7)

Further, if τ − k > l for some l ∈ N, then there exists 0 < γ < 1 not depending on τ , k, l

such that

P

{ τ
∑

i=k

Xi > (1 + ε)(τ − k + 1)X

}

6 γ l (4.8)

and

P

{ τ
∑

i=k

Xi 6 (1 − ε)(τ − k + 1)X

}

6 γ l .
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Proof. In what follows, we write {Fs}s>0 for the natural filtration of our event space. We

prove (4.6) and (4.8). The remaining estimates are proved similarly and we omit the details.

We rearrange the left-hand side of (4.6) and multiply by t > 0 to obtain

P

{ τ
∑

i=k

Xi > (1 + ε)(τ − k + 1)X

}

= P

{ τ
∑

i=k

t (Xi − (1 + ε)X) > 0

}

= P

{

exp

[ τ
∑

i=k

Yi

]

> 1

}

,

with Yi = tXi − t (1 + ε)X. Using Markov’s inequality and continuing,

6 E

(

exp

[ τ
∑

i=k

Yi

])

= E

(

E

(

exp

[ τ
∑

i=k

Yi

]

∣

∣Fτ−1

))

= E

(

E(exp Yτ | Fτ−1)E

(

exp

[ τ−1
∑

i=k

Yi

]

∣

∣Fτ−1

))

= E

(

E(exp Y0)E

(

E

(

exp

[ τ−1
∑

i=k

Yi

]

∣

∣Fτ−2

)

∣

∣Fτ−1

))

= E

(

E(exp Y0)
2
E

(

E

(

exp

[ τ−2
∑

i=k

Yi

]

∣

∣Fτ−2

)

∣

∣Fτ−1

))

...

= E(E(exp Y0)
τ−k)

= E(E(et (X−(1+ε)X))τ−k),

as required.

To prove (4.8), we consider

γt = E(et (X0−(1+ε)X)).

Since X is discrete, we can differentiate with respect to t for all t ∈ R and get

d

dt
E(et (X0−(1+ε)X))|t=0 = E

(

d

dt
et (X0−(1+ε)X)

)∣

∣

∣

∣

t=0

= E((X0 − (1 + ε)X)et (X0−(1+ε)X))|t=0

= E(X0 − (1 + ε)X) = −εX < 0.

Thus, since γ0 = 1, there exists t > 0 such that 0 < γt < 1. Note that t (and thus γt ) does

not depend on on τ , k, l and we can now use (4.6) together with the assumption that τ −

k > l to obtain (4.8), where γ = γt . �
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Note that from the definitions of kω
1 (R) and kω

2 (R) we can conclude that there exist

constants c1, cθ > 1 such that for sufficiently small R,

kω
1 (R) > c1k

ω
2 (R), kω

1 (R1/θ ) > cθk
ω
1 (R), and kω

2 (R1/θ ) > cθk
ω
2 (R).

The relationship between kω
1 (R) and kω

2 (R1/θ ) is more complicated and depends heavily

on ω and R. However, probabilistically we can say more. Let ε > 0 and q ∈ N. Note that,

taking logarithms,

P

{ q
∏

i=1

n−1
ωi

6 (n)−(1+ε)q

}

= P

{ q
∑

i=1

log nωi
> (1 + ε)q log n

}

and therefore, by Lemma 4.1, there exists 0 < γ < 1 such that

P

{ q
∏

i=1

n−1
ωi

6 (n)−(1+ε)q

}

6 γ q−1.

Now, summing over q, we obtain

∞
∑

q=1

P

{ q
∏

i=1

n−1
ωi

6 (n)−(1+ε)q

}

6

∞
∑

q=1

γ q−1 < ∞.

Thus, by the Borel–Cantelli lemma, almost surely there are at most finitely many q such

that these events occur. We can similarly argue for a lower bound and conclude that for

almost all ω ∈ �, there exists qω such that

(n)−(1+ε)q
6

q
∏

i=1

n−1
ωi

6 (n)−(1−ε)q (4.9)

for all q > qω. Analogously,

(m)−(1+ε)q
6

q
∏

i=1

m−1
ωi

6 (m)−(1−ε)q (4.10)

almost surely for all q large enough. Without loss of generality, we can assume qω to be

identical for both products. Since kω
2 (R) > −c log R for some c > 0 not depending on

ω, R, we see that almost surely there also exists an Rω such that (4.9) and (4.10) hold for

all q > kω
2 (R), where 0 < R 6 Rω.

Given these bounds, we can determine the probabilistic relationship between kω
1 (R) and

kω
2 (R1/θ ). Let Rω be as above. Then, by the definitions of kω

1 (R) and kω
2 (R1/θ ), we get, for

all R 6 Rω,

(m)−(1+ε)kω
1 (R)

6

kω
1 (R)
∏

i=1

m−1
ωi

6 R < nθ
max

( kω
2 (R1/θ )
∏

i=1

n−1
ωi

)θ

6 nθ
max(n)−θ(1−ε)kω

2 (R1/θ )

and, after rearranging,

kω
1 (R)

kω
2 (R1/θ )

> θ
1 − ε

1 + ε

log n

log m
− θ

log nmax

(1 + ε) kω
2 (R1/θ ) log m

. (4.11)
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Similarly, by considering the complementary inequalities

( kω
2 (R1/θ )
∏

i=1

n−1
ωi

)θ

6 R < mmax

kω
1 (R)
∏

i=1

m−1
ωi

,

we obtain

kω
1 (R)

kω
2 (R1/θ )

< θ
1 + ε

1 − ε

log n

log m
−

log mmax

(1 − ε) kω
2 (R1/θ ) log m

. (4.12)

Now ε > 0 was arbitrary and the last term in (4.11) and (4.12) vanishes as Rω decreases.

Therefore, for all δ > 0 and almost all ω ∈ �, there exists a sufficiently small Rω > 0 such

that

(1 − δ)
θ log n

log m
6

kω
1 (R)

kω
2 (R1/θ )

6 (1 + δ)
θ log n

log m
(4.13)

for all R < Rω. Moreover, using the much simpler relationships derived above, we can

assume without loss of generality that Rω is small enough such that

(1 − δ)
log n

log m
6

kω
1 (R)

kω
2 (R)

6 (1 + δ)
log n

log m
, (4.14)

(1 − δ)θ 6
kω

1 (R)

kω
1 (R1/θ )

6 (1 + δ)θ and (1 − δ)θ 6
kω

2 (R)

kω
2 (R1/θ )

6 (1 + δ)θ (4.15)

all hold simultaneously for all R < Rω.

4.4.1. The upper bound for θ < log m/ log n. We assume throughout that Rω is small

enough for all inequalities in the previous section to hold simultaneously (almost surely).

Also, let δ > 0 be small enough such that the inequalities at the end of the previous section

are all bounded away from 1. That is, we choose δ > 0 such that (1 + δ)θ < 1, (1 −

δ)(log n/ log m) > 1, and, especially relevant to this section, (4.13) and θ < log m/ log n

imply that we can choose δ > 0 sufficiently small such that kω
1 (R) < kω

2 (R1/θ ) almost

surely for all R < Rω.

Let ε > 0 and consider the geometric average given by

(

C
kω

1 (R)−kω
2 (R)

N
kω

2 (R1/θ )−kω
1 (R)

B
kω

1 (R1/θ )−kω
2 (R1/θ ))1+ε

. (4.16)

We want to determine the probability that there exists an approximate R-square at a given

level such that we need more than the estimate in (4.16) many R1/θ -squares to cover it.

Note that for (4.3) to be larger than (4.16), at least one of the products must exceed the

corresponding power of the average. Therefore,

P

{

N(Q ∩ Fω, R1/θ ) > 4(C
kω

1 (R)−kω
2 (R)

N
kω

2 (R1/θ )−kω
1 (R)

B
kω

1 (R1/θ )−kω
2 (R1/θ )

)1+ε

}

6 P

{( kω
1 (R)
∏

l=kω
2 (R)+1

Cωl

)

> C
(1+ε)(kω

1 (R)−kω
2 (R))

}
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+ P

{( kω
2 (R1/θ )
∏

l=kω
1 (R)+1

Nωl

)

> N
(1+ε)(kω

2 (R1/θ )−kω
1 (R))

}

+ P

{( kω
1 (R1/θ )
∏

l=kω
2 (R1/θ )+1

Bωl

)

> B
(1+ε)(kω

1 (R1/θ )−kω
2 (R1/θ ))

}

. (4.17)

Let us start by analysing the event involving Cωl
. We want to show that the product can

only exceed the average behaviour at most finitely many times almost surely. That is, given

q ∈ N, we want to estimate

P

{ kω
1 (R)
∏

l=kω
2 (R)+1

Cωl
> C

(1+ε)(kω
1 (R)−kω

2 (R))
for some R ∈ (0, Rω) such that kω

2 (R) = q

}

.

(4.18)

Notice that kω
1 (R) is a stopping time and, by (4.14) and our assumption that Rω and

δ are chosen sufficiently small, kω
1 (R) > (1 − δ) log(n)/ log(m)kω

2 (R) and c := (1 −

δ) log(n)/ log(m) − 1 > 0. Using Lemma 4.1, we can bound (4.18) above by

P

{

⋃

q ′:∃R∈(0,Rω)

kω
2 (R)=q and kω

1 (R)=q ′

{ q ′
∑

l=q+1

log Cωl
> (1 + ε)(q ′ − q) log C

}}

6 Lγ c(q−1)

for some 0 < γ < 1, where L > 0 is a deterministic constant corresponding to the number

of possible values for kω
1 (R) given kω

2 (R). Since

∞
∑

q=1

Lγ c(q−1) < ∞,

the Borel–Cantelli lemma implies that the product can exceed the average behaviour only

finitely many times almost surely. The argument for Nωl
and Bωl

is identical due to the

ratios given in (4.13), (4.14), and (4.15). Therefore, there almost surely exists q large

enough—and hence R′
ω small enough—such that

N(Q ∩ Fω, R1/θ ) 6 4
(

C
kω

1 (R)−kω
2 (R)

N
kω

2 (R1/θ )−kω
1 (R)

B
kω

1 (R1/θ )−kω
2 (R1/θ ))1+ε

for all 0 < R < R′
ω. Using (4.13), (4.14), and (4.15) again, we obtain

kω
1 (R) − kω

2 (R) 6

(

(1 + δ)
log n

log m
− 1

)

kω
2 (R),

kω
2 (R1/θ ) − kω

1 (R) 6

(

1 + δ

1 − δ
θ−1 − (1 + δ)

log n

log m

)

kω
2 (R),

and

kω
1 (R1/θ ) − kω

2 (R1/θ ) 6

(

1 + δ

1 − δ

log n

log m
− (1 − δ)−1

)

θ−1kω
2 (R).
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Now, using kω
2 (R) 6 −(1 + δ) log R/ log n, we rearrange

C
kω

1 (R)−kω
2 (R)

6 C
−(1+δ)2 log R/ log m−(−(1+δ) log R/ log n)

= R(1−1/θ)sc ,

where

sc = (1 + δ)2 log C

log m

θ

1 − θ
− (1 + δ)

log C

log n

θ

1 − θ

→ sC :=
θ

1 − θ

(

log C

log m
−

log C

log n

)

as δ → 0.

We rearrange the other terms similarly to obtain

N(Q ∩ Fω, R1/θ ) 6 4R(1−1/θ)(1+ε)(sc+sn+sb),

where

sn = −(1 + δ)2 log N

log m

θ

1 − θ
+

(1 + δ)2

1 − δ

log N

log n

1

1 − θ

→ sN :=
1

1 − θ

(

log N

log n
− θ

log N

log m

)

as δ → 0

and

sb = −
1 + δ

1 − δ

log B

log n

1

1 − θ
+

(1 + δ)2

1 − δ

log B

log m

1

1 − θ

→ sB :=
1

1 − θ

(

log B

log m
−

log B

log n

)

as δ → 0.

For arbitrary ε′ > 0, we may assume that δ > 0 is small enough such that sc + sn + sb 6

(1 + ε′)(sC + sN + sB). Note that

s := sC + sN + sB =
1

1 − θ

[(

log B

log m
+

log N/B

log n

)

− θ

(

log N/C

log m
+

log C

log n

)]

. (4.19)

We can therefore conclude that, almost surely, every approximate square of length R < Rω

can be covered by fewer than

4R(1−1/θ)(1+ε)(1+ε′)s

sets of diameter R1/θ . Thus, the Assouad spectrum is bounded above by (1 + ε)(1 + ε′)s

and, by the arbitrariness of ε, ε′, also by s.

4.4.2. The upper bound for θ > log m/ log n. The proof for this case follows along the

same lines as θ < log m/ log n and we will only sketch their differences. First note that

θ > log m/ log n implies the almost sure existence of a small enough Rω such that

kω
1 (R) > (1 − δ)θ

log n

log m
kω

2 (R1/θ )

for all R < Rω. Again, we assume without loss of generality that Rω is chosen such that

(4.13), (4.14), and (4.15) are satisfied for a given δ > 0. We also choose δ > 0 small enough
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to ensure that

(1 − δ)θ
log n

log m
> 1.

Let ε > 0 and consider the geometric average

(C
kω

2 (R1/θ )−kω
2 (R)

B
kω

1 (R1/θ )−kω
1 (R)

)1+ε.

We compare the upper bound given in (4.5) with the average above and obtain

P
{

N(Q ∩ Fω, R1/θ ) > 4
(

C
kω

2 (R1/θ )−kω
2 (R)

B
kω

1 (R1/θ )−kω
1 (R))1+ε}

6 P

{( kω
2 (R1/θ )
∏

l=kω
2 (R)+1

Cωl

)

> C
(1+ε)(kω

2 (R1/θ )−kω
2 (R))

}

+ P

{( kω
1 (R1/θ )
∏

l=kω
1 (R)+1

Bωl

)

> B
(1+ε)(kω

1 (R1/θ )−kω
1 (R))

}

.

Now, using the same ideas as before, noting that kω
1 (·) and kω

2 (·) are stopping times, we

can conclude that for almost every ω ∈ � there exists Rω such that

N(Q ∩ Fω, R1/θ ) 6 4
(

C
kω

2 (R1/θ )−kω
2 (R)

B
kω

1 (R1/θ )−kω
1 (R))1+ε

for all R < Rω. Using the estimates for kω
1 (R1/θ )/kω

1 (R) and kω
2 (R1/θ )/kω

2 (R) in (4.15),

we see that there exists ε′ > 0 such that for sufficiently small R,

(C
kω

2 (R1/θ )−kω
2 (R)

B
kω

1 (R1/θ )−kω
1 (R)

)1+ε
6 R(1−1/θ)(1+ε)(1+ε′)s ,

where

s =
log B

log m
+

log C

log n
.

As before, this is sufficient to prove that for θ > log m/ log n, there almost surely exists

Rω such that all approximate R-squares with R < Rω can be covered by fewer than

4R(1−1/θ)(1+ε)(1+ε′)s

sets of diameter R1/θ . This proves that dimθ
A Fω 6 (1 + ε)(1 + ε′)s almost surely and

hence, by arbitrariness of ε, ε′ > 0, that dimθ
A Fω 6 s almost surely, as required.

4.4.3. The lower bound for θ < log m/ log n. To prove almost sure lower bounds for

dimθ
A Fω, we need to show that almost surely there exists a sequence Ri → 0 such that for

each i there is an approximate Ri-square which requires at least a certain number of sets of

diameter R
1/θ
i to cover it.

Let θ < log m/ log n and, as before, we choose δ > 0 small enough such that kω
1 (R) <

kω
2 (R1/θ ) almost surely for all small enough R. Let ε > 0 and, given q ∈ N and ω ∈ �, let

Rq =

q
∏

l=1

n−1
ωl

,
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noting that kω
2 (Rq) = q and Rq → 0 as q → ∞. We have

P

{

N(Q ∩ Fω, R
1/θ
q ) > K

(

C
kω

1 (Rq )−kω
2 (Rq )

N
kω

2 (R
1/θ
q )−kω

1 (Rq )
B

kω
1 (R

1/θ
q )−kω

2 (R
1/θ
q ))1−ε

}

> 1 − P

{ kω
1 (Rq )
∏

l=kω
2 (Rq )+1

Cωl
6 C

(1−ε)(kω
1 (Rq )−kω

2 (Rq ))
or

kω
2 (R

1/θ
q )

∏

l=kω
1 (Rq )−1

Nωl
6 N

(1−ε)(kω
2 (R

1/θ
q )−kω

1 (Rq ))
or

kω
1 (R

1/θ
q )

∏

l=kω
2 (R

1/θ
q )+1

Bωl
6 B

(1−ε)(kω
1 (R

1/θ
q )−kω

2 (R
1/θ
q ))

}

. (4.20)

The last term is bounded above by

P

{ kω
1 (Rq )
∏

l=kω
2 (Rq )+1

Cωl
6 C

(1−ε)(kω
1 (Rq )−kω

2 (Rq ))
}

+ P

{ kω
2 (R

1/θ
q )

∏

l=kω
1 (Rq )−1

Nωl
6 N

(1−ε)(kω
2 (R

1/θ
q )−kω

1 (Rq ))
}

+ P

{ kω
1 (R

1/θ
q )

∏

l=kω
2 (R

1/θ
q )+1

Bωl
6 B

(1−ε)(kω
1 (R

1/θ
q )−kω

2 (R
1/θ
q ))

}

and by Lemma 4.1 and the union estimate used above each probability is bounded above by

L′γ c′q for some constants L′, c′ > 0, and γ ∈ (0, 1). Thus, there exists q0 such that each

term in the sum is bounded by 1/6 for q > q0 and thus the probability on the left-hand

side of (4.20) is bounded below by 1/2 for q > q0.

Denote the event on the left-hand side of (4.20) by Eq . Observe that the event only

depends on the values of ωi for i satisfying q = kω
2 (Rq) 6 i 6 kω

1 (R
1/θ
q ) as the latter

bound is a stopping time. By virtue of construction, there exists an integer d > 1 such

that kω
1 (R

1/θ

d iq
) < d i+1q for all q. Therefore, the events {Eq , Edq , Ed2q , . . .} are pairwise

independent. Further, by the above argument,

∞
∑

i=0

P(Ed iq0
) >

∞
∑

i=0

1/2 = ∞

and so by the Borel–Cantelli lemma Eq happens infinitely often. Therefore, adapting the

argument involving sc, sn, and sb from above, we have proved that for all ε′ > 0 there

almost surely exist infinitely many q ∈ N such that there exists an approximate Rq -square

Q such that

N(Q ∩ Fω, R
1/θ
q ) > KR

(1−1/θ)(1−ε′)s
q ,

https://doi.org/10.1017/etds.2020.93 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2020.93


The Assouad spectrum of random self-affine carpets 2945

where s = sC + sB + sN is the target lower bound for the spectrum. This completes the

proof.
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