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Summary

Bayesian shrinkage analysis estimates all QTLs effects simultaneously, which shrinks the effect of “insignifi-
cant” QTLs close to zero so that it does not need special model selection. Bayesian shrinkage estimation
usually has an excellent performance on multiple QTLs mapping, but it could not give a probabilistic expla-
nation of how often a QTLs is included in the model, also called posterior inclusion probability, which is im-
portant to assess the importance of a QTL. In this research, two methods, FitMix and SimMix, are proposed
to approximate the posterior probabilities. Under the assumption of mixture distribution of the estimated
QTL effect, FitMix and SimMix mathematically and intuitively fit mixture distribution, respectively. The
simulation results showed that both methods gave very reasonable estimates for posterior probabilities. We
also applied the two methods to map QTLs for the North American Barley Genome Mapping Project data.

1. Introduction

Multiple QTLs mapping usually has higher resolution
forQTLsmapping than singleQTLanalysis. Themaxi-
mum likelihood method such as composite interval
mapping (Zeng, 1994) and multiple QTLs mapping
(Kao et al., 1999) measure the importance and signifi-
cance of QTLs using likelihood ratio or p-value.
Unlike the likelihood based method, Bayesian multiple
QTLs mapping usually uses posterior inclusion prob-
ability (the frequency of a QTL being included in the
model) to assess the importance of a QTL.

Bayesian model selection technology implemented
via Monte Carlo Markov chain (MCMC) for QTL
mapping has been studied in the last two decades
(e.g. Xu, 2003; Yi et al., 2005; Mutshinda & Sillanpää,
2010). The reversible jump MCMC method
(RJMCMC) is an important method for multiple
QTLs mapping (Gaffney, 2001), which propose to add
or delete a QTL from the model according to the prior
probability and accept this proposal with their

acceptance probability. The frequency of a QTL
being accepted in the model is then called the posterior
inclusion probability. Usually a QTL having higher
posterior probability is more important. Besides the
RJMCMC, the other two famous Bayesian model
selection techniques, Bayesian composite model space
(Yi et al., 2005) and Bayesian stochastic search variable
selection (SSVS; George & McCulloch, 1993; Yi et al.,
2003), also describe the importance of a QTL by the
posterior inclusion probability.

In recent years, some Bayesian shrinkage methods
(BSAs) have been developed for QTLs mapping (e.g.
Xu, 2003; Mutshinda & Sillanpää, 2010; Fang et al.,
2012). In this kind of analysis, all QTLs effects are in-
cluded in the model and estimated, which does not
need special model selection because the effects of
“insignificant” QTLs would be shrunk to zero.
Usually these methods have excellent performance
on model fitting. However, compared with the
Bayesian model selection method, Bayesian shrinkage
analysis cannot provide the posterior inclusion prob-
ability of a QTL for declaring the importance of a
QTL (Yi et al., 2003). Instead of using posterior prob-
ability, some researchers assess the importance of
QTLs by the estimated effect or standardized effect
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(Xu, 2003; Mutshinda & Sillanpää, 2010; Fang et al.,
2012). But the (standardized) effect is not directly re-
lated to the statistics for declaring the significance of
a QTL. Recall that the effect divided by standard de-
viation is used to formulate t-statistic for testing the
significance of the regression coefficient of multiple
linear regressions. When compared with it, the pos-
terior probability reflects the frequency of a QTL
being included in the model (the important QTL will
be more frequently included in the model), so it is
more likely to reflect the importance of a QTL.

In this research, two new approximate methods for
estimating the posterior inclusion probability are devel-
oped for Bayesian shrinkage analysis. We take Xu’s
(2003) BSA as an example and divide the posterior
distribution of a QTL effect into two parts, one has a
distribution close to zero and the other part has a
distribution deviated from zero (see Fig. 1); then we
approximate the posterior inclusion probability as the
proportion of the distribution deviated from zero.

2. Method

(i) Multiple QTLs model and prior distribution

Consider a backcross population, the multiple QTLs
model can be expressed as

yi = μ+ Xiβ+ ei (1)
where yi is the phenotypes; μ is the population mean;
β= (β1,. . ., βp)

T, and βj is the effect of QTL j;
Xi = (xi1,. . .,xip)

T, where p is the number of markers,
and xij is the genotypic indicator of jth marker and
ith individual, which equals to 1 or –1 depending on
the genotypes of the marker; ei is the residual error,
which follows normal distribution, ei∼N(0, σe

2).
The prior distribution for a QTL effect βj is very im-

portant in shrinkage analysis (BSA). Xu (2003) takes a
normal distribution for βj with variance following
Jeffreys’ prior, p(σe

2)∼ 1/σe
2.

The special posterior distribution of marker effect

The conditional posterior probability of a QTL effect
of BSA follows normal distribution with mean

�βj = σ2e/σ
2
bj +

∑n
i=1

x2ij

( )−1∑n
i=1

xij yi −
∑p
k=j

xijβk − μ

( )
,

(2)
and variance

s2 = σ2e/σ
2
bj +

∑n
i=1

x2ij

( )−1

σ2e, (3)

where the variance σbj
2 follows inverted chi-square dis-

tribution χ−2(1, βj
2).

Typically, the distribution of the posterior prob-
ability distribution of a QTL effect usually has a
bimodal distribution (see Fig. 1 or Fig. 2 in Che &
Xu, 2010). Therefore, we assume that it is the combi-
nation of two symmetric distributions; one has a mean
deviated from zero and the other has a mean concen-
trated at zero.

(ii) Inferring posterior probability from mixture
distribution

We assume that the distribution with a mean deviated
from zero characterizes the distribution of a QTL ef-
fect not being shrunk to zero (QTL being included
in the model), but the other distribution reflects the
probability of a QTL effect being shrunk to zero
(QTL being excluded in the model). Therefore, the
proportion of the distribution deviated from zero
could reflect the posterior probability of a QTL. We
employ two approaches to estimate this proportion.
One method fits the two distributions mathematically
and the other method fits the two distributions
intuitively.

(a) Fitting mixture t distributions (FitMix)

The posterior distribution with Jeffreys’ prior follows t
distribution, so we fit a mixture t distribution here.
The mixture model can be expressed as,

p (βj; vk, uk, σk) =
∑k
k=1

πk · f (βj|vk, uk, σk), (4)

where K is the number of component distribution, if
K = 2, two component distribution is fitted and if

Fig. 1. The typical density distribution of the QTLs
effects. Point A is the lowest point between two peaks,
which approximately divides the posterior distribution into
two symmetric distributions, one has a mean close to zero
and the other has a mean deviated from zero.
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K= 1, one component distribution is fitted; p (βj;vk, uk,
σk) is the density of a QTL effect; πk is the probability
of each distribution; f (βj|vk, uk, σk) is the density function
of t distribution with the degree of freedom vk; the lo-
cation parameter uk and the scaling parameter σk. The
expectation-maximization algorithm is used to update
πk, vk, uk and σk, iteratively, which is implemented via
the function “gamlss.mx” of R package “gamlss”. The
convergence threshold is set as 10−4 (mx.cc = 1e-04);
the maximum iteration number is 200 (n.cyc = 200);
the t distribution is chosen (family=“TF”); the number
of mixture distribution (K) is set as 2. The complete
code to achieve this is “gamlssMX (yourVector ∼1, data
= yourData, family = “TF”, K = 2, control =MX.con-
trol(cc = 1e-04, n.cyc = 200, trace = T, seed = yourSeed,
plot = T))”, where the “yourVector” and “yourData”
are the inputs. However, one problem is that when the
proportionofdistributiondeviated fromzeroorcentered
at zero is very close to 1, the distribution is essentially one
distribution and it is very difficult and inefficient to fit
mixture distribution. In this situation, fitting two distri-
butions would not be better than fitting one distribution.
Therefore we also try to fit one-component distribution

using “gamlss.mx” by setting K= 1; then we compare
AIC of fitting two models to that of fitting one model,
and themodel with smallerAIC is chosen and used to es-
timate posterior probabilities. IfK = 2 is chosen, the pro-
portion of the distribution deviated from zero is just the
estimation of the posterior probabilities; but if K = 1 is
chosen, the proportion of distribution deviated from
zero is set as 0or1dependingonwhetherone-component
distribution is centered or deviated from zero. Another
problem is that “gamlss.mx” needs a good initial value
to start properly, but the initial value sometimes is not
easy to set, so we used random seed as the input (as sug-
gested in the package). To save time, we maximally try
ten random seeds, if the program still could not start;
we stop the fitting program for this locus and set the pos-
terior probability as zero.

(b) Simply separating two distributions from mixture
distribution (SimMix)

In order to facilitate summary, two distributions in
Fig. 1 are approximately divided at Point A, the low-
est point between two peaks, so that the proportion of

Fig. 2. The typical output of the estimated posterior probabilities with FitMix and SimMix, and the typical output of the
estimated QTLs effects.
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distribution deviating from zero is very easily obtained
by cumulating the probability of the component to the
left of point A. By doing this, we can get the approxi-
mate posterior inclusion probabilities for all QTLs
using their estimated effects from post-MCMC
samples.

3. Simulation

(i) Simulation of a single marker and a single QTL

Westudied a backcrossed populationwith a sample size
of 150. One marker and one QTL (at the marker) with
effect 0·25 were simulated. The residual variance was
1. In this simulation, we aimed to study if the bimodal
is really caused by a QTL itself (not by linkage).

(ii) Simulation of a single QTL

The same population setup as above was used but one
chromosome with a length of 100 cM was simulated
and one QTL was simulated at the center of the chro-
mosome. Twenty one markers were covered on the
chromosome. The QTL effect was 0·386, and the re-
sidual variance was 1, so that the QTL explained
13% of the total variance.

(iii) Simulation of multiple QTLs

We used the same population setup as above, but a
large genome, 2500 cM long, was simulated, which
contains five chromosomes of the same length. The
simulation mimics the true North American Barley
population and map. In total, 501 evenly spaced mar-
kers were covered on the genome and 15 QTLs were
simulated. The true positions and effects of these
QTLs are shown in Fig. 2. The residual variance
was set as 1, so these QTLs explained 85% of the
total variance.

(iv) Real-data analysis

The barley dataset from the North American Barley
Genome Mapping Project was used to test the per-
formance of the proposed method. The data are col-
lected from a Steptoe ×Morex doubled-haploid
population containing 150 lines; each was grown in
nine different environments for agronomic traits and
16 different environments for malting quality traits,
respectively. Three traits, alpha amylase, yield and
lodging were used for analysis, where the phenotypes
were averaged across all environments. The dataset
includes 223 markers covering a genome of ∼1500
cM, which can be downloaded from http://wheat.pw.
usda.gov/ggpages/SxM/.

4. Results

In all simulations and real-data analysis, the Markov
chain was run for 11 000 rounds and thinned every
ten rounds with the first 1000 rounds discarded.

(i) Simulation of a single marker and a single QTL

The simulations were repeated several times and the
typical density of the estimated QTL effect are
shown in Fig. 1S (see Supplementary Material),
from which we can see that the QTL effect is indeed
bimodal distribution, suggesting that the bimodal dis-
tribution of the density is really caused by the QTL it-
self, which excludes the possibility of interference from
the linkage of other markers.

(ii) Simulation of a single QTL

The estimated effects of all QTLs in each MCMC
were stored and used to summarize their posterior
probabilities. The general patterns of profiles of the
posterior probabilities of FitMix and SimMix are
shown in Fig. 3. They are similar and both produce
a highest peak around simulated QTL position.

To further validate the two methods, 50 simulations
were performed, we firstly generated all the density
distributions at the simulated position and the typical
density distributions are shown in Fig. 4. There are
four kinds of typical patterns. The density of Fig. 4
(a) is centered at zero, which means the proportion
of the non-zero distribution is rather small and thus
produces a rather weak posterior probability estimate
(the posterior probability estimates with FitMix and
SimMix were 0 and 0·047, respectively); the density
of Fig. 4(b) and (c) has a mixture density, one is
close to zero and the other is deviated from zero,
but the proportion of non-zero part of Fig. 4(b) is
smaller than that of Fig. 4(c), the posterior probability
of the two methods of Fig. 4(b) were 0·508 and 0·511,
and those of Fig. 4(c) were 0·943 and 0·948, respect-
ively; Fig. 4(d) shows a single distribution, which
has a large proportion of the non-zero distribution
that deviates from zero. So it strongly supports high
posterior probability (the estimates of FitMix and
SimMix were 1 and 0·997, respectively). We also sum-
marized the frequencies of four typical density distri-
butions, which turns out to be 0·36 (18/50), 0·42 (21/
50), 0·18 (9/50) and 0·04 (2/50), for the situation
shown in Fig. 4(a), (b), (c) and (d), respectively.

After generating the posterior probabilities for each
replication, we studied the correlation of the estimated
posterior probabilities between FitMix and SimMix.
The estimated posterior probabilities with FitMix
against SimMix are plotted in Fig. 5, in which we
can see that the posterior probabilities with the two
methods are related especially for the higher posterior
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Fig. 3. The typical estimated posterior probability profiles of QTLs effects of FitMix and SimFit by simulating one QTL.

Fig. 4. Four kinds of typical density distributions of QTLs effects. A: QTL with rather weak posterior probability; B and
C: QTLs with moderate posterior probability; D: QTL with very strong posterior probability.
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probabilities. The correlation coefficient was 0·81. The
mean of the estimated positions with FitMix and
SimMix from 50 replications were 10·09 and 10·07, re-
spectively, and they were very close. The standard de-
viation for the estimated mean was 0·201 and 0·197,
respectively. To assess the power of each method,
the MCMC was also run 100 times for the simulation
without QTLs simulated; then the highest estimate of
posterior probabilities for FitMix and SimMix were
stored and used to generate their empirical distribu-
tions. The 95% percentile of the distribution was
taken as the threshold for declaring the significance.
Then the power was summarized for both methods
and they were 64% (32/50) and 76% (38/50) for
FitMix and SimMix, respectively. The power of
FitMix was lower than that of SimMix, which will
be explained in the Discussion.

(iii) Simulation of multiple QTLs

The typical posterior probability profiles for FitMix
and SimMix are shown in Fig. 2. They produce
quite similar profiles, but FitMix has a lower resol-
ution to estimate low posterior probabilities (<0·1).
The reason is explained in the Discussion.

The simulation was repeated 50 times. We also
simulated 100 datasets without simulating QTLs and
used FitMix and SimMix to generate the posterior
probabilities after MCMC was run; then constructed
an empirical distribution with the top posterior prob-
abilities in each run and determined the threshold for
declaring the significance as the 95% percentile of the
empirical distribution. The power of each simulated
QTL for FitMix and SimMix are shown in Fig. 6.
The simulated effects corresponding to the 15

simulated QTLs are also shown in Fig. 2. It can be
seen that generally the power is changedwithabsolute ef-
fects, which suggests that the estimated posterior prob-
abilities with FitMix and SimMix are able to reflect the
importance of the QTL. But the powers of all the simu-
lated QTLs with FitMix are higher than those with
SimMix, which will be explained in the Discussion.

(iv) Real-data analysis

Figs 7, 2S and 3S (see SupplementaryMaterial) show the
estimated posterior probability and QTLs effects for
alpha amylase, yield and lodging, respectively. It can
be seen that FitMix and SimMix have similar posterior
probability estimates except for low posterior

Fig. 5. The correlation of the estimated posterior
probabilities between FitMix and SimMix.

Fig. 6. The power of FitMix and SimMix and the
corresponding true absolute effects.
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probabilities. Furthermore, the posterior probabilities
are changed with their estimated effects. These suggest
that the estimated posterior probabilities with FitMix
and SimMix make sense.

We further used permutation to generate a threshold
for declaring the significance of QTLs, which was re-
peated 100 times and the 95% percentile of the posterior
probability was taken as the threshold. For alpha amy-
lase, both FitMix and SimMix found two QTLs and
both were overlapping in two methods; for yield, both

FitMix and SimMix found four QTLs, and three of
them were overlapping; for lodging, both FitMix and
SimMix found two QTLs and both were overlapping.
We also compared these results to those of the first
reports from the website http://wheat.pw.usda.gov/
ggpages/SxM/QTL.html, and all our significant QTLs
immediately bracketed the corresponding peaks of the
reported QTLs except one for height, and in such case,
we found an additional QTL linked to the one reported
on chromosome 7. Furthermore, it is worth mentioning
that not all the significant QTLs reported were found by
us, probably because we did not use individuals from
across all environments and we just simply averaged
phenotypes for all environments together.

5. Discussion

Two methods, FitMix and SimMix, were developed
for summarizing the posterior inclusion probabilities
of QTLs, by which we can know the importance or
even test the significance (by permutation) of a
QTL. Both the simulation and real-data analysis
show that the proposed method can give a reasonable
approximation for posterior inclusion probabilities.
The results reflect that our assumption of the mixture
distribution of the QTL effect (one close to zero and
the other one deviated to zero) makes sense although
it is difficult to mathematically prove that.

From the single QTL and multiple QTLs results, we
can see that both FitMix and SimMix can give very
reasonable estimates of posterior probabilities, but
FitMix is not more powerful than SimMix. The prob-
lem is that FitMix sometimes fails to start fitting due
to a bad initial value. Of course we can try many in-
itial values, but FitMix is time consuming, which
takes ∼1–2 min to run one point in our study.
Therefore we tried a maximum of ten seeds to start
the fitting, if it still failed to start, we stopped and
set the posterior probability as zero, which was
expected to decrease the false positive risk, but it
would also decrease the power. Compared with
FitMix, SimMix was very fast and only took half a
minute for 500 loci.

Another problem is that FitMix has a low resol-
ution to estimate low posterior probability, which
can be seen from the graphs, where the signals are
usually abrupt compared to those of SimMix.
Actually, if the mixture distribution is very “like” one-
component distribution, it is difficult to distinguish
two distributions from two-component distribution;
in this case FitMix is very inefficient to give a precise
estimate for the proportion of two components. As a
result, the AIC of fitting one distribution (K = 1)
and two distribution (K = 2) are very close and
FitMix usually takes K = 1. Therefore, when the pos-
terior probabilities are very low, the estimates usually

Fig. 7. The profiles of the estimated posterior inclusion
probabilities with FitMix and SimMix for alpha amylase,
and profiles of the estimated QTLs effects.
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mass at zero. One solution to this problem is to in-
crease the post-MCMC sample, i.e. run more
MCMC runs to achieve high resolution, but of course
it will take more time.

In this study, we mainly focus on the estimate of
posterior probability of QTLs, by which one can
also test the significance of a QTL by permutation
in terms of the estimated posterior probabilities.
Several methods were developed to test the signifi-
cance of a QTL for BSA. The 90% credible interval
(CI) of the posterior distribution of a QTL effect is
suggested by some researchers (Wang et al., 2005; Li
et al., 2011), but as admitted by Wang et al. (2005),
CI sometimes produces many false positive signals.
Maybe the bimodal nature of the density of a QTL ef-
fect affects the CI, so after correction for the mixture
model, CI is expected to work better. We do not com-
pare our method to this method, because we do not
focus on the testing of the “significance”, and we are
only interested in the estimate of the posterior prob-
abilities of QTLs.

We only tested the performance of the proposed
methods for BSA. The method can also be applied
to other kinds of Bayesian shrinkage estimation meth-
ods, such as Extended Bayesian LASSO (EBL) or
improved Bayesian Lasso (Fang et al., 2012), as
long as the distribution of the QTL effect is bimodally
distributed. It is worth mentioning that our method
can also be applied to SSVS, because we found the
posterior probability of the QTL effect was also
bimodally distributed (results not shown). But the pos-
terior QTL inclusion probability of SSVS can be in-
ferred directly together with other parameters from
MCMC sampling, which therefore is able to provide
a benchmark to assess the performance of our esti-
mates. We found both FitMix and SimMix estimated
QTLs inclusion probabilities very close to the MCMC
estimates from SSVS itself if the prior was approxi-
mately chosen, except for QTLs with low posterior
probabilities (results not shown). Some researchers
prefer to use SSVS for QTLs mapping, genomic selec-
tion and genetic risk prediction of disease (Verbyla
et al., 2009; Zhou et al., 2013), by which one can
know the posterior probabilities from MCMC. But
the problem of SSVS is that users have to find a way
to set ‘prior’ to model selection, which usually has a
large effect on the performance of SSVS. The appeal-
ing feature of BSA is that it is a prior-choice free
method, and the model selection can be achieved com-
pletely by itself.
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