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1. Introduction. In a recent paper (6), S. T. Hu investigated the initial 
projection from the mth enveloping space of a topological space X into X and 
proved that, under some local conditions on X, the initial projection is a 
fibering. In a subsequent paper (7), Hu showed that the terminal projection 
from the mth enveloping space is a fibering without assuming the local con­
ditions on X and in (8) he used the terminal projection from the second envelop­
ing space in his topological immersion theorem. 

The objective of the present paper is to give a simultaneous study of both 
the initial and terminal projections from a subspace Z(X) of the second envelop­
ing space of a space X. Z(X) is shown to be an isotopy functor and a kind of 
homotopy manifold is obtained by imposing conditions in terms of these two 
projections on X. Specifically, our principal result shows that such spaces, 
which include manifolds, are homotopically homogeneous in the sense of 
M.L.Cur t i s (1;2). 

2. The subspace Z{X). Let X be an arbitrary topological space. By 
means of the diagonal embedding we can identify X with the diagonal of the 
product XXX. The second enveloping space E(X) of X is the subspace of 
the space of paths in X X X with the compact-open topology, which consists 
of all paths a: I —> X X X such that o(t) G I if and only if / = 0. The initial 
projection p: E (X) —-> X is defined by taking p(a) = o (0) for every a in E (X). 
The second residual space R(X) is the space X X X — X and the terminal 
projection q: E(X) -+R(X) is the map defined by taking q(o) = c( l ) for 
every o in E(X). Define T: R(X) —» X by projection on the first coordinate 
and let Z (X) denote the subspace of E (X) which consists of all paths a 6 E (X) 
such that^>(cr) = 7rq(<r). 

Throughout this paper denote by 

p:Z(X)->X and q:Z(X)-*R(X) 

the restrictions of p and q, respectively, to the subspace Z(X). 
Now, let / : X —» Y be an embedding of a space X into a space Y. Then / 

defines an embedding 

fXf:XXX-^YX Y 
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given by (fXf)(xh x2) = (fxi,/x2). Let a G Z(X) and consider the com­
position T - if X / ) o a. An easy verification shows that T £ Z(Y) and there­
fore f defines an embedding 

Z(f):Z(X)-+Z(Y). 

Furthermore, by obvious modifications of the discussion in (5, §6), we have 
the following proposition. 

PROPOSITION 2.1. Z{X) is an isotopy functor of the category of topological 
spaces and embeddings. 

3. Projectionally homogeneous spaces. A topological space X is said 
to be projectionally homogeneous if the following two conditions on the initial 
and terminal projections are satisfied. 

(PHI) p: Z{X) —» X has a slicing structure {co, 4>v} in the sense of Wu (4). 

(PH2) For each U € co, q<t>u{x, a) = q<j>u(x, r) whenever q(a) = q(r) and the 
function 

Qu: UXq[p-l(U)]-*R(X) 

defined by 

qn(x, q(o)) = q<t>u(x, o) (x 6 U, q(o) Ç q[p~l{U)]) 

is continuous. 

If X is an ANR (metric), then by (11), (PHI) is equivalent to the condition 
that p: Z(X) —> X have the path lifting property. 

We consider some examples of projectionally homogeneous spaces. 
A space X is locally homogeneous if, for every x0 6 X, there exists a neigh­

bourhood U of Xo in X together with a continuous map M: XX U X U —» X 
which satisfies the following conditions: 

(LH1) For emery pair of points a, b in U, the map M [a, b]: X —> X defined by 
M[a, b](x) = M(x, a, b) is a homeomorphism on X satisfying M[a, b](a) = b. 

(LH2) If a £ U, M [a, a] is the identity map on X. 

PROPOSITION 3.1. If X is locally homogeneous, then it is projectionally 
homogeneous. 

Proof. Let x0 G X and choose a neighbourhood U of x0 in X with a con­
tinuous map M: XX U X U —-> X satisfying (LH1, 2). In order to prove that 
p: Z(X) —» X has a slicing structure, we define a continuous map 

<t>n: UXp-HU)-*Z(X) 

as follows. For each x 6 U and a £ p~l ([/), 0c/(x, a) is the path r: 7 —> X X X 
given by n(t) = 'Mfo-(O), x K ^ ^ ) ) , i = 1, 2, where ot(t) and r^ / ) denote the 
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ith coordinates of the points o(t) and TQ) in X X X. By (LH1) and the 
equality ai( l) = o (0), it follows that r 6 Z(X). That U is a slicing neighbour­
hood and <j>u is a slicing function can be readily checked using (LH1, 2). This 
verifies (PHI). 

The condition (LH1) and the continuity of M implies (PH2). This completes 
the proof of 3.1. 

Since topological groups and locally euclidean spaces are examples of locally 
homogeneous spaces, we have the following corollary. 

COROLLARY 3.2. Topological groups and locally euclidean spaces are projec-
tionally homogeneous. 

PROPOSITION 3.3. If X is a non-degenerate compact metric AR, then it is not 
projection ally homogeneous. 

Proof. Suppose X satisfies (PHI). By (4), 

p:Z(X)->X 

has the absolute covering homotopy property. Since X is contractible, there 
is a homotopy 

ht:X-*X (0 < t < 1) 

such that ho is the identity map and hi{X) = x0 G X. Define a homotopy 

ft:X->X ( 0 < * < 1 ) 

by taking ft(x) = h^\-t)ix) for every x in X. Since {ht} is a contraction of the 
non-degenerate space X into Xo, there is a path £: / —» X such that £(0) = Xo 
and £ (t) 9e x0 for every t > 0. Define a path a: / —» X X X by taking 

*(t) = (*o,{(0) G 6 1). 

A straightforward verification shows that a Ç p^Çxo) C Z p Q . Let 

g'.X-^Z{X) 

denote the constant map g(X) = <r. Then / t is a homotopy of the map 
/ = p o g. Therefore there exists a homotopy 

gt:X-*Z(X) 

which covers/^, i.e. pgt = ft for each / £ 1. Then the continuous map g: X —> X 
satisfying qgi(x) = (x, g(x)) G R(X) (x Ç X) contradicts the fact that X has 
the fixed-point property. This completes the proof of 3.3. 

Combining 3.1 and 3.3, we obtain the following slightly stronger assertion 
of E. Fad ell (3) in which he considers connected locally homogeneous spaces. 

COROLLARY 3.4. There exist no non-degenerate locally homogeneous compact 
metric AR's. 
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4. H o m o t o p i c a l l y h o m o g e n e o u s spaces . In (1), Curt is defines a space X 
to be homotopically homogeneous if (R(x), n, X) is a Hurewicz fibre space, t h a t 
is, if 7i : R{X) —> X has the pa th lifting proper ty . 

W e give a sufficient condition for a projectionally homogeneous space to be 
homotopically homogeneous. 

PROPOSITION 4 .1 . If a paracompact Hausdorff space X is projectionally 
homogeneous and the terminal projection 

maps Z(X) onto R(X), then X is homotopically homogeneous. 

Proof. Since X is paracompact Hausdorff, it suffices to show t h a t the m a p 
7r: R(X) —> X has a slicing s t ructure . For this purpose consider a slicing 
s t ructure {co, <$>u) of the projection p: Z(X) —> X. Define a function 

tu. U X ir-HU) -+R(X) (U 6 co) 

as follows. T a k e x £ U and r Ç it~1{U). Since g is surjective, there is a pa th 
a Ç Z(X) for which g (a-) = r. By the properties of the slicing function 0^ of 
p, pcfruix, a) = x. T h u s #c / (x , c) = (x, 3;) G i ? (X) where 3̂  is some point in 
T T - 1 ^ ) - Se t \po(x,r) = (x,y). By the first p a r t of (PH2) , i t follows t h a t 
\l/u(x} r) is independent of the choice of a satisfying q(a) = r and thus is a 
well-defined function. This completes the construction of \f/u. By (PH2) , one 
can see t ha t xpu is continuous. Obviously 

lïxf/uix, r) = x 

for every x G U and r G 7r-1(Z7). Since (j)u(p(o), o) = o for every a 6 P~l{U), 
it follows t h a t 

1̂ 7 Or M , 0 = r 

for every r G 7r-1(£7). Therefore {co, ^7} is a slicing s t ruc ture for ?r. This 
completes the proof. 

T h e following corollary is a consequence of 4.1 and a slight modification of 
the proof of (7, 4.3). 

COROLLARY 4.2. / / a paracompact Hausdorff space X is projectionally homo­
geneous, then it is homotopically homogeneous provided the following two conditions 
are satisfied: 

(i) X is pathwise accessible (7, §4). 
(ii) R(X) is pathwise connected. 

T H E O R E M 4.3. If a paracompact Hausdorff space X is pathwise connected and 
projectionally homogeneous, then it is homotopically homogeneous. 

Proof. According to 4.1 it suffices to show t h a t the projection q: Z (X) —> R (X) 
is surjective. For this purpose let (x, y) be any point in R(X). Since X is 
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pathwise connected, there exists a path r: I—> X such that r(0) = y and 
r ( l ) = x. Let 

/o = min{/ G i"|r(/) = x}. 

Since x ^ 3;, t0 > 0. Define a path J: I -+X by taking £(£) = r(/0(l — 0)-
Then £ is a path from x to y with £(£) ^ x for / > 0. Next, define a path 

a: I->X XX 

by taking a(t) — (#, £(0) for every £ G i". One can easily verify that <r £ £>_1 (x) 
and that q(a) = (x, 3;). This completes the proof of 4.3. 

I t is clear that if X is locally conic (6, §8), then it is locally contractible 
and hence locally pathwise connected. Thus by (9, p. 89) we have the following 
corollary. 

COROLLARY 4.4. If a connected paracompact Hausdorff space X is locally 
conic and projectionally homogeneous, then it is homotopically homogeneous. 

By(l , §4) and 4.4, we have the following two theorems. 

THEOREM 4.5. If X is a connected, compact metric, finite-dimensional, locally 
conic, projectionally homogeneous space, then X is a Kosinski r-space (10). 

THEOREM 4.6. A connected finite-dimensional projectionally homogeneous 
simplicial poly tope is a homotopically homogeneous simplicial poly tope, an 
r-simplicial polytope, a homotopy manifold, and hence a homology generalized 
manifold. 
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