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1. Introduction. For a closed 3-manifold M with a fixed Heegaard splitting of
genus g, notation M3 = Hg ∪�g H ′

g with �g = ∂Hg = ∂H ′
g, consider the group of

homeomorphisms of M which preserve the Heegaard splitting. By regarding, as usual,
two such homeomorphisms as equivalent if there is an isotopy from one to the other via
isotopies that preserve Hg (and thus, H

′
g), we obtain a group which is naturally called

the mapping class group of the Heegaard splitting of M3, notation MCG
(
M3, Hg

)
.

In 1933, Goeritz [5] showed that the mapping class group MCG
(
�3, H2

)
of the

standard genus 2 Heegaard splitting of the 3-sphere is finitely generated. Scharlemann
in [12] gave a modern proof of Georitz’s result, and Akbas in [1] refined his argument
to obtain a finite presentation of the mapping class group MCG

(
�3, H2

)
. Also, Cho in

[3] recovered Akbas’s result using a subcomplex of the disk complex of the handlebody
of the splitting.

For genus g ≥ 3 the question of finite generation of the mapping class group
MCG

(
M3, Hg

)
is open even in the case M = �3 (Scharlemann found serious gaps in

the proofs of the above statement presented several years ago).
In this work we define a simplicial complex analogous to the curve complex for

surfaces and show that the group of automorphisms of this complex is isomorphic
to the mapping class group MCG

(
M3, Hg

)
, provided that g ≥ 3. The construction

of this complex builds on earlier work on the complex of incompressible surfaces
for handlebodies defined in [2]. For the case g = 2, we provide simple examples of
automorphisms which are not geometric.

2. Definitions and statements of results. For a compact surface S, the complex of
curves C (S) , introduced by Harvey in [6], has vertices of isotopy classes of essential,
non-boundary-parallel simple closed curves in S. A collection of vertices spans a
simplex exactly when any two of them may be represented by disjoint curves, or
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equivalently when there is a collection of representatives for all of them, any two
of which are disjoint. Analogously, for a 3-manifold M, the disk complex D (M) is
defined by using the proper isotopy classes of compressing disks for M as vertices.
It was introduced in [11], where it was used in the study of mapping class groups of
3-manifolds. In [10], it was shown to be a quasi-convex subset of C (∂M) .

By Hg we denote a 3-dimensional handlebody of genus g ≥ 2. Recall that a compact
connected surface S ⊂ Hg with boundary is properly embedded if S ∩ ∂Hg = ∂S and
S is transversed to ∂Hg. A compressing disk for S is an embedded disk D such that
∂D ⊂ S and ∂D is essential in S. A properly embedded surface S ⊂ Hg is incompressible
if there are no compressing disks for S. Also recall that a map F : S × [0, 1] → Hg is a
proper isotopy if for all t ∈ [0, 1] , F

∣∣
S×{t} is a proper embedding. In this case we will

say that F (S × {0}) and F (S × {1}) are properly isotopic in Hg, and we will use the
symbol 
 to indicate isotopy in all cases (curves, surfaces etc) and the symbol [S] to
denote the isotopy class of S. We recall the following definition from [2].

DEFINITION. Let I
(
Hg

)
be a simplicial complex whose vertices are the proper isotopy

classes of compressing disks for ∂Hg and properly embedded boundary-parallel
incompressible annuli and pairs of pants in Hg. For a vertex [S], which is not a class
of compressing disks, it is also required that S is isotopic to a surface S embedded in
∂Hg via an isotopy

F : S × [0, 1] → Hg

with F (S × {0}) = S, F (S × {1}) = S and F being proper when restricted to [0, 1) .

A collection of vertices spans a simplex in I
(
Hg

)
when any two of them may be

represented by disjoint surfaces in Hg.

Observe that there do exist properly embedded pairs of pants that are not isotopic
to a surface entirely contained in ∂Hg. We may regard D

(
Hg

)
as a subcomplex of

I
(
Hg

)
or, by taking boundaries of the representative disks, C

(
∂Hg

)
. Also note that the

vertices of I
(
Hg

)
represented by annuli exactly correspond to the vertices of C

(
∂Hg

)

represented by curves that are essential in ∂Hg but are not meridian boundaries. We
define the complex of annuli A

(
Hg

)
to be the subcomplex of I

(
Hg

)
spanned by these

vertices. Together, the vertices of D
(
Hg

) ∪ A
(
Hg

)
span a copy of C

(
∂Hg

)
in I

(
Hg

)
,

and we regard C
(
∂Hg

)
as a subcomplex of I

(
Hg

)
. We will denote by D (resp. A) the

vertex set of D
(
Hg

)
(resp. A

(
Hg

)
). A vertex in D (resp. A) will be called a meridian

(resp. annular) vertex. The vertex set of I
(
Hg

) \ (
D

(
Hg

) ∪ A
(
Hg

))
will be denoted by

P and a vertex in P will be called a pants vertex. Observe that a vertex v in either D
or A determines a unique, up to isotopy, simple closed curve in ∂Hg, which will be
called the boundary curve of v, denoted by ∂v. Similarly, a vertex in P determines
uniquely, up to isotopy, a pair or a triple of mutually disjoint simple closed curves
in ∂Hg.

REMARK 1. The complex I
(
Hg

)
can be thought of in the following way: Take the

curve complex C
(
∂Hg

)
and add a vertex for every pair (α1, α2) or triple (α1, α2, α3)

of non-meridian simple closed curves which bound a pair of pants in ∂Hg. Then
add an edge from the new vertex to the vertices αi as well as to any other vertex
in C

(
∂Hg

)
disjoint from αi’s. In particular, the new vertices are connected to (some)

meridian vertices. By construction, such a complex cannot be isomorphic to any kind
of subdivision of C

(
∂Hg

)
. For example, subdivisions do not alter dimension, whereas

https://doi.org/10.1017/S0017089513000104 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089513000104


THE MAPPING CLASS GROUP OF HEEGAARD SPLITTING 95

P

P

AA AD

A \AD D \DD D

AD DD

Figure 1. (Colour online) The vertex sets in I(M, Hg).

I
(
Hg

)
is not homogeneous with respect to dimension (see properties preceding Lemma

5).

In an identical way the complex I
(
H ′

g

)
is defined and we use the notation P ′ (resp.

A′,D′) for the vertex set of I
(
H ′

g

) \ (
D

(
H ′

g

) ∪ A
(
H ′

g

))
(resp. A

(
H ′

g

)
,D

(
H ′

g

)
).

Observe that an essential simple closed curve in �g = ∂Hg = ∂H ′
g determines a

unique vertex in I
(
Hg

)
(annular or meridian) and a unique vertex in I

(
H ′

g

)
(possibly

of different type). We will also use the following notation:

D′
D := {

v ∈ D′| the boundary curve of v is a meridian in Hg
}
,

A′
D := {

v ∈ A′| the boundary curve of v is a meridian in Hg
}
,

AA′ := {
v ∈ A| the boundary curve of v is nonmeridian in H ′

g

}
,

AD′ := {
v ∈ A| the boundary curve of v is a meridian in H ′

g

}
.

We define a simplicial complex I
(
M, Hg

)
for the manifold M with respect to the

Heegaard splitting M3 = Hg ∪�g H ′
g by identifying I

(
Hg

)
with I

(
H ′

g

)
along the vertex

set A of I
(
Hg

)
as follows.

DEFINITION 2. Let I
(
M, Hg

)
be the simplicial complex whose

� vertices are all vertices in I
(
Hg

) ∪ I
(
H ′

g

)
with the exception that a vertex u in

D′ \ D′
D (resp. A′ \ A′

D) is identified with the corresponding vertex u′ in AD′ (resp.
AA′), that is, with the unique vertex u′ in AD′ (resp. AA′) for which ∂u′ is isotopic to
∂u in �g;

� edges are all edges in I
(
Hg

) ∪ I
(
H ′

g

)
with the exception that each edge (u, v) in

I
(
Hg

)
with endpoints u, v ∈ A is identified with the (corresponding) edge in I

(
H ′

g

)

with endpoints u′ ≡ u, v′ ≡ v ∈ (
D′ \ D′

D
) ∪ (

A′ \ A′
D
)
.

Then I
(
M, Hg

)
is the flag complex with the above vertices and edges, that is, if all

the edges of a potential face belong to the complex, then that face is required to belong
to the complex.

We will be viewing both I
(
Hg

)
and I

(
H ′

g

)
as subcomplexes of I

(
M, Hg

)
. In the

vertex set of I
(
M, Hg

)
we clearly have

AA′ ∪ AD′ = A,D′
D ∪ AD′ = D′ and AA′ ∪ A′

D = A′.

The above notation is summarized in Figure 1.
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REMARK 3. It would be plausible to define I
(
M, Hg

)
by identifying the copies of

C
(
∂Hg

)
found inside I

(
Hg

)
and I

(
H ′

g

)
. However, such a complex does not serve

our purposes because the pant subcomplexes P,P ′ are not connected and, thus,
an automorphism of I

(
M, Hg

)
may not preserve them in the sense exhibited in

Example 4.

Our goal is to show that for any closed 3-manifold M with a fixed Heegaard
splitting of genus g ≥ 3, the automorphisms of the complex I

(
M, Hg

)
are all

geometric, that is, they are induced by homeomorphisms of M that preserve the
Heegaard splitting. This can be rephrased by saying that the map

A : MCG
(
M, Hg

) → Aut
(
I

(
M, Hg

))

is an onto map where Aut
(
I

(
M, Hg

))
is a group of automorphisms of the

complex I
(
M, Hg

)
. Moreover, we will show (see Theorem 10) that the map A is

1–1.
For the proof of this result we first show that the dimension of the link of a vertex

of I
(
M, Hg

)
lying in A is distinct (in fact, bigger) than the dimension of the link of any

other vertex of I
(
M, Hg

)
not contained in A. An important step is to establish that an

automorphism φ of I
(
M, Hg

)
must map each vertex v in P to a vertex f (v) which also

belongs to P (provided that M is not homeomorphic to the connected sum of copies of
�2 × �1) and similarly for D. In showing this, we use the notion of the pants complex,
introduced by Hatcher and Thurston in [8] and its connectivity properties (see [7]).
Finally, we use the corresponding result for handlebodies shown in [2], namely, that
MCG

(
Hg

)
is isomorphic to Aut

(
I

(
Hg

))
.

If v is a vertex in I
(
M, Hg

)
, we will denote by Lk (v) the link of the vertex v

in I
(
M, Hg

)
, namely, for each simplex σ containing v consider the faces of σ not

containing v and take the union over all such σ. We will use the notation � to declare
that two links are not isomorphic as complexes.

We will also use the classical notation �n,b to denote the surface of genus n with b
boundary components.

We conclude this section by demonstrating an example which shows that in the
case g = 2, non-geometric automorphisms of I

(
M, Hg

)
may exist.

EXAMPLE 4. Let M = H2 ∪� H ′
2, where � = ∂Hg = ∂H ′

g is the genus 2 closed
surface. One may think of M as the 3-sphere with the standard Heegaard splitting.
Choose a non-separating essential simple closed curve α in � which is not a generator
for π1 (H2) (for example, choose α to represent the second power of a generator of
π1 (H2)). Similarly, choose β in � which is not a generator for π1

(
H ′

2

)
and, in addition,

α ∩ β = ∅. Then choose a non-separating essential simple closed curve γ in � such
that

α ∩ γ = ∅ = β ∩ γ.

Clearly, the curves α, β, γ decompose � into two pairs of pants, denoted by
P1, P2. Observe that P1, P2 are not isotopic in H2. For, if P1, P2 were isotopic in H2,

then H2 would be homeomorphic to P1 × [0, 1] making α a generator for π1 (H2) , a
contradiction by choice. Similarly, P1, P2 are not isotopic in H ′

2. Thus, the complex
I (M, H2) contains distinct vertices [P1] , [P2] ∈ P and [P1]′ , [P2]′ ∈ P ′. Observe that
[P1] is connected by an edge only with the vertices [α] , [β] , [γ ] , [P2] and similarly for
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[P1]′ . Let φ be the automorphism of I (M, H2) defined by

φ ([Pi]) = [Pi]
′ and φ

(
[Pi]

′) = [Pi]

and φ (v) = v for all v �= [Pi] , [Pi]
′ , i = 1, 2.

If φ were geometric, then, since φ is the identity on C (�) , φ would have to be induced by
a homeomorphism F : M → M with F |� being the identity. As any homeomorphism
� → � extends uniquely to the handlebody it bounds, F would have to be the identity
on M.

3. Properties of the complex I
(
M, Hg

)
. In this section we will calculate the

dimension of the link of all types of vetrices in I
(
M, Hg

)
. Although most properties

hold for g = 2, we will assume throughout this section that g ≥ 3. We recall certain
properties from [2]:
(DM) If v is a meridian vertex in I

(
Hg

)
then its link in I

(
Hg

)
has dimension 5g − 9

(Lemma 4).
(DP) If v is a pants vertex in I

(
Hg

)
then its link in I

(
Hg

)
has dimension 5g − 7

(Proposition 2).
(DA) If v is an annular vertex in I

(
Hg

)
then its link in I

(
Hg

)
has dimension 5g − 7

(Lemma 3).
Identical properties hold for the vertices in I

(
H ′

g

)
. Analogous properties hold in

the complex I
(
M, Hg

)
.

LEMMA 5. If v ∈ D ∪ D′
D then its link in I

(
M, Hg

)
has dimension 5g − 9.

If v ∈ A′
D ∪ P ∪ P ′ then its link in I

(
M, Hg

)
has dimension 5g − 7.

Proof. It is straightforward since, by the definition of I
(
M, Hg

)
, the link of a

vertex v ∈ D ∪ P in I
(
M, Hg

)
is identical with the link of v in I

(
Hg

)
. Similarly,

the link of a vertex v ∈ D′
D ∪ A′

D ∪ P ′ in I
(
M, H ′

g

)
is identical with the link of v in

I
(
H ′

g

)
. �

We next examine the dimension of the link of the vertices in A = AA′ ∪ AD′ .

LEMMA 6. If v ∈ AA′, then the dimension of Lk (v) in I
(
M, Hg

)
is ≥ 7g − 9.

If v ∈ AD′, then the dimension of Lk (v) in I
(
M, Hg

)
is ≥ 5g − 6.

Proof. By property (DA) we have that v ∈ A is contained in a simplex of dimension
5g − 6 lying entirely in I

(
Hg

) ⊂ I
(
M, Hg

)
.

Let v ∈ AA′ . There exist 3g − 2 simple closed curves β1, . . . β3g−2 in �g = ∂H ′
g such

that
{
∂v, β1, . . . β3g−2

}
is a pants decomposition for �g and each βi is non-meridian

in H ′
g. This implies that the pants decomposition

{
∂v, β1, . . . β3g−2

}
determines 2g − 2

pairs of pants which are incompressible in H ′
g. Thus, there exist 2g − 2 vertices in P ′

which belong to Lk (v) .

Let v ∈ AD′ . As g is assumed to be ≥3, cutting H ′
g along the meridian v we always

(i.e. v separating or non-separating) obtain a handlebody of genus ≥2 with one or two
disks marked on its boundary (these being the disks bounded by copies of ∂v). On
the boundary of this handlebody we may find non-meridian, simple, mutually disjoint
curves γ1, γ2, γ3 which form a pair of pants such that each γi does not intersect with
the marked boundary copies of ∂v. Figure 2. exhibits this in the case g = 3 and ∂v

is non-separating. It follows that γ1, γ2, γ3 determine a pants vertex w′ ∈ P ′ which is
connected by an edge with v in I

(
H ′

g

)
. This completes the proof of the Lemma. �
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∂v

γ
1 γ2

γ3

Figure 2.

We will need the following.

LEMMA 7. If φ ∈ Aut
(
I

(
M, Hg

))
and v ∈ P, then φ (v) /∈ A′

D.

Proof. Let v ∈ P and denote by β one of the three boundary components of a pair
of pants representing v. The 1-skeleton of Lk (v) is a cone graph, that is, there exists
a vertex which is connected by an edge with any other vertex in Lk (v) (the annular
vertex vβ with ∂vβ = β is one such). We will reach a contradiction by showing that for
any u ∈ A′

D the 1-skeleton of Lk (u) is not a cone graph. For this it suffices to show that

∀w ∈ Lk (u) , ∃r ∈ Lk (u) : w, r are not connected by an edge.

For, if βw is a boundary component of a surface representing w ∈ Lk (u) , then
there exists a curve γ such that ∂u ∩ γ = ∅ and γ ∩ βw �= ∅. Let r be the vertex in
D′ ∪ A′ with ∂r = γ. Then r ∈ Lk (u) is the required vertex which is not connected by
an edge with w. �

PROPOSITION 8. If φ is an automorphism of I
(
M, Hg

)
then v ∈ A if and only if

φ (v) ∈ A.

Proof. The conclusion is straightforward by dimension arguments based on
Lemmas 5 and 6. �

We conclude this section by showing the following property.

PROPOSITION 9. The subcomplex of I
(
M, Hg

)
spanned by the vertices D ∪ P is

path-connected.

Proof. By the argument at the end of Lemma 6, if w ∈ D, there exists a pants
vertex u ∈ P which is connected by an edge with v. Therefore, it suffices to consider
two arbitrary vertices u, v ∈ P in order to exhibit path-connectedness of D ∪ P .

We will use the notion of the pants complex for surfaces originally introduced by
Hatcher and Thurston in [8]. We refer readers to [9, Section 2.2] for precise definition
and properties. We briefly recall that the 1-skeleton of the pants complex of a (closed
for us) surface �g (usually called the pants graph) has one vertex for each pants
decomposition of �g (equivalently, for each maximal simplex 1 in C

(
�g

)
) and edges

joining vertices whose associated pants decomposition differs by elementary moves.
More precisely, two vertices P = (

α1, . . . , α3g−3
)

and P′ span an edge if P′ can be
obtained from P by replacing one curve in P, say α1, by another curve, say α′

1, such
that the intersection number of α1 with α′

1 is 2 if they both belong to a subsurface of
�g of type �0,4 and the intersection number is 1 if they both belong to a subsurface of
�g of type �1,1.
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Apparently, for each pants vertex v ∈ P we may choose a pants decomposition Pv

such that the boundary curves of v belong to Pv. It was shown in [7] that the pants
complex is connected and simply connected. This means that for arbitrary vertices
u, v ∈ P there exists pants decompositions P0 = Pu, P1, . . . , Pk−1, Pk = Pv such that
Pi, Pi+1 differ by an elementary move for i = 0, . . . , k − 1. In particular, Pi, Pi+1 have
3g − 4 curves in common. It is clear that for each i = 1, . . . , k − 2 we may choose a pair
of pants pi in Pi such that pi, pi+1 have disjoint boundary components and similarly for
u, p1 and pk−1, v. If all boundary components of all pi are non-meridians, the sequence
u, p1, . . . , pk−1, v gives rise to path of vertices in P from v to u and we are done. If some
pi is a compressible pair of pants in Hg, we may use a boundary curve of pi which is
meridian. �

4. Proof of the main theorem.

Let

A : MCG
(
M, Hg

) → Aut
(
I

(
M, Hg

))

be the map sending a mapping class F to the automorphism it induces on
I

(
M, Hg

)
, that is, A (F) is given by

A (F) [S] := [F (S)] ,

where [S] denotes the isotopy class (vertex) determined by S.

THEOREM 10. Assume M is not homeomorphic to the connected sum of copies of
�2 × �1. Then the map A : MCG

(
M, Hg

) → Aut
(
I

(
M, Hg

))
is an isomorphism for

g ≥ 3.

Proof. We will use the corresponding result, see [2, Theorem 7], applied to the
handlebodies Hg and H ′

g.

We first show that every φ ∈ Aut
(
I

(
M, Hg

))
is geometric. We claim that either

Case I: φ (D) = D and φ (P) = P
or

Case II: φ (P ∪ D) = P ′ ∪ D′
D, in which case A′

D = ∅.

Let v ∈ P. By dimension considerations (see Lemmas 5 and 6), we have φ (v) ∈
P ∪ P ′ ∪ A′

D, and by Lemma 7, φ (v) ∈ P ∪ P ′.
Assume first that φ (v) ∈ P. By Proposition 9, φ (w) ∈ P for all w ∈ P. To see the

latter, assume that φ (w) ∈ P ′ for some w ∈ P. Choose a path σ from v to w whose
vertices are in P ∪ D. Then φ (σ ) is a path from a vertex in P to a vertex in P ′. It
follows that some vertex of σ is mapped to a vertex in A, which is a contradiction by
Proposition 8. Thus, we have that if for an arbitrary v ∈ P, φ (v) ∈ P then φ (P) = P
and clearly φ (D) = D as stated in Case I.

Now assume that φ (v) ∈ P ′. Using Proposition 9 in the same way as above, we
have φ (P ∪ D) ⊆ P ′ ∪ D′

D ∪ A′
D. Then by dimension arguments (cf Lemma 5) we have

φ (D) = D′
D and φ (P) = P ′ ∪ A′

D. By Lemma 7, we have φ (P) = P ′ and, again by
dimension arguments, we have φ

(
A′

D
) = A′

D. The latter is impossible if A′
D �= ∅ : for,

if x ∈ A′
D and φ (x) ∈ A′

D we may choose a pair of pants w ∈ P ′ in the Lk (φ (x)) . Then
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φ−1 (w) ∈ Lk (x) and φ−1 (w) ∈ P , a contradiction since x ∈ A′
D and no vertex in A′

D
is connected by an edge with a vertex in P. Thus, A′

D = ∅ as stated in Case II.
We now proceed with the proof of the theorem in Case I. We have φ (P ′) = P ′

and φ (D′ ∪ A′) = D′ ∪ A′. Thus, φ induces an automorphism φ′ of I
(
H ′

g

)
, and by [2,

Theorem 7] φ′ is geometric, hence we obtain a homeomorphism F ′ : H ′
g → H ′

g realizing
φ′. Such a homeomorphism F ′ is unique. Since φ′ (D′

D ∪ A′
D
) = D′

D ∪ A′
D, it follows

that F ′ maps each simple closed curve in � = ∂H ′
g = ∂Hg which bounds a meridian

in Hg to another such meridian. Therefore, F ′ extends to a homeomorphism of Hg.

This extension is unique (see, for example, [4, Theorem 3.7 p. 94]). In other words, F ′

defines a homeomorphism

FM : Hg ∪�g H ′
g → Hg ∪�g H ′

g.

Clearly, the composition A
(
F−1

M

) ◦ φ is an automorphism of I
(
M, Hg

)
, which

is the identity on I
(
H ′

g

)
. Thus, we may assume that the automorphism φ ∈

Aut
(
I

(
M, Hg

))
is the identity on I

(
H ′

g

)
and we want to show that it is the identity

on the whole complex I
(
M, Hg

)
.

We first show that φ is the identity on D. Let w ∈ D, and let D be a meridian
in Hg representing w. If φ (w) �= w, that is, φ (w) is represented by a meridian D′

non-isotopic to D, then we may find a simple, essential curve α in ∂Hg which does
not bound a meridian in Hg such that ∂D ∩ α �= ∅ and ∂D′ ∩ α = ∅. Since φ fixes the
vertex represented by α, we have a contradiction. Thus, φ fixes every vertex w ∈ D.

It follows that φ induces an automorphism φ|I(Hg) of I
(
Hg

)
which fixes

A ∪ D. This automorphism is geometric (see [2, Theorem 7]), that is, there exists
a homeomorphism G : Hg → Hg realizing φ|I(Hg). As φ|I(Hg) fixes every vertex in
A ∪ D, G is is the identity on � = ∂Hg. As every homeomorphism of ∂Hg which
extends to a homeomorphism of Hg it does so uniquely, it follows that G is the identity.
Therefore, φ|I(Hg) is the identity on I

(
Hg

)
and, thus, is the identity on the whole

complex I
(
M, Hg

)
as required. This completes the proof in Case I.

We proceed with Case II. As A′
D = ∅, we have

Case IIa: D′ \ D′
D �= ∅, and

Case IIb: D′ \ D′
D = ∅, that is, D′

D ∩ A = ∅.

We will show that Case IIa does not occur, and in Case IIb M is homeomorphic
to the connected sum of copies of �2 × �1. Let w ∈ A′ = AA′ . Then Lk (w) contains
2g − 2 pant vertices in P , which form a simplex, and similarly 2g − 2 pant vertices in
P ′. This implies that φ (w) /∈ D′ \ D′

D because a meridian vertex in I
(
H ′

g

)
cannot have

2g − 2 pant vertices fromP ′ in its link. It follows that φ (AA′) = AA′ and φ
(
D′ \ D′

D
) =

D′ \ D′
D. Let now v ∈ D′ \ D′

D and denote by p1, . . . , p2g−2 a maximal set of pant
vertices fromP contained in Lk (v) . As φ (pi) = p′

i with p′
i ∈ P ′, we have a contradiction

because φ (v) ∈ D′ \ D′
D and ∂φ (v) bounds a meridian in H ′

g (thus, φ (v) cannot have
2g − 2 pant vertices from P ′ in its link). This shows that Case IIa cannot occur.

We conclude the proof of the theorem by observing that in Case IIb the manifold M
is homeomorphic to the connected sum of copies of �2 × �1. If H2 = �2 × �1 is glued
with H ′

2 = �2 × �1 along �1 × �1 so that every curve which is a meridian boundary in
H2 is identified with a meridian boundary in H ′

2 then M is homeomorphic to �2 × �1.

Inductively, if a is a separating curve in ∂Hg = ∂H ′
g which bounds a meridian Dα in

Hg and a meridian D′
α in H ′

g, then cutting along the 2-sphere Da ∪ D′
α we obtain 3-

manifolds M1, M2 each with one boundary component homeomorphic to �2. By gluing
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a 3-ball along the boundary component of each, we obtain that M is homeomorphic
to M1#M2 with M1, M2 having Heegaard genus ≤ g − 1. �
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