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ON GROUP UNIFORMITIES ON THE SQUARE OF A SPACE
AND EXTENDING PSEUDOMETRICS

MICHAEL G. TKACENKO

We give some conditions under which, for a given pair (di,dj) of continuous
pseudometrics respectively on X and X2, there exists a continuous semi-norm
N on the free topological group F(X) such that Nfx-y'1) = di(x,y) and
N(xyt-1 z~l) ^ d,((z,y),(z,t)) for all x,y,z,t € X. The "extension" re-
sults are applied to characterise thin subsets of free topological groups and obtain
some relationships between natural uniformities on X1 and those induced by the
group uniformities *V, V* and *V* of F(X).

0. INTRODUCTION

By a theorem of Nummela [7] and Pestov [8], the two-sided uniformity *V* of the
free topological group F(X) induces the finest possible uniformity on X compatible
with its topology, that is, *V*\x — Ux, where Ux is the universal uniformity of X.
This important result is the starting point of our investigation of uniformities on X2

induced by *V, V* and *V*, the left, right and two-sided group uniformities of F(X).
There are at least three natural problems in this area:

A. What are the relations between the uniformities *V\X*, V* \Xi and * V* \xa
on one hand and Ux X Ux, Uxi on the other hand (Uxi stands for the
universal uniformity of X2 )?

B. When does the equality *V*|*a = Ux x Ux hold?
C. For which spaces X does the equality *V*|jf* =^x3 hold?

One can as well replace *V* by *V or V* in Problems B and C, thus obtaining
four more problems. To settle these problems we elaborate a method of simultaneous
"extension" of a pair (di,*^) of continuous concordant pseudometrics from X and
X2 respectively to a continuous semi-norm N on F(X) (to a semi-norm on the open
subgroup G(X) of F(X), to be precise). Theorem 1.4 and Theorem 2.1 are the main
results of the paper going in this direction. However, we postpone treating Problems
A-C till the forthcoming paper (with the same title) because of the length of the present
one.
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310 M.G. Tkacenko [2]

Graev [3] was the first to apply an extension of continuous pseudometrics from a
set X of generators to the free topological group F(X) over X. Graev's method of
extension of pseudometrics made possible a proof of the equality *V*|;t = Ux (see [7,
8]). Various special extensions of continuous pseudometrics from a space X to different
free topological algebras generated by X were considered in [12, 6, 13, 11]. Graev ex-
tension was also used in [11] to show that if X admits a one-to-one continuous mapping
onto a metrisable space, then F(X) is a NSS-group, that is, has no small subgroups.
Unfortunately, we can not apply any of those constructions for our purpose because
they all produce invariant pseudometrics on F(X), and hence can not distinguish the
left and right group uniformities on F(X). The use of certain pseudometrics on X2

and their extensions to F(X) enables us to do that.

The principal idea of our construction is to produce continuous semi-norms on
F(X) which are "sensitive" to inner automorphisms of F(X) generated by elements of
X. More precisely, let N be a semi-norm on F(X) which right-induces a pseudometric
d on X, that is, d(a,b) = N(a-b~1) for all a,b £ X. Suppose that there exists a
function / on X such that N(x • a • b'1 • x'1) = f(x) • d(a,b) for all a,6 £ X. We
can say that / is a rate of sensibility of the semi-norm N. How fast can the function
/ grow? The inequality

N(yab-1y-1) = N(yx~1 • xab^x-1 • xy'1)

^ N(yx~1) + N(xab-1x-1) + iV^y"1) = N^ah^x'1) + 2d{x,y)

shows that the pseudometric d is a natural regulator for N and / . In particular, if d is
reasonably non-vanished, that is, there exist points a, b £ X with d(a, b) = 1, then the
above inequality implies that \f(x) — f(y)\ ^ 2d(x,y) for all x,y 6 X. This explains
our special attention in the second part of the paper to the case when the pseudometric
d satisfies the condition d(x,y) = \f(x) — f(y)\ for all x,y £ X.

In the first part of the paper we define the notion of right-concordant pseudometrics
(Definition 1.3) and prove that if continuous pseudometrics d\ and d2 on X and X2

respectively are right-concordant, then there exists a continuous semi-norm N on F(X)
such that N(ab~1) = di(a,6), N(axy-1a-1) = d2{(a,x),(a,y)) and N(axy-1b~1) ^
d2((a,x),(b,y)) for all a,b,x,y 6 X (Theorem 1.4).

One natural way of construction of right-concordant pseudometrics is given in the
second part of the paper (see Theorem 2.1). In the forthcoming paper this special
method will be applied to solve Problems A-C for various classes of spaces. We apply
this method here only once to give an alternative and short proof of Theorem 3 of [15],
characterising subspaces of a space X which are thin in F(X).

The results of the paper on extension of concordant pseudometrics were announced
(without proofs) in [16].
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All spaces are assumed Tikhonov. The free topological group over a space X is
denoted by F(X). The set of positive integers is denoted by N+.

1. EXTENSION OF CONCORDANT PSEUDOMETRICS

Let X be a space. Every element g of the group F(X) has the form g —
\l • ... • xn

n , where xi,...,xn 6 X and £ i , . . . , e n = ± 1 . Denote by l+(g) the
number of indices i ^ n with e< = 1, and l-(g) the number of indices i ^ n with

£i = - 1 . We put

G(X) = {g£ F(X) : l+(g) =

x

It is easy to see that G(X) is an open subgroup of F(X). Indeed, let / be a
mapping of X to the discrete group Z of integers, f(x) = 1 for each x € X. Extend
/ to a continuous homomorphism / : F(X) —> Z. Then G(X) is the kernel of / , and
hence is open in F(X).

Thus, a study of properties of the group F(X) can practically be reduced to a
study of corresponding properties of G(X). We give here only one result showing the
difference between F(X) and G(X).

ASSERTION 1 . 1 . The group G(X) is connected if and only if X is connected.

PROOF: Assume that the space X is connected. For every integer n £ N+ and
e = (ei, . . . ,£„) G {1,-1}" denote by t? the mapping of Xn to F(X) defined by
i-^x\,..., xn) = s'1 •.. .-xn

n . The mapping i«- is continuous, and since Xn is connected,
n

so is ic{Xn). Let 5(e) = Y,£i- N o t e t l i a t if S(e) - 0, then the identity e of
t=i

F(X) belongs to ij(Xn). So, the connectedness of G(X) follows from the equality
G{X) = \J{h(X2n) : n G N+,e € {1, - l } 2 n and S(e) = 0}.

Assume then that X is disconnected. We can write X = U U V for some disjoint
open non-empty subsets U, V of X. Let G be a discrete free group with two generators
o and b. Denote by <p a mapping from X to G defined by <p(x) = o for each x £ U and
tp(x) = b for each x £ V. Extend <p to a continuous homomorphism (p : ^(X) —» G.
Then the kernel of <p, kerip, is clopen in F(X), and is a proper subset of G(X). Thus,
G(X) is disconnected. D

DEFINITION 1.2: A real-valued non-negative function N defined on a group G
with identity e is called a semi-norm if it satisfies the following conditions:

(Nl) N(e) = 0;
(N2) N(g) = N(g~1) for each g€G;
(N3) N(g • h) < N(g) + N(h) for all g, h <= G.

Functions satisfying (N1)-(N3) were called norms in [5, 4]. Since there could be
elements j G G \ {e} with N(g) — 0 (and such elements do exist if G does not admit
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a coarser metrisable topology), we prefer the term semi-norm, analogous to that in the
theory of linear spaces.

Let d be a continuous pseudometric on a space X. Denote by d the Graev exten-
tion of d to a maximal invariant pseudometric on the open subgroup G(X) of F(X).

[Of course, one can extend d to an invariant pseudometric on F(X); however, there
is no maximal and there is no "natural" among such extentions. This is the main
argument in favor of the consideration of G(X) instead of F(X).\ We can define a
continuous semi-norm Nj on G(X) by Nd(g) = d(g,e); g £ G(X). By the definition
of d, we have the following equalities for arbitrary x,y,z,t 6 X:

(GR) N^x-y-1) = d(x,y) and Nd(x • y • t~x • z'1) = d{x,z) + d{y,t);
(GL) N^x'1 • y) = d(x,y) and N^y-1 • x~l • z • t) = d{x,z) + d{y,t).

Suppose we are given another continuous semi-norm N on G{X) that right-induces
the same pseudometric d on X, that is, N(x •y~1) — d(x,y) for all x,y £ X. De-
fine a continuous pseudometric ofe on X2 by d2((x,y),(z,t)) = N(x • y • t~1 • « - 1 ) for
x,y,z,t e X. The main problem is the following one: can d? be any continuous
pseudometric on X2 , or must there be some relations between d and d?. ?

For example, if N = Nj, the pseudometric d completely defines the corresponding
pseudometric 2̂ i for d2((x,y),(z,t)) = d(x,y) + d(z,t) in this case. In general, we
can not hope to generate di by means of d, but at least one relation between them is
obvious:

(Rl) d2((a,x),(b,x)) = N(a • x • x-1 • b'1) = d{a,b) for all a,b,x G X.

We can also say that the pseudometric d2 is invariant with respect to lifting or
descent of horizontal intervals in the "plane" X2. So, d2(A,B) = ^ ( C , J9) whenever
horizontal intervals [A, B] and [C, D] have the same projections to the first factor X.

IB
i
i

Figure 1

It does not seem surprising that (Rl) is not the only relation between the pseudo-
metrics d and d-i induced by the same semi-norm N. In the fourth part of the paper
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we give an example explaining this phenomenon. After this preliminary discussion we

are ready to present the main notion of the paper. Let X be a set and suppose that

d\ and d2 are pseudometrics on X and X2 respectively.

DEFINITION 1.3: Pseudometrics d\ and d2 are called right-concordant if they

satisfy the following conditions:

(Cl) d2{{a,x),(b,x)) = d^b) for all a,b,x £ X;

(C2) d2((a0,x0),{an+1,xn))
«=o t=i

for all ao, a i , . . . , a n +i ,ZQ,zi , . . . , zn 6 X and any permutation n of the

set { l , . . . , n } .

Changing the places of a,b and x in (Cl) and a.i,Xj in (C2) gives the definition

of left-concordant pseudometrics:

(CL1) d2{{x,a),{x,b)) = di(a,b) for aU a,b,x £ X;
n n

(CL2) d2((xo,ao),(xn,an+1)) ^ £ <*i(ai>a>+i) + Z) ^((asi-i.a^i)), (zi,ax(,)))
i=0 i=l

for all ao, • . . ,an4-i,Z0) • • • >zn £ -^ and any permutation n of the set
{ l , . . . , n } .

The condition (C2) of the above definition is more obscure and complicated than

(Cl). However, if we hope to induce both pseudometrics d\ and d2 by means of one

semi-norm on G{X) using a "reasonable" construction, it will likely (or inevitably)

require some special condition such as (C2) (see Example 4).

The following theorem is our main result on extension of pseudometrics.

THEOREM 1 .4 . (Right case) Let d\ and d2 be continuous right-concordant pseu-
dometrics on X and X2 respectively. Then there exists a continuous semi-norm
N = NT on G(X) satisfying the foUowing conditions:

(Rl) N(ab-1) =N(a~1 • b) =di(a,6) for ail a,b £ X;
(R2) N(ax •y-1a-1)=d2{{a,x),(a,y)) for all a,x,y £ X;
(R3) N(ax y-1 • b'1) 2 d2((a,x),(b,y)) for all a,b,x,y £ X.

PROOF: Elements of G(X) having the form g-x'-y-'-g'1, where g G F(X), x,y £

X and e = ±1 , will be called canonical. In particular, all elements x'-y~e with z, y £ X

are canonical. For every canonical element h £ G(X), a number M(h) ^ 0 will be

defined as follows. If h = xe • y~e, we put M(h) = di(x,y). If h = a' • x' • y~e • a~'
and a,x,y £ X, we put M(h) — d2((a,x),(a,y)); if h = a" • x~* • ye • a~e, we put
Af(/i) = d\(z,y) + d2((a,x),(a,y)). Suppose then that h = g • x" • y~e • g~*, where
g = a\l • ... • a^n and oj £ X, e< = ±1 for each i ^ n; n > 2. In this case we put

^ n ^

M[h) = di(h) + 53 d2((a.i,x),(ai,y)), where di is the Graev extension of di to an
t=i

invariant pseudometric on G{X) [3, 6, 11].
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Let h be an arbitrary element of G(X). Consider all possible representations of
h in the form of a product h = h\ • ...• hn of canonical elements of G(X). To each of

n

such a representation there corresponds the sum J^ M[hi). Denote by N(h) the lower

bound of these sums. It is clear that N[e) = 0 and N(h) ^ 0 for each h £ G(X). One
easily verifies that the function N satisfies the conditions (N2) and (N3) of Definition
1.2, that is, N is a semi-norm.

Let us show that (R3) holds. We need some preliminary definitions. For a given
canonical element h = a'1 • . . . • a£n • x' • y~e • a~'n • ... • a^'1 of G(X), each of
the pairs {xe,y~e}, {<ZjX,aJ~ei}, . . . , {o^n,a~'n} will be called ft-connected (in h).
Furthermore, we shall say that the pair {xe,y~e} fc-depends on the pair {a*',a^e'},
1 ^ i ^ n. Let hi,..., hm be arbitrary canonical elements of G(X). Consider the word
h = h\hi...hm in the alphabet X\JX~1 generated by writing the words hi,hi,... ,hm

consecutively. We shall get the element h — h\ • hi • ... • hm of G(X) if we perform
all possible consecutive reductions in h of coinciding neighbouring letters with opposite
exponents. Now fix some order of reductions in h that transform h to h, and define a
partition of letters of the irreducible word h to h -connected pairs. We use an induction
on the number of reductions and accompany it with the definition of the notion of
connectedness and dependence between pairs.

The partition of the letters of the word h to A-connected pairs is naturally defined
by partitions of the letters in each of the canonical elements hi, 1 ^ i ^ m. Suppose
that a word h' is obtained by means of k consecutive reductions in h and that we have
already defined a partition of the letters of h' to h'-connected pairs. Let h' = px'x~eq,
where x € X, e = ± 1 , and suppose that the (k + l)-th reduction in h' is the deletion
of the letters x' and x~e from h!. There exist letters y~e and z' in h' such that
both pairs {y~e,xe} and {x~',ze} are h'-connected. In the word h" = pq, h"'-
connected pairs are exactly all ft'-connected pairs of h', without two pairs {y~e,xe}
and {x~e,z'}, and we add one new h"-connected pair {y~',z'} that arises instead of
these two "old" pairs.

Thus, we have defined the partition of letters of h to h-connected pairs (but
the notion of ft-dependence has not yet been defined). This partition depends on a
representation of h in the form of a product h — hi • ... • hm of canonical elements of
G(X), and we also used some order of reductions in h = h\... hm.

The following auxiliary lemmas will be helpfull. We omit the simple proofs of them
that use an induction on a number of reductions.

LEMMA 1. A partition of letters in h to h-connected pairs does not depend on
the order of reductions in h.

LEMMA 2 . Suppose that {x\,x^e} and {j/f,l/fS} are h'-connected pairs in h'.
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Tien t i e letters x\, x^', y{ and y^S can occur in the word ti in one of the following
ways:

(1) h' = ...x\...y[...y^...xr...; (2) ft' = ...x{ . . . y ^ s ...y{ . . . x ~ 2 ' ...;

( 3 ) h' = ...x-'...y[...y^...x\...; (4) ft' = ... x~' . . . y ~ s .. .y{ .. .x\;

(5) h' = ...y[...xl...x-'...y2S---\ (6) ti = ...y[...Xt'...x\...y;S...]

(7) h' = ...y^s...x\...xr...y[...; (8) h' = ...y^...x-'...xl...ys
1...;

(9) h' = ...xt...x-'...ys
1...y-s...; (10) ft' = ... x\ .. .x~' .. .y~s .. .y[ ...;

(11) h'm...x^...x\...y{...y^...-t (12) ti = . ..x^' . ..x\ ...y^ .. .y* ...;

(13) ti = ...y{...y-6...x\...x-'...; (14) ti = .. .y[ .. .y~s ... x~' .. .x\ ...;

(15) ti = .:.y-s...ys
1...xl...x^...; (16) h ' = . . . y ? ...rf . . . x ? . . . x { . . . .

Applying Lemma 2, we define the notion of ti -dependence between some h'-

connected pziirs as follows. Let {xi,a;^e} and {1/1,3/2" } be ft'-connected pairs in h'.

Then in each of the cases ( l )-(4) of occurence of x\,x^e,y\,y^ in ti (see Lemma 2)
we say that the pair {1/1,2/2" } ft'-depends on the pair {s!i,a!^"e}. In the cases (5)-(8)
we say that the pair {x^x^*} ft'-depends on {j/f ,2/2~*}- In cases (9)-(16) there is no
relation of ft'-dependence between these two pairs.

We proceed to the proof of (R3). Suppose that an element ax- y'1 • b~* (with
a,b,x,y G X) is written in the form fti • . . . • ftm, where fti,...,ftm are canonical
elements of G(X). By the definition of the semi-norm N it suffices to show that

m

d.2((a, x),(b,y)) ^ £3 -^C1*)- Without loss of generality one can assume that all ele-

ments hi, 1 ̂  i ^ m, are irreducible. This follows from the next obvious lemma.

LEMMA 3 . Let p = a'1 ...a%tx*y~ea~*n . . . a p l be a reducible word, where

0 1 , . . . , an, x,y £ X and e i , . . . , en, £ = ± 1 . Tien all possible reductions in p trans-

form p to a canonical element p 6 G(X), and M{p) ^ M(p).

Denote g — a • x • y"1 • 6 - 1 . It is clear that both pairs {a, 6"1} and {x,y~1} are

g -connected and the second pair g -depends on the first one. We need one notion more.

DEFINITION OF A CHAIN: A finite family V of unordered pairs of letters of the
alphabet X U X-1 is called a chain between u and u"1 for some u,v 6 X if one can
enumerate V = {p< : 1 < t ^ k + 1} so that p\ = {u.tuf1}, pi = {lOijtOj"1}, ..., pk =

{ io i -1 ,^ 1 } and

Now we proceed an inductive construction by reductions in h = hi...hm (moving
in the "inverse" direction, from g to ft). Assume again that an order of reductions in
ft is given.
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Let Vo be the family consisting from one pair {a, 6"1} and Qo the family consisting
of the pair {x,y~1}. We shall say that the pair {x,y~1} is g-subordinated to the pair

Suppose that we have a word ft' after some number s ^ 0 of reductions in the

word ft, and r is a number of reductions transforming ft' to g = axy~1b~1. Suppose

also that we have defined subfamilies VT and Qr of the family of A1-connected pairs

and a relation of ft.'-subordination between some pairs of Qr and VT satisfying the

following conditions:

( l r ) the families Vr and QT are disjoint;
(2r) the family Vr is a chain between a and ft"1, and Qr is a chain betweeen

x and y~l;
(3r) every pair of Qr is ft' -subordinated to some pair of VT, and if q £ QT is

ft'-subordinated to some pair p £ VT then q ft'-depends on p .

Let ft" be the word obtained after s — 1 reductions in ft. The word h' arises after
a reduction of two neighbouring letters t' and t~e of h". Consider four possible cases.

(a) {te,t~e} is an /^'-connected pair. Then we put Vr+i = ~Pr and Qr+i =
Qr. The relation of A"-subordination coincides with the relation of h'-
subordination.

(b) {te,u~e} and {t~e,ve} are h"-connected pairs for some letters u~e, v*
of h", and {u~',ve} belongs to Vr. Denote

= (VT \ {{u-°,v<}}) U {{<>-«}, {re,v<}} and Qr+1 = Qr.Vr+1

The relation of h'-subordination is considered as a mapping ipT : Qr —> VT\ the equality
p = <pr(q) with q G QT and p £ Vr means that q is h'-subordinated to p . Define a
relation fr+i • QT+I —* ~Pr+i as follows. If q £ Qr, p = <pr{q) and p 7̂  {u~e,ve}, put
yjr+i(g) = p . If <pr{q) — {w~e ,ve} , consider three subcases.

(60 Either ft" = .. .tH~e . ..ve ...u~' ...,01 ft" = . . . u~ e . ..v'.. .t~Hc ... .

Then put <pr+i{q) = {f ,u~e}.

(b2) Either ft" = . . .ve . ..u~e ...tet~' ..., or ft" EE . . .t'H' .. .vTE .. .ve ... .

In this case we put tpr+i(q) = {t~',ve}.

(63) Either h" = ...u~c ... t't~'... v* ..., or ft" = . . . ve ... f-'t' ...u~' ... .

Now the definition of <pr+1(q) is not straightforward. Let q = {zf,z^~*}. If the letters

z\ and z^6 occur in the word ft" between the letters u~* and t", we put ipr+i(q) —

{u~',te}. Otherwise z\ and z^S occur between ve and t~' (apply Lemma 2), and we

put <pr+i(q) = {t~',v°}.

(c) {t',u~*} and {t~",ve} are ft"-connected pairs in ft", and the pair
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{u~e,ve} belongs to Qr. Then put

Qr+i = {Qr \ {{«">*}}) U {{t',u-°},{t-',v°}} and Vr+1 = VT.

Let q € QT+i, but q ̂  {te,u~c} and q ̂  {t~',ve}. Then we define <pr+i(q) = fT(q)-
Put also <pr+1({t°,u-*}) = Vr+1{{i-,v'}) = ?,.({«-,»•}).

(d) {t',u~'} and {t~',ve} are h"-connected pairs in h" and the pair
{u~e,ve} does not belong to ? r U Q r . Then define Vr+1, Qr+i and
(pr+i as in the case (a).

Lemma 2 implies that (a)-(d) cover ail possible cases. This completes our definition
of Vr+i, Qr+i and tpr+i • One can verify that the families Vr+i, QT+i and the relation
of subordination <pr+i satisfy conditions (lr+i) — (3r+i) in each of the cases (a)-(d).

Denote by n the number of reductions transforming h to g = axy~1b~1. Put
V = Vn, Q = Qn and <p = tpn. Then V is a chain between a and ft"1, Q is a chain
between x and y~x and each pair q 6 Q is g-subordinated to the single pair ip(q) €. V;
moreover, q /i-depends on p. Let V = {p,- : 1 ^ i ^ fc} and Q = {q, : 1 ^ J ^ /}
be enumerations of T5 and Q that correspond the definition of a chain between two
letters. Thus, we can write pi = {a,^1}, p2 = { c i , ^ 1 } , . . . , pk — {ck-ijb^} and
gi = {a,if1}, q2 — { ^ I , ^ 1 } , •••, qi — {ti-i,y~1}- Without loss of generality one
can assume that Q does not contain pairs of the form {t,t~*}, because the family Q'
obtained by deletion of such pairs from Q is again a chain between x and y~1.

The partition of the letters of h to h -connected pairs and the relation of h-
dependence between h -connected pairs are generated by partitions and relations ex-
isting "inside" canonical elements hi, 1 ^ i ^ m. Therefore distinct pairs of Q lie
in different elements hi and f(q') ^ v(?") whenever q' ^ q". [/i-connected pairs are
considered to be distinct if their letters occupy different places in the word h. For
example, the word W = aab~1b~1 consists of two W^-connected pairs {a,b~1} and
{a,b~1}, the first one contains the left and right letters of W, and the second one con-
tains the middle letters of W. We consider these pairs as different, keeping in mind the
places that their letters occupy.] From the definition of subordination it follows that for
each qj £ Q, the pair pi = <f(qj) has the form {c,^1}. Thus, for this p; = {CJ_I,CJ},

the points Cj_i and c< coincide sis elements of X (we put eg = a and cj, = b), the
letters of the pairs pi and qj He in the same canonical element h, for some s ^ m, and
qj /i,-depends on pj. In its turn this implies that d.2((ci,tj-i),(a,tj)) ^ M(h,); we
assume that to = x, ti = y. I f l ^ j ' ^ Z , l ^ i ^ f c and p,- = <p(qj), we put i = ij>(j),
thus denning the mapping tp : {1,.. . ,/} —> { 1 , . . . , A;}.

Let Vi = f{Q). Then Vx = {p^, . . . ,p i (} , where 1 ^ ii < . . . < t, < fc. Delete
from Vi = V \ Vi all pairs of the form {c, c"1} and denote the resulting family by V3 .
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Obviously, the family 1Z = V\ U V3 is a chain between a and ft"1. Since distinct pairs
of 1Z occur in different elements hi, we have the following inequality

1 m
(1)

Here tfi(p) stands for di(u,v) if a pair p £ V3 has the form p — {u",v~e}, e = ± 1 .
Note that each pair of V\ is of the form {c,^1}, and hence Vs is a chain between a

and 6"1. Therefore, the triangle inequality for d\ implies that

(2)

i=o

where c,0 = a, c,|+1 = 6. Applying (1) and (2), we get

i 1

( )
7 = 1

Obviously, we have {pix,... ,pi{} = Vx = {p^(i), • • • ,Pv(l)} • Denote Oj = ciy , K ) ^
/, 00 = o and aj+i = 6. Let also u be a mapping from {1, . . . , /} to {1, . . . ,k} defined
by u(j) = i j , 1 ^ j ' ^ /. Then 7r = u~1o^i is a bijection of {1,... ,{} onto itself, and
we can rewrite (3) as follows:

(4)
j=o j=\ >=i

By condition (C2) of concordance of dj and di, the left part of (4) is not less than
m

d2((ao,to),(ai+i,ii))- Thus, d2{(a,x),(b,y)) < J3 ^C1*)- This proves the inequality
«=i

(R3) of the theorem.
Let a,x,y £ X be arbitrary. From (R3) it follows that d2((a,x),(a,y)) ^

N(a • x • y~x • a"1) . However, the element a • x • y"1 • a"1 is canonical, and the defini-

tion of the semi-norm N implies the inequality N(a • x • j / - 1 • a"1) ^ d2((a,x),(a,y)).

Thus, (R2) is proved.

To prove (Rl), we need one auxiliary result. Recall that d\ is the Graev extension

of d\ to a maximal invariant pseudometric on G(X).

LEMMA 4 . Let aE • b~e = g0 • 01 • x\ • y f 1 • aj"1 • gx • a2 • x2 • y^1 • a^1 •... • a n • xn •

j / " 1 • a"1 • gn, where a,b,ai,x,-,y; G X, t — ±1 and gi £ G(X) for each i ^ n. Then

di{a,b) ^ Y, di(gi,e), where e is the identity of G{X).
i=0
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n
PROOF OF LEMMA 4: Suppose the contrary; let £) di(gi,e) < dx{a,b). Then a ±

t=0

b. Denote by w the word gaaixiy^1a^1g\.. .ana;n2/~1a~1pn and choose a cancellation
order in w that transforms w to a* • b~°.

Recall the definition of the Graev extension d\ of the pseudometric d\ (see [3]
or [11]). We say that a partition of all letters of the word g £ G(X) to disjoint
pairs is a scheme for g, if the letters of each pair of the scheme have opposite ex-
ponents and every two distinct pairs {xc,x~'} and {ys,y~s} of the scheme sat-
isfy the conclusion of Lemma 2. [For example, the word aib^b^a^1 admits two
schemes: {{ai ,^ 1 } ,^^" 1 ,^}} anc^ {{aijO^"1}-, •{6̂ ~1,62}} •] For an arbitrary scheme

5 = {{*; i ,y1" '1},- . . , {x;*,»r*}} ^ », put d1{S)= Y.d^XiM). Then d^g) is de-

fined as the minimum of the numbers di(S) where S runs through all possible schemes
for g. The pairs of a given scheme for g will be called g-connected.

For every i ^ n choose a scheme Si for gt satisfying di(5,-) = d\ (gi). It is
also convenient to choose the scheme Tj = {{ai,^1}, {%{, V^1}} f°r the element hi =
aixiVr aT i *he V3*1 {xii yT } °f ^ s scheme will be called an obstacle; 1 ^ i ^ n. As
in the proof of (R3), the cancellation order for w produces a chain C between ac and
b~* , say {oe,cj"e}, {c{,c^"e},..., {c£,&~e}. Note that the pairs of C are elements of
the schemes Si and 2i; 0 ^ i,j'^ n, j ^ 0.

Consider two cases.
I. The chain C does not contain any obstacle pair. Then, by the definition of d\,

we have (with CQ — a, cp+i = 6):

d1(a,b) ^
t=0 »=0 i=0

a contradiction.
II. The chain C contains an obstacle pair {xjjyT1} for some j ^ n. This is the

main case to deal with. The pair {xj^yj1} coincides with a pair {cj^cj^j} of C for
some k, 0 ^ k ^ p (again, we put CQ = a, cp+i = b). The idea is to represent the
element ae • b~c in the form of a product of "new" elements of G(X) as follows. For
each i < k both letters cf, c^fj occur in exactly one element gm (or hm) as a gm-
connected (respectively, hm -connected) pair; 0 ^ m ^ n. We replace c\ by a" and
ci+i ^y °~e m *^e w o r d 5m (respectively, fem). Analogously, we replace the letters
c\ and c^fj with i > k by 6e and 6~e respectively. Finally, we find r ^ n such that
{cfc)c*+i} = {^ityj1} ls a n /ir-connected pair, and then replace ce

k by oe and cj^j
by 6~e in the word hT. If {u*,«~*} is a <ft-connected (or hi -connected) pair for some
i ^ n and it does not belong to C, we replace us by a* and v~s by a~* in the word
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gi (respectively, hi). After this procedure we obtain another representation of ae • b~e ,
say

(••) *eb-°=gl
o-h'0g'1.....g'n_1.h'n.g'n,

where each of the words g'^h^ contains only the letters a,b,a~1,b~1. (To verify the
equality (**), use the fact that for each i ^ p the letters c^c and c'+1 of the pairs
{c'_1, cje}, {c'jC^fj} are deleted from w at some step of the reduction.) To each
scheme Si for gi and Ti for hi there naturally corresponds a scheme S'{ for g\ and T-

for h\. Note that, by the construction, all pairs of the schemes S'{ (0 ̂  i < n) and T-

(i ^ T) have the form {a,a~x} or {b,b'1}. Therefore, h\ = e for all i ^ r and we can
rewrite (**) as as • b~c = gl • h'r • g% , where

9i = g'o • ••• • g'r e G(X), g*2 =g'r+l •... g'n e G(x)

and h'r coincides with one of four irreducible elements a- a- 6"1 • a"1, a • b • a"1 • a - 1 ,
b- a-b~l • 6"1, b• b• a""1 • 6"1 . We claim that g^ — e = g%, thus obtaining an impossible
equali ty ae • b~" = h'T.

Indeed, note that every non-empty scheme S for an arbitrary word g £ G{X)

contains a ^-connected pair {xs,y~e} such that the letters x{ and y~s are neighbours
in g. Since the schemes Si, 0 $S i ^ n, contain only the pairs {a,a-1} and {b,b~1},

we conclude that g'o = . . . = g'n = e, and hence g% = e = g%. This completes the proof
of the lemma. u

Let a,b 6 X and e £ {1,-1} be arbitrary. Since ae • b~e is a canonical element,

the definition of N implies N(ae • b~e) ^ ^(0,6) . The inverse inequality follows from

Lemma 4. This proves (Rl).

It remains to show that the semi-norm N is continuous. To this end, it suffices

to check that the set O = {g € G(X) : N(g) < 1} contains an open neighbourhood of

the identity. (One easily substitutes the number 1 in the definition of O by any real

number e > 0.) This requires some notation. We use a description of a neighbourhood

base of F(X) at the identity [14].

Denote by X~1 a copy of X (with a homeomorphism - 1 of X onto X~x) and put

X = X(BX~*, the free topological sum of X and X~*. Let i be the natural embedding

of X into F(X). For each integer n denote by in the mapping of X to F(X) defined

by i ^ 1 , . . . , * ^ ) =i(xiy
i • ... • i{xn)'

n for all xu...,xn &X and elt...en = ± 1 .

Let j n : X —* F(X) be the mapping defined by jn(x,y) — in(x) • (*n(y))~ for all

x,y G X . The mappings in and j n are continuous for all integers n.

For every n £ N+ denote by Un the finest uniformity of X compatible with
the topology of X , that is, the universal uniformity of X [2, Chapter 8]. For each
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sequence E = {Un : n G N+} with Un GW« for all n , we put

U i
n€N+ *-6Sn

where Sn is the group of all permutations of the set { 1 , . . . , n } . By Theorem 1 of [14],

the set V(E) is open in F(X) and the family of all sets of this form constitutes a base

of F(X) at the identity. Our aim is to define a sequence E = {Un : n G N+} satisfying

V(E)CO.

For every 6 > 0 put

Then for every n ^ 2 and every 6 > 0 denote by Un>s a subset of X that consists of all

pairs {x,y) with x = (a;*1,... ,x^) G T " and y = (y*1,... ,y£n) G I " (with arbitrary

£ i , . . . , e n = ±1) satisfying the conditions di(xi,yi) < S and d2((xi,Xj),(yi,yj)) < 6

for all i,j, 1 < i < j < n. One readily verifies that Un,S G ZYn for all n ^ 1 and 5 > 0.

LEMMA 5 . Let (x,y) e Un,g (n ^ 2), where x = ( z j 1 , . . . , x'n
n), y = (y ' 1 , . . . ,

y^n). Then ^ ( ( x i ^ ^ ^ z i . y j ) ) < 2b and d2{{yi,xj),{yi,yj)) < 26 for all i,j; 1 ^

PROOF: By the definition of Un<s and condition (Cl) of the right-concordance of

d\ and d%, we have

Therefore

An analogous argument shows that d2((yi,Xj),(yi,yj)) < 26. This proves the lemma. D

Put S(n) = 2~n/n(n + l) and Un = ^n,«(n) for every n ^ 1. We claim that
V(i5) C O, where E = {{7n : n G iV+}. Indeed, let n ^ 2 and suppose that an element
<J G <?(X) has the form p = x[l •... x%ly~en-.. .y^'1 for some Xi,yi G X and Ei = ±1 ,
1 ^ t ^ n . We represent g as a product of canonical elements of G(X) as follows. For
every i <n put pt = a;'1-.. .-x'' and fei = i ^ j / p 1 , fej = Pi - r^ 'y , 7 " 1 *?^!) 1 < * < » •
It is clear that g = hn • fen-i • . . . • hi . We shall call this representation of g standard.

Let 5 G Jn(^n) be arbitrary, n ^ 2. Then g = x'1 • . . . • <» • j/-e» • . . . • j / ~ 6 1

for some x,-,j/i G X and £i = ± 1 , 1 ^ i ^ n, where the points x = ( x i , . . . , z n ) and
y = (yi,---,yn) satisfy the condition (^,1/) G Un. Represent g as a standard product,
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say g — hn-. ..-hi, of canonical factors hi,..., hn. Lemma 5 implies that the following
inequality is valid for every i, 1 < i ^ n:

i- l

*=i

Also, we have M(hi) = di(xi,yi) < S(n). Consequently, the definition of N implies
that

n n

N(g) < E M(hi) < 2 % ) -^2i=n(n + l ) - S(n) = 2~n.
i=l i=l

If g £ ji(Ui) then g = x° • y~* for some x,y £ X and e = ± 1 , and N(g) — M(g) —

di(x,y) < 5(1) < 2 " 1 . Thus, we have proved that N(g) < 2~n for each g £ jn(Un);

n£N+.

Pick an arbitrary element g £ V(E). By the definition of V(E), there exist

n E N+, a permutation TT £ Sn and elements gi £ ji(Ui),... ,gn £ jn{Un) such that

g — </ir(i) • • • • • 9n(n) • Consequently, we have

N(g)

The latter means that N(g) < 1 for each g £ V(E), that is, V(E) C O. Thus, JV
is a continuous semi-norm. The theorem is completely proved. D

The next result and Theorem 1.4 are twins.

THEOREM 1 . 5 . (Left case) Let d\ and (£2 be left-concordant continuous pseu-

dometrics on X and X2 respectively. Then there exists a continuous semi-norm Ni on

G(X) satisfying the conditions

(LI) N^a'1 b) =N(ab~1) =efi(o,6) for all a,b £ X;

(L2) Ntla'1 x-1 ya) = d2{(x,a),(y,a)) for all a,x,y £ X;

(L3) N^a-1 • x-1 • y • b) > d2{(x,a),{y,b)) for all a,b,x,y £ X.

Having Theorem 1.4 proved, we can ask whether there exists a non-trivial example
of right-concordant pseudometrics, that is, an example of a pair (^1,^2) of continuous
pseudometrics on X and X2 respectively, such that d2 essentially differs from the
natural pseudometric d^ on X2 defined by d2((a,x),(b,y)) = di(a,b) + di(x,y). We
present one fairly general method of constructing right-concordant pairs in the next
section, thus answering the above question in the affirmative.
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2. CONSTRUCTING CONCORDANT PSEUDOMETRICS

The following theorem is our general tool for investigation of uniformities on X2

generated by group uniformities of the free topological group F(X). However, all
its applications (except one given in the fifth section) will be demonstrated in the
forthcoming paper.

THEOREM 2 . 1 . Let g be a continuous pseudometric on X, g ^ 1, and / a
continuous mapping of X to a normed linear space L with a norm ||-||. Tien there
exist a continuous pseudometric d2 on X2 and a continuous semi-norm N on G(X)
satisfying the following conditions:

(RPO) di and d2 are right-concordant, where di(a, b) = \\f(a) — f(b)\\ for all
a,beX;

(RP1) N(ab~1) =N(a~1b) = \\f(a) - f(b)\\ for atf a,b 6 X;
(RP2) N(ax y-'a-1) = d2{(a,x),{a,y)) = \\f{a)\\ • g{x,y) for all a,x,y 6

X;
(RP3) Nia-x-y-i-b-1) > d2({a,x),{b,y)) > m«{| | /(o) | | , ||/(fc)||} • g(x,y)

whenever a,b,x,y £ X.

PROOF: We define a continuous pseudomertic d2 on X2 as follows. Let A =

(x',y') and B = (x",y") be points of X2. We shall say that a sequence T = {AQ =

{xo,yo), At = (x!,yi),..., An+1 = (xn+i,yn+1)} of points of X2 is a way from A to

B if Ao = A, An+i = B and for each i — 0 , 1 , . . . ,n either Xi = Zj+i, or yt =

We define P = {i ^ n : Xf = ^i+i} > Q = {j' ̂  n : yj = 2/j+i} and put

(1) DT(A,B) =

Then define d2(A, B) as the lower bound of the numbers Dr(A, B), where F runs
through all the ways from A to B. It is clear that d2 is a pseudometric and we claim
that d2 satisfies the following conditions for all Xi,x2,yi,y2 £ -X":

(i)

Only (ii) requires a proof, because (i) readily follows from the definition of d2. The
inequality d2({x\,y\),{x\,y2)) < | | /(xi) | |e(i/i , j/2) is obvious; it suffices to consider the
way F consisting of two points A — (xi,2/i) and B = (xi,y2). Let us prove the inverse
inequality. Consider an arbitrary way V from the point A to some point C = (x2, y2)
whose second coordinate coincides with the second coordinate of B. Suppose that the
way F consists of points

A = Ao = (oo,6o), Ai = (ai ,6i) , . . . , An+i = (on + i ,6 n + 1 ) = C,
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where ao = Xi, bo = t/i, on+i = x2, &n+i = V2 • (We do not assume that x2 = x\, that
is, that C = B.) First, the following inequality has to be proved:

(2) \\f(x1)\\-e(y1,y2)^Dr(A,C).

We have

(3) Dr(A,C) = £ ||/(m)|| • g(bubi+1)

where P and Q are subsets of {0 ,1 , . . . , TO} defined in the same way as above. We shall
not change the number Dr(A,C) if we delete neighbouring coinciding points from T.

Therefore the sets P and Q are assumed disjoint. Without loss of generality we can
also assume that for each k ^ n — 1, the numbers k and A: + 1 belong to different
sets P, Q, that is, either k £ P and k + leQorkeQ and k + 1 G P. Indeed,
suppose that for some i, 1 ^ i ^ n, the first coordinates of the points Ai—i,Ai and
Ai+i coincide, a<_i = o< = a<+i (that is, i — 1 and i belong to P) . Denote by Fi the
way Ao,Ai,...,Ai-i,Ai+i,...,An,An+i. One easily verifies that

Dr(A,C) - DTl(A,C) = ||/(oi)|| • [^- i . f r , ) + f?(M>+i) - e(bi-i,bi+1)} > 0,

and hence Dr1(A,C) ^ Z?r(j4,Cr). Thus, we can assume that all even integers i ^ n

are in P and all odd i ^ n are in Q. Assume for convenience that n is odd, n — 2m + 1
for some integer m. Then a2i — a2i+i and b2i+i = 621+2 for each i ^ m. Therefore,
(3) is equivalent to

(4) Dr(A,C) = f ; 11/(̂ )11 • g(b2i,b2i+2) + f ] ||/(oa,-+a) -
t=0 t=0

Obviously, (4) implies that the following inequality holds for each p ^ m:

(5) DT{A,C) > ||/(oo) - /(o2p)|| + f; 11/(0,011
i=0

Consider two cases.
m

Qip2i,621+2) < 1. We have
t = 0

Q(bo, &2m+2 ) -
i=0
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Let | | /(o0) — /(a2*)|| be maximal among the numbers | | / (a0) — /(a.2i)| | , 0 ^ i ^ m.
In view of (5) (with p = k), the inequality (2) will follow from

o) - f(a2k)\\ + £ 11/(0,011 •
i=0 »=0

or equivalently, from

) - /(02OII) ^ l!/(«o) - /(O2

The latter, however, follows from our assumption (see I) and the inequalities ||/(ao)|| —
11/(0,011 ^ ||/(oo) - /(OJOH < ||/(oo) - /(O2i)||, 0 ^ t < m.

m
II. 53 £(̂ 2t)&2.+2) ^ 1- ke^ ||/(a2i)ll be minimal among the numbers ||/(o2t)ll>

i=0
0 ^ i ^ m. From (5) (with p = I) and the choice of I it follows that

DT(A,C) 2 ||/(oo) - /(OJOII +
i=0

«=0

II + 11/(0,011 £ ||/(oo)|| ^ ||/(oo)||

So, the inequality ||/(ao)|| • Q{bo,b2m+i) ^ Dr(A,C), that is (2), is proved for
an arbitrary point C = (22,1/2) whose second coordinate coincides with the second
coordinate of B = (xi ,2/2)1 and for any way T from A to C. This implies the inequality

(6) ||/(s;i)|| • 0(2/1,2/2) ^ d2{{x1,y1),(x2,y2)) for all x1,x2,y1,y2 G X.

An analogous argument shows that

(6') ||/(32)|| • Q{yi,y2) < ^2((a;i,2/i)>(a;2,2/2)) for all x1,x2,yi,y2 € X.

To prove (ii) it remains to put x2 — x\ in (6). The continuity of the pseudometric d2

readily follows from (i) and (ii).
One can easily see that the pseudometrics d\ and d2 satisfy the condition (Cl) of

Definition 1.3. Let us verify (C2).
Suppose we are given points a0, ai,..., an+i, x0, x\,..., xn £ X and a permutation

n of {1 , . . . , n} . We prove the following inequality:

(7) d2((ao,xo),(an+1,xn)) ^2
i=l i=0
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Put M = min{||/(aj)|| : 1 ^ i < n} and choose k < n with /(a*) = M. By (ii), we
have

t = l

g(xo,xn) = d2((ak,x0),(ak,xn)).

Thus, we have shown that the right part of (7) is not less than the following expression:

(8) d2((ak,x0),(ak,xn)) + di(ao,ak) + di(ak,an+1).

Denote by F the way A = Ao = (ao,x0), A\ = (at,zo)> A2 = (ajfe,xn+i) and
As = (an+i,xn+i) = B. Then Dr(A,B) is equal to the expression in (8). There-
fore, Dr(A, B) does not exceed the right part of inequality (7). However, we know that
d2((ao,xo),(an+i,xn)) ^ Dr(A,B) by the definition of d2. This completes the proof
of (7) and (C2), that is, di and d2 are right-concordant.

Apply Theorem 1.4 to define a continuous semi-norm N on the open subgroup
G{X) of F{X) satisfying (R1)-(R3). We need only verify that (RP3) holds. Let
points a,b,x,y 6 A" be arbitrary. By (R3) of Theorem 1.4, N(a-x-y~1 • b~*) ^
d2((a,x),(b,y)). Then apply (6) and (6') to conclude that

d2((a,x),(b,y)) > \\f(a)\\ • e{x,y) and d2((a,x),(b,y)) > \\f(b)\\ • g(x,y).

The latter proves (RP3) and the theorem. D

REMARK 2.2. The pseudometric d2 on X2 and the semi-norm N defined in the proof
of Theorem 2.1 satisfy the condition

(9) N(a • x • y-1 • 6"1) = d2((a,x),(b,y)) for all a,b,x,y £ X,

that is, N right-induces the pseudometric d2 .

Indeed, the inequality iV(a • x • y~x • i"1) ^ d2((a,x),(b,y)) follows from Theorem
1.4. The inverse inequality is a consequence of the following observation: for any way
F from A = (a, x) to B — (b,y) there exists a natural representation of the element
g — a • x • i/"1 • 6"1 as a product g = h\ • ... • hn oi canonical elements of G(X)

n

such that ^2 M(hi) ^ Dr(A, B). (Here we use the notation and terminology of the
»=i

proof of Theorem 1.4.) It suffices to illustrate this by an example. Let A\ = A, A2 =
(o2,x), A3 = (a2,z), J44 — (a3 )z), A5 = [a3,y), A6 — B be a way from A to B. Then
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we can write g = (a • a^1) • (02 • x • z~x • a^"1) • (02 • a j 1 ) • (03 • z • y~1 " ajT ) ' (a3 ' &"1) 1
where all factors in the right part of the equality are canonical. We have

^) + M{a2xz~ia^1) + M{a2a^) + M(assy"1 a^1) +

= d1(a,a2) + d2({a2,x),(a2,z)) + d!(a2,a3) + d2{{as,z),(as,y))

= Dr(A,B).

It seems to be clear how to write a corresponding representation of g in the case
of an arbitrary way F from A to B. Since N(g) and d2(A, B) are defined as lower
bounds of the corresponding expressions appeared in the left and right parts of the
above equality, the inequality N(a • x • y~* • b-1) ^ d2((a,x),(b,y)) (and hence (9)) is
proved.

As in the case of Theorem 1.4, the last result has its twin.

THEOREM 2 . 3 . Let g be a continuous pseudoznetric on X, g ^ 1, and / a
continuous mapping of X to a normed linear space L with a norm \\-\\. Then there

exist a continuous pseudometric d2 on X2 and a continuous semi-norm N on G(X)

satisfying the following conditions for all a,b,x,y G X:

(LPO) d\ and d2 are left-concordant, where d\{a,b) = \\f(a) — f(b)\\;
(LP1) N(a-i.b)=N(a.b-1) = \\f(a)-f(b)\\;

(LP2) N(a-' • x-1 • y • a) = d2((x,a),(y,a)) = \\f(a)\\ • g(x,y);
(LP3) N(a-> • x - 1 y • b) > d2((x,a),(y,b)) > max{| | /(a) | | , ||/(6)||} • g(x,y).

Theorem 2.1 and Remark 2.2 supply us with a good many continuous semi-norms
on G(X). However, under certain circumstances those semi-norms do not vary rapidly
enough. The following constructions seem to be more flexible.

3. TWO MORE CONSTRUCTIONS

Let 7 be a locally finite family of non-empty open subsets of X. Suppose that
for every U € 7 we have defined a continuous pseudometric gu on X, gu ^ 1, and a
continuous mapping ju of X to a normed linear space (L, ||-||) so that supp fy C clU,

that is, fu{x) — Or, for each x £ X \U.

Fix an element U € 7 . Use gu and fc to define a pair {dilu,d2}u) of right-
concordant continuous pseudometrics respectively on X and X2 as in Theorem 2.1,
where dltU{a,b) = \\fu(a) - fu{b)\\ for all a,b 6 X.

Then we define continuous pseudometrics di on X and d2 on X2 by

di(a,b) = ^ ^,^(0,6) and d2((a,x),(b,y)) = ] T d2,u((a,x),(b,y))
ue-t
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for all a,b,x,y G X. The continuity of di and di follows from the choice of 7 and the
functions fu, U G 7, and the right-concordance of di and d? is a consequence of that
for pairs (ditu,d2,u)'t U £ 7. It remains to apply Theorem 1.4 and define a continuous
semi-norm N on G(X) that right-induces di and dn (apply Remark 2.2).

The following theorem gives us a more tricky way of defining continuous semi-
norms on G(X) with the use of some locally finite family of sets in X. The theorem
will be applied to consider induced uniformities on the square of a metrisable space.

THEOREM 3 . 1 . Let 7 be a locally finite family of sets in a locally compact

paracompact space X and suppose that for every W G 7 a continuous mapping fw is

given of X to a linear space L with a norm ||-||. Then for any continuous pseudometric

Q on X there exists a continuous semi-norm N on G(X) satisfying the following

condition

(C) ifa,b,x,y G X, e = ±1, N(ae • x* y~e b~e) < 1 and x,y e W for some

W G 7, then N(a< • x* • y- • fc-) > max{\\fw(a)\\ • g(x,y), \\fw(b)\\ •

Q{x,y)}-

PROOF: Let /xo be a locally finite open cover of X such that the closure of every
element of fi is compact and intersects only finitely many elements of 7. Denote
by fii a locally finite open cover of X which star-refines fio. Choose a continuous
pseudometric Q' on X so that {(x,y) £ X2 : g'(x,y) < 1} C \J{V x V : V € / i i} ,
and put £1 = max{g, g'}. For every x € X and W £ 7 denote by gw(x) the number
sup{||/w(j/)|| : £i(xi2/) < ! } • The number gw{x) is finite, since fw is a continuous
function and {y E X : gi(x,y) < 1} C St(x,fii) C Vx for some Vx G (JLQ , where clVx is
compact. Here St(x,fii) stands for the set (J{f7 G fii : a G £/}. F°r every a; G X we
also put /i(x) = 1 + T,{gw(x) : W G 7, W n S<(z,^0) 7̂  0}- Obviously, 1 ̂  /i(a;) < 00
by the choice of /J.Q and /xi.

Let a,x,y be points of X and e = ± 1 . If £i(a:,i/) < 1, we put M(x'y~e) =

Qx{x,y) and M(aexey~ca~e) = M(oez~eyea~e) = h(a) • gi(x,y). Otherwise put
M{xey-°) = M^a'x'y-'a-') = M{a'x-eyeare) = 1. If au... ,an,x,y G X and
ei , . . . , £ „ , e = ±1 (n > 1), we put

Thus we have defined the number M(g) for every canonical element g G G{X).

As in the proof of Theorem 1.4, consider all possible representations of an arbitrary

element g G G(X) in the form of a product g ~ hi • ... • hn of canonical elements of
71

G(X). To each such representation there corresponds the sum £) M(hi). Denote by
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N(g) the lower bound of these sums. This defines a semi-norm N on G(X). Note that
N(g) ^ £i(ff, e) for each g £ G(X), where gi is the Graev extension of Q\ to G(X) and
e is the identity of F(X). This follows immediately from the fact that M(g) ^ gi(</,e)
for any canonical element g £ G[X).

Let us prove (C). We only consider the case e = 1; the reasoning for e = — 1 is
completely analogous. Suppose that a,b,x,y £ X, JV(oa;j/~16~1) < 1 and x,y £ W

for some W £ 7 . We shall prove that the inequality

m

(1) £ M ( M ^ max{||/w(a)|| • ei(x,y), \\fw(b)\\ • Qi(x,y)}

m
holds for any representation of g = a-x-y~1 •b~1 in the form of a product g = hi-.. .-h

of canonical elements hi,.. .,hm £ G{X). This will easily imply (C). We first prove
that the left part of (1) is not less than | |/w(o)| | • £?i(z>2/)- Since N(g) < 1, we can

m

assume that ^3 •^Cl«) < 1- Note that gi(a,b) + gi(x,y) = §i(g,e) ^ N(g) < 1, so

Qi{a,b) < 1 and gi(x,y) < 1.
As in the proof of Theorem 1.4, fix an order of cancellations in the word g~ —

hi ... hm that transform g~ to g, and define the relation of 5-dependence. This also
gives us a chain V between a and ft"1, a chain Q between x and j / - 1 , and a relation
<p : Q -> V of (/-subordination. Let V = {pi : 1 ^ i ^ k} and Q - {q, : 1 ^ j ^ i } ,
where pi = {ojC^1}, p2 = {ci,^1}, . . . , pt = {c*-!,^"1} and gi = { x . t f 1 } , g2 =
{^lj'J1}) ••• > 9i = O i - i i y " 1 } - P u t co = a, cjb = 6, <o = z, <z = y- For every j ^ /,
denote by V"(i) the number i ^ k such that pi = <p(qj), thus obtaining the mapping
rj) : {1 , . . . , / } —> { 1 , . . . , k } . Since both pairs qj and pi, i = V'(i)> h'e in some element
h,, 1 Sj s ^ TO, and the pair p^ = {cj-^cj"1} consists of the same letters, Cj_i = Cj,
we have h(ci) • Qi(tj-i,tj) ^ M(ha). It is important to note that different pairs of Q
he in different elements h,, a ^ TO , and if) is a monomorphic mapping.

As in the proof of Theorem 1.4, define families Vi = <f{Q), V2 - V \ Vi and V3 ,
a subfamily of V2 consisting of pairs pi = { C J - I , ^ 1 } with Ci-i ^ C{. Since different
pairs of V* = V\ U V3 lie in different elements h,, we have

(2) £ ei(p) + J2K^U)) • Qiitj-uti)
Pev3 ;=i

where Qi(p) stands for QI(U,V) if p = {u,v~1}. Recall that V is a chain between a
and 6 - 1 ; hence applying the triangle inequality for Qi and (2), we have for every i ^ k:
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(We also use the fact that every pair p G V\V3 has the form {•UjU"1}.) Thus we have
proved that Qi(a, c<) < 1 for each i ^ k. This and the choice of Q\ together imply that

(3) {ci : 0 < i ^ k} C S*(a,/Xi) C V for some V G fi0.

By (3), Ci e V for each i ^ k and a G V n W ^ 0. So, the definition of the function
h implies that ft(cf) > gw(ci); 0 ^ i ^ k. Furthermore, since gi(a,c<) < 1, from the
definition of gw it follows that gw{c{) ^ ||/Tv(a)||, 0 ^ i < A;. This and the inequality
(2) gives us the following:

l t m

\\fw(a)\\ • e(x,y) ^ \\fw{a)\\

771

The same argument shows that fw(b) • gi(x,y) ^ ^ M(hB). This proves (C). The

continuity of N can be proved as in Theorem 1.4. u

4. THE EXAMPLE

We discuss here whether the condition (C2) of Definition 1.3 of the right-concordance
is strictly necessary in Theorem 1.4. The example below shows that it is necessary if
we define a continuous semi-norm Nr on G(X) following the construction in the proof
of Theorem 1.4 (and very likely, something similar to (C2) is inevitable in general).

Let di be an arbitrary continuous pseudometric on X. Define a continuous pseu-
dometric d\ on X2 by d%{{a,x),{b,y)) = di(a,b) + d1(x,y) for all a,b,x,y G X.

It is clear that the pseudometrics di and d% are right- and left-concordant. Note
also that if ( g i , ^ ) ajl'^ (QitS'l) a r e * w o P^IS of right-concordant pseudometrics and
Q2 = max {^21^2) > then Qi and Q2 are right-concordant as well. Thus, we can in gen-
eral assume that a pair ( d i , ^ ) of right-concordant continuous pseudometrics satisfies
the condition

(C3) d2((a,x),{b,y)) ^ di(a,b) + dx(x,y) for all a,b,x,y £ X.

The use of (C3) simplifies the proof of the equality (Rl) of Theorem 1.4. However,

our example shows that (C3) can not substitute for any part of (C2) at all.

The idea of the example is based on the following equality:

(1)
(00 • ax

 2 ) • (ai • z • y 1 • Oj x ) • (<n • a2
 2 ) • (a2 • y • z 1 • x • y 1 • a^) = a0 • x y l • a2

 1,

where O j ( 0 ^ i ^ 2 ) and x,y,z are elements of a space X. Our aim is to define

pseudometrics d\ on X and di on X2 satisfying (CI) and (C3) such that the semi-

norm N on G(X) generated by the pair (<£i,d2) would not satisfy the conclusion of
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Theorem 1.4. In our example the condition (R3) will fail. One can easily do this for a
finite space X (consisting of six points aj, 0 ^ i ^ 2, and x,y,z); however, we prefer
to give an example constructed on a base of a connected space X, say X = R, the
reals.

Let di be the usual metric on R, di(x,y) = \x—y\. Fix an integer n > 1
and a real e > 0. Define elements a,i,x,y,z £ R by ao = x = 0, ai = z = e
and a2 = y = (n + 1) • e. It suffices to define a continuous pseudometric d2 on R2

(satisfying (Cl) and (C3)) so that a corresponding semi-norm N would "evaluate" the
left part of (1) less than the right one, that is, so that

(2)

or equivalently,

(3) 2^(00,0!) + d1(a1,a2)

d2((a1,z),(a1,y)) + d2{(a2,z),(a2,x))

+ d2{{y,z),{y,x)]\ < d2((a0,x),(a2,y)),

2d2((a2,a0),{a2,a1))

< d2((a0,ao),(a2,a2)).

Note that the expression in square brackets in the left part of (2) is equal to
M(a2 • y • z~* • x • y~x • a^1) (see the definition of a semi-norm N in the proof of The-
orem 1.4).

The definition of a pseudometric d2 will be explained with a help of the following
figure. Suppose that some point Z can only move horizontally (to the left and to
the right) or vertically (up and down) in the plane R2. Let the speed of a horizontal
movement be equal to 1, and the speed of vertical movement depend on a position
of the point: if the point does not belong to any of the shaded triangles, its speed is
equal to 1; otherwise the speed of the point is equal to l/(2n + 1). Both triangles are
isosceles and their bases are parallel to the z-axis.

a 2
2 a l

k

D

/ /

i a

c

B

2 2 a 2 " a l

Figure 2.
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The distance d2(P,Q) between arbitrary points P and Q of the plane is defined
as the minimal possible time that takes Z to get from P to Q according to the above
rules. It is clear that 0*2 (P, Q) is equal to the lenght of the segment PQ if this segment
is horizontal. One can verify that if the segment PQ is vertical, then the minimal time
is obtained when Z moves vertically from P to Q (but this is not the only possibility),
and this time is not less than \PQ\. These two observations imply that dj and 0*2
satisfy the conditions (Cl) and (C3). The continuity of d.2 is obvious.

Let us calculate the distance d2(A,C) between the points A = (ao,ao) and C =
(02,02). We shall say that a way from A to C is economic if the point Z always goes
from left to the right or upwards. For example, the way

A -> B - (a2,o0) -> (a2,ai) -> (a^ai) -> (ai,a2) = D -> C

is not economic. (However, the distance d.2(A,C) is attained in this way as we shall
see latter.) It is not difficult to show that for an arbitrary way from A to C there
exists an economic way with the same end points that requires the same (or less) time.
Every economic way from A to C lies in the rectangle ABCD. The sum of lengths
of horizontal links of such a way is equal to 02 — 00 = (n + 1) • e and the movement
along them requires (n + l)e units of time. The sum of lengths of vertical links is equal
to (n + l)e. However, at least e of that length is in the shaded triangles. Thus, the
total time of vertical movement is not less than (2n + l)e + ne = (3n + l)e. This gives
us the estimate d2(A, C) ~£ (3n + l)e + (n + l)e = (4n + 2)e. On the other hand, this
number is attained on the way A —> D —> C.

It remains to calculate the left part of (3). We have

d2((ai,a2),{a1,ai)) — ne, d2((a2,ao),(a2,a1)) = e, <fi(ao,ai) = e, di(ai,o2) = ne.

Therefore, (3) can be rewritten as (2n + 4)e < (4n + 2)e, that is true whenever n > 1.
This shows that the conclusion (R3) of Theorem 1.4 fails if we drop the condition (C2)
on the right-concordance of pseudometrics or replace it by (C3).

5. THIN SUBSETS OF FREE TOPOLOGICAL GROUPS

A subset T of a topological group G is said to be thin in G (see [15, 9, 10])
if for any neighbourhood U of the identity in G there exists a neighbourhood V of
the identity such that g • V • g~x C U for each g G T. Every compact and every
pseudocompact subset of a topological group G is thin in G [15].

We consider here the following problem: characterise subspaces Y of a given space
X which are thin in the free topological group F(X).

This problem was solved by the author in [15] with the use of the notion of linearly
ordered topological field, considering separately the cases whether X is a P -space or
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not. Here we present a direct solution of the problem and demonstrate an application
of the tecnique developed in the previous sections. The following notion will be useful
to describe the subsets in question.

DEFINITION 5.1: (See [15].) Let r be an infinite cardinal and X a space. We call

X a PT -space if an intersection of fewer than r open sets is open in X.

DEFINITION 5.2: A subset Y of X is said pseudo-r-compact in X if for any
discrete (equivalently, locally finite) family 7 of open sets in X the cardinality of the
family {U D Y : U € 7} is less than T .

The following theorem completely solves the above problem.

THEOREM 5 . 3 . (See [15].; A subset Y of X is thin in F(X) if and only if

there exists an infinite cardinal r such that Y is pseudo-r-compact in X and X is a

PT -space.

PROOF: The existence of a cardinal r as in the theorem is sufficient to imply
thinness of Y in F(X). (Modify the proof of Theorem 1.1 of [1] or consult [15].) So
suppose that a subspace Y of X is thin in F(X). Denote by fi the minimal cardinality
of a family of open sets in X whose intersection is not open. It is necessary to show
that Y is pseudo-//-compact in X.

Assume the contrary. Then there exists a discrete family 7 = {Ua : a < fi) of

open sets in X such that Ua D Y ^ 0 for each a < p. From the definition of \i it
follows the existence of a point x* £. X and a decreasing sequence {Va : a < fi) of open
neighbourhoods of x* such that x* does not belong to the interior of the intersection
P| Va • For every a < fi pick a point aa £ Ua D Y and define continuous real-valued

a<fl

functions fa and ga on X such that fa{aa) = 1, ga(x*) = 1, fa(x) — 0 for each
x 6 X \ Ua, ga(y) = 0 for each y £ X\Va and 0 < fa,9a ^ 1 • For every a < fi define
continuous pseudometrics d\<a and QilO on X by di<a(x,y) = |/a(se) — fa{y)\ and
9i,a(x,y) — \ga(x) - ga{y)\; x,y e X. Obviously, ei,Q < 1. Then apply the reasoning
of Section 2 to define right-concordant pairs (rfi,ai^2,a) of continuous pseudometrics
satisfying for all a < fj, and a,x,y 6 X the condition

(Ul) d2la((a,x),{a,y)) = f(a) • ei,Q(*,y).

Finally, put d\ = ^2 d\>a, d2 = 2 <̂ 2,a- The pair (d i , ^ ) is right-concordant,

so Theorem 1.4 implies the existence of a continuous semi-norm N- on G(X) satisfying
the condition

(U2) d2({a,x),(a,y)) = N(axy-1a-1) for all a,x,y e X.

Put 0 = {g G G(X) : N(g) < 1}, an open subset of G(X) and F(X). We claim
that the following holds.

https://doi.org/10.1017/S0004972700014143 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700014143


334 M.G. Tkacenko [26]

(A) For any neighbourhood W of the identity in F(X) there exists a < fi such

that (ac-Wo.-1) \O^0.

Indeed, for a given neighbourhood W of the identity, put W* = X fl (W • x*).

Then W* is a neighbourhood of x* in X. Since x* is not in the interior of f] Va,

there exists a < fi such that W* \ Va ^ 0. Pick a point y £ W* \ VQ and put
g = y • (x*)~ . Then g £ W, and we have

N(aag- a"1) = d2((aa,y),(aa,x*)) > d2ia((aa,y),(aa,x*))

for / ( a a ) = 5a(a:*) = 1 and ga(y) = 0. Thus, N(aa • g • a"1) ^ 1 and, a fortiori,
aa • g • o" 1 ^ 0 . This proves (A). However, (A) implies that Y is not thin in F(X), a
contradiction. D
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