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ADMISSIBLE SOLUTIONS OF
THE SCHWARZIAN DIFFERENTIAL EQUATION
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Abstract

Let R(z, w) be a rational function of w with meromorphic coefficients. It is shown that if
the Schwarzian equation

(*) {w , z}m = R(z, w)

possesses an admissible solution, then d + 2m E/=i S(ctj•, w) < Am , where a,- are dis-
tinct complex constants. In particular, when R(z, w) is independent of z , it is shown that
if (*) possesses an admissible solution w(z), then by some Mobius transformation u =
(aw + b)/(cw + d) (ad -be ^ 0) , the equation can be reduced to one of the following
forms:

_ (U - <Ti)(tt - O2)(U = (T3){U - g 4 )
1 ' > ( « T ) ( « T ) ( « T ) ( « T ) >

where T; (y = 1, . . . , 4) are distinct constants, and a; (j = 1, . . . , 4) are constants, not
necessarily distinct.
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[2] Schwarzian differential equation 259

1. Introduction

Let w{z) be a meromorphic function, and {w, z} be its Schwarzian deriva-
tive:

Here we consider the differential equation

(1.1) {w,z}m = R(z,w) = P(z,w)/Q(z,w),

where P(z, w) and Q{z, w) are polynomials of w with meromorphic co-
efficients, with degU)[/

>(z, w)] =p and degw[Q(z, w)] = q , respectively:

(P(z,w)=$p(z)

\Q(z,w) = rl<l(z

)w"+Zp_l(z)wp-1+---+Z0(z),

where £ ( z ) , ^ (z ) are meromorphic functions. We suppose that P(z, w)
and Q(z, ty) are mutually prime. Sometimes we call

d.l") ij(z)/r,g(z) and r\k{z)l%{z)

the reduced coefficients of R(z, w). Put

(1.2) max(p, q) = degw[R(z, w)] = d.

We are concerned with the determination of the equations (1.1) which
admit transcendental meromorphic solutions.

Steinmetz [11] treated the case m = 1 and d = 0 in (1.1), and the present
author [4] investigated the case m = 1 and d > 0. Here we will consider
the case m > 1 and d > 0.

We use standard notations in Nevanlinna theory.
Let f{z) be a meromorphic function. As usual, m(r, f), N(r, f) and

T(r, f) = m{r, f) + N(r, f) denote the proximity function, the counting
function, and the characteristic function of f(z), respectively. For a e C,
put

m{r, a;f) = m(r, l/(f-a)), N(r,a;f) = N(r,

Sometimes, we write m(r, f) or N(r, f) as m{r, oo; f) and N(r, oo; f).
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260 Katsuya Ishizaki [3]

Let n(r, f) be the number of distinct poles of f(z) in \z\ < r, and put

N{(r, f) = N(r, f)-N(r,f), N{(r, a; f) = Nx(r, l / ( / - a)).

Let n*(r,0;f,g) be the number of distinct common zeros of f(z) and
g(z) in \z\ < r, and put

Jo t
N\r

Further we put as usual [9, pages 226, 277, 280]

8 { a , f ) = h m L ' '"' = 1 - h m K '"' (deficiency),

6 (a, f) = lim ' ' (ramification index),

6(a, /) = lim W ( r ' Q ; {? , + Y ' Q ; / ) (total ramification).

A function (p{r), 0 < r < oo, is said to be S{r, f) if there is a set E c R+

of finite linear measure such that

<p{r) = o(T(r, / ) ) a s r - ^ o o . r ^ ^ .

A meromorphic function function a(z) is called small with respect to f{z),
if T{r,a) = S{r,f).

Let a{(z), ... , an(z) be meromorphic functions. A transcendental mero-
morphic function w(z) is called admissible with respect to ay(z). If

T(r, aj) = S(r, w), j = \ , . . . , n .

We call w(z) an admissible solution of (1.1), if w(z) satisfies (1.1) and is
admissible with respect to the reduced coefficients of R{z, w) (see ( l . l")) .
In this paper, "admissible" implies "transcendental"'.

REMARK 1. Suppose (1.1) possesses an admissible solution w - w(z).
Then we have 7f*(r, 0;P,Q) = S(r,w), where P{z) = P(z,w{z)) and
Q(z) = Q(z, w(z)). For, since P{z, w) and Q{z, w) are mutually prime,
there exist polynomials of w , U(z ,w) and V(z, w) such that

(*) U(z,w)P(z,w) + V(z,w)Q(z, w) = sPQ(z)=s(z),

where s(z) and coefficients of U(z, w) and V(z, w) are small functions
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[4] Schwarzian differential equation 261

with respect to w(z). Suppose 7?(r, 0; P, Q) # S{r, w). Then N(r, l/s)
^ S{r, w), which is a contradiction. Hence if z0 is a zero of Q(z, w(z))
which is neither a zero nor a pole of s(z) or of the coefficients of P(z, w)
and Q(z, w), then z0 is a pole of /?(z) = P(z, w(z))/Q(z, w(z)) (see [5,
page 169]).

Our results are as follows:

THEOREM 1. Let a , , a 2 , . . . , at be distinct constants. 7/"(1.1) possesses
an admissible solution, then we have

i

(1.3)

REMARK 2. Inequality (1.3) is a limitation for d = deg[i?] by deficien-
cies of a solution. Mues [8] classified the algebraic Riccati equations by
the number of Picard exceptional values of transcendental solutions. In
this connection we classified [4] the Riccati equations (with meromorphic
coefficients) by the number of Picard exceptional values of admissible so-
lutions. We showed that, if w(z) satisfies a Riccati equation, then w(z)
also satisfies a Schwarzian differential equation (1.1) with m = 1 for some
R(z, w), and that, if w{z) has /(= 1 or 2) Picard exceptional values,
then d e g j ^ z , to)] = 4 - 2 / . Further, if w{z) has no Picard value, then
degU)[i?(z, w)] = 2 or 4. Theorem 1 is a generalization of these results.

THEOREM 2. If{ 1.1) possesses an admissible solution, then the denominator
Q(z, w) of R(z, w) must be one of the following:

(1.4) Q(z, w) = c(z)(w + bx(z))2m(w + b2{z))2m,

(1.5) Q(z, w) = c(z)(w2 + a,{z)w + ao(z))2m,

(1.6) Q(z,w) = c(z)(w + b(z))2m,

(1.7) Q(z, w) = c(z)(w + b(z))2m(w - x.fiw - T2)m,

(1.8) Q(z, w) = c(z)(w + b(z))2m(w - rl)
2m/n,

n\(2m), n>2,

(1.9) Q(z, w) = c(z)(w - r.fiw - x2)
m{w - h)

m(w - T4)m,

(1.10) Q(z, w) = c(z)(w - T . W - r2)
m(w - T3)

2m/" ,

n\(2m),n>2,

(1.11) Q(z,w) = c(z)(w - T{)
m{w - x2)

2ml\w - T 3 ) 2 W / 3 ,

(1.12) Q(z,w) = c(z)(w - T,)m(«; - x2)
2ml\w - h)

2m/4,

(1.13) Q(z, w) = c(z)(w - T^iw - x2)
2ml\w - T3)2m/5,
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262 Katsuya Ishizaki [5]

(1.14) Q(z, w) = c(z)(w - T . A W - x2)
2m'\w - T3)2m/6,

(1.15) Q(z, w) = c(z)(w - xx)
2rnl\w - x2f

ml\w - T3)2m/3,

(1.16) Q{z, w) = c(z){w - xx)
m{w - x2f

ml\w - T3)2m/\

(1.17) Q(z,w) = c(z)(w-xl)
2m/n>(w-x2)

2m/n\ nj\(2m),nj>2,

(1.18) Q(z,w) = c{z)(w-xl)
2m/n, n\2m,n>2,

(1.19) Q{z,w) = c(z),

where c(z), ax{z), ao(z) are meromorphic functions, \a[\ + \a'2\ ^0, bx{z),
b2(z), b(z) are nonconstant meromorphic Junctions, and Xj (j = 1, 2, 3, 4)
are distinct constants.

In particular, if R(z, w) in (1.1) is independent of z, then we have

(1.20) {W, z}m = P(w)/Q(w) = (w- ff,)x> • • • (u> - onf
kIQ{w),

where cr (j = 1, . . . , h) are distinct constants, and Q(w) is one of the
polynomials (1.9)-(1.19), with c(z) constant.

THEOREM 3. Suppose, in (1.1), that R{z, w) is independent of z. If (1.20)
possesses an admissible solution w(z), then by some Mobius transformation
u = (aw + b)/(cw + d), ad - be ̂  0, the equation can be reduced to one of
the following forms:

(1.22)
[(«-T,)3(M-T2)2(«-T3)]'

(1.23) {w, Z) =C s—* =— =-,
v ' K. ' J r / \ Z / \Z/ \Zi '

(1.24) {.̂ ^cJMfct,
U«-T,)2(U-T2)(M-T3)]

(125) {u z\ = c[{U'a'){U'a')]
( ] { ' ] [(u-xx){u-x2)V
(1.26) {u,z} = C,

where T. (; = 1, . . . , 4) are distinct constants, and Oj (j = I,... , 4) are

constants, not necessarily distinct.

The equations (1.21)—(1.26) possess admissible solutions.
We will prove these theorems in Sections 3, 4, 5, respectively.
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[6] Schwarzian differential equation 263

2. Preliminary material

We recall some well-known properties of the Schwarzian derivative [2].

LEMMA A. Let w(z) be a meromorphic function.
(a) If z0 is a simple pole of w(z), then {w, z) is regular at z0.
(b) If zQ is a multiple pole of w(z) or a zero of w'(z), then z0 is a double

pole of {w, z). Further, if

or

with cm^0, m>2, in a neighborhood of z0, then we have

{w, z} = [(1 - m2)/2](z - zo)~
2 + [(m2 - l)cm_Jmcm](z - zo)~

x + • • •

or

{w,z} = [(1 - m2)/2](z - zo)~
2 + [(1 - m2)cm+l/mcm](z - zo)~

l + • • • ,

respectively.
(c) {L(w), z} = {w, z} for any Mb'bius transformation L.
The following theorem was proved in [3].

THEOREM B. Let f(z) be a transcendental meromorphic function and
Q(z, f) be a polynomial of f with small meromorphic coefficients with re-
spect to f and deg[Q] < n - 2. Let a(z) be a small meromorphic function
and F(z) = A(z)f(z)n - Q(z, f(z)). If Q(z, f(z)) * 0, then

(2.1) wT(r,f)<N(r,f) + N(r,O;f) + N(r,O;F) + S(r,f).

Steinmetz and Rieth characterized diflFerential equations of the form (2.2)
below, which have admissible solutions:

THEOREM C ([5], [10], [12]). Let R(z, w) be a rational function of w
with meromorphic coefficients. Suppose the differential equation

(2.2) w'm=R(z,w)

admits an admissible solution w = w(z). Then, by a Mobius transformation
u = (aw + b)l(cw + d), ad-bc^0, (2.2) is reduced to one of the following
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equations:

(R) u =a(z) + b(z)u + c(z)u2;

(H) u'2 = a(z)(u-b(z))2(u-xl)(u~x2), b(z)^xl,x2;

(E,) u'2 = a(z){u - xx){u - x2)(u - T3)(M - T4) ;

(E2) «'3 = a(z)(u - T,)2(M - x2f{u - T3)2 ;

(E3) u4 = a(z)(u - x,)2{u - x2)\u - T3)3 ;

(E4) u'6 = a(z)(u - T,)3(M - x2)\u - T3)5 ;

where x are distinct constants, and a(z), b(z), c{z) are meromorphic.

We further need the following lemmas:

L E M M A 1. Suppose w = w(z) is an admissible solution of (I. I). If we
write Q{z, w{z)) as Q{z), then

(2.3) qT(r,w)+S(r,w)<N(r,l/Q).

LEMMA 2. Let the polynomial Q(z, w) be factored as follows:

(2.4) Q(z, w) = c{z){Vx(z, «;))"' •••(Vk(z, w))"",

where c{z) is meromorphic and Vj(z, w), j = 1, . . . , k, are polynomials
of w with meromorphic coefficients, irreducible and mutually prime. Suppose
(1.1) possesses an admissible solution w = w(z).

(i) / / VJo(z) = fzVJo(z, w)\w=w{z) * 0, then ^ = 2m.
(ii) / / VJiX(z) = i-zVh{z, w)\w=w(z) = 0, then ^. |(2m) and ^ < m.

Now we consider the case when R(z ,w) is independent of z:

(1.20) {w , z } m = P(w)/Q(w) = {w-alf
l •••{}¥- ahf"IQ{w).

Without loss of generality, we may assume below that deg[P(w)] =
de$[Q(w)], by applying a Mobius transformation L to w if necessary.

LEMMA 3. Suppose (1.20) possesses an admissible solution w(z). If w(z)
takes the value ax, then m\ki.

LEMMA 4. Suppose (1.20), with Q(w) of the form (1.18), where c(z) is
constant, possesses an admissible solution. Then we have n = 2.

LEMMA 5. Suppose (1.20) possesses an admissible solution. Then m\k,,
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[8] Schwarzian differential equation 265

LEMMA 6. Let C ̂  0, al,, i = 1, 2, 3, by constants and x],, j = 1, 2, 3,
be distinct constants. Then the differential equation

(2.5) {w,z} = C(w - ax){w - o2)(w - <73)/[(io - T,)(W - T2){W - T3)]

possesses no admissible solution.

LEMMA 7. Let C be a nonzero constant and a ,t be distinct constants.
Then the differential equation

(2.6) {w,z} = C(w - a)/{w - T)

possesses no admissible solution.

LEMMA 8. Let C ^ 0, ax, and a2 be constants and x{, x2 be distinct
constants. Then the differential equation

(2.7) {to, z}2 = C(w - ax){w - o2)/[(w - xjiw - T2)]

possesses no admissible solution.

Finally we define a usual symbol w. For a meromorphic function g(z),
we define w(z0, g) as follows: if z0 is a pole of order m (> 1) for g(z),
then <u(z0, g) = m; if g(z0) ^ oo, then co(z0, g) = 0.

3. Proofs of Lemma 1 and Theorem 1

PROOF OF LEMMA 1. By the lemma on logarithmic derivatives [5], we have

(3.1) m(r,R) = m(r,{w, z}m) = S(r, w),

where R denotes R{z, w{z)). It is proved in [7] that

(3.2) dT(r, w) + S(r, w) = T(r, R) = N(r, R) + m(r, R).

By (3.1) and (3.2), we have

(3.3) dT(r,w) = N{r,R) + S(r,w).

If p > q so that d = p, then

(3.4) N(r, R) < {p - q)N{r, w) + N(r, l/Q) + S(r,w)

< (p-q)T{r, w) + N(r, l/Q) + S(r, w),

where Q denotes Q(z, w(z)). By (3.3) and (3.4), qT{r, w) + S(r, w) <
N(r, l/Q), which proves (2.3) for the case p> q . If p < q = d, then

(3.5) N(r,R)<N(r, l/Q) + S(r,w).
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By (3.3) and (3.5), we also obtain (2.3) in the case p < q.
PROOF OF THEOREM 1. First we consider the case p < q. By Remark 1,

there exists a small (w.r.t. w(z)) function sp Q{z) = s{z) such that common
zeros of P(z, w(z)) and Q(z, w(z)) are zeros of s{z). Let z0 be a zero
of Q(z, w(z)) such that, in ( l . l ' ) , ^.(z0) # 0, oo and //fc(z0) ^ 0, oo for
0<j<P, 0 <k <q and s(zQ) ̂  0. By (1.1) and Lemma A(b), zo must
be a zero of w'(z) and hence a double pole of {w, z} . Thus we have

(3.6) 2mN(r, l/w') = N(r, l/Q) + S(r,w).

Hence

(3.7) ±N(r,l/Q)<N(r,l/w') + S(r,s).

By Lemma 1 and the second fundamental theorem we obtain, using (3.7),
that

2^T{r, w) + X > ( ' > <*j->w) < 2T(r, w) + S(r, w),

and thus we obtain (1.3) in this case:

(3.8) d + 2

Next, suppose p > q. Choose c e C such that Q(z, c) ^ 0 and put
u = l/(w -c) in (1.1). Then by Lemma A(c)

,.. ,« uz)uy+,...,+p(z,c) _
Uf(2)(l)" + , . . . , + Q ( z , C ) ^

and degJQ^z ,u)] = d, and hence we can apply the arguments for the case
p < q and obtain (3.8) also.

EXAMPLE 1. Suppose w(z) satisfies the Schwarzian differential equation
{w, z} = R(z ,w). By Theorem 1, if w(z) possesses j Picard exceptional
values (.7 = 1,2), then degtu[i?(z, w)] < 4 - 2j. Solutions of the equations

(3.9)

(3.10)

(3.11)

(3.12)

possess two,

w =

one,

: W

no

+ aw + P (a

w' =

and

(w -a){w +

w' = (w

w = w

, / ?€C,a 2 -4 /3

z) (a € C),

+ z) 2 ,
2 + z

again no Picard exceptional

#0) ,

values, respectively,
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[10] Schwarzian differential equation 267

and satisfy the corresponding one of the following equations:

(3.9') {w,z} = 2(fi-a2/4),

(3.10') {w, z\ = 1 ,
[2(w + zf]

AT/* • i — \ ^ i *»1

(w + z)

w4 - 8iu3 + 8z2w2 - 8zw + 4z3 - 3]
(3.12) {w,z} =

1

4. Proofs of Lemma 2 and Theorem 2

PROOF OF LEMMA 2. (i) Write VAz,w(z)) simply as V(z). Since
F(z, w) is irreducible, F(z, tu) and Vz(z, w) = dV(z, w)/dz are mutu-
ally prime as polynomials of w . Thus by Remark 1, there exists a sv v (z),

which is a small function with respect to w (z), such that N* (r, 0; V, Vz) <
N(r, \lsvv) < S(r, w) (see [5, pages 173-174]).

By Lemma 1, V(z) has infinitely many zeros and m(r, 0; V) = S(r, w).
By Remark 1, JV*(r, 0; P, V) < N{r, l/spv) < S(r, w). Let zQ be a
zero of V(z) which is neither a zero of c(z) nor a zero of coefficients of
P{z, w) as well as coefficients of VAz,w) (j = I,..., k) nor a zero of
sv v(z) and sp>K(z). By the proof of Theorem 1, w'(z0) = 0 and hence
(V'(z) = dV(z,w(z))/dz and Vz(z) = dV(z, w)/d\u=w{z))

V'(zo) = Vz(z0) + w'(z0)VJzQ,w(z0)) - Vz(z0) * 0.

Thus z0 is a simple zero of V(z). By Lemma A(b), z0 is a double pole of
{w, z } . Thus by (1.1), 2m = fij .

(ii) We may write V. (z , w) = w - T , r e C . By Lemma 1 and Remark
1, m(r,x;w) = S(r,w) a n d i V ( r , 0 ; P , V ) < N(r, l/sp v)<S(r,w).

J\ > ji

Let z0 be a r-point of w which is neither a pole nor a zero of c{f), neither
a pole nor a zero of coefficients of P{z, w) and Vj(z ,w), j = I, ... , k,
nor a zero of Sp K (z) . Since {u;, z} has a pole at z 0 , we must have

co{z0, l/(iy - T)) = n > 2. Thus z0 is a double pole of {tu, z } , and hence

(4.1) 2m = nnh,
which implies that Hj < m and ̂ ; |(2w).

PROOF OF THEOREM 2. The following four cases are to be considered.
I. There are Vx(z, w) # V2(z, w) such that Vlz{z)V2z(z) # 0 .
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268 Katsuya Ishizaki [11]

II. There is only one V^z, w) for which Vu{z) ̂  0 . Further we suppose
that deg^tF^z, to)] > 2 .

III. There is only one Vl (z, w) for which Flz(z) ^ 0. Further we suppose
that degJF,(z ,w)] = 1.

IV. Vj;z(z) = 0 for any j .
We will treat these four cases in order.
CASE I. By Lemma 2 and Theorem 1, Q(z, to) is of the form (1.4), since

d < Am.
CASE II. By Lemma 2 and Theorem 1, Q(z, w) is of the form (1.5), since

d <4m.
CASE III. Q(z, w) must be of the form

Q ( z , w ) = c(z)(w + b ( z ) ) 2 m ( w - T , ) " ' • • • ( w - T f e )**,

where T, , . . . , xk are distinct constants. By Lemma 1 and (3.6) we have

(4.2) 2mN(r, l/u»#) = 2mN ( r , ^ ^

Let z be a x -point of w{z) such that it(Zj) ^ 0, oo, >/,(z;) ^ 0, oo, for
t = 0, ... ,p, i = 0, ... ,q and sp v(Zj) # 0, where V. = w - T;. . Let
eo(z.,l/(U;-Ty)) = n,.>2.By(4.1)'

(4.3) 2m = njtij.

Since w(z;., l/w') = rij - 1, we have by Lemma 1 that

(^^](4.4) Nt(r, Q;w')> ^ ( ^ - ^ ] N(r, ry, w) + S(r, w)

We have

(4.5) 2T(r,w)>N(r, l/w') + S(r,w)

>N(r, l/w^ + N^r, l/w')+ S(r, w).
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[12] Schwarzian differential equation 269

By (4.2)-(4.5) we have

2T(r,w)>

that is,

and hence we obtain

(4.6) l + ti^ik-
By Theorem 1, 2m + £*= 1 Hj < Am, J2k

j=l Hj < 2m . Therefore k < 2.
If k = 2, then û, + fi2 = 2m and fix= n2 = m by Lemma 2(ii). Thus

we obtain (1.7).
If k = 1, then we obtain (1.8). If k = 0, then we obtain (1.6).
CASE IV. Q(z, w) must be of the form

where x{, ..., rk are distinct constants. By Lemma 1

k

2mN(r, 1 /w') = 5>,iV(/-, T,; W) + S(r, w)

7=1

By (4.3)-(4.5) we obtain, as in the case III, that

(4.7) 2-

By Theorem 1, J2j=\ V-j ^ 4m. Hence we get k < 4 .
If k = 4 , then fil = n2 = pt3 = n4 = m by Lemma 2(ii), and we have

(1.9).
If k = 3 , then from (4.7) and (4.3)

(4.8) Ml + H1 + ^ = — + — + — > 1 ( n , > 2 ) .
2m nx n2 «3 ^
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The only triplets (nl, n2, «3) which satisfy (4.8) are as follows (we suppose
«, < n2 < n3):

{ (2, 2, n), where either n = 2, or n > 3 and n\m;

(2, 3 , 3), (2, 3, 4), (2, 3, 5), (2, 3, 6);

( 2 , 4 , 4 ) , ( 3 , 3, 3).

Therefore we get, by (4.9), that

(/Zj, fi2, /i3) = (m, m, 2m/n) (either n = 2, or n > 3 and /i|m),

which corresponds to (1.10);

(H{, fi2, ny) = (m, 2m/3, 2m/3) which corresponds to (1.11);

(Hi, /x2, n?) = (m, 2m/3 , 2m/4) which corresponds to (1.12);

(n{, /i2, fi3) = (m, 2w/3 , 2m/5) which corresponds to (1.13);

(Ml, n2, fii3) = (m, 2w/3 , 2m/6) which corresponds to (1.14);

(fi{, n2, n3) = (m, 2m/4, 2m/4) which corresponds to (1.15);

(/*j, /i2, jUj) = (2w/3, 2m/3, 2w/3) which corresponds to (1.16).

If k = 2, then n}\m and rij > 2 0 = 1,2), and we get (1.17).
If k = 1, then we have (1.18). If k = 0, we obtain (1.19).

5. Proofs of Lemma 3, 4, 5, 6, 7, 8, and Theorem 3

We suppose that the equation (1.1) is of the form (1.20).

PROOF OF LEMMA 3. Let z( be a at point of w(z). Then zi is a zero
of {w , z} , and hence by Lemma A(b), zf is not a zero of w'(z). Thus
(0(2;, \/(w - cr,.)) = 1. Put co(z(., l/{ty, z\) = n . Then

(5.1) ntn = Af, and hence mlA,..

PROOF OF LEMMA 4. Suppose that n > 3 in (1.18). We have that /i = 1 in
(1.20). In fact, suppose h > 2. Since de$[P(w)] = deg[Q(w)] = 2m/n < m,
we have that ax and <r2 are Picard exceptional values of w(z) by Lemma
3. Thus, by Theorem 1, d = deg[Q(w)] = 0, which is a contradiction. Thus
we may assume that the equation is of the following form:

(5.2) {w,z}™ = CQ(jLl?.y , co(/O)6C.

Put u = (w - a)/(w - T) in (5.2). Then by Lemma A(c),

(5.3) {u,z}n = cu\ c = cn
0

/m.

https://doi.org/10.1017/S1446788700032742 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700032742


[14] Schwarzian differential equation 271

By the lemma on logarithmic derivatives,

2m(r, u) + 0(1) = m(r, cu2) = m(r, {u, z}n) = S(r, u),

and hence

(5.4) m{r,u) = S(r,u).

Let z0 be a pole of u{z) and co(zQ ,u) = fi. Suppose n = 1. Then by
Lemma A(a), {«, z} is regular at z0 , which contradicts (5.3). Thus fi>2.
By Lemma A(b), 2n = 2fi. Therefore u has infinitely many poles of order
n. By Lemma 3, u has no zeros since n > 3 and hence n \ 2. Also u
has no zeros as seen by Lemma A(b). Thus u /u and u"/u admit (simple)
poles at poles of u only. Further, residues of u'/u and u" /u are -n and
- ( « + 1), respectively. If we put

(5.5) n<t> = (n + l)u'/u-nu"/u,

then <j> is an entire function. We have

(5.6) m(r, (f>) = S(r, u),

and hence (f> is a small function for u.
Write u'/u = f and u"/u = g. Then

(5-7) f = fg~f.
From (5.5) we have

(5.8) g = af-<f>,

where a = {n + l ) /n . From (5.7) and (5.8) we have

(5.9) g' = af-(j>' = {a1 - a)f2 - acj>f - </»'.

From (5.9) and (5.8) we obtain

{«,*} = # -^g =(a /2-a)f -<)> - ^ •

Since we supposed n > 3, we get .4 = a2/2 - a = a(a - 2)/2 ^ 0. Thus u
satisfies the first order differential equation

(5.10) (A(u'/u)2 - $ )" = cu2,

where O = <t> + \(f>2. Now O ̂  0 since, if 0 = 0, then equation (5.10)
does not admit a transcendental solution. Put F = Af2 - O = A(u'/u)2 - 0 .
Then F has no zeros as seen from (5.10), since u has no zeros. Applying
Theorem B to / = u'/u, noting $ is a small function with respect to f(z),
we obtain

2T(r, f)<N(r,f) + N(r, 0; /) + N(r, 0; f) + S(r, /)

< N(r, f) + S(r, f) < T(r, f) + S(r,f),
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a contradiction, which shows that n < 3 .

PROOF OF LEMMA 5. Since we are assuming deg[/>] = deg[Q], the case
(1.19), that is, Q(w) = C , a constant, need not to be considered. Since Q is
independent of z , only (1.9)—(1.18) are to be considered. It suffices to show
that the solution w{z) takes any at, as seen by Lemma 3. To the contrary
we suppose that w(z) has no ot points for some i. By Theorem 1, d < 2m.
This is impossible for (1.9)—(1.13), since p = q. If Q(w) is of the form
(1.14), by Lemma 1, we have m(r, Xj\w) = S{r,w), y" = 1 , 2 , 3 . Let z;.
be a tj point. Then by (4.3), co(zl, l/w - T,) = 2 , ey(z2, l/w - t2) =

3, co(z3, l/w - T3) = 6. Hence we have £ J = 1 0(T;. , w) = 1/2 + 2/3 +
5/6 = 2, which contradicts Nevanlinna's theorem on total ramification, since
w(z) is supposed to omit ai. Similarly to the case (1.14), if Q(w) is of
the form (1.15) and (1.16), then we have £;

3
= 1 0( t , , w) = 2/3 + 2/3 +

2/3 = 2, and Y,)=\ e(Tj > w) = l/2 + 3 / 4 + 3/4, respectively, which are also
contradictions. Thus for (1.9)—(1.13) and (1.14)—(1.16), w(z) must take at,
1 = 1 , 2 , . . . , * .

Suppose Q(w) is of the form (1.17). If nx > 2 or n2 > 2, then similarly
to the case (1.14), we have 6(T1 , W) + 0(T2, W) = (n{- l ) / / j ,+ (« 2 - l ) / n 2 >
7/6/ , which contradicts Nevanlinna's theorem, and since we have n{ = n2 =
2. Suppose P(w) has a factor (w—a)x, m\X. Since p = q = 2m in (1.17),
there is another factor (w - of, m\X. Then both a and a are Picard
values for w(z), and we have d = 0 by Theorem 1, which is a contradiction.

Finally suppose Q(w) is of the form (1.18). By Lemma 4, deg[G] =
m . As in (1.17), we see that P(w) must be of the form (to - a)m , which
completes the proof of Lemma 5.

PROOF OF LEMMA 6. Suppose (2.5) possesses an admissible solution w(z).
Put u = l/(w - T3) . Then by Lemma A(c), we have

(5.11) {«, z} = C(u - Sl)(u -s2)(u - s3)/[(u - t{){u - t2)].

By Lemma 1 and (4.3), w(z) has infinitely many T3 points which are all
of multiplicity 2. Therefore u(z) has infinitely many poles which are all of
order 2. Therefore u(z) has infinitely many poles which are all of order 2.
Let z0 be a pole of u(z), then

(5.12) M(Z) = _ K + _ a R^Q

(z - z0)
2 (z - z0)

By Lemma A(b), we get
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On the other hand, the right-hand side of (5.11) can be written

(5.14) C(u - Sl)(u - s2){u - s3)/[(u - f ,)(u - t2)]

= CR(z - zo)~
2 + Ca(z - Z y + 0(1)

near z0 . Thus, from (5.13) and (5.14), - 3 / 2 = CR and 3a/2R = Ca.
Hence

(5.15) R = ~Jc' a = 0>

Put
H(z) = u'(z)2/[(u(z)-tl)(u(z)-t2)].

By (4.3), each tj point (; = 1, 2) is of multiplicity 2. Thus u'(z) has a
simple zero there. Hence H{z) ̂  oo at tj points of u{z). Thus, if z0 is
pole of H(z), then z0 is pole of u(z), and w(z0, H) = 2. By (5.12) and
(5.15) we have

(5.16) H(z) = 4(z-z0r
2 + O(l).

Put

(5.17) ^(Z) = ^ ) + 2CM ( Z).

Then by (5.12), (5.15) and (5.16), <p(z) is regular at z0. Thus <p(z) is an
entire function. By Lemma 1, we have

m{r, u) = m(r, T3;w) = S{r, w) =S(r, u).

Hence by the lemma on logarithmic derivatives

m(r, <p) < w(r, H) + m{r, u) + 0(1)

< m(r, «'/(« - T,)) + m(r, u'/(u - T2))

+ m(r,u) + 0{l) = S(r,u).

Therefore <p(z) is a small function for u(z). From (5.17), we have

(5.18) ul2 = Ct(u-tl)(u-t2)(u-<p), C* = - 8 C / 3 , <p = -3<p/2C.

By Theorem C and (5.18), 0 is a constant.
Let z, be a zero of u'(z). By Lemma A(b), z, is a pole of {u, z } ,

whence z, is a f, or r2 point of u(z), as seen from (5.11). Thus, zeros of
u are f points of u, therefore by (5.18) we have that <p = t{ or t2 , or (p
is Picard exceptional value. If p = t{, then

(5.18') M'^O-*, ) 2 ^-^) .

Suppose u(z{) = ^ and put co(zl, 1/(M - fj)) = / . Then co(z{, 1/w'2) =
(2/ - 2) ^ <u(z,, 1/C*(w - r2)) = 21, whence «(z) cannot take tx. This
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contradicts Lemma 1, and hence <p ^ tx. Similarly q> ^ t2. If p is a
Picard exceptional value, then 2 > d = 3 by Theorem 1. Hence we obtain a
contradiction. Therefore (5.11), and hence (2.5), cannot possess admissible
solutions.

PROOF OF LEMMA 7. Suppose (2.6) possesses an admissible solution w(z).
Put u = c(w - a)/(w - T) . Then

(5.19) {u,z} = u.

By the lemma on the logarithmic derivative, m(r, u) = m(r, {u, z}) =
S(r, u). Hence u{z) has infinitely many poles, which are of multiplicity
2 by (5.19) and Lemma A(b). Let z0 be a pole of w(z). Then

(5.20) u(z)= R + — ^ — + 0(1) (R*0).

(z - z0) (z ~ z0)

Arguing as in the proof of Lemma 6, we obtain

(5.21) # = 3/2, a = 0.

Put g = u"/u in (5.19). Then

(5.22) g'-\g2 = u.

By (5.19) and Lemma A(b), we see that u has no zeros. Thus if z is a pole
of g(z), then z is a pole of u(z). From (5.20) and a = 0, we get

(5.23) g(z) = -3/(z-zQ) + O(z-zQ).

Put

(5.24) (p = g'-^g
1.

Then <p(z) is regular at zQ . Thus q>{z) is entire. On the other hand

(5.25) T{r, g) = m(r, g) + N(r, g) = m(r, u"/u) + N(r, u)

= ±T(r,u) + S(r,u),

which shows that S(r, u) = S{r, g). Thus

m(r, <p) < m(r, {«, z}) + m(r, (u"/u)2) + 0(1) = S(r, g).

Thus <p(z) is a small function for g(z). From (5.22) and (5.24), we have

(5.26) (p{z)-l
zg{zf = u{z).
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By (5.26) and (5.24),

'- '_! '- '_! 3 _ I
a _ II 1 '2 1 n

" _ I '2 _ 1 ( ' 1 '\
n 1 2 1 4 4 2 1

275

Hence

that is,

(5.27)

g —
3 - >

9<p - g5 - 3<pg

(pg2+\2(p'g-

if q> ^ 0, ^ must be small for g, as seen by solving the quadratic equation
(5.27) for g. Thus is impossible, and hence (p = 0. Therefore by (5.24),
g(z) cannot be transcendental. This shows that u and hence w is not
transcendental, contrary to our hypothesis.

PROOF OF LEMMA 8. Suppose (2.7) possesses an admissible solution w(z).
By Lemma 5, we have <r, = a2 . Let L be a Mobius transformation which
maps er,, xx, x2 to oo, 1 , - 1 , respectively. Put u = L(w). Then

(5.28) { M , Z } 2 = 1 / ( 1 - M 2 ) .

Put V(z)2 = v{z) = 1/(1 - u{zf). Then V{z) is meromorphic by (5.28)
and by a simple calculation, we obtain

(5.29)
8 \ v(v-l)

= V = v .

By Lemma 1 and (5.28), u(z) ± 1 have infinitely many zeros, which are of
multiplicity 4 by (4.3). Thus poles of v(z) are infinite in number and of
order 4. Let z0 be a pole of v(z). Then

(5.30) v(z)= R + a +O((z-zor
2), R^O.

(z - zoy (z - zoy

Also v("'_\) is regular at z0, and thus we get by Lemma A(b)
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From (5.30) and (5.31), R = (-15/2)2, a = -(-\5/2)2a/R. Hence we have

(5.32) R = 225/4, a = 0.

From (5.29) we see that, if v'(z) = 0, then v(z) = 0 or 1, since v is regular
and {v, z} = oo at z = z. If v(z) = 0, then u(z) = oo. By (5.28) and
Lemma A(a), z is a simple pole of u and hence is a double zero of v . If
v(z) = 1, then u(z) = 0. By (5.28), u'(z) ^ 0 . Thus z is a simple zero of
u and hence a double zero of v(z) - 1. Hence co(z, l/v') = 1. If we put

(5.33) h = v /\v(v — 1)], and (f> = h Ih,

then h(z) has no zeros and infinitely many poles only at poles of v . From
(5.33), poles of h are of order 2. Hence by (5.30) and (5.32) we have

(5.34) h(z)= _|6 2+O(l).

Since h(z) has no zeros, 4> = oo only at poles of h , and hence at poles of
v . Thus by (5.34), we can write </> as

(5.35) (j>{z) = -=L- + O(z-zQ).
\ z ZQ)

Put

(5.36) T(Z) = <f>'(z) - -z<f>(z) and a(z) = <f>'(z) - -^h(z).

Then x(z) and a(z) are regular at z 0 . Thus r(z) and a(z) are entire. By
Lemma 1 and (5.29), (5.33), we have

2T(r, V) + O(l) = T(r, v) = m(r, v) + N(r, v)

and

r ( r , A) = m(r, h) + N(r, h) = S(r, v) + ^N(r, v)

T ( ) + S ( )

Hence S(r, u) = S(r, v) = S(r, V) = S(r, h). From (5.36) and (5.33),

and

m{r, T) < m(r, (h"/h) - (h'/hf) + m(r, (h'/h)2) + 0(1) = S(r, V),

m(r, a) < m(r, (h"/h) - (h'/h)2) + m(r, h) + 0(1) = S(r, V).

Thus, T(Z) and a(z) are small functions for V(z). From (5.29) and (5.33),
we have by simple calculation

(5.37) V = y-±<t>2-l-h.
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From (5.37) and (5.36), we have

(5.38) V = {-l5/32)h + K,

where K{Z) = J(T(Z) + a{z)). On the other hand, from (5.29) and (5.33) we
have

(5.39) h = (2VV')2/[V2(V2 - 1)] = 4V>2/(V2 - 1).

Hence, from (5.38) and (5.39), V{z) satisfies the equation

(5.40) V'2 = -J1{V-K){V-\){V+\).

By Theorem C and (5.40), K{Z) is a constant. If K ̂  ± 1 , then V(z) - K
has infinitely many double zeros, and hence v'(z) = 0 at some (infinitely
many) zeros of v - K2 , which is impossible by (5.29). Therefore K = 1 or
- 1 .

By (5.40), V" = - £ ( 3 F 2 - 2/cF - 1). Since V2 = 1/(1 - u2), we
get (u/u)2 = V'2[V(V2 - I)]2 = -±(V - K)/[V2(V2 - 1)] and u"/u =
-2V'/V + \VI{V - K) . thus we obtain

{u,z} = -2V"/V + \v"l{V -K)- | F ' 2 / ( F - K)2 + V'2/[V(V - K)].

Using (5.40), we have that

(5.41)

| | ^ | | ) 2 «2) if/c = l ,

M
2) if ic = 1,

which contradicts (5.28). Therefore, (2.7) cannot possess any admissible
solutions.

PROOF OF THEOREM 3. Suppose the equation (1.20) possesses an admis-
sible solution w = w(z). We assume that p = q = d, by applying a Mobius
transformation if necessary. By Lemma 5, q = p is a multiple of m. Thus
Q(w) cannot be the form of (1.11)-(1.13). If Q(w) is of the form of (1.10),
then n = 2 by the same reason. In this case, the equation (1.20) must be
the form of (2.5), which is impossible by Lemma 6. If Q(w) is the form of
(1.18), then (1.20) is the form of (2.6), which is also rejected by Lemma 7.
If Q(w) is the form of (1.17), then by Lemma 5 we have

(5.42) 2/n/«j + 2m/n2 = 2m or m (nl, n2 > 2).

Thus (flj, n2) = (2,2) or (4.4). Therefore we get the form of (1.25) or (2.7),
respectively. By Lemma 8, the case (4, 4) is rejected. If Q(w) is of the
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form of (1.9), (1.14), (1.15), (1.16) or (1.19), then we obtain the equation of
the form (1.21), (1.22), (1.23), (1.24) or (1.26), respectively, which proves
our assertion.
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