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1. Introduction. Let A be a finite-dimensional associative algebra over 
a field F. Let R denote the radical of A. Assume that A/R is separable. Then 
it is well known (the Wedderburn principal theorem) that A possesses a 
Wedderburn decomposition A = S + R (semi-direct), where 5 is a separable 
subalgebra isomorphic with A/R. We call 5 a Wedderburn factor of A. 

Now let G be a set of linear transformations of the underlying vector space 
of A. If there exists a Wedderburn factor 5 of A which is sent into itself by-
each element of G, we say that S is a G-invariant Wedderburn factor of A. In 
(2), it is shown that if G is a fully reducible group of automorphisms of the 
algebra A, and if the characteristic of F is zero, then A possesses G-invariant 
Wedderburn factors. In (3) it is shown that if G is a finite group each of 
whose elements is either an automorphism or an anti-automorphism of the 
algebra A, and if the characteristic of F is not a divisor of the order of G, 
then A possesses G-invariant Wedderburn factors. 

By the well-known Malcev theorem (see 1), any two Wedderburn factors 
of A are conjugate by an inner automorphism of A given by conjugation by 
an element 1 + 2 , where z Ç R. In this paper, we discuss the uniqueness 
question for G-invariant Wedderburn factors, where G is as in (3) and as 
described in the last sentence of the preceding paragraph. In (4), we showed 
that if G is a finite group of automorphisms and anti-automorphisms of the 
algebra A, and if the characteristic of F is zero, then any two G-invariant 
Wedderburn factors are conjugate by a G-orthogonal element exp z, where 
z is a G-symmetric element of R. (See 4 for an explanation of the termino
logy.) It was conjectured in (4) that if G is as described here, and if the 
characteristic of F is not a divisor of the order of G, then any two G-invariant 
Wedderburn factors of A are conjugate by an inner automorphism of A given 
by conjugation by a G-orthogonal element of A. Here we shall answer this 
conjecture in the affirmative (see Theorem 2 and Corollary 1) under the 
additional hypothesis that the characteristic of F be different from two. This 
will generalize the result for characteristic zero (4) mentioned above. 

2. Preliminaries. Let A be a finite-dimensional associative algebra over 
a field F of characteristic 5^2, and let R denote the radical of A. Let G be a 
set of non-singular linear transformations of the underlying vector space of 
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A, each element of which is either an automorphism or an anti-automorphism 
of the algebra A. (If A is commutative, then we regard each element of G 
as an automorphism of A.) 

Let Ai denote the algebra obtained from A by adjunction of an identity 
(if necessary). Then the elements of G induce mappings of Ax (where t(c) = c 
for te G, c e F). 

DEFINITION 1. An element z in A is called G-symmetric if z is left fixed by 
the automorphisms in G, and z is sent into —z by the anti-automorphisms in G. 

It is easy to see that the G-symmetric elements of A form a Lie algebra 
over F. The G-symmetric elements of R will also form a Lie algebra over F. 

DEFINITION 2. An element w of Ai is called G-orthogonal if w is regular (has 
a two-sided inverse in Ai), if w is left-fixed by the automorphisms in G, and if w 
is sent into w~1 by the anti-automorphisms of G. 

It is easy to check that the G-orthogonal elements of Ai form a multiplica
tive group (a subgroup of the group of all regular elements of Ai). 

DEFINITION 3. An inner automorphism of A given by conjugation by a G-
orthogonal element of A i is called a G-orthogonal conjugacy of A. 

By the remark following Definition 2, it follows that the G-orthogonal 
conjugacies of A form a group (a subgroup of the group of all automorphisms 
of the algebra A). It is easy to see that any G-orthogonal conjugacy of A 
commutes with each element of G. Hence if S is a G-invariant subalgebra of 
A, then the image of 5 under any G-orthogonal conjugacy of A will also be 
a G-invariant subalgebra of A. 

DEFINITION 4. Two G-invariant subalgebras S and T of A are said to be 
G-orthogonally conjugate if there exists a G-orthogonal conjugacy of A which 
carries S onto T. 

By the remark following Definition 3, it follows that the relation of G-
orthogonal conjugacy is an equivalence relation among the G-invariant sub-
algebras of A. 

If z is a G-symmetric element of R, then it is clear that 1 + z is regular 
in Aly and that (1 — z)(l + z)~l is G-orthogonal. It is this type of G-ortho
gonal element that will be useful in discussing (in § 3) the uniqueness problem 
mentioned in the introduction. The following computational lemmas and 
theorem are a generalization to the present setting of the algebraic techniques 
involved in the Cayley parametrization of (a part of) the orthogonal group 
acting on Euclidean w-space (see 5, Chapter II, Section 10, and Chapter X, 
Section 5). 

LEMMA 1. Let z be an element of R. Then z is G-symmetric if and only if 
(1 — z)(l + z)~l is G-orthogonal. Furthermore, 
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1 + (1 - s)(l + s)- 1 = 2(1 + s)-i 

is regular, and 

Z = {1 - (1 - *)(1 + Z)~1}{1 + (1 - 2)(1 + 2)"1}-1. 

Proof. The first assertion is easy to check. The second one is obtained by 
multiplying (1 + z) + (1 — z) = 2 by (1 + s)"1, and the last assertion may be 
verified by inserting (1 + z) (1 + z)~l between the brackets on the right-
hand side of the equation. 

LEMMA 2. Let w be a G-orthogonal element of Ai such that 1 + w is regular. 
Then (1 — w) (1 + w)~l is G-symmetric. Furthermore, if 1 — w is also in R, 
then 1 + (1 — w) (1 + w)~l is regular, and 

w = {1 - (1 - w){\ + w)-l}{\ + (1 - w)(l + w)-1}-1 . 

Proof. It is clear that (1 — w) (1 + w) - 1 is left-fixed by the automorphisms 
in G. Let / be an anti-automorphism in G. Then 

/{(l - w)(l + w)"1} = (1 + ^ ) ) _ 1 (1 - *(«0) 
- (1 + Î ^ - 1 ) - ^ ! - w~l) = (1 + ter1)-1zer1ze;(l - w~l) 

= ( 1 + wJ-Hw — 1) = — (1 — w;) (1 + w)-1. 

This proves the first assertion. The second assertion is clear. The proof of 
the last assertion is similar to the proof of the last assertion of Lemma 1. 

THEOREM 1. Let A be a finite-dimensional associative algebra over a field F 
of characteristic p^2, and let R be the radical of A. Let G be a set of non-singular 
linear transformations of A, each element of which is either an automorphism 
or an anti-automorphism of the algebra A. Let C(G) denote the subset of Ax 

consisting of elements of the form (1 — z) (1 + s) - 1 , where z is a G-symmetric 
element of R. Then C(G) is a subgroup of the multiplicative group of G-orthogonal 
elements of A\. 

Proof. Let x and y be G-symmetric elements of R and let 

u = (1 - x)(l + x)-1 and v = (1 - y)(l + y)-1 

be elements of C{G). Then uv = (1 — x)(l + x)_ 1(l — y)(l + y)~l. Since 
(1 + x)~l and (1 + y)~l are polynomials in x and y, respectively, with con
stant term 1, we may write uv = 1 + r, where r 6 R. Then 1 — uv = — r 
is in R. Also 1 + uv = 2 + r = 2(1 + %r) is regular. It is clear that uv is 
G-orthogonal. Hence, by Lemma 2, (1 — uv)(l + uv)'1 is a G-symmetric 
element of R and 

uv = {1 - (1 - uv)(l + uv)-1}^ + (1 - uv)(l + uv)-1}-1. 

Hence uv is in C{G). The remaining group properties are clear. This completes 
our proof. 
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DEFINITION 5. We call C(G) the Cayley subgroup of the group of G-orthogonal 
elements of A\. A G-orthogonal conjugacy of A given by conjugation by an element 
of C(G) will be called a Cayley-symmetry of A. Two G-invariant subalgebras S 
and T of A will be said to be Cayley-equivalent if there exists a Cayley symmetry 
of A which maps S onto T. 

By Theorem 1, the Cayley symmetries of A form a group, and hence the 
relation of Cayley-equivalence is an equivalence relation among the G-invariant 
subalgebras of A. 

3. Cayley-equivalence of G-invariant Wedderburn factors. In this 
section, we prove the conjecture made in (4), and described in the Intro
duction. 

THEOREM 2. Let A be a finite-dimensional associative algebra over a field F 
of characteristic ^ 2 . Let R be the radical of A, and let A/R be separable. Let G 
be a finite group, each element of which is either an automorphism or an anti-
automorphism of A, and whose order is not a multiple of the characteristic of 
F. Let A = T + R be a G-invariant Wedderburn decomposition of A (i.e., T 
is a G-invariant Wedderburn factor of A). Let S be any G-invariant separable 
subalgebra of A. Then S is Cayley-equivalent to a subalgebra of T. 

Proof. We first note that if A is commutative, then by the result in (1), 
there exists a unique Wedderburn factor, so that the result is trivial (the 
identity mapping will suffice), Hence we may assume that A is not com
mutative, so that each element in G is either an automorphism or an anti-
automorphism of A, but not both. 

Case 1. We first assume that R2 9e 0. 
We proceed by induction on the F-dimension of A and assume the result 

to be true for algebras whose dimension is less than that of A. If B is a subset 
of A, let B denote the image of B under the natural homomorphism of A 
onto A/R2. Each element of G will induce an automorphism or an anti-auto
morphism oî Â. Â = T -{- R is a, G-invariant Wedderburn decomposition of 
Â, and S is a G-invariant separable subalgebra of Â. Hence, by induction, 
there is an element x in R such that x is G-symmetric in R, and such that 

(I + x)(I - x)-lS(l - x)(l + x)~l C f. 

Now set 

J = ^ Z (-l)8gn'<(x), 
n ttO 

where n is the order of G, and sgn / is + 1 if / is an automorphism, and — 1 
if t is an anti-automorphism. Clearly y is in R. Since G is a group, y is G-
symmetric by the laws governing the multiplication of automorphisms and 
anti-automorphisms. Furthermore, 
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since x is G-symmetric. Hence, if we set 

Sl = (1 + 30(1 - y)~iS(l -y)(l+ y)~\ 

then we have 

Si = (Ï + S)(I - x)-iS(î - * ) ( ! + x)- 1 C T, 

so that 5i + i ? 2 C T + R2. 
Now T + R2 is a G-invariant Wedderburn decomposition of T + R2. Also, 

Si is a G-invariant separable subalgebra oî T + R2 by the remarks following 
Definition 3. Finally, the dimension of T + R2 is less than the dimension 
of A = T + R. Applying the induction hypothesis again, we conclude that 
there is an element z in R2 (and hence in R) such that z is G-symmetric, and 
such that (1 + z)(l — 2)_15i(l — z)(l + z) Q T. Then it is clear (using 
Theorem 1) that (1 - y){\ + y)~l{l - *)(1 + z)~l is an element in C(G)t 

conjugation by which maps S into T. 

Case 2. Now assume that R2 — 0. 
In this case, we use the result in (4). Although the result is stated there 

for characteristic 0, the only restriction necessary is that one be able to divide 
by the factorials of the positive integers less than the index of nilpotency 
of the radical. Hence, the result there is valid if the characteristic of F is 
greater than or equal to the index of nilpotency of R. In particular, if R2 — 0, 
then for z in R, exp(Ad z) = / + Ad z is conjugation by exp z = 1 + 2, and 
there is no restriction necessary on the characteristic of F (except in relation 
to the order of G). 

Therefore, we conclude that there exists a G-symmetric element z in R 
such that conjugation by exp z = 1 + z maps 5 into T. But since R2 = 0 
and the characteristic of F is not 2, the element 

1 + z = (1 + iz)2 = (1 + J*)(l - hz)~l 

is in C(G), since clearly — \z is a G-symmetric element of R. This completes 
the proof of Theorem 2. 

Theorem 2 has the following two corollaries. 

COROLLARY 1. Let A and G be as stated in the hypothesis of Theorem 1. Then 
any two G-invariant Wedderburn factors of A are Cay ley-equivalent. 

COROLLARY 2. Let A and G be as stated in the hypothesis of Theorem 1. Let 
S be a G-invariant separable subalgebra of A. Then S may be embedded in a 
G-invariant Wedderburn factor of A. 

4. The case of characteristic zero. As mentioned in the introduction. 
Theorem 2 and Corollary 1 generalize the result for characteristic zero in (4). 
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(Indeed, the latter result is used in Case 2 of the proof of Theorem 2.) In this 
section, we note that a Cayley-symmetry may be written in the exponential 
form obtained in (4) if F has the characteristic zero. 

Let s be a G-symmetric element of R. Then the Cayley-symmetry given 
by conjugation by (1 — z){\ + z)~l may be considered as conjugation by 
exp[log{(l — z){\ + z)-1}]> and this conjugation is the same as 

e x p { A d ( l o g [ ( l - * ) ( l + * ) - i ] ) } . 

But, 

log{(l - z)(l + z)-1} = log(l - z) - log(l + z) 

= ( - z - l - l - ) - ( z - l + l - ) 

- -< '+*+!+ ) 
is a G-symmetric element of R, since it involves only odd powers of z. 
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