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ABSTRACT

Two semigroups are distinct if they are neither isomorphic nor anti-isomorphic. Although there
exist 15973 pairwise distinct semigroups of order six, only four are known to be non-finitely
based. In the present article, the finite basis property of the other 15969 distinct semigroups of
order six is verified. Since all semigroups of order five or less are finitely based, the four known
non-finitely based semigroups of order six are the only examples of minimal order.
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PARrT I. INTRODUCTION
1. Main result
1.1. Finite basis problem for semigroups of order five or less

An algebra is finitely based if the identities it satisfies are finitely axiomatizable. In the 1950s,
Lyndon initiated the investigation of identities satisfied by finite algebras; he first proved that
all algebras of order two are finitely based [25], and shortly after exhibited a non-finitely
based example with only seven elements [26]. Smaller examples of non-finitely based algebras
have since been discovered [31, 46], the smallest of which are groupoids of order three, due
to Jezek [11] and Murskil [29]. In view of the pioneering result of Lyndon [25], non-finitely
based algebras of order three are minimal with respect to being non-finitely based, or minimal
non-finitely based.

The class of finite groups was the first significant class of finite algebras for which the finite
basis property was established; this result, due to Oates and Powell [30], was published in 1964.
In the years that followed, the finite basis property was also established for other classical finite
algebras such as lattices [28], rings [13, 24], and Lie algebras [2]. The fundamental result of
Oates and Powell [30] may have led to the conjecture that all finite semigroups are finitely
based. But any hope for such a generalization was quickly extinguished when only a few years
later, Perkins demonstrated that the monoid B3, obtained by adjoining a unit element to the
Brandt semigroup

By = {a,b| a® = b* = 0, aba = a, bab = b)

of order five, is non-finitely based [31]. The discovery of a non-finitely based semigroup with
only six elements naturally focused attention upon the finite basis problem for semigroups of
order less than six. This problem, first raised by Tarski [40] in 1966, attracted considerable
interest [4, 8, 12, 41, 42]. A solution to the problem was eventually completed by
Trahtman [43] in the early 1980s and published a few years later [45].

THEOREM 1.1. Every semigroup of order five or less is finitely based.

Refer to Shevrin and Volkov [39] for a more complete historical account of results leading
to the proof of Theorem 1.1. This theorem is also a consequence of a recently established
generalization [18].

1.2. Minimal non-finitely based semigroups

It follows from Theorem 1.1 that the semigroup Bi and any other minimal non-finitely based
semigroup are of order six. Since Perkins’s publication of the semigroup Bi, only three other
minimal non-finitely based semigroups have been discovered: the monoid Al obtained by
adjoining a unit element to the 0-simple semigroup

A2:<aab\CLQ:aba:a,bab:b,bz:O),
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the semigroup A3 obtained by adjoining a new element g to As where multiplication is given
by g =0 and gz = xg = g for all z in A,, and the _#-trivial semigroup

L= {(a,b|a*=a,b* =b,aba = 0).

These four minimal non-finitely based semigroups can also be given by the following
multiplication tables.

Bi[1 23456 A[123456 AJ|1 23456 L|123456
1ftr11111 1111111 1(111116 1{1 11111
2111223 2111223 2111236 2(111112
31123131 3[(123233 3(123236 3[{111113
40111446 4(111446 4111456 4/1121 42
5/123456 5(123456 5|145456 5(1 13153
6146161 6|(146466 6|666661 6|12244°6

The non-finite basis property of the semigroup Al was independently established by
Sapir [38] and Trahtman [44] in the 1980s. The semigroup A3, discovered by Volkov (private
communication, 3 April 2006), is non-finitely based by either Mashevitskii [27] or Volkov [47].
The semigroup L was recently shown to be non-finitely based by Zhang and Luo [50].

1.3. Finite basis problem for semigroups of order six

Two semigroups are distinct if they are neither isomorphic nor anti-isomorphic. There exist
15973 pairwise distinct semigroups of order six [33], among which 1373 are monoids [6] and
14600 are non-unital. In view of these large numbers, it is natural to question the existence of
minimal non-finitely based semigroups that are distinct from the four known examples. The
answer to this fundamental question clearly depends on a complete solution to the following
problem.

PROBLEM 1.2. Identify all finitely based semigroups of order six.

This problem was solved by Lee and Li for the special case of monoids. Specifically, they
proved that among the 1373 pairwise distinct monoids of order six, only B3 and A} are non-
finitely based semigroups [19]. The objective of the present article is to continue with the
investigation by verifying that among the 14600 pairwise distinct non-unital semigroups of
order six, only AJ and L are non-finitely based. A complete solution to Problem 1.2 is thus
established.

MAIN THEOREM. Among all distinct semigroups of order six, only B3, A}, A§, and L are
non-finitely based.

Consequently, there exist precisely four distinct minimal non-finitely based semigroups. This
result was first announced in Lee et al. [20].

1.4. Organization

The set of all sections in the present article, under the prerequisite relation, constitutes the
directed tree in Figure 1; every section that follows §2 can be read independently. Notation
and background information are given in §2. An outline of the proof of the main theorem is
given in § 3, while the finer details are deferred to §§4-27.
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Part IT
Part [
o Section 4
Section 3
(® Section 10
Section 1

Section 2
(® Section 11

(® Section 27

Part III

FIGURE 1. Prerequisites of sections.
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K. W. K. Lee for assistance in testing the 14 600 non-unital semigroups of order six against
Conditions 1-20 in §3 with Java, and J. D. Mitchell for independently performing the same
test with GAP [7]. Special thanks are due to M. V. Volkov for invaluable advice over the years.

2. Preliminaries
2.1. Words, identities, and varieties

Let X be a countably infinite alphabet throughout. For any subset ) of X, let Yt and Y*
denote the free semigroup and free monoid over ), respectively. Elements of X are called
letters and elements of X'* are called words. For any word w:

e the head of w, denoted by h(w), is the first letter occurring in w;

e the tail of w, denoted by t(w), is the last letter occurring in w;

e the initial part of w, denoted by ini(w), is the word obtained by retaining the first
occurrence of each letter in w;
the content of w, denoted by con(w), is the set of letters occurring in w;
the number of occurrences of a letter x in w is denoted by occ(z, w);
a letter z is simple in w if occ(z, w) = 1;
the set of simple letters of w is denoted by sim(w).
For any letters z and y of w, let occ(z,y, w) denote the number of occurrences of = before the
first y in w. In other words, if occ(z,y, w) = m, then retaining only the letters x and y in w
results in a word in 2™y{z,y}*. Two words w and w’ are disjoint if con(w) N con(w’) = 0.

An identity w =~ w’ is nontrivial if w # w’. A semigroup S satisfies an identity w =~ w

if, for any substitution ¢ : X — S, the elements wy and w'¢ of S are equal. An identity
w ~ w’ containing one or more of the sans-serif letters from {H,K, T}, with or without
indices, represents the system that contains w ~ w’ and any identity that can be obtained
by eliminating all occurrences of some letters from {H, K, T}. For instance, sHxKy ~ xHyKaz?

/
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represents the system
zhrky ~ chyka?, zhay ~ chyx?, 2%ky ~ zyka?, 2%y~ zya?.

Let 3 be any set of identities. By Birkhoff’s completeness theorem of equational logic [3],
an identity w &~ w’ is deducible from or implied by ¥ if some deduction sequence

W=2)=2 = =>Zp =W

exists, where each deduction z; = z;,1 involves an identity from X, that is, there exist words
e;,f; € X*, an identity u; ~ v; in 2, and an endomorphism ¢; of Xt such that z; = e;(u;p;)f;

and z; 11 = €;(v;p;)f;. The deducibility of an identity w ~ w’ from X is indicated by w Ew.

For any set X of identities, the variety defined by X is the class of all semigroups that satisfy
all identities in X; in this case, ¥ is a basis for the variety. A variety is finitely based if it
has a finite basis, and a semigroup is finitely based if it generates a finitely based variety.
For any variety V and any set X of identities, let VX denote the subvariety of V defined
by 3. For more information on universal algebra and semigroup varieties, refer to Burris and
Sankappanavar [5], Shevrin and Volkov [39], and Volkov [49].

2.2. Identities satisfied by some small semigroups

For any nonempty subset U of a semigroup S, the semigroup S/U obtained from S by
identifying all elements in U is called a quotient of S. A quotient of a subsemigroup of a
semigroup S is called a divisor of S. Any identity satisfied by a semigroup S is also satisfied
by all subsemigroups, quotients, and divisors of S.

The following small semigroups are required throughout the article:

J={a,b|ab=0,ba = a,b* =),
L2_<ab\a =ab=a,b* =ba =),
= (a,b|a*=ba = a,b* = ab=1),
= (a|a® =0),
={a|a®=0),
Zgz(a|a2: ).

For any non-unital semigroup S, let S denote the monoid obtained by adjoining a unit element
to S. Let J, L1, N1 N3, N} and Z, denote the varieties generated by the semigroups J, L3,
N3}, N3, N3, and Zs, respectively.

LEMMA 2.1. Let w ~ w’ be any identity. Then:
(i) Lo satisfies w &~ w’ if and only if h(w) = h(w');
) R satisfies w = w’ if and only if t(w) = t(w');
) L} satisfies w ~ w' if and only if ini(w) = ini(w’);
v) N, satisfies w ~ w' if and only if either |w|,|W'| > 2 or w = w';
) NJ satisfies w ~ w' if and only if con(w) = con(w’) and sim(w) = sim(w’);
) Nj satisfies w &~ w’ if and only if either |w|,|w’| > 3 or occ(x,w) = occ(x, w’) for all
reX;
(vil) Nj satisfies w ~ w’ if and only if for each x € X, either occ(z,w) = occ(z,w’) < 2 or
occ(x, w),occ(x, w') > 3;
(viii) Zq satisfies w = w' if and only if occ(xz, w) = occ(z, w’) (mod 2) for all x € X.

Proof. These are easily verified. For instance, see Petrich and Reilly [32, Theorem V.1.9] for
parts (i)—(iii) and Almeida [1, Lemma 6.1.4] for parts (v) and (vii). O
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LEMMA 2.2 [10, Lemma 7]. The semigroup J satisfies an identity w ~ w’ if and only if
con(w) = con(w’) and either one of the following conditions holds:

(i) t(w) € sim(w), t(w') € sim(w’), and t(w) = t(w');

(i) t(w) ¢ sim(w) and t(w’) ¢ sim(w’).

For any letters « and y of a word w, write © <y ¥y to indicate that within w, each occurrence
of x precedes the first y. In other words, if * <y ¥, then retaining only the letters z and y
in w results in a word in {z}T{y}T. The simple part of a word w, denoted by Wgjm, is the
word obtained by retaining the simple letters of w. For example, if w = 23abyczzy?ext, then
Wsim = abczet.

LEMMA 2.3. Suppose that w ~ w’ is any identity satisfied by J'. Then:
(i) con(w) = con(w’) and sim(w) = sim(w’);
(ii) for any letters x € con(w) = con(w’) and y € sim(w) = sim(w’), the conditions x <w Yy
and x < y are equivalent;
(iil) Weim = Wi, -
Proof. (i) This follows from Lemma 2.1(v) because the subsemigroup {0,a,1} of J! is
isomorphic to Nj.
(ii) Seeking a contradiction, suppose & <w y and = Aws y where z € con(w) = con(w’) and
y € sim(w) = sim(w’). Then retaining the letters x and y in the identity w ~ w’ results in an
identity of the form zPy ~ x9yz" with p,r > 1 and ¢ > 0. Since J! has a unit element, the
semigroup J satisfies 2Py = x%yz", but this is impossible because bPa # b%ab” in J.
(iii) This is a consequence of part (ii). O

2.3. Connected words

A word that is a single letter is called a singleton. A non-singleton word is connected if it
cannot be written as a product of two nonempty disjoint words.
Let Ag and Bg denote the varieties generated by the following semigroups of order four:

Ay = (a,b | a® = a,b* = b, ba = 0),

By = (a,b,c | a®> = a,b* = b,ab = ba = 0, ac = cb = c).

LEMMA 2.4. Let w and w' be any words where w is connected. Then Ay satisfies w ~ w'
if and only if w' is connected and con(w) = con(w’).

Proof. This follows from Edmunds [8, proof of part 4 of the first proposition]. O

A semigroup S is left idempotent-separable if, for any distinct x,y € S, there exists an
idempotent e € S such that ex # ey. A right idempotent-separable semigroup is dually
defined. A semigroup is idempotent-separable if it is both left idempotent-separable and right
idempotent-separable.

LEMMA 2.5 [21, §3]. The following semigroups are idempotent-separable: Ay, By, any
monoid, and the direct product of any two idempotent-separable semigroups.

LEMMA 2.6. Let V be the variety generated by any idempotent-separable semigroup S.

(i) If Ag € V, then S has a basis that consists of identities formed by connected words.

(ii) If By € V and Ag ¢ V, then S has a basis that consists of identities formed by words
that are products of pairwise disjoint connected words.
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Proof. This follows from Lee and Volkov [21, Proposition 3.2]. O

2.4. Exclusion identities

Let S be any semigroup in a variety V. An identity w ~ w’ is called an exclusion identity
for S in V if the following are all satisfied:

(E1) S does not satisfy w ~ w’;

(E2) any subvariety of V not containing S satisfies w ~ w’.

For any fixed integer n > 2, let V,, denote the variety defined by the identity

Up o 227 & g™

and let 1, : X — X denote the substitution x — h"xzh™ for all z € X.

LEMMA 2.7 [15, Theorem 2]. Let S be any non-unital semigroup such that S,S' € V,,.
Suppose that w ~ w’ is an exclusion identity for S in V,, with h ¢ con(ww’). Then the
identity wi,, ~ W', is an exclusion identity for S' in V,,.

LEMMA 2.8. For each n > 2, the following is an exclusion identity for Ay in V,:
(z™y™)" T "y, (2.1)

Proof. By Lemma 2.4, the identity (2.1) is not satisfied by Ap. Suppose that a subvariety V
of V,, does not satisfy the identity (2.1). Then there exists some semigroup S € V with
elements a,b € S such that

(a) (anbn)n+1 7& a™b".

Let T = (a™, b") be the subsemigroup of S generated by the elements a™ and b". Since a®® 2 o™
and b?" 2 b", it is easily shown by (a) that

(b) a™, b™, a™b™, and b™a™ are distinct elements of T'.

Suppose that there exists some = € {a™,b", a™b"} such that x € Tb"a™T. Then

a™zb™ € a™{a™, b", a"b" }b" 2 {a"b"},
so that a”zb" = a"b". Therefore
ab" = a"zb" € " (TH"a"T)b" Vgn {(@™v™)?, (a™b™)3,.. .},
whence a"b" = (a™b")" ! for some r > 1. But
a™d" = (a"b") T = (a"b")F T = = (@™ 2 (@)

which is impossible by (a). Therefore x does not exist, so that {a™,b",a"b"} and Tb"a™T are
disjoint sets. It follows that

(¢) I =Tb"a™T is an ideal of T with a™,b", a™b" ¢ I.
By (b) and (c), the divisor T'/(Tb"a™T) of S is isomorphic to Ag. Hence Ay € V. O

LEMMA 2.9. For each n > 2, the following is an exclusion identity for N3 in V,,:
R™(zh™)" 1 ~ R zh™. (2.2)

Proof. Suppose that V is any subvariety of V,, such that Ny ¢ V. Then by Lemma 2.1(iv),
the variety V satisfies an identity « :  ~ 2"*! for some 7 > 1. The variety V also satisfies
"1 ~ x because

« «a a a Vn
e Tl gl xS gt
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Hence the identity z"*! ~ z is an exclusion identity for Ny in V,,. By Lemma 2.7, the identity
("), & 29, is an exclusion identity for N1 in V,,; this identity can be converted into the
identity (2.2) by vy,. O
2.5.  Factors of length two formed by simple letters

For any word w, let Fss(w) denote the set of factors of w of length two that are formed by
simple letters:
Fss(w) = {zy € X% | w € X*zyX ™, 2,y € sim(w)}.

LEMMA 2.10. Let S be any semigroup that satisfies v, for some n > 2. Suppose that S
satisfies an identity w &~ w’ with con(w) = con(w’), sim(w) = sim(w’), and Fss(w) # Fss(w’).
Then S satisfies the identity

"y za™ ~ x"yza”. (2.3)

Proof. Generality is not lost by assuming yz € Fss(w)\Fss(w’). Let ¢ : X — Xt denote
the substitution
a2y ift =y,
t—= < zx" if t =z,

n

T otherwise.

Then the deduction ™ (w)z™ 2 2"yza™ holds because yz is a factor of w and y, z € sim(w).
But since yz is not a factor of w’ and y, z € sim(w) = sim(w’), either

2 (W)a" R ayx"za” or a" (W) R a"zaya"
holds. Hence S satisfies either the identity (2.3) or the identity « : 2"yza™ ~ 2" zz"yz"™. Since
" n % n n nS n.n, . n_ n¥ n. n_.n
yza" = a"z(ax"y)z" = " a"yx"za" = 2"ya" za",

the semigroup S satisfies the identity (2.3) in either case. O

3. Proof of the main theorem

The following twenty sufficient conditions for the finite basis property are required.

CoNDITION 1 [37]. Any finite semigroup that satisfies the identities

1'13 ~ o, x12y12$12y12 ~ x12y12

is finitely based.
CONDITION 2 [9, Theorem 6.1]. Any semigroup that satisfies the identities
vy oy, wyx® =Sy, ayry ~ oyl
is finitely based.

CONDITION 3. Any semigroup that satisfies the identities

dy~aly, wyf mzy?, ayzxyzy, syn R ayoy

is finitely based.
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CONDITION 4 [36, Proposition C]. Any semigroup that satisfies the identity
Tyzy ~ T’z

is finitely based.

CONDITION 5 [16, Theorem 1.3]. Any semigroup that satisfies the identities

3 a? ayryr = ayx, ryrir & rzoyc

is finitely based.

CONDITION 6 [17, Theorem 3.3]. Any semigroup that satisfies the identities

P xa? 2lyr mayr, ryr® ~oyr,  cyrze & xyzr

is finitely based.

CONDITION 7. Any semigroup that satisfies the identities

et ra? Py xayr, wyir~ysly, ayzr x czyx

is finitely based.

CONDITION 8. Any semigroup that satisfies the identities

Byz~ayz, Py~ ayd, wyr? =By, ayry ~ oyt

is finitely based.

CONDITION 9. Any semigroup that satisfies the identities

et ra? Py xayr, ryxy =iyt ay’z~oczy?

is finitely based.
CONDITION 10. Any semigroup that satisfies the identities
B ra? 2Pyrxayr, wyr? ~oyr, 2y xyie?, 2yt x eyl
is finitely based.
CoNDITION 11 [18, Theorem 5.1]. Any semigroup that satisfies the identities
et ra? Py xayr, Py ~oye®, 2Py xayle,  cyrie = czeyx
is finitely based.
CONDITION 12 [22; Proposition 3.2]. Any semigroup that satisfies the identities
ot~ a? x(yx)® mayr, 2?yPa? = a?y2?,  (2%9?)% = (2%°)?,  ayzar ~ zzoyc
is finitely based.
CONDITION 13 [22, Proposition 3.2]. Any semigroup that satisfies the identities
o~ a2, z(yr)t mayr, 22yta? = 2%y2?,  (2%°)% = (2%9°)?,  ayzar = xzzoyx

is finitely based.

https://doi.org/10.1112/51461157014000412 Published online by Cambridge University Press


https://doi.org/10.1112/S1461157014000412

10 E. W. H. LEE AND W. T. ZHANG

CONDITION 14. Any semigroup that satisfies the identities

4 o

st~ 2?, wPr~ayr, wyrd = ayr, 2Pyr ~ooyr?,  zyeze x alyzx,  cyry < oytc

is finitely based.

ConDITION 15 [23, Corollary 4.6]. Any semigroup that satisfies the identities
Sy~ a2y, xS xay?, 2yr~ayr, olyrxoyr?,  ayzaze = 2?yzr,  xyzy = xy?
is finitely based.
CONDITION 16 [31, Theorem 22|. Any finite semigroup that satisfies the identity
hxyk ~ hyzk
is finitely based.
CONDITION 17 [35, Theorem A]. Any semigroup that satisfies the identity
hxyzk ~ hxy’k
is finitely based.
CoNDITION 18 [35, Theorem A]. Any semigroup that satisfies the identity
hxkzyt ~ ha’ky?t

is finitely based.

CoNDITION 19 [19, Condition 9]. Any semigroup that satisfies the identities

et ra? Pyrxayr, xyd® =23y, zyry ~ xyie

but violates both of the identities
zyzy ~ x2y%,  zyir ~ xyx
is finitely based.

CONDITION 20. Any semigroup that satisfies the identities

22~ 22, zha®~zhe, x*hxk~ 2hk,

chykzy ~ chykyr, zhyzy ~ zhy’z, zykry ~ zykyz, zyzy ~ zy’z
but violates the identity
h2zyzy ~ h2x*y?
is finitely based.

Conditions 3, 7, 8, 9, 10, 14, and 20 are established in §§4-10.

It is routinely verified, with the aid of a computer, that 14534 of the 14600 pairwise
distinct non-unital semigroups of order six are finitely based by Conditions 1-20 or their
dual conditions. Multiplication tables of the 66 sporadic cases to which the twenty sufficient
conditions do not apply are listed below in lexicographical order; the underlying set of each
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semigroup is {1,2,3,4,5,6}, and each multiplication table is represented by a 6 x 6 array where
the (4, j)-entry denotes the product of the elements i, j € {1,2,3,4,5,6}.

111111 111111 111111 111111 111111 111111 111111 111111 111111 111111
111111 111111 111111 111111 111111 111111 111111 111111 111111 111111
111113 111123 113156 113156 113333 113356 123156 123333 123456 123456
111314 444444 121411 444444 114444 123456 444444 123456 124365 44444 ()
555555 111123 555555 113656 123456 555555 123656 125555 555555 444444
123456 123456 556513 666666 124365 556613 666666 125634 666666 456123

§11 §12 §13 §14 §13 §13 §14 §13 §13 §13

111111 111111 111111 111111 111111 111111 111111 111111 111111 111111
111111 111111 111112 111112 111112 111112 111112 111112 111112 111112
123456 333333 111112 111113 111113 111113 111113 111113 111113 111113
444444 333456 111214 111214 111214 111214 111214 111214 111224 111224 (g
445444 555555 555555 112111 112111 112112 113151 113153 112224 112224
446445 553456 123456 121456 122456 122456 121416 121416 121456 122456

§11 §14 §11 §15 §15 §15 §12 §12 §15 §15

111111 111111 111111 111111 111111 111111 111111 111111 111111 111111
111112 111112 111112 111112 111112 111112 111112 111112 111112 111112
111113 111113 111113 111113 111113 111113 111113 111113 111113 111113
112111 112111 112112 112112 112121 112122 112141 112141 112142 113454 (¢
555555 555555 555555 555555 112123 112123 113151 113151 113153 133454
121456 122456 121456 122456 121446 122446 121416 122446 122446 113456

§16 §16 §16 §16 §17 §17 §18 §19 L §17

111111 111111 111111 111111 111111 111111 111111 111111 111111 111111
111112 111112 111112 111112 111112 111112 111112 111112 111112 111112
111113 111121 111121 111122 111122 111141 111141 111142 111142 112123
113455 123444 444444 123444 444444 444444 444444 444444 444444 444444 (g
133455 123445 444445 123445 444445 555555 555555 555555 555555 112123
133456 123446 123446 123446 123446 123416 123446 123416 123446 123456

§17 §20 §16 §20 §16 §21 §21 §21 §21 §11

111111 111111 111111 111111 111111 111111 111111 111111 111111 111111
111112 111112 111112 111113 111113 111113 111113 111113 111113 111122
112125 333333 333333 111133 111133 111133 333333 333333 333333 111133
112224 333313 333313 111344 123444 444444 123451 123451 123453 444444 ()
112225 555555 555555 123455 123455 123455 123453 123541 123543 113156
123556 123416 123436 123466 123466 123466 666666 666666 666666 133156

§15 §21 §21 §20 §22 §22 §22 §23 §23 §23

111111 111111 111111 111111 111111 111111 111111 111111 111111 111111
111122 111122 111122 111122 111122 111122 111122 111122 111123 111123
111133 112133 123111 123122 333333 333333 333333 333333 333333 333333
444444 444444 444444 444444 333344 444444 444444 444444 123411 123423 (g
113456 123456 111456 111456 121156 111456 121456 333456 111156 111156
133456 123456 444165 444165 121256 114456 124456 443456 666666 666666

§24 §24 §25 §25 §23 §26 §26 §26 §27 §27

111111 111111 111111 111111 111111 111116
111123 111223 121256 122256 122446 111236
333333 333333 333333 122256 123456 123236
123433 123456 121256 123456 644221 111456 (©)
333356 123456 126256 555555 644221 145456
666666 666666 666666 566612 666666 666661
§27 §27 §14 §13 §13 A

For each X € {&,%,...,9}, let X,, denote the nth semigroup in row (X) above. The
semigroups %y and % are isomorphic to the non-finitely based semigroups L and A3,
respectively. The remaining 64 semigroups are shown to be finitely based in §§11-27.
Specifically, it is indicated below each multiplication table the section in which the semigroup
is shown to be finitely based. Consequently, among the 14 600 pairwise distinct non-unital
semigroups of order six, only A§ and L are non-finitely based.
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As observed in § 1, the monoids B3 and A} are the only non-finitely based semigroups among
the 1373 pairwise distinct monoids of order six [19]. The proof of the main theorem is thus
complete.

REMARK 3.1. There is no redundancy with Conditions 1-20 since they are distinguished by
semigroups with the following multiplication tables.

111111 111111 1117111 1111117 111111 111111 111111 111111 111111 111111
121111 111111 111111 111111 111111 111111 111112 111111 111122 111122
113156 111133 111113 111113 111134 111133 111113 112111 111133 111211
444444 444444 111211 111114 113434 113434 113453 111456 111144 111144
113656 111456 113153 111335 111156 111155 113543 555555 122456 111155
666666 444165 111116 113456 115656 113456 121116 555614 144265 123156
S1 So Ss3 Sy Ss Se S7 Ss So S1o

111111 111116 111111 1111117 111111 111111 111111 111111 111111 111111
111111 111236 111112 111112 111111 111111 111111 122456 111112 111111
111114 123116 123452 123152 111133 111113 111112 122456 113451 111134
111144 111456 124532 444444 444444 111114 123453 122456 444444 444444
113455 145116 125342 125132 123456 111135 555555 124456 445134 113456
113466 666661 111116 111416 123465 123156 111112 666666 121116 666666
S11 S12 S13 S1a S1s S1e S17 S1s S19 Sa0

Specifically, the semigroup S, is finitely based by Condition n if and only if m = n.

PART II. SUFFICIENT CONDITIONS FOR THE FINITE BASIS PROPERTY
4. On Condition 3
Let X(4.1) denote the variety defined by the identities

Py~ 2y, xyd ~ay? (4.1a)
TYT X YTy, (4.1b)
TYT A TYTY. (4.1c)

Then Condition 3 is equivalent to the following result.
PROPOSITION 4.1. All subvarieties of X (4.1 are finitely based.

It is shown in §4.1 that X(4.1) = Ao V N3. The proof of Proposition 4.1 is then given in
§4.2.

4.1. Identities satisfied by X 4.1)
LEMMA 4.2. For any k > 2, the identity (4.1c) implies the identity

(xlxg...xk)g ~ (.Tll‘g...l‘k)z. (42)

Proof. The identity (4.1c) clearly implies the identity (z172)% ~ (z122)?, which in turn

)

implies the identity (4.2) for any k > 2. O

LEMMA 4.3 [21, Theorem 4.1]. The variety Ao is defined by the identities (4.1) and
3~ x?, (4.3)

PROPOSITION 4.4. The equality X(4.1) = Ao V N3 holds.
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Proof. Tt is routinely verified, either directly or by Lemmas 2.1(vi) and 4.3, that Ag and N3
satisfy the identities (4.1). Hence the inclusion Ag V N3 C X4 1) holds. To complete the proof,
it remains to show that any nontrivial identity w ~ w’ satisfied by Ag V N3 is implied by the
identities (4.1). Since Ag satisfies the identity w = w’, the identities {(4.1), (4.3)} imply the
identity w =~ w’. Hence there exists a deduction sequence

W=20=2 = = Z. =W, (4.4)

where each deduction z; = z;; involves an identity from {(4.1), (4.3)}. For each j, since Ay
satisfies the identity w ~ z;, it is easily shown that con(w) = con(z;).

Let con(w) = {z1,...,z;}. If k = 1, then the assumption w # w’ and Lemma 2.1(vi) imply
|w|, |w’| > 3, whence the identity w ~ w’ is implied by the identities (4.1a). Thus assume
k > 2. Suppose that some deduction z; = z;11 in (4.4) involves the identity (4.3). Then
z; = eu”f and z;, = eu’f for some e,f € X*, ue X*, and {p, ¢} = {2,3}. If either e # 0 or
f # (), then

» (4.1a) q
z; =eu’f = eulf=1z;,,.

If e = f = (), then since |u| > |con(w)| > 2,

» (4.2) q
zZ;, =10 = U =1Zj41.

Therefore any deduction z; = z;41 in (4.4) that involves the identity (4.3) can be replaced
by a deduction that involves an identity from (4.1a) or (4.2). Hence the identity w ~ w' is
implied by the identities {(4.1), (4.2)}. It follows from Lemma 4.2 that the identity w ~ w’
is implied by the identities (4.1). O

COROLLARY 4.5. The variety X 4.1 satisfies the identities

2yr ~ zyz® ~ zyz, (4.5a)

ryrzr ~ riyze. (4.5b)

Proof. Tt is routinely shown, either directly or by Lemmas 2.1(vi) and 2.4, that Ay and N3
satisfy the identities (4.5). The result now follows from Proposition 4.4. O

4.2.  Proof of Proposition 4.1

Let V be any proper subvariety of X(4.1). Then by Proposition 4.4, either Ag ¢ V or N3 ¢ V.

Casel: Ag ¢ V. Then by Lemma 2.8, the variety V satisfies the identity « : (22y?)3 ~ 22y?.
Since
4.5b) (4.52)

a (
2,2 22,2222 U phyt2y? R

Y mrYy YTy Y TYyry,

the variety V satisfies the identity xyzy ~ x%y%. Since V satisfies the identities {(4.1), (4.5)},
it satisfies the identities in Condition 15 and so is finitely based.

Case 2: N3 ¢ V. Then it follows from Lemma 2.1(vi) that the variety V satisfies the

identity 23 ~ 22 and so, by Lemma, 4.3, is a subvariety of Ag. Since every subvariety of Ag is
finitely based [14, Corollary 4.3], the variety V is finitely based.
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5. On Condition 7
Let X(5.1) denote the variety defined by the identities

3Hz ~ zHaz, (5.1a)
zylr ~ yrly, (5.1b)
TYZX A TZYX. (5.1c)

Then Condition 7 is equivalent to the following result.
PROPOSITION 5.1. All subvarieties of X (5.1 are finitely based.

It is shown in §5.1 that X(51) = Ag V N3 V Zs. The proof of Proposition 5.1 is then given
in §5.2.

5.1.  Identities satisfied by X5.1)
LEMMA 5.2. The identities (5.1) imply the identities

rHzKz ~ 2?HKz, (5.2a)
rHyzKz ~ xHzyKz, (5.2b)
zHyKzy ~ zHyKyz, zyHxzKy ~ yzHzKy. (5.2¢)

Proof. It is easily shown that the identity (5.1c) implies the identities (5.2a). Since

(5.1a 3 (5.2a) (5.1¢c)
cHyzKe  ~ 2°HyzKz = zHayzaKe =~ zHxzyxKe

5.2a 5.1a
( ~ ) z3HzyKz ( ~ ) rHzyKz,

the identities (5.1) imply the identities (5.2b). Since

) (5.1b)

5.1 5.2
rHyKxy ( %a) 23 Hy3Kzy ( ~ z?Hy?Kyz?y z?Hy?Kzy?z

(5

2a 5.1a
~ ) 3Hy* Ky ( ~ ) rHyKyzx,

the identities (5.1) imply zHyKzy ~ xHyKyz. By a symmetrical argument, the identities (5.1)
also imply xyHxKy ~ yrHxKy. Hence the identities (5.1) imply the identities (5.2c¢). O

In this section, a non-simple word w is said to be in canonical form if

e

w =’z ... TP Y. Yso,
where all of the following are satisfied:
(I) xg,x1,...,x, are distinct non-simple letters of w in alphabetical order;
(II) eo € {1,2} and ey, ..., e, € {2,3};
(ITI) y1,...,ys are distinct simple letters of w in alphabetical order.
Note that if the above word w in canonical form does not contain any simple letter, then s = 0
and y; ...ys = 0.

LEMMA 5.3. Let w be any non-simple word with h(w) = t(w). Then there exists some word
W in canonical form such that the identities (5.1) imply the identity w ~ W.
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Proof. By Lemma 5.2, it suffices to convert w, using the identities {(5.1), (5.2)}, into a word
in canonical form. By assumption, w = zuz for some u € X*. The identities (5.2a) can be used
to group every z in u with the first z in w, resulting in a word z®u’z, where e = occ(z,u) + 1
and u’ is obtained from u by removing all occurrences of z. The identities (5.2b) can then be
used to arrange the letters of u’ in any order. Specifically, the non-simple letters of u’ can be
grouped to the left in alphabetical order to form a prefix of u’, while the simple letters of u’
can be grouped to the right in alphabetical order to form a suffix of u’. The resulting word
is of the form z°x{' ... xfry; ... ysx for some ey, ..., e, > 2. The identities (5.1a) can be used
to reduce the exponents, so that e € {1,2} and ey,...,e, € {2,3}. The resulting word is in
canonical form if x alphabetically precedes 1. If x does not alphabetically precede x1, then

e S A T R T ©2 xS Ly
(5£C) x?_lxemgz XYY Ys T T
O R AR B e TR I
and the factors z¢*1 25? ... 2% in the latter word can be alphabetically ordered by the
identities (5.2b), resulting in a word in canonical form. O

LEMMA 5.4. Let w be any connected word. Then there exists some word W in canonical
form such that the identities (5.1) imply the identity w ~ W.

Proof. By Lemma 5.2, it suffices to convert w, using the identities {(5.1), (5.2)}, into a word
in canonical form. Since w is connected, the letter z = h(w) occurs at least twice in w. Hence
w = zuxv for some u,v € X* such that z ¢ con(v). If the factor v is empty, then the result
follows from Lemma 5.3. Therefore assume that v is nonempty, whence w = zuzyv’ for some
y € X and v € X*. There are two cases to consider.

Case 1: y ¢ con(u). Since w is connected, the factors zux and yv’ cannot be disjoint. It

(5.2b)
follows that u and v’ share some common letter, whence w = zuzyv’  ~  zuyzv’.

5.2
Case 2: y € con(u). Then clearly w = zuzyv’ ( %C) Tuyxv’.
In either case, the identities (5.2) can be used to interchange the last « in w with the letter y
that immediately follows it. It is easily seen that the resulting word is connected. The same
argument can be repeated to move the last z in w to the right until it becomes the last letter

5.2
of the word. Hence w =~ zuvz and the result now holds by Lemma 5.3. O
PROPOSITION 5.5. The equality X 5.1y = Ao V N3 V Zj holds.

Proof. By Lemma 2.5, the semigroup Ay x N4 x Zs is idempotent-separable. Therefore by
Lemma 2.6(i), there exists some basis ¥ for Ag x N1 x Zs that consists of identities formed by
connected words. It is routinely verified, either directly or by Lemmas 2.1 and 2.4, that Ay,
Ny, and Zy satisfy the identities (5.1). Hence the inclusion Ag V N3V Zy C X5y holds.
To complete the proof, it remains to show that any identity w ~ w’ in ¥ is implied by the
identities (5.1).

By Lemma 5.4, the words w and w’ can be chosen to be in canonical form. Since N satisfies
w ~ w’, it follows from Lemma 2.1(v) that con(w) = con(w’) and sim(w) = sim(w’), whence
w = 25’2 ... xfryr .. ysto and W= xgascill ...xf«;yl ... Yso for some eg, e € {1,2} and
e1,€el,...,er el € {2,3}. Since Zy satisfies w &~ w’, it follows from Lemma 2.1(viii) that
e; = e} for all 4. Hence the identity w ~ w’ is trivial and is implied by the identities (5.1). O
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5.2.  Proof of Proposition 5.1

Let 'V be any proper subvariety of X(51). Then by Proposition 5.5, the variety V does not
contain one of the following semigroups: Ag, N2, and Zs.

Case 1: Ag ¢ V. Then it follows from Lemma 2.8 that the variety V satisfies the identity
a: (2%y?)3 ~ 2%y?. Since

(

@ 9.9 9.9 9 9

2.2 & 5le) 5 5 (51a)
ry =~ryryry = rYyry = Iryry,

the variety V satisfies the identity zyry ~ x?y%. It is then routinely shown that V satisfies
the identities in Condition 15 and so is finitely based.

Case 2: NJ ¢ V. Then it follows from Lemma 2.9 that the variety V satisfies the identity
B : h?(xh?)® ~ h%xh?. Since

3 (5.1a) 3

z(yx)® = x yx?’yacyx( '

5.2a) B (5.2a) (5.1a)
< p2yalyatys? & oyt R o

x’yr &~ zyx

and

B (5.2a) (5.1a)
22yr? R p2yalyntyn? w0 2SR R atyPa?,

the variety V satisfies the identities x(yr)? ~ xyx and r?y®x? ~ 2%yax?. It is then routinely

shown that V satisfies the identities in Condition 12 and so is finitely based.

Case 3: Zy ¢ V. Then it follows from Lemma 2.1(viii) that the variety V satisfies the
identity 2% ~ 22. It is easily shown that V satisfies the identities in Condition 6 and so is
finitely based.

6. On Condition 8
Let X(6.1) denote the variety defined by the identities
Byz~ryz, y~ayd, wyd® =2y, ayry ~ e (6.1)
Then Condition 8 is equivalent to the following result.

PROPOSITION 6.1. All subvarieties of X .1y are finitely based.

Some preliminary results are established in §§6.1 and 6.2. The proof of Proposition 6.1 is
then given in §6.3.

6.1. Identities satisfied by X (¢ 1)
LEMMA 6.2. The identities (6.1) imply the identities

wyz ~ xylz ~ zy2d = xyz, (6.2a)
ryx’z ~oxyz,  wyzy’ < Tyz, (6.2b)
rHyKzy =~ zHyKyz. (6.2¢)

Proof. Tt is easily seen that the identities (6.1) imply the identities {(6.2a), (6.2b)}. Note
that the fourth identity in (6.1) implies the identity « : y?z2y ~ y?xyx. Since

6.2a 6.2b p
rHyKxy ( = ) cHyKzaz?y ( = ) :EHme(nygy) ~ cHyKzy?zyx

6.2b 6.2b
( =~ ) zHyKz2yx ( Y ) rHyKyx,

the identities (6.1) also imply the identities (6.2c). O
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6.2. A canonical form

In this section, a word w with ini(w) = zg . ..z, is said to be in canonical form if the following
are satisfied:
(I) if m = 0, then w is any one of the words

2,3 4.
To, Ty, Ty, Lo, (63&)
(IT) if m = 1, then w is any one of the words
2 3 2 2 2 2 2 2.2 .
ToT1, THLL, THL1, LoTT, THTT, TOT1Z0, THT1L0, TOLTT0, THLTL0; (6.3b)

(IIT) if m > 2, then

m

w =z’ H(mfwz) (6.4)

i=1

where e; € {1,2} and w; € {z{}". ..xlffll | fo,--., fiz1 €{0,1}}.

LEMMA 6.3. Let w be any word. Then there exists some word W in canonical form such
that the identities (6.1) imply the identity w ~ W.

Proof. Suppose ini(w) = xq ... 2Z,. Then by Lemma 6.2, it suffices to convert w, using the
identities {(6.1),(6.2)}, into a word in canonical form. This is routine if m € {0,1}. Hence
assume m > 2. Then w can be written as w = [/ (z;u;) for some u; € {zo,...,z;}*. Since
the letters in each u; are non-first occurrences in w, the identities (6.2¢) can be used to arrange
them, within wu;, in any order. Specifically, any occurrence of z; in u; can be moved to the left
and grouped with the singleton factor x; that precedes u;, and any remaining letters in u; can
be ordered according to their indices. Thus w can be converted into the word in (6.4) with
e; > 1 and w; € {z° ...z{i‘f | fo,.-.,fi—1 = 0}. The identities {(6.2a), (6.2b)} can then be

applied so that e; € {1,2} and w; € {z{* ... 2/ | fo,..., fi_1 € {0,1}}. O

LEMMA 6.4. Let V be any subvariety of X .1y that satisfies an identity w ~ w’.
(i) Ifini(w) # ini(w’), then V is finitely based.
(ii) If occ(z, w) # occ(x, w’) (mod 2) for some x € X, then V is finitely based.
(iii) If occ(z,y,w) # occ(z,y, w') (mod 2) for some x,y € X, then V is finitely based.

Proof. Tt is shown in each of the following parts that V satisfies the identity zyz ~ z2y and
so is finitely based by Condition 4.

(i) Suppose ini(w) # ini(w’). Then L} ¢ V by Lemma 2.1(iii). If 2%, 2%y*2?, and z*zy* are
distinct elements in the V-free semigroup Fy over X, then they form a subsemigroup of Fy
isomorphic to L3, and this implies the contradiction LY € V. Hence these three elements of Fy,
cannot be distinct, so that V satisfies either 2* ~ z*y?z?, 2* ~ z*2%y?, or zy*z? ~ z*2%y?;
it is easily seen that any one of the first two identities implies the third identity, whence V

satisfies the third identity. It follows that V satisfies the identity o : 23?22 ~ 2222y2. Since

(6.2a) (6.2b) o (6.2)
zyr ~ 2yz m (2P (xy)?y)y = 2y (ay)Py R 2Py,

the variety V satisfies the identity zyz ~ z2y.
(ii) Suppose occ(x, w) # occ(z, w’) (mod 2) for some x € X. Then V satisfies the identity
B :x* ~ 23. Since
6.2 3 6.2b 6.2
zTyT 2 yx® ~ ptya? ©2» zty 62 z?y,

the variety V satisfies the identity zyz ~ z2y.
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(iii) Suppose occ(x,y,w) Z occ(z,y,w’') (mod 2) for some z,y € X. Then by parts (i)
and (ii), it suffices to further assume:

(a) ini(w) = ini(w’);

(b) occ(z,w) = occ(z, w') (mod 2).
Write w = wiyws and W = wiyw) where w1, wo, W, W) € X'* are such that y ¢ con(wyw?).
Let e; = occ(z, w;) and e, = occ(x,w}). Then e; = occ(x,y, w) # occ(x,y,w') = e} (mod 2)
by assumption, whence (e1,e}) # (0,0). If either e; or €] is zero, then (a) is violated. Thus
e1,€) > 1. By symmetry, it suffices to assume:

(¢) e1 €{1,3,5,...};

(d) ¢ € {2,4,6,...}.

b
Since e; + e2 = occ(x, w) (E) occ(z,w') = ¢} + ¢} (mod 2), it follows that es # e} (mod 2).
Let r € {0,1} be such that e; +7 = 1 (mod 2) and ¢, + r = 0 (mod 2). Let ¢ denote the

substitution
. {y2 ift =y,

2?2 ift € X\{z,v}.
Then wyp = 2 72% for some k > 0, and wop € {z,y?}* with occ(x, wap) = ey + 2¢ for some
£ > 0. In view of (c),

(6.2a) (6.2b)

(wolyz" = wip-yp-wap-yz" & ay’(wap)yz" ~ ay’zya”
6.2 6.2¢
( ,.&,C) xyBxez-‘r'r' ( %d) Ty

Similarly, W/} = 2€1t2¥ for some k' > 0, and whe € {x,y2}* with occ(x, whep) = €, + 2¢' for
some ¢ > 0. In view of (d),

(6.2a) (6.2b)

(Woya" = wig-yp-who-ya" = 2’y (whelya” & a’yaiya”
(ch) xzy?’xe;-&-r (ng) 1'2@/3 (Géa) x2y.
Consequently, V satisfies the identity zyz ~ z2y. O

LEMMA 6.5. Let w and w' be any words in canonical form such that |con(w)| > 3. Suppose:
(i) ini(w) = ini(w');
(ii) occ(z,w) = occ(z, w’) (mod 2) for all z € X;

(iii) occ(z,y, w) = occ(x,y, w') (mod 2) for all x,y € X.

Then the words w and w’ are identical.

Proof. By assumption, ini(w) = xq ... Z,, for some m > 2. It follows from (i) and (III) that

m m

w = z° H(xfwl) and w' = x86 H(xf/w:)

i=1 i=1

for some e;, e} € {1,2} and w;, w} € {xgo ...a:fcfll | fo,--., fi—1 € {0,1}}. Tt is obvious that
ocC(Zym, W) = e, and occ(Z,,, w') = e}, so that e,, = e/, by (ii). For each ¢ < m, since

occ(x;, Tip1, W) = €; and occ(x;, 41, W) = €, it follows from (iii) that e; = e}. Therefore

(e0y---yem) = (€, ..., €,).
If (Wi,...,Wip—1) = (Wi,...,w,,_;) and w,, # W, say ; € con(w,,)\con(w?,) for some
J < m, then (ii) is violated because
occ(xj, w) = occ(z;, 0 2] W1z  Wa . .. 20 Wy 1) + occ(x, 25wy,

’
€

’ ’ ’
_ . €0,.€1 ! €2,/ m—1__/
= occ(z;, 2T WITP Wy ... 2 W, )+ 1
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and

occ(x;,w') = occ(xj,Jc(e)f’scflw'langéw’2 coex, T whg) 4 oce(wy, 2w )

m—1
. (z; ey €y 1 ey =1 ) )+0
= occ(zj, ) x Wi Wh . x, W .

m—

Hence w,,, = w;,,. Suppose that ¢ < m is the least integer such that w, # w}, say k < £ is such
that x € con(wy)\con(wy}). Then (wi,...,we_1) = (W},...,W,_;), whence (iii) is violated
because

€r—1 e
ocC(Zy, Tep1, W) = occ(p, 2" T Wia* Wo ... 2, Wy_1) + occ(z, x5 W)

e/ 8’ e/ 6/7
= occ(@k, 2T Wiz Wh ... 1, wy_) + 1

and
, ey €1 1 €y €1y -
occ(T, Te41, W') = occ(xp, T T WL Wy ..., ' Wy ) + occ(xy, x, W)
’ ’ ’ /7
— €0 .61 xy! €2 xxr/ €r—1__ 1
= 0cC(Zp, Ty’ Wi T’ Wy ... 2, ' Wy_1) + 0.
Thus (W1,...,W,,) = (Wh,..., W’ ), so that w = w'. O
1, y Wm, 1> sy Wan )y

6.3. Proof of Proposition 6.1

Let V be any proper subvariety of X.1). Then V = X(s1)X for some set ¥ of nontrivial
identities. By Lemma 6.3, words that form the identities in ¥ can be chosen to be in canonical
form. Let w &~ w’ be any identity in ¥. By Lemma 6.4, the variety V is finitely based if w
and w’ violate any of the following conditions:

(a) ini(w) = ini(w’);

(b) occ(z,w) = occ(xz,w’) (mod 2) for all x € X;

(¢) occ(z,y,w) = occ(x,y,w’) (mod 2) for all x,y € X.
Hence assume that w and w’ satisfy (a)—(c). If the identity w ~ w’ involves at least three
distinct letters, then it is trivial by Lemma 6.5, contradicting the choice of identities for X.
Therefore w ~ w’ involves at most two distinct letters, whence w and w’ are from (6.3). Since
w =~ w’ is arbitrary in 3, it follows that ¥ contains finitely many identities. (In fact, since the
identities in ¥ satisfy (a)—(c), it is easily shown that ¥ C {23 ~ z, 2* 2 23y ~ ayl})

~T

REMARK 6.6. It is routinely shown that N3 and the orthodox completely regular semigroup
O ={a,b|a®>=ab=a,b*=1)

of order four belong to the variety X(s.1). From the proofs in this section, a proper subvariety
of X(6.1) satisfies one of the following identities:

ot~ 2?, (6.5)
ryzr = r’y. (6.6)

By Lemma 2.1(vi) or direct verification, the semigroup N3 does not satisfy the identity (6.5).
The semigroup O does not satisfy the identity (6.6) because bab # b%a in O. Consequently,
the variety X ¢.1) is generated by N3 and O.

7. On Condition 9
Let X(7.1) denote the variety defined by the identities

23Hz ~ zHz, zyzy ~ 2%y%, v’z ~ zz2°. (7.1)

Then Condition 9 is equivalent to the following result.
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PROPOSITION 7.1. All subvarieties of X (7.1 are finitely based.

It follows from Lemma 2.1(i) that the variety X(7) contains the semigroup Lo. All
subvarieties of X(7 1) that contain L are shown to be finitely based in §7.2, while those
that do not contain Lo are shown to be finitely based in § 7.3. The proof of Proposition 7.1 is
thus complete.

7.1. Identities satisfied by subvarieties of X (7 1)
LEMMA 7.2. The identities (7.1) imply the identities

et 2?, PByrxaoyr, ayxd® = ayr, (7.2a)
zHryr? ~ zHry, (7.2b)

ha?y ~ hyz?, (7.2c)

)

hxyKaTy =~ hyzKaxTy, xHrxyKy =~ zHyzKy, aHyKzy ~ sHyKyz. (7.2d
Proof. 1t is clear that the identities (7.1) imply the identities (7.2a)—(7.2¢). Since

7.2a 7.2c 7.1 p
hyxKxTy ( Y ) hyy?2?eKa Ty ( A ) ha*yzy’KeTy (%) ha®y®Ka Ty
(7.2a)
=~ hrxyKzTy,
the identities (7.1) imply hayKaeTy ~ hyaKaTy in (7.2d). A similar argument shows that (7.1)
also imply the other identities in (7.2d). O

LEMMA 7.3. Let V be any subvariety of X 7.1y that satisfies an identity w ~ w'. Suppose
that any of the following holds:

(i) either con(w) # con(w’) or sim(w) # sim(w’);

(ii) occ(z, w) # occ(z, w’) (mod 2) for some x € X;
(iii) occ(z,y,w) Z occ(z,y, w') (mod 2) for some x € con(w) and y € sim(w).
Then V is finitely based.

Proof. Tt is shown that each of (i)-(iii) implies that V satisfies the identity zyr ~ 2%y and
so is finitely based by Condition 4.

Suppose that (i) holds. Then N4 ¢ V by Lemma 2.1(v). Hence by Lemma 2.9, the variety V
satisfies the identity h2(xh?)® ~ h2xh?; this identity can be converted into «a : h2x® ~ h%x by
the identities (7.2b). Then V satisfies the identity zyx ~ 2%y because

7.2¢ 7.2¢ 7.2 7.2d
Tyx o Byz ~ Py’ 2 ry’z 72 ryzy? o 2P = 2%y

Suppose that (ii) holds. Then it is easily shown that V satisfies the identity 3 : 23 ~ 2?; it

also satisfies the identity zyxr ~ 22y because
7.2 7.2b
Tyx T2 iy’ £ 2y’ ) z2y.

Suppose that (iii) holds, that is, occ(z,y, w) # occ(x,y, w') (mod 2) for some z € con(w)
and y € sim(w). As established in the last two paragraphs, V is finitely based if (i) or (ii) holds.
Hence it suffices to further assume that (i) and (ii) do not hold, that is, con(w) = con(w’),
sim(w) = sim(w’), and occ(z, w) = occ(x, w’) (mod 2). Since y € sim(w) = sim(w’), it follows
that w = wiywy and w' = wiyw) for some wy, wo, Wi, w) € (X\{y})*. Let e; = occ(z, w;)
and e} = occ(z, w}). Then e; = occ(x,y, w), €} = occ(z,y, w'), and

e1 + ez = occ(x,w) = occ(r,w') =€} +¢e5) (mod 2).
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Since e; # €} (mod 2) by assumption, it follows that es # e} (mod 2). By symmetry, it suffices
to assume that e; is even and e} is odd. Then there exists some r € {0,1} such that es + r is
even and e, + 7 is odd. Let ¢ denote the substitution z + 2?2 for all z € X\{z,y}. Then

(7.2a) 5 (7.2b)

22 (wp)r" 2 = 2% (wip)y(wap)z ™2 = 2%y2? = iy
and
7.2
B (Wp)rt = 2 (wWhp)y(whp)e 2 R aya,
so that V satisfies the identity zyz ~ z2y. O

7.2. Subvarieties of X 7.1y containing Lz

PROPOSITION 7.4. Let 'V be any subvariety of X7y such that Ly € V. Then V is finitely
based.

The proof of this result is given at the end of the subsection.

LEMMA 7.5. Let x € X and w,w’ € XT be such that con(w) = con(w’), sim(w) = sim(w’),
and z ¢ con(ww’). Suppose that the words w and w’ begin with the same non-simple letter.
Then X7 ) {w = W'} = X(7.y{zw =~ zw'}.

Proof. By assumption, w,w’ € 2X*2X* with z = h(w) = h(w’), so that the deductions

9. (7:22) 9., (1:28) . . . p R . .
zw =~ wand z°w’ = w’ hold. Since the identity xw =~ xw’ clearly implies the identity

2°w = 22w’, the inclusion Xfew =~ 2w’} C X(7.1){w ~ w'} holds. It is obvious that the
inclusion X 7.1){w ~ w'} C X(71){zw =~ zw'} also holds. O

Let w be any non-simple word with h(w) € sim(w) and let z1,...,x, be all its distinct
non-simple letters listed in alphabetical order. In this section, such a word is said to be in
canonical form if

W =

(yiw:) (7.3)

-

I
—

K2

for some m > 1 such that all of the following are satisfied:

(I) the letters yi, ...,y are all simple in w;
(IT) the letters of wy, ..., w,, € X* are all non-simple in w;
(III) Wi,..., Wy—1 € {27 .o 28 | er,...,e, € {0,1}};
(IV) w,, = :1:{1 ...xfr for some fi,...., f, € {0,1,2,3};
(V) if occ(xi,wl .. -Wm—l) =0, then fl S {2, 3},
(VI) if occ(x;, Wy ... Wi—1) = 1, then f; € {1,2};
(VII) if occ(w;, Wy ... Wpy_1) = 2, then f; € {0,1}.

LEMMA 7.6. Let w be any non-simple word with h(w) € sim(w). Then there exists some
word W in canonical form such that the identities (7.1) imply the identity w ~ W.

Proof. Generality is not lost by assuming that zi,...,z, are all the distinct non-simple
letters of w listed in alphabetical order. By Lemma 7.2, it suffices to convert w, using the
identities (7.2), into a word in canonical form. It is clear that w can be written in the form (7.3)
with (I) and (II) satisfied. The identities (7.2d) can be used to order the letters in each w;
alphabetically, resulting in w; € {z* ... x¢" | e1,..., e, > 0}. The identities (7.2a) can then be
used to reduce the exponent of each x;, so that w; € {7* ... 25" | e1,...,e, €{0,1,2,3}}. If
1 < m is such that w; contains the factor x?, then this factor can be moved by the identity (7.2¢)
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to the right and combined with the corresponding power of z; in w,,. Hence (III) is satisfied,
and w,, = xfl .zfr for some fi,...,f. > 0. The identities (7.2a) can be used to reduce
the exponents f1,..., f. in w,, appropriately until (IV) is satisfied. Since x; is non-simple
in w, it follows that occ(x;, w1 ... Wi,—1) + fi = occ(z;, w) = 2, whence (V) is satisfied. If
occ(zi, Wi ... Wy—1) = 1 and f; = 3, then the identities (7.2a) can be used to reduce the
exponent f; to 1. Thus (VI) is satisfied. Finally, if occ(z;, w1 ... wp,—1) = 2 and f; € {2,3},
then the identities (7.2b) can be used to reduce the exponent f; to 0 or 1, so that (VII) is
satisfied. O

Proof of Proposition 7.4. By assumption, V. = X7 )% for some set ¥ of identities. The
variety V is finitely based if ¥ contains some identity w ~ w’ that satisfies any of (i)—(iii) in
Lemma 7.3. Therefore it suffices to assume that every identity w &~ w’ in ¥ satisfies all of the

following:
(a) con(w) = con(w’) and sim(w) = sim(w’);
(b) occ(z ) occ(w w’) (mod 2) for all z € X;

(z,
(c) occ(z,y,w) = occ(z,y,w’) (mod 2) for all z € X and y € sim(w) = sim(w’).
Since Lo € V, it follows from Lemma 2.1(i) that any identity w ~ w’ in 3 satisfies the property
that h(w) = h(w’); by Lemma 7.5, the letter h(w) = h(w’) can be assumed to be simple in w
and w’. Hence by Lemma 7.6, the words w and w’ can be chosen to be in canonical form.
Let w =~ w’ be any identity from 3. By (a), the words w and w’ share the same simple
letters. By (c), the order of appearance of these simple letters is the same in w and w’. Hence

W= H(yiwi) and w' = H(yiwg).
i=1 i=1
It follows from (a), (c), and (III) that
(d) w; =w; for all i < m.
Now (IV) and (b) imply w,, = ' ...2f" and w/, = x{l ...l for some fi, f € {0,1,2,3}
with f; = f! (mod 2). Suppose f; < f! for some i. Then there are two cases: (f;, f/) = (0,2)
and (fi, f1) = (1,3). If (fi, f}) = (0,2), then

occ(Ti, W1 ... Wy—1) =2 by (VII) and occ(z;, w)...w,, ;) <1 by (V) and (VI).
It (flafz/) = (173)a then
occ(zi, W1 ... Wy—1) =1 by (VI) and (VII) and occ(z;,w)...wl,_1)=0 by (V).

m

Since Wi ... Wy,—1 = Wi ... W, _; by (d), both cases are impossible. Therefore f; = f/ for all i,
whence w = w’. Since the identity w ~ w’ is arbitrary in X, every identity in X is trivial.
Consequently, the variety V coincides with X7 1) and is finitely based. O

7.3. Subvarieties of X7 1) not containing Lo

LEMMA 7.7. Let V be any subvariety of X 7.1y that satisfies an identity w ~ w'. Suppose
h(w) # h(w’) with either h(w) € sim(w) or h(w’) € sim(w’). Then V is finitely based.

Proof. If either con(w) # con(w’) or sim(w) # sim(w’), then the variety V is finitely based
by Lemma 7.3. Therefore assume con(w) = con(w’) and sim(w) = sim(w’). Let x = h(w)

and y = h(w’). By symmetry, it suffices to assume z € sim(w) = sim(w’). Let ¢ denote the

i , . T2 N
substitution z — y? for all z € X\{z}. Then the deductions wy = zy* and w'y =~ y*z

hold, so that V satisfies the identity zy* ~ y?z; any subvariety of X(7 1) that satisfies this
identity is finitely based [9, Theorem 7.2]. O
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PROPOSITION 7.8. Let V be any subvariety of X 7.1y such that Lo ¢ V. Then V is finitely
based.

Proof. By assumption, V = X7y for some set 3 of identities. Let
Yo ={waw €X|h(w)=h(w)} and Xg={wmw €X]|h(w)#h(w)},

so that ¥ = ¥g U Xg. By Lemma 2.1(i), the variety X(7.1)¥q contains Ly and so is finitely
based by Proposition 7.4. It remains to show that X7 1)¥¢ is finitely based, so that the variety
V =X 7.1)Xg N X(7.1)Xe is also finitely based.

By Lemmas 7.3 and 7.7, the variety V is finitely based if some identity w ~ w’ from g
violates any of the following conditions:

(a) con(w) = con(w’) and sim(w) = sim(w’);

(b) h(w) is non-simple in w and h(w’) is non-simple in w’.
Hence it suffices to assume that any identity w ~ w’ in Yo satisfies (a) and (b).

Let 0 : w ~ w’ be any identity from Xg, so that h(w) =z # y = h(w'). Let p : X — X"
denote the substitution

{x2 if z=ux,
Z

y° otherwise.

. (7.2) 5 4 , (T2) 5 . -

Then the deductions wy =~ x?y? and w'p =~ y?z* hold, so that the identities {(7.2),0}
imply the identity

2y? ~ Pt (7.4)
Thus Xz y{o} = Xz.){(7.4),0}. It follows from (a) and (b) that w = zhyt for some
h,t € X* such that x,y € con(ht). Since

w (7£a) 3hy’t (75(:) 2yt rhyt (7;) yrr?rhyt (7 2 yiw,

the equality X(7.1y{c} = X(7.1){(7.4), 7} holds, where & is the identity y’w =~ w’ that satisfies
the property h(y*w) = h(w’).

Since the identity o is arbitrary in ¥g, the construction of ¢ from ¢ in the preceding
paragraph can be repeated on every identity in ¥g to obtain i@ = {0 | o € Xg}. It follows
that X7.1)Xe = Xz.n{(7.4)} N X7, 1)29 By Lemma 2.1(i), the bemigroup Lo satisfies
the identities in E@ and so belongs to X7, 1)29 Therefore X7, 1)29 is finitely based by
Proposition 7.4. Consequently, X 7.1)¥¢ is also finitely based. O

8. On Condition 10
Let X(g.1) denote the variety defined by the identities

2~ 2?, 2Pyr o~ ayr, zyr® = ayz, (8.1a)
22y? ~ y?a?, (8.1b)
22y2? ~ xy2a. (8.1¢)

Then Condition 10 is equivalent to the following result.
PROPOSITION 8.1. All subvarieties of X (g 1 are finitely based.

Some preliminary results are established in §§8.1 and 8.2. The proof of Proposition 8.1 is
then given in §8.3.
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8.1. A canonical form

Let w be any non-simple word and let x1,...,x, be all its distinct non-simple letters listed in
alphabetical order. In this section, such a word is said to be in canonical form if

W = sg H(Wisi) (8.2)

for some m > 1 such that all of the following are satisfied:
(I) the letters of sg, s, € X* and si,...,8,,_1 € X" are all simple in w;
(II) wi,..., Wy, € {2 .. 28" | eq,...,e, € {0,2}} with wy,..., Wy, # 0;
(ITI) con(wy) C ... C con(wyy,).
Note that (II) and (III) imply:
(IV) wy,, = 27 ... 22
LEMMA 8.2. Let w be any non-simple word. Then there exists some word W in canonical
form such that the identities (8.1) imply the identity w ~ W.

Proof. It suffices to convert w, using the identities (8.1), into a word in canonical form. Let
Z1,...,%, be all the distinct non-simple letters of w in alphabetical order. Clearly w can be
written in the form (8.2) such that (I) is satisfied and wy,...,w,, € {z1,...,2,}T. Suppose
x € con(w;)\con(w;y1), say w; = axb for some a,b € X*. Then since the letters = and
h = h(w;41) are non-simple in w,

(8.1a) 3 9
W = ... W;S; - W;11S;41... X ...ar szh Wit+1Si+1---
(8.1¢) 2 9 (8.1b) 2,9
~ ...azbs; - h°r*w; i 1S;41... & ...WiS; TR Wi 41841 - - -
(8.1a)
~ ... W;S; (IL‘WH_l)SH_l ey

that is, the identities (8.1) can be used to convert w;i1 into zw;11. It is easily seen how this
procedure can be repeated until w is converted into a word of the form (8.2) with (I) and (III)

satisfied. Since the letters of each w; are non-simple in w, apply the identities (8.1a) to replace
each letter x; in w; by its square z?, apply the identity (8.1b) to alphabetically order these
squares in w;, and apply the identities (8.1a) to eliminate any repeated squares. The resulting
factor is of the form z{* ...zt with ey,...,e, € {0,2}. Therefore (II) is satisfied. O

T

8.2. Some finitely based subvarieties of X g 1)

LEMMA 8.3. Suppose that V is any subvariety of X g1y that satisfies an identity w ~ w'
with either con(w) # con(w’) or sim(w) # sim(w’). Then V is finitely based.

Proof. Tt follows from the assumption and Lemma 2.1(v) that N3 ¢ V. Then by Lemma 2.9,
the variety V satisfies the identity o : h%(zh?)® ~ h?zh?. Since

(8.1a)

5 8.1b)
zyr = xyz

2)3 (Séa) 22 (y2a?)? ( L

8.1a
S (8.12)

2 8, 6 81 2
ry = Ty,

~ 22 (yx

the variety V satisfies the identity xyx ~ x?y?; any variety that satisfies this identity is finitely
based [34]. O

LEMMA 8.4. Suppose that V is any subvariety of X(s1) that satisfies an identity w ~ w’'
with Fss(w) # Fss(w’). Then V is finitely based.
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Proof. If either con(w) # con(w’) or sim(w) # sim(w’), then the variety V is finitely based
by Lemma 8.3. Hence assume con(w) = con(w’) and sim(w) = sim(w’). By Lemma 2.10, the
variety V satisfies the identity (2.3) with n = 2. It follows that V satisfies the identities in
Condition 6 and so is finitely based. O

LEMMA 8.5. Suppose that V is any subvariety of X (g 1y that satisfies an identity w ~ w’
with Weim # W/,. Then V is finitely based.

Proof. 1f either con(w) # con(w’) or sim(w) # sim(w’), then the variety V is finitely based
by Lemma 8.3. Hence assume con(w) = con(w’) and sim(w) = sim(w’). Since wWgm # Wi,
by assumption, there exist some distinct letters y,z € sim(w) = sim(w’) such that w €
X*yX*zX* and w' € X*2X*yX*. Let ¢ : X — XT denote the substitution

tr ift
= {acx if t € {y, 2},

T otherwise.

. 8.1a) (8.1a) . . .
Then the deductions w ( ~ ryrzr and w/p ~ zzxyx hold so that V satisfies the identity

ryxrzx ~ rzxyxr. Hence V satisfies the identities in Condition 11 and so is finitely based. [

8.3. Proof of Proposition 8.1

LEMMA 8.6. Let w and w’ be words and x and y be letters such that x € con(w) = con(w’)
and y € sim(w) = sim(w’). Suppose that the first occurrence of x precedes y in w, but y
precedes the first occurrence of x in w'. Then the identities {(8.1), w = w’} imply the identity

h*yx?h? ~ x®hPyz?h?. (8.3)

Proof. By assumption, w = wiyws and w’ = wiyw), for some w;, w; € (X\{y})* such that
x € con(wy)\con(w}). Let ¢ : X — X denote the substitution

22h?  ift ==,
t— {yxh? ift=y,

h? otherwise.

8.1 8.1
Then since the deductions h?(we)z2h? & 2?h2yx?h? and h?(w'@)x?h? & h2yxz%h? hold,
the identities {(8.1), w &~ w'} imply the identity (8.3). O

Let V be any proper subvariety of X(g1). Then V = X(31)% for some nonempty set X
of nontrivial identities. By Lemmas 8.3-8.5, the variety V is finitely based if some identity
w ~ w’ in ¥ does not satisfy any of the following conditions:

(a) con(w) = con(w’) and sim(w) = sim(w’);

(b) Fss(w) = Fss(w');

(C) Wsim = ngm'

Hence assume that (a)—(c) hold for every identity w ~ w’ in X.

Let w ~ w’ be any identity in X. By (a), the words w and w’ are either both simple or
both non-simple. If the words w and w’ are both simple, then by (c), the identity w ~ w’ is
contradictorily trivial. Therefore the words w and w’ are both non-simple, say with non-simple
letters x1,...,z,. By Lemma 8.2, the words w and w’ can be chosen to be in canonical form.
It then follows from (a)—(c) that

m

w=s H(Wisi) and w' =sg H(W;Si),

i=1 =1
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where

(d) wp, =a3...22 =w),
by (IV). But since the identity w ~ w' is nontrivial, con(wy;) # con(w}) for some j < m, say
x; € con(w;)\con(w’). Then z; ¢ con(wj ... w’) by (III), so that z; € con(w} ;... wy,). The
letter y = h(s;) € sim(w) = sim(w’) is preceded in w by the first occurrence of z; while y
precedes the first occurrence of z; in w’. Therefore by Lemma 8.6,

(&) Xsy{w = W'} = X s 1y {w = W', (8.3)}.
Choose any letter z, € con(wy). Then 2y € (-, con(w;) by (III). For any i < m, the factor w;
can be written in the form w; = azfb, where a = ' ... 27! and b = ;"' ... z&" for some
€1y y€0-1,€041,---,6r € {0,2}. Then by (d),

W = .. WiS;...WpSpy
(8.1b) 2 2 2 2 2 2
~ ...(abxp)s;... (T]... 27 TG .. 2T )Sm
(8:3) 2,2 2 2 2 2.2
~ ... (abxizy)s;. .. (@) .. w1 X . T5TE)S,
(8.3) 2 2 2 22 2 2 2 2 2
~ ...(abxy..owp g xp . xpy)si L (X Ty X . LTS,
(8.1b) 2+e 2+e 2
P 1 ce—1 2 2+ept 2+4er\a. 2 2 2.2 2
A (e, L g, T T )8 (0] T T - TS
(8.1a)
R WpSi... WpSh,

that is, w; is converted into wy,. This argument can be repeated on w; for every j < m, so
that the identities {(8.1), (8.3)} imply the identity w ~ so [}~ (W,s;). Similarly, the identities
{(8.1),(8.3)} imply the identity w’ ~ so [/~ (w/,s;). Therefore since

8.1),(8.3 m m 8.1),(8.3
w ( )z( ) So H(Wmsi) @ S0 H(w;nsi) ( )%( ) w,
el i=1

the identities {(8.1), (8.3)} imply the identity w &~ w’. It thus follows from (e) that the equality
Xy{w = w'} = X(5.1){(8.3)} holds. But the identity w ~ w’ is arbitrary in ¥. Therefore
X(s.1)2 = X(5.1){(8.3)}. Consequently, V is finitely based.

9. On Condition 14
Let X(9.1) denote the variety defined by the identities
ztx2?, axytexoyr, ayx® = ayc, (9.1a)
2yx ~ zyx?, xyrze ~ yzc, (9.1b)

Tyxy ~ TyT. (9.1c)
Then Condition 14 is equivalent to the following result.
PROPOSITION 9.1. All subvarieties of X (9.1 are finitely based.

It is shown in §9.1 that X(91) = Ao V L V Zs. The proof of Proposition 9.1 is then given
in §9.2.
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9.1. Identities satisfied by X (g 1)
LEMMA 9.2. The identities (9.1) imply the identities

rH2?Kz ~ xHKz, (9.2a)
zHy?Kz ~ zHyKz, (9.2b)
HyKzy ~ zHyKyz, (9.2¢)
rHyzyKz ~ zHy?zKz. (9.2d)

Proof. Tt is easily seen that the identities (9.1) imply the identities (9.2a). Since

9.2a 9.1a 9.2a
zHy Kz ( ~ ) cHz?y2 2K ( ~ ) zHz?yz* Ko ( = ) rHyKx,

the identities (9.1) imply the identities (9.2b). Since

9.2a 9.2a 9.1c
zHyKzy ( ~ ) zHyKy?zy ( = ) cHyKyz yzy ( = ) cHyKyz?y
)

2a
~
~

4 (9.2D)
zHyKy°x = zHyKyx,
the identities (9.1) imply the identities (9.2c). Since

9.2b . 9.2¢ 9.1b

zHy? 2Kz ( ~ ) zHy(yz)3Kz ( ~ ) zHy?23y?Ke ( ~ ) zHy? 23 yKae
(9.2b)
~  rHyzyKz,

the identities (9.1) imply the identities (9.2d). O

In this section, a non-simple word w is said to be in canonical form if

w =2’z .. alrag (9.3)
for some distinct letters zo,...,z,, with eg,...,e, € {1,2}. Note that if m = 0, then the

word w in (9.3) is zg° ™.
LEMMA 9.3. Let w be any connected word. Then there exists some word W in canonical
form such that the identities (9.1) imply the identity w ~ W.

Proof. By Lemma 9.2, it suffices to convert w, using the identities {(9.1), (9.2)}, into a word
in canonical form. Since w is connected, the letter zo = h(w) occurs at least twice in w. There
are two cases.

Case 1: h(w) = t(w). Then w = zpax, for some a € X*. The identities (9.1b) can be used
to group any x in a with the first zp in w, resulting in a word of the form x;°bzg, where

eo = 1 and b € (X\{zo})*. The identities (9.2d) can be used to group any non-first occurrence
9.2d
of any letter x in b with its first occurrence: xgcrdrexg ( = ) zocx?dexy. The resulting word

is of the form (9.3) with e; > 1. The identities {(9.2a), (9.2b)} can be used to reduce each e;
to a number in {1, 2}, resulting in a word in canonical form.

Case 2: h(w) # t(w). Then w = zpazoyb for some a,b € X'* and y € X with zy ¢ con(yb).
Since w is connected and its suffix yb does not contain the letter xg, the factor a is nonempty.
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9.2
If y € con(a), then w = zpazoyb ( mc) xoayxob. If y ¢ con(a), then the connectedness of w
implies that a and b share some common letter, whence

(9.2a) 3 (9.2d) 9 (9.2a)
w = zoarpyb &~ zoazrjyrob &~ zpayxgb.

In any case, the identities (9.2) can be used to interchange the last zg in w with the letter y
that immediately follows it. This procedure can be repeated until the last xy in w is the last

9.2)
letter of the word. Hence w % zoczg for some ¢ € XT. By Case 1, the identities {(9.1), (9.2)}
can be used to convert xgczrg into a word in canonical form. O

PROPOSITION 9.4. The equality X 9.1y = Ag V Lj V Zy holds.

Proof. By Lemma 2.5, the semigroup Ay x L x Zy is idempotent-separable. Therefore by
Lemma 2.6(i), there exists some basis ¥ for Ag V L V Zy that consists of identities formed
by connected words. It is routinely verified, either directly or by Lemmas 2.1 and 2.4, that Ay,
L3, and Zj satisfy the identities (9.1). Hence the inclusion Ag V L3 V Zy C X(g.1) holds.
To complete the proof, it remains to show that any identity w ~ w’ in ¥ is implied by the
identities (9.1).

By Lemma 9.3, there exist words W and W’ in canonical form such that the identities (9.1)
imply w ~ W and w’ ~ W'. Since Ag V L1 V Z, satisfies the identity W ~ W', it follows from
Lemma 2.1 parts (iii) and (viii) that ini(w) = ini(W’) and occ(z, W) = occ(z,W’) (mod 2) for
all z € X. It is then easily shown that the words W and W' are identical. Consequently, the
identities (9.1) imply the identity w =~ w’. O

9.2. Proof of Proposition 9.1

Let V be any proper subvariety of X9 1). Then by Proposition 9.4, the variety V does not
contain one of the semigroups Ao, L3, and Zs.

Casel: Ag ¢ V. Then by Lemma 2.8, the variety V satisfies the identity « : (22y?)® ~ 22y2.
Since
9.1b

& 222222(N)

(9.1a)
2?y? = 2iytayt ety ° ;

wyzy’  x ayay,
the variety V satisfies the identity zyxy ~ z2y%. It is then routinely shown that V satisfies
the identities in Condition 15 and so is finitely based.

Case 2: L} ¢ V. If 22, 2%y?2%222%, and 2222y%2? are distinct elements in the V-free
semigroup Fy over X, then they form a subsemigroup of Fy isomorphic to Li, and this
implies the contradiction L} € V. Therefore these three elements of Fy; cannot be distinct,
whence V satisfies either 22 ~ z2y%2222, 22 ~ 222%y%22, or 22y%222? ~ x22%y22?; it is easily
seen that any one of the first two identities implies the third identity, so that V satisfies the
third identity. It follows that V satisfies the identity 3 : zy?2%x ~ xz%y%z. Since

(9.2b) 4 o (92d) 5 o (9.1b) 5 4 B 5 4
ryrze ~ xy’rz’r &= ay‘rzyze = oy ziryze = rziy‘zyza
(9.2d) 4 4 o (9.2b) o (9.1D)
~oxzlytrt R zzyxt R xzzye,

the variety V satisfies the identity xyxzx ~ rzxyz. It is routinely verified that V satisfies the
identities in Condition 12 and so is finitely based.

Case 3: Zo ¢ V. Then by Lemma 2.1(viii), the variety V satisfies the identity x3 ~ z2. Tt
follows that V satisfies the identities in Condition 6 and so is finitely based.
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10. On Condition 20
Let X(10.1) denote the variety defined by the identities

rHz? ~ zHz, (10.1a)
w2yrz ~ 1iyz, (10.1b)
cHyKzy ~ zHyKyz. (10.1c)

Then Condition 20 is equivalent to the following result.
PROPOSITION 10.1. Any subvariety of X(10.1) that does not satisfy the identity
h2xzyxy ~ hxy? (10.2)
is finitely based.
In this section, the following semigroup of order four is required:
Py = (a,b| a® = ab = a,b*a = b?).

Let P denote the semigroup variety generated by the monoid Ps. It is shown in §10.3 that
X(10.1) = P1 Vv J. The proof of Proposition 10.1 is then given in §10.4.

10.1. Some identities satisfied by subvarieties of X(10.1)
LEMMA 10.2 [19, Corollary 6.6]. The variety P} is defined by the identities (10.1) and

2yx ~ 2%y. (10.3)

LEMMA 10.3. The identity (10.2) is an exclusion identity for Py in X(1q.1)-

Proof. Let V be any subvariety of X(j¢.1y such that P, ¢ V. Let $2 denote the dual
semigroup of P,. It is routinely shown that Ag, Bs, and ?2 do not satisfy the identity (10.1b),
so that Ag, Ba, P2 ¢ V. It follows from Volkov [48, Theorem 2.1] that V satisfies the identity

zyxy ~ 2y (10.4)

The semigroup P, does not satisfy the identity (10.4) because baba # b*a®. Therefore the
identity (10.4) is an exclusion identity for P, in X(1¢.1)-

Recall that 15 : X — X't denotes the substitution z — h2zh? for all z € X. By Lemma 2.7,
the identity (zyxy)ys ~ (z2y?)1s is an exclusion identity for Pj in X (10.1)- Since

10.1c 10.1b
(xyzy)ibs = h*xh*yh*zhiyh? ( ~ ) h2xh*yh*zhSy ( ~ ) h2zyzy

and
(@2y)s = h2ahtehtyhtyh? "% n2ahtehtyhty "R h2aty?,
the identity (10.2) is an exclusion identity for P} in X(10.1)- 0

LEMMA 10.4. Let V be any subvariety of X(¢.1) such that N} € VandJ ¢ V. Then V
satisfies the identity (10.3).
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Proof. Consider the elements a = z2y%, b = 2%y, ¢ = 22, and d = bc = z2yz? in the V-free
semigroup Fy. It follows from Lemma 2.1(v) that among these four elements, only b and d
are possibly equal in Fy, while any other pair of distinct elements are unequal in Fy,. Suppose
b# din Fy. Then {a,b,c,d} constitutes the following subsemigroup S of Fy.

d

The quotient S/{a,d} is isomorphic to J, so that the contradiction J € V is deduced. Thus
the elements b and d must be equal in Fy, whence V satisfies the identity 2%y ~ z?yz?. It
follows that V satisfies the identity (10.3). O

10.2. A canonical form

In this section, any word w with ¢ = t(w) € sim(w) is said to be in canonical form if

w = (ﬁ(miwi)>t7 (10.5)

i=1

where z1,...,2,, € X and wq,...,w,, € X'* are such that:
(1) ini(w) =1 ... xmt;

(I1) w; € {a"...af" | er,...,e; € {0,1}};
(III) con(w;) Ncon(w,) = () whenever i # j.
It follows that
(IV) occ(x,w) < 2 for any z € X.

LEMMA 10.5. Let w be any word with t = t(w) € sim(w). Then there exists some word W
in canonical form with t = t(W) € sim(W) such that the identities (10.1) imply the identity
W R W.

Proof. Tt suffices to convert w, using the identities (10.1), into a word in canonical form.
Note that if w = axbxzcxdt for some a,b,c,d € X'*, then

W= 10.1

(10.1a) [azbzecdt if c=0,
~ (10.1b) (10.1a) .
arbr?cxdt =~ " azrbz?cdt ~ azbzedt if c# (.

Therefore any third or later occurrence of a letter in w can be removed by the identities (10.1).
Hence (IV) is satisfied.

Now the letter ¢ is simple in w, so that ini(w) = z1...x,,t for some z1,...,z, € X. It is
clear that w can be written in the form (10.5) with (I) satisfied and w; € {z1,...,2;}* for
all 7. It follows from (IV) that (III) is satisfied, and that within each w;, no letter occurs more
than once. Since the letters in each w; are non-first occurrences in w, the identities (10.1c)
can be used to order them according to their indices. Hence (II) is satisfied. O

10.3. A basis for P3 Vv J

LEMMA 10.6. Let w ~ w’ be any identity satisfied by N3 and let t € X\con(ww’). Suppose
t(w) ¢ sim(w) and t(w’) ¢ sim(w’). Then X(9.){w ~ W'} = X(j0.1){wt =~ w't}.
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Proof. Let o1 and o9 denote the identities w &~ w’ and wt ~ w't, respectively. The inclusion
Xao.ntor} € Xqo.1){02} is obvious. Let = t(w) and y = t(w'). (Note that = and y need not

10.1
be distinct.) The assumptions = ¢ sim(w) and y ¢ sim(w’) imply the deductions w ( ma) wx

10.1a
and w’ o w'y. It follows from Lemma 2.1(v) that con(w) = con(w’) and sim(w) = sim(w’),

whence y is non-simple in w. Therefore w = aybyc for some a,b,c € X*. If ¢ = ), then

(10.1a)
wr = aybyr = aybyyr = wyz.

If ¢ # ), then

5 (10.1b) 9 (10.1a)
wr =~ ayby‘cx =~ " ayby‘cyr = ~ aybycyr = wyzx.

10.1
Therefore the deduction wx ( ~ ) wyz holds in any case. Now since

(10.1a) (10.1) (10.1c) (10.1a) oy, (10.1a)
NTWI R WYr X OWIy ~ WYKwy W,

the identities {(10.1), 02} imply o1. Hence the inclusion X19.1){o2} € X(10.1y{01} holds. O
PropPosITION 10.7. The equality X (10.1) = PV J holds.

Proof. Tt is routinely verified that P) and J satisfy the identities (10.1), so that the inclusion
P3 Vv J C X(10.1) holds. Hence P}V J = X(19.1)% for some set ¥ of identities. Let w ~ w’ be
any identity from . Since the subsemigroups {1, ba,b*} and {1,b,b%} of Pj are isomorphic
to L} and N3, respectively, it follows from Lemma 2.1 parts (iii) and (v) that

(a) ini(w) = ini(w’) and sim(w) = sim(w’).

By Lemma 2.2 and since J satisfies the identity w = w’, one of the following holds:

(b) t(w) =t(w') € sim(w) = sim(w’);

(c) t(w) ¢ sim(w) and t(w’) ¢ sim(w’).

If (c) holds, then it follows from Lemma 10.6 that the identity w ~ w’ in ¥ can be replaced
by one that satisfies (b) without changing the definition of X(0.1)X. Therefore the identity
w &~ w’ can be assumed to satisfy both (a) and (b). By Lemma 10.5, the words w and w’ can
be chosen to be in canonical form. It then follows from (a) and (b) that

w = (ﬁ(miwi))t and w = (ﬁ(ziwg))t,

i=1 i=1

t
t

where ¢ = t(w) = t(w’). Let £ be the least integer such that con(wy) # con(wy}), say k < £ is
such that zj, € con(wyg)\con(wy). Then occ(zy, w) =2 by (IV), and w is of the form

W= ZpWg...Zg( ... Zp... ).
————
wy

It follows from (a) and (IV) that occ(zy, w') = 2. But since con(w;) = con(w}) for all i < ¢,
the second z, in w’ occurs in w/. for some r > £, whence w’ is of the form

W= oW oWy (T )
————
Let ¢ : X — P} denote the substitution
b if z = zy,
z—=<ca if z=ux,,

1 otherwise.
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Then w¢ = b? and W' = ba, which is impossible. Therefore the integer ¢ does not exist,
whence con(w;) = con(w}) for all i. By (II), the identity w ~ w’ is trivial and so is satisfied
by X(10.1). Since w ~ w’ is arbitrary in ¥, it follows that PivJ= X102 = X10.1)- O

10.4. Proof of Proposition 10.1

Let S be any semigroup in X1 1) that does not satisfy the identity (10.2). By Proposition 10.7,
the variety V generated by S is a subvariety of P Vv J. Since S is finitely based if V.= P1 Vv J,
it suffices to assume V # PV J, so that either P} ¢ V or J ¢ V. If Py ¢ V, then it follows
from Lemma 10.3 that S satisfies the identity (10.2), contradicting the assumption. Hence
P# € Vand J ¢ V. By Lemma 10.4, the variety V satisfies the identity (10.3). It then follows
from Lemma 10.2 that V = P, whence V is finitely based.

PART III. FINITE BASIS PROPERTY FOR THE SPORADIC CASES
11. oA, %1, B3, Do

This section establishes the finite basis property of the following semigroups.

211123456 %1 23456 HB|123456 PDip|l23456
11111111 1111111 1111111 1 /111111
2111111 21111111 21111112 2 /111112
3111113 31123456 31111112 3|1 12123
4111131414 4 1444444 41111214 4 |4 444414
515955555 51445 444 51555555 5 1112123
6123456 6 |4 46445 6 |1 23456 6 |1 23456

PROPOSITION 11.1. The variety J V L} V N2 is defined by the identities

2 Hr ~ r*Haz, (11.1a)
ryrz ~ ryz, (11.1b)
rHyKzy ~ rHyKyzx. (11.1¢)

The proof of Proposition 11.1 is given in §11.2.
Let S € {4, %1, B3, P10} By Proposition 11.1, it is routinely verified that S € JVL3VN3.
Conversely, the following are isomorphic to J, L}, and N3:
e the subsemigroups {1,2,6}, {1,5,6}, and {1,3,4,6} of &;
e the subsemigroups {1,2, 3}, {1, 3,4}, and {3,4,5,6} of %;
e the divisor {1,2,3,6}/{1,2} and the subsemigroups {1,5,6} and {1,2,4,6} of As;
e the divisor {1,2,3,5,6}/{1,2,3} and the subsemigroups {1,4,6} and {1,2,3,6} of %.
Hence the variety generated by S contains J, L3, and N4, and so coincides with J v L1 v N2.
Consequently, S is finitely based by Proposition 11.1.

11.1. Compact and pseudo-compact words

A compact word is a word of the form z7*...x¢m, where z1,...,2, € X are distinct and
€1,...,em € {1,2,3}. A pseudo-compact word is a word of the form cz®sx, where the following

are satisfied:
(I) ¢ € X* is a compact word,;
(II) z € X with e € {1,2};
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(IIT) s € X7 is a simple word;

(IV) ¢, z, and s are pairwise disjoint.

Note that when the very last letter is removed from a pseudo-compact word cz®sz, then the
resulting word cx®s is compact.

LEMMA 11.2. Let w be any word. Then there exists some word W that is compact or pseudo-
compact such that the identities (11.1) imply the identity w ~ W.

Proof. Generality is not lost by assuming ini(w) = x1 ... xz,,. It suffices to convert w, using
the identities (11.1), into a word that is either compact or pseudo-compact. With the exception
of the very last letter of w, any non-first occurrence of a letter x in w can be gathered, using
the identity (11.1b), with the first occurrence of # in w. The resulting word w’ is of one of the
following forms:

(a) zi*...x& for some eq,. .., e, > 1;

(b) zi*...x8mxy for some k < m and eq,...,em, = 1.

If w’ is of the form (a), then the identity 2* ~ 3 from (11.1a) can be used to convert it into
a compact word. Thus assume that w’ is of the form (b), that is,

w =c-apt -t
where ¢ = z¢' ... 2" If epy1 = ... = ey, = 1, then it is clear that the identities (11.1a) can
be used to convert w’ into a pseudo-compact word. Hence assume that £ € {k+1,...,m} is
the greatest such that e, > 2. Then

w = c-af 'xZ’f:f T T T - T
(11§1b) c-xph- xZ’f:f .. .xzz_la:gﬂ T ToTh
(Hé:lc) c-aph- xi’ff .. .x;fFle T ThXp
(Hﬁlb) c- xZ’“H . xZTf .. .x?“_lxprl Ty - Tp,
o
and the identities (11.1a) can be used to convert w” into a pseudo-compact word. O

11.2.  Proof of Proposition 11.1

It is routinely checked that J, L}, and N3 satisfy the identities (11.1). Thus it remains to show
that any identity w ~ w’ satisfied by J, L3, and N3 is deducible from the identities (11.1).
By Lemma 11.2, the words w and w’ can be chosen to be compact or pseudo-compact. Hence
the following holds by Lemma 2.1 parts (iii) and (vii):

(a) ini(w) = ini(w');

(b) for each x € X, either occ(x,w) = occ(z, w') < 2 or occ(z, w),occ(z, w') > 3.
It is then easily shown that if w and w’ are both compact, then they are identical. Therefore
it suffices to assume that w is pseudo-compact, say

— €1 em e
W= .. T TYL .. Yn®

for some distinct letters x1,...,Zm,x,y1,...,yn with m > 0 and n > 1, and some exponents
e1,...,em €{1,2,3} and e € {1, 2}.
Suppose that w’ is compact, so that by (a),

/ / ’
€1 €m e’ f1 f
W =21 ... Tm' XY Y
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for some €f,...,el € f1,..., fn €{1,2,3}. Then f1 =... = f, =1 by (b). But now w ends
with the non-simple letter x while w’ ends with the simple letter y,,, contradicting Lemma 2.2.
Therefore w’ must be pseudo-compact, so that by (a),

/

;e e e fi fn
w =zt ety yinz

for some z € {x1,...,Zm,Z,y1,...,Yn}. Since occ(y1,w) = ... = occ(yn, w) = 1, it follows
from (b) that f1 = ... = f, =1 and z ¢ {y1,...,yn}. Now z is non-simple in w. Therefore,
if z = x; for some %, then the definition of a pseudo-compact word forces the letter x to be
simple in w’, contradicting (b). Hence z = z is the only possibility. It is then easily shown
by (b) that the words w and w’ are identical.

12. aty, Py, PBs
This section establishes the finite basis property of the following semigroups.
|l 23456 H|123456 HBs|l23456
11111111 11111111 11111111
21111111 21111112 21111112
31111123 3|1 11113 3|1 11113
414 44444 41111214 41111214
51111123 51113151 51113153
61123456 6 |1 21416 6 121416

12.1. Finite basis property of <,
PROPOSITION 12.1. The variety generated by <75 is defined by the identities

w3y ~ 2%y, (12.1a)
ryrz ~ ryz, (12.1b)
z?Hy?Kz ~ 22Hy?Ky. (12.1¢)

LEMMA 12.2. Suppose that w ~ w’ is any identity satisfied by /5. Then:
(i) ini(w) = ini(w');

(ii) sim(w) = sim(w’);

(iii) either |w|,|w’| > 3 or occ(x, w) = occ(z, w’) for any x € X;
(iv) t(w) € sim(w) if and only if t(w') € sim(w').

Proof. This follows from Lemmas 2.1 and 2.2 since the subsemigroups {1,4,6}, {1, 3,6},
{1,2,5}, and {1,2,6} of o% are isomorphic to L, N1, N3, and J, respectively. O

In this subsection, a word w that contains at least two distinct letters is said to be in
canonical form if

w =z ... zmy, (12.2)
where z1,..., 2,y € X and eq,. .., e, € {1,2} satisfy the following:
(I) the letters x1,...,x,, are distinct while y can be any letter;
(II) if y =, and e; = 2 for some i > 2, thene; = ... =¢;_1 = 1.

LEMMA 12.3. Let w be any word that contains at least two distinct letters. Then there exists
some word W in canonical form such that the identities (12.1) imply the identity w ~ W.
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Proof. Tt suffices to convert w, using the identities (12.1), into a word in canonical form.
Since w contains at least two distinct letters, w = w’y for some w’ € X+ and y € X. Then the
identities {(12.1a), (12.1b)} can be used to convert w into a word of the form (12.2) with (I)
satisfied. Suppose y = z; and e; = 2 for some i > 2. Then w = z{' ... a7 ' 2?2l .. airw,.
If ey =... =¢€;-1 =1, then w satisfies (II). Therefore suppose e, = 2 for some least integer

¢e{l,...,i—1}. Then

_ 2 _€e41 €i—1_2 €it+1 e
W = $1...$g_1.’11‘4l‘z+1 e Ty .’L‘il‘i+1 ...l‘mml‘i
(12,\'_,1C) 2, €041 €i—1,2 €it1

NI T T, e,
so that (II) is satisfied. O

Proof of Proposition 12.1. It is routinely checked that <% satisfies the identities (12.1).
Therefore it suffices to show that any identity w ~ w’ satisfied by % is implied by the
identities (12.1). If either w or w’ involves only one letter, say con(w) = {z}, then it is
easily shown by Lemma 12.2 parts (i) and (iii) that the identity w ~ w’ is implied by the
identity (12.1a). Hence assume that w and w’ each contains at least two distinct letters and so,
by Lemma 12.3, can be chosen to be in canonical form. Since ini(w) = ini(w’) by Lemma 12.2(i),

’ ’
__ €1 e I _ .6 €m,/
W= ...2,7'Y and W =2 ...Zm'Y .

Case 1: y € sim(w). Then 3 € sim(w’) by Lemma 12.2(iv), and y = 3’ by part (i) of the
same lemma. Therefore y,y" ¢ {z1,..., 2}, whence e; = occ(z;, w) and e, = occ(z;, w') for
all 3. Now Lemma 12.2(ii) implies e; = e} for all i. Hence the identity w ~ w’ is trivial and is
implied by the identities (12.1).

Case 2: y ¢ sim(w). Then ¢y ¢ sim(w’) by Lemma 12.2(iv). Seeking a contradiction,
suppose y # y'. By symmetry, it suffices to assume y = z; and ' = z; with ¢ < j. Then

_ el €i—1 e Citl €ji—-1 € .G+l €m | .
W—Z’l "'x’ifl .’13,L- Z’i+1 "'xjfl 1'j l'j+1 Z‘m €T
and
/ €] ey e; e:'+1 e& 1 53‘ 53‘+1 e
— 1 =1 Rt ' =1 . J ™oL
W —fL'l ...5[37;71 ZIJZ- $i+1 ...Ij71 JUJ JUj+1 oo Imy l'j.

Since x; ¢ sim(w), it follows from Lemma 12.2(ii) that z; ¢ sim(w’). Therefore e, = 2, whence

ei = 1 by (II). Since x; ¢ sim(w’), it follows from Lemma 12.2(ii) that z; ¢ sim(w),

whence e; = 2. Thus

__ €1 €i—1 € . Citl €j—1 2 _€i+1 em
W=2Xx; ...T, 1 "T; X4 ...Ij_l CL'j $j+1 B A ]
and
’ e i1 2 €in €51 €41 e,
_= - . T . - . Y m .
W =Xy ...T,_ 1 "T; " Ty ...xj71 Z; .’L‘j+1 e Tm Ty

Let ¢ : X — o denote the substitution

5 if z=uxj,
g
6 otherwise.
Then wep € {6}*-5%- {6}7 = {1} and w/p € {6}* - 5-{6}* - 5 = {2}, which is the required

contradiction.
Therefore y = y' is the only possibility, whence y =y’ = z; for some j, so that

€j-1 .6  .Ci+l em . g
- R R S

— €1
w=uza' ...zl
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and
1€ €51 . € . €11 € o
wi = a0 )
: _ ! ! /! !
It follows from Lemma 12.2(ii) that (e1,...,€j-1,€j41,---,€m) = (€], .., €j_1, €51, €p,).

Ife; # e;, say (e]ﬁ@;') = (2,1), then
wop € {6}"- 52. {6}*-5={1} and wpe{6}*-5-{6}*-5=1{2},

which is impossible. Therefore e; = e, whence the identity w ~ w' is trivial and is implied
by the identities (12.1). O

12.2. Finite basis property of %Bs
PROPOSITION 12.4. The variety generated by %y is defined by the identities

3Hz ~ z?Ha, (12.3a)
rHyzKz ~ xHzyKz, (12.3b)
cHyKzy ~ cHyKyz, xyHxzKy ~ yaxHzKy. (12.3¢)

LEMMA 12.5. Let S € {%B7, Bs}. Suppose that w ~ w’ is any identity satisfied by S. Then
for any x € X, either occ(z,w) = occ(z, w') < 2 or occ(z, w), occ(z, w') > 3.

Proof. This follows from Lemma 2.1(vii) since the subsemigroup {1, 2,4, 6} of S is isomorphic
to Ni. O
For the remainder of this section, a non-simple word w is said to be in canonical form if
w =252 TSy . Yn o,

m

where all of the following are satisfied:

(I) xo,x1,...,x, are distinct non-simple letters of w in alphabetical order;
(I1) ep € {1,2} and ey, ..., em € {2,3};
(I11) y1,...,yn are distinct simple letters of w in alphabetical order.

Note that if all letters of the word w are non-simple, then n =0 and y; ...y, = 0.

LEMMA 12.6. Let w be any non-simple word with h(w) = t(w). Then there exists some
word W in canonical form such that the identities (12.3) imply the identity w ~ W.

Proof. Tt suffices to convert w, using the identities (12.3), into a word in canonical form.

By assumption, w = xw’z for some w’ € X*. Suppose that x, 1, ...,z are the non-simple
letters of w and y1,...,y, are the simple letters of w. Generality is not lost by assuming that
T1,..., T, are in alphabetical order and y1, . . ., y,, are in alphabetical order. Since the letters in

the factor w’ of w are sandwiched between two occurrences of z, they can be rearranged by the
identities (12.3b) to produce the word z°z{* ... xmy; ... y,x, where e+1 = occ(z, w) > 2 and
e; = occ(x;, w) = 2. The identities (12.3a) can then be used to reduce the exponents, so that
e € {1,2} and eq,..., e, € {2,3}. The resulting word is in canonical form if = alphabetically
precedes x1. If  does not alphabetically precede 1, then

e_.ei €2 €m (12,\:}b) € 6171 €2 Em
xS T YL Y R XN TS XYL . Yn T T
(12.3¢c) 1
PR R A N AL T B T
(12.3b) 4
P —1,_e+1 e e
SR SR it DS iy TR T,
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and the factors z¢t1 252, ... 2% in the latter word can be alphabetically ordered by the
identities (12.3b), resulting in a word in canonical form. O

LEMMA 12.7. Let w be any connected word. Then there exists some word W in canonical
form such that the identities (12.3) imply the identity w =~ W.

Proof. Tt suffices to convert w, using the identities (12.3), into a word in canonical form.
Since w is connected, the letter © = h(w) occurs at least twice in w. Hence w = zuzv for
some u,v € X* such that « ¢ con(v). If v.= (), then the result follows from Lemma 12.6.
Therefore assume v # (), whence w = zuxyv’ for some y € X and v/ € X*. There are two
cases.

Case 1: y ¢ con(u). Since w is connected, the factors zux and yv’ cannot be disjoint. It

(12.3b)
follows that u and v’ share some common letter, whence w = zuzyv’ = ~ " zuyzv’.

12.3¢)
Case 2: y € con(u). Then clearly w = zuzyv’ ( =" Tuyrv’.

In any case, the identities (12.3) can be used to interchange the last = in w with the letter y
that immediately follows it. It is easily seen that the resulting word w’ = zuyzv’ is connected.
The same procedure can be repeated to move the last z in w’ to the right until it becomes the

12.3
last letter of the word. Hence w ( ~ ) zuvz and the result now holds by Lemma 12.6. O

Proof of Proposition 12.4. It is easily verified that g satisfies the identities (12.3) and
is idempotent-separable. Since the subsemigroup {1,3,5,6} of %y is isomorphic to Ay, the
variety generated by %s contains Ag. It follows from Lemma 2.6(i) that s has a basis X that
consists of identities formed by connected words. Hence {(12.3)} UX is also a basis for %s. By
Lemma 12.7, the words that form the identities in ¥ can be chosen to be in canonical form.
Let w ~ w’ be any identity from Y. Then

€0 €1

_ em r_ fo f1
w=z"T]" ... 2" Y1 .. YnTo and W o= z5°2 ...zgptl...tqzo

where e, fo € {1,2} and e1,...,em, f1,..., fp € {2,3}. By Lemma 12.5:

(a) w and w’ share the same simple letters, so that (yi,...,yn) = (t1,...,tq) by (III);

(b) w and w’ share the same non-simple letters, so that (zo,...,zm) = (21,...,2p) by (I).
It then follows from (II) and Lemma 12.5 that e; = f; for all ¢, whence the identity w ~ w’
is trivial. Since w ~ w’ is arbitrary in X, every identity in X is trivial. Consequently, the
identities (12.3) form a basis for %s. O

12.3. Finite basis property of %~
PROPOSITION 12.8. The variety generated by 97 is defined by the identities (12.3) and
cHryKy ~ zHyzKy. (12.4)

LEMMA 12.9. Let w be any product of pairwise disjoint connected words. Then there exists
some word W in canonical form such that the identities {(12.3),(12.4)} imply the identity
W R W.

Proof. By assumption, w = wj...wy for some connected words wi,...,wy that are

pairwise disjoint. It suffices to convert w, using the identities {(12.3),(12.4)}, into a word
in canonical form. By Lemma 12.7, the identities (12.3) can be used to convert each w; into
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. . (12.3)
a word in canonical form. Therefore w; ~  x;wjz; for some x; € X and w} € X*. Now

(1,2\_;3) / / ’ / /
W = T1W T To2Wol2 - L3W3L3 ... Lp—1Wp_1Tk—1" " LWLk

(12;4) / ! ! / !
N~ T1W T2  T1Wol3 * To2W3ly4 ... LTp—2Wp_ 1T * Tp—1 Wi Tk,

w/’

where the word w’ is connected. Hence by Lemma 12.7, the identities (12.3) can be used to
convert w’ into a word in canonical form. O

Proof of Proposition 12.8. It is easily verified that the semigroup %, satisfies the identities
{(12.3),(12.4)} and is idempotent-separable. Let V denote the variety generated by %;. Then
By € V because the subsemigroup {1,3,5,6} of %; is isomorphic to By. The semigroup Ag
does not satisfy the identities (12.4) because aabb # abab in Ag. Therefore Ay ¢ V, and it
follows from Lemma 2.6(ii) that 7 has a basis 3 that consists of identities formed by words
that are products of pairwise disjoint connected words. Hence {(12.3),(12.4)} U X is also a
basis for #7. By Lemma 12.9, the words that form the identities in ¥ can be chosen to be in
canonical form. Following the arguments in the proof of Proposition 12.4, every identity in %
is trivial. Consequently, the identities {(12.3),(12.4)} form a basis for %;. O

13. s, 95, s, Az, oy, o, G4, 95

This section establishes the finite basis property of the following semigroups.

3|1 2 3 456 511 23 456 |1l 23456 |1 23456
1111111 1111111 1111111 1111111
2111111 21111111 2/r11111 2j111111
31113156 31113333 3113356 3|123333
41121411 41114444 41123456 41|12345¢6
51555555 5/123456 5|55505515 51125555
6556513 6 11243675 6|/556613 6|12563414
dy|l 23 456 |l 23456 Y|123456 ¥%|123456
1111111 1111111 1111111 1111111
2111111 2 1111111 21122256 21122446
31123456 31123456 31122256 31123456
4112 4365 4 (4 4 44 44 411 23456 416 442 21
5555555 5 |4 444414 5|/555555 516 44221
6|6 6 6 666 6 1456123 6566612 616 6 6 666
Let O denote the variety generated by the semigroup O in Remark 6.6.
PrOPOSITION 13.1. The variety J V O is defined by the identities

rHz?® ~ zHz, (13.1a)

rHz?y ~ zHy, (13.1b)

rHyKzy ~ zHyKyz. (13.1¢)

The proof of Proposition 13.1 is given in §13.3.
Let S € {ofs, o, g, oy, Ay, 10,9, %s}. By Proposition 13.1, it is routinely verified that
S € JV O. Conversely, the following are isomorphic to J and O:
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the subsemigroups {1,2,4} and {1,3,5,6} of S’ € {3, o };

the subsemigroups {1,2,5} and {3,4,5,6} of o%;

the subsemigroups {1,2,3} and {3,4,5,6} of S” € {a%, % };

the subsemigroups {1, 2,3} and {1, 3,4, 6} of #A;

the subsemigroups {2,3,4} and {1,2,5,6} of ¥;

the divisor {2,3,4,5}/{2,4} and the subsemigroup {1,2,4,6} of %.

Hence the variety generated by S contains J and O, and so coincides with JV O. Consequently,
S is finitely based by Proposition 13.1.

13.1. Identities satisfied by O

LEMMA 13.2. Let w &~ w’ be any identity satisfied by O. Then occ(z,y, w) = occ(z,y, w’)
(mod 2) for any x,y € X.

Proof. Seeking a contradiction, suppose occ(z,y, w) Z occ(z,y, w’) (mod 2) for some letters
x,y € X, say occ(z,y,w) = 2p and occ(z,y,w’) = 2¢g + 1 for some p,q > 0. Let ¢ : X — O
denote the substitution

b ifz=ux,
z—=qa ifz=y,

1 otherwise.

Then wp =b? -a...=a and w'¢o = b*4+1 . ... = ba give the required contradiction. O

LEMMA 13.3. Let w = w’ be any identity satisfied by O and let t € X'\con(ww’). Suppose
t(w) ¢ sim(w) and t(w') ¢ sim(w’). Then (JV O){w ~w'} = (JV O){wt ~ w't}.

Proof. Let o1 and o2 denote the identities w ~ w’ and wt ~ w't, respectively. Then the
inclusion (JV O){o1} C (JV O){o2} is obvious. Let & = t(w) and y = t(w'). (Note that =
and y need not be distinct.) Since z ¢ sim(w) and y ¢ sim(w’) by assumption, the deductions

(13.1a) 9 (13.1a) 9 . .. . 1
w =~ wz?and w = ~ w'y? hold. The subsemigroup {a,ba,1} of O is isomorphic to L3,

2 “i‘éb) 2

so that ini(w) = ini(w’) by Lemma 2.1(iii). Therefore y € con(w) and wx wy?z?. Since

202 , o (131a)

(13.1a) 5 (131b) , (13.1¢) 5 o (13.1a)
A owrt xR Owyrt & wry' R O wy'swy' &= w,

w

the identities {(13.1), 02} imply o1, so the inclusion (J vV O){o2} C (JV O){o;} follows. O

13.2. A canonical form

In this section, any word w with ¢ = t(w) € sim(w) is said to be in canonical form if

W= (ﬁ(miwi))t, (13.2)

=1

where z1,...,z, € X and wy,...,w,, € X" are such that:
(1) ini(w) =1 ... Zmt;
(I1) w; e {z5* ...z | eq,...,e; € {0,1}}.

LEMMA 13.4. Let w be any word with t = t(w) € sim(w). Then there exists some word W

in canonical form with t = t(W) € sim(W) such that the identities (13.1) imply the identity
W R W.
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Proof. The letter ¢ is simple in w, so that ini(w) = z1 ... 2t for some z1,...,2,, € X. It
is clear that w can be written in the form (13.2) with (I) satisfied and w; € {x1,...,2;}* for
all 7. Since the letters in each w; are non-first occurrences in w, the identities (13.1c) can be
used to order them so that w; € {z{'... 2" | e1,...,e; > 0}. The identities {(13.1a), (13.1b)}
can then be used to reduce each exponent e; to a number in {0,1}. Hence (II) is satisfied. [

13.3. Proof of Proposition 13.1

Let X(13.1) denote the variety defined by the identities (13.1). It is routinely checked that
J,0 € X(13.1), so that JV O = X(33.1)X for some set ¥ of identities. Let w ~ w’ be any
identity in ¥. The subsemigroup {a,ba, 1} of O is isomorphic to L3, hence by Lemma 2.1(iii),

(a) ini(w) = ini(w’).
Since J satisfies the identity w =~ w’, it follows from Lemma 2.2 that one of the following
holds:

(b) t(w) € sim(w), t(w') € sim(w’), and t(w) = t(w');

(c) t(w) ¢ sim(w) and t(w') ¢ sim(w’).
If (c) holds, then Lemma 13.3 implies that the identity w &~ w’ in 3 can be replaced by one
that satisfies (b) without changing the definition of X(131)3. Therefore the identity w ~ w’
can be assumed to satisfy both (a) and (b). By Lemma 13.4, the words w and w’ can be
chosen to be in canonical form. It then follows from (a) and (b) that

w = <H(mlwl)>t and w' = (H(mlw;)>t
i=1 i=1

Let £ be the least integer such that con(wy) # con(w}), say x) € con(wy)\con(wy) for some
k < ¢. Then it follows from (II) that w; = w} for all ¢ < £. But now Lemma 13.2 is violated
since occ(z, t, w) # occ(xg,t,w') (mod 2) if £ = m, and occ(zg, Toy1, W) Z occ(xk, Ter1, W)
(mod 2) if £ < m. Therefore the integer ¢ does not exist, whence w; = w, for all 7. The identity
w ~ w' is thus trivial and is satisfied by X(13.1). Since w ~ w’ is arbitrary in 3, it follows
that X(13_1) = X(13_1)E =JVvO.

14. o, o7, B, 93

This section establishes the finite basis property of the following semigroups.

|1 23456 (123456 H| 123456 %|123456
1j1r11111 1j111111 1111111 1111111
21111111 21111111 21111111 2|121256
31113156 31123156 31333333 3(333333
41444444 414444414 41333456 4|121256
51113656 51123656 515955555 5|1 26256
6 |6 6 6 666 6 |16 6 6666 6 1553456 6|66¢6¢6F66

14.1. Finite basis property of <7
PROPOSITION 14.1. The variety generated by «#; is defined by the identities

%y ~ xy, (14.1a)
ryx? ~ ryz, (14.1b)
rHyKzy ~ zHyKy, (14.1¢)
sHyKyz ~ zHyKz. (14.1d)
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Let w be any word such that ini(w) = xg ..., with m > 1. In this section, such a word w
is said to be in a-canonical form if

w =z H(%Wz), (14.2)

where the following are satisfied:
(I) Wi € {0,20,...,2m};
(I1) w; € {0, z0,...,x;—1} for each ¢ such that 1 <i < m.

LEMMA 14.2. Let w be any word that contains at least two distinct letters. Then there exists
some word W in a-canonical form such that the identities (14.1) imply the identity w ~ W.

Proof. Tt suffices to convert w, using the identities (14.1), into a word in «-canonical
form. Since w contains at least two distinct letters, generality is not lost by assuming
ini(w) = zg...2m, with m > 1. Then w can be written in the form w = [[" (z;w;) with

w; € {zo,...,z; }*. If wq is nonempty, then wy = x¢ and the identity (14.1a) can be used to
eliminate wo = z¢ from w. Hence w is of the form (14.2).

Suppose w,, # 0. Then w,,, = 21...zs for some z1,...,25 € {zo,...,Tm} with s > 1.
Hence w = (29 H?:ll(xiwi))xmzl ... 2s. The letters z1, ..., zs are non-first occurrences in w.

Therefore if s > 2, then the identities (14.1b)—(14.1d) can be used to eliminate zj,..., 251
from w,,. Hence (I) is satisfied.

Suppose w; # () for some i < m. Then w; = y; ...y, for some y1,...,y, € {zo,...,x;} with
r > 1. Hence

W=pPZiYyi---Yrq
N—_——

Wi

where p = =z H;;ll(ijj) and q = H;nziﬂ(xjwj). The letters yi,...,y, are non-first
occurrences in w. Therefore if » > 2, then the identities (14.1b)—(14.1d) can be used to

14.1
eliminate the letters yi,...,y,—1 from w;. Hence w (%) pziyrq. If y. = x;, then the

identity (14.1a) can be used to further eliminate y, from w;. Therefore w; is converted into a
word in {0, xy,...,2,_1}, whence (II) is satisfied. O

LEMMA 14.3. Suppose that w =~ w’ is any identity satisfied by <. Then:
(i) ini(w) = ini(w’) and t(w) = t(w’);
(i) t(w) € sim(w) if and only if t(w') € sim(w’).

Proof. This follows from Lemmas 2.1 and 2.2 because the subsemigroups {1,3,6}, {3,5},
and {1,2,5} of @% are isomorphic to L}, Ry, and J, respectively. O

Proof of Proposition 14.1. It is routinely checked that «#% satisfies the identities (14.1).
Hence it suffices to show that any identity w ~ w’ satisfied by 2% is implied by the
identities (14.1). If either w or w’ involves only one letter, say con(w) = {z}, then it is easily
shown by Lemma 14.3 that the identity w ~ w’ is implied by the identity (14.1a). Therefore
assume that w and w’ each contains at least two distinct letters and so by Lemma 14.2, can
be chosen to be in a-canonical form. Since ini(w) = ini(w’) by Lemma 14.3(i), generality is
not lost by assuming

m m
w = I H(miwi) and w' =z H(ZCZWD for some m > 1.
i=1 i=1
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Suppose w,,, # w,,,. Then since t(w) = t(w’) by Lemma 14.3(i), it follows from (I) that
(Wi, Wh) € {(xm,0), (D, zm)}, say (Wi, Wh,) = (Tm, D). Hence w = (zg H:i_ll(xlwl))mfn and
w = (z9 Hi}l(xlwé))xm But now Lemma 14.3(ii) is violated because t(w) ¢ sim(w)
and t(w') € sim(w’). Therefore w,,, = w/, .

Suppose wy # w), for some ¢ < m, so that w,, w, € {0, zo,...,2¢_1} by (II). Then there are
two cases.

Case 1: wy # 0 # wj. Then w; = z; and w, = z}, for some j, k € {0,...,¢—1} with j # k.
By symmetry, it suffices to assume 0 < j < k < £. Then

w = pryr;q and W =p'zed,

0—1 -1
where p = zo [[,Z; (z:w:), @ = [[[2,1 (wiwi), P’ = 20 [[;2; (wiw}), and o’ = [[;Z, (ziw)).
Let ¢ : X — o denote the substitution

5 if z =z,
z—= 4 if 2=z,

3 otherwise.
Then wp # w'p because
W =pp-zep-T;p-qp € {3,5}7-3-5-4... = {6}

and
wo=po-zp-xrp-qpe{3,5-3-3-4...={1}.

Case 2: wy = () # wj, or w; # ) = wj. Then by symmetry, it suffices to assume w, = ()
and wj = z; for some j € {0,...,¢—1}. Hence

w=pzq and W =p'zm;d,
where p, q, p’, and q’ are as defined in Case 1. Therefore wip # W’y because
wo =py-zp-qp €{3,5}"-3-4...={1}
and
wo=py -z zj0-dpe{3,5}-3-5-4...={6}.

Since both cases are impossible, the integer ¢ does not exist. Therefore the identity w ~ w’
is trivial and so is implied by the identities (14.1). O
14.2. Finite basis property of <y, A, and Y3

PROPOSITION 14.4. The variety generated by any S € {a, B2,%s} is defined by the

identities
%y ~ xy, (14.3a)
zy? ~ xy, (14.3b)
cHyKzy =~ zHyKy, (14.3¢)
rHyKyr =~ zHyKz. (14.3d)
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Let w be any word such that ini(w) = xg ..., with m > 1. In this section, such a word w
is said to be in B-canonical form if

W =g H(%Wz), (14.4)

where w; € {0, z1,...,z,_1} for all 4.

LEMMA 14.5. Let w be any word that contains at least two distinct letters. Then there
exists some word W in f-canonical form such that the identities (14.3) imply the identity
W R W.

Proof. Tt suffices to convert w, using the identities (14.3), into a word in S-canonical form.
It is easily seen that the identities (14.3) imply the identities (14.1). Therefore by Lemma 14.2,
the identities (14.3) can be used to convert w into a word in a-canonical form, that is, a word

of the form (14.4) such that w,, € {0, z¢,...,2,} and w; € {0, xz¢,...,2;,_1} for all ¢ with
1 <4< m. If w,, =x,,, then the identity (14.3b) can be used to eliminate w,, = x,, from w.
The resulting word is in S-canonical form. O

LEMMA 14.6. Let S € {, P$2,%5}. Suppose that w ~ w' is any identity satisfied by S.
Then ini(w) = ini(w’) and t(w) = t(w').

Proof. The subsemigroups {3,5} C &, {4,6} C %2, and {2,5} C ¥ are isomorphic to Ra,
while the subsemigroups {1,3,6} C 7, {3,4,5} C %o, and {1,2,6} C ¥ are isomorphic
to Li. Hence the result follows from Lemma 2.1 parts (ii) and (iii). O

Proof of Proposition 14.4. Let S € {a, PB2,%}. It is routinely checked that S satisfies
the identities (14.3). Hence it suffices to show that any identity w ~ w’ satisfied by S is
implied by the identities (14.3). If either w or w’ involves only one letter, say con(w) = {z},
then it is easily shown by Lemma 14.6 that the identity w = w’ is implied by the
identity (14.3a). Therefore assume that w and w’ each contains at least two distinct letters
and so, by Lemma 14.5, can be chosen to be in S-canonical form. Since ini(w) = ini(w’) by
Lemma 14.6, generality is not lost by assuming

m m
W = ¢ H(%Wz) and w = xg H(%W;) for some m > 1.
i=1 i=1

Since t(w) = t(w’) by Lemma 14.6 and w,,,w,, € {0,zo,...,Tm-1}, it follows that

W, = W,,. Suppose wy; # wj for some ¢ < m, so that wy,w), € {0,z1,...,20_1}. Then
there are two cases.

Case 1: wy # 0 # wj. Then w; = z; and w), = z;, for some j,k € {0,...,0—1} with j # k.
By symmetry, it suffices to assume 0 < j < k < £. Then

w =pxezr;q and w =p'zmz,q
{— .
where p = 20 [[iZ) (wwi), @ = [[1% 4 (z:wi), P’ = 20 [ ;2 (wsw)), and g’ = [T, (W)

Let @1, @2, and @3 denote the following substitutions into &7, %>, and %,
respectively:
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5 if z = xy, 6 if z =z, 5 if z = xy,
2= 4 ifz=wp4q1, 21 ifz=xp, 23 ifz=u1zp41,
3 otherwise; 4 otherwise; 2 otherwise.

Then w1 # W1, woo # W o, and wps # w3 because

W1 = Pp1 - Tepr - Tip1 Q1 € {3,517 -3-5-4... = {6}
and

w1 =p'p1 - Tepr -1 Q1 €{3,5}7-3-3-4...={1};

Wpg = P - Tepa - Tjpe - qpe € {4,617 -4-6-1... = {5}
and

Wy =p'pa - epy - e - q'p € {4,6}7-4-4-1... = {3}

W3 = D3 - Teps - T03 - qp3 € {2,5}7-2-5-3... = {6}
and

w3 =p'os - Teps - TRes - q'p3 € {2,5}7-2-2-3... = {1}.

Case 2: wy = () # wj, or w; # 0 = wj. Then by symmetry, it suffices to assume w, = ()
and w, = z; for some j € {0,...,¢—1}. Hence

w=pzq and w =p'zz;qd,
where p, q, p’, and q’ are as defined in Case 1. It follows that

W1 = Pp1 - Tepr - e € {3,5}7-3-4... = {1}

and
w1 =p'p1-zepr 2o -d'pr € {3,517 -3-5-4... = {6};
Wiy = Ppa - Tepa - Q2 € {4,617 -4-1... = {3}
and
Woo =ppa-xipr - Tjpe - qpa € {4,617 -4-6-1...={5};
W3 = Pps3 - Teps - qps € {2,517 -2-3... = {1}
and
W3 =3 eps w5 dlps €{2,5)7-2-5-3... = {6}.

Therefore wyy # W1, Wps # W ps, and wps # w'ps.

Since both cases are impossible, the integer £ does not exist. Therefore the identity w ~ w’
is trivial and so is implied by the identities (14.3). O
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15. Ba, Bs, Be, By, B0, 61
This section establishes the finite basis property of the following semigroups.
By |1

By |1 4

>
—
e

S UL R W N
e
N = = == =N
=N == = =W
I N L " e S
S O =W N =D
DD TR W N =
e
[ N e )
[ I R Y
I N L e
Ul = = = = = ot
e
[ N e e )
[ R Y
I N L e
Ul = = = = = ot

X
©

—_
DO

Po

—_
[\
(@34

S U LN RO 0N R W N~ O

U N N = = = O Ol = = = = = Ot
ot

SR WD RO O W NN~ O
oS
—_
[N}

S UL R W N
e
N = = = = =
=N = = = =W
I N N o e
SR W N =
S TR W NN =
e
[ N i i
NN~ = = =W
I I N
TN N = ==
ST W NN =
e
N H = R s
W N NN~ = W
U NN ==
(2 SR ORI NG

PROPOSITION 15.1. The variety generated by any S € {By, B, Ps, PBo, PB10, &1} is defined
by the identities

2?HrKe ~ zHaKz, zHz?Ke =~ zHzKz, aHzKz? ~ aHzKz, (15.1a)
sHyKzTy ~ yHzKaTy, xHyKzTy =~ zHxzKyTy, zHyKaTy =~ aHyKyTzx, (15.1b)
2?hyKy ~ zheyKy, =*HyKy ~ zHyKzy, yHz’ky ~ yHzkzy, (15.1c)
cHzky? ~ a2Hayky, zHaKy? = ayHaKy, zhy’Ke ~ zyhyKe, (15.1d)
hxhykTk ~ hyhxkTk, kTkxhyh ~ kTkyhxh, (15.1e)

hzhyh ~ hyhzh. (15.1f)

The proof of Proposition 15.1 is given in §15.4.

15.1. Identities satisfied by By, Bs, PBs, B, P10, and &

For any word w, let cong(w) denote the set of letters that occur exactly k times in w:
cong(w) = {x € X | occ(z, w) = k}.

Let con3®(w) = [J; >3 cong(w). Note that con(w) = sim(w) U cona(w) U cong®(w) is a disjoint
union.

LEMMA 15.2. Let S € {AB4, Bs, Bs, By, $B10,61}. Suppose that w ~ w' is any identity
satisfied by S. Then:

(i) sim(w) = sim(w’), cona(w) = conz(w’), and con3®(w) = con$®(w');

(ii) either (a) t(w) € sim(w), t(w') € sim(w’), and t(w) = t(w’), or (b) t(w) ¢ sim(w) and

t(w') ¢ sim(w');
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(iii) either (a) h(w) € sim(w), h(w’) € sim(w’), and h(w) = h(w’), or (b) h(w) ¢ sim(w) and
h(w’) ¢ sim(w’);
(iv) Fss(w) = Fss(w').

Proof. (i) The subsemigroup {1,2,4,6} of S’ € {B4, Bs, Bs, By, P10} and the divisor
{1,2,3,5,6}/{3,5} of & are isomorphic to Ni. Hence the result follows from Lemma 2.1(vii).

(ii) The subsemigroups {1,5,6} C %, and {1,5,6} C %5 and the quotients Hs/{1,2, 3,4},
PBo/{1,2,3,4}, $10/{1,2,3,4}, and &1/{1,2,4,5} are isomorphic to J. Therefore the result
follows from Lemma 2.2.

(iii) The subsemigroup {1,3,6} C %, and the quotients %5/{1,2,4,5}, HBs/{1,2,4,5},
PBy/{1,2,4,5}, $B10/{1,2,4,5}, and &1/{1,2,3,5} are isomorphic to the dual semigroup of .J.
Therefore the result follows from the dual result of Lemma 2.2.

(iv) The semigroup S does not satisfy the identity (2.3) with n = 3 because

6%-5-6%-3-6%#£6%-5.3.6° in S € {%By,Bs,Bs, By, B0}

and
6-3-6%-4-63#£6%-3-4-63 in &.

Therefore Fss(w) = Fss(w’) by Lemma 2.10 and part (i). O

15.2. «-canonical form

Let w be any word with cona(w) = {x1,...,2,,} for some m > 1 and con$®(w) = ). Suppose
that the letters z1,...,z,, are in alphabetical order. In this section, such a word w is said to
be in a-canonical form if

T m
w = P(H(%&%"W)) ( H 33?)‘1
i=1 i=r+1
=p-x15171t1 ... 2,52t - acfH o mil -q,

where all of the following are satisfied:

(I red{0,...,m};

(I) the letters of p,q,t, € X* and sy,...,8,,t1,...,t,_1 € X" are simple in w;
(IIT) if r = m, then q = 0.
Note the extreme cases:

2 2 e
W P-zi...T,, -4 ifr=20,
P risizity ... TSty ifr=m.

LEMMA 15.3. Let w be any non-simple word such that con®(w) = (). Then there exists
some word W in a-canonical form such that the identities (15.1) imply the identity w ~ W.

Proof. It suffices to convert w, using the identities (15.1), into a word in «-canonical
form. Since w is non-simple, generality is not lost by assuming cons(w) = {1, ..., 2, } with
Z1,...,Zy, in alphabetical order. The identities (15.1b) can be used to interchange any two
occurrences of non-simple letters in w. In particular, the identities (15.1b) can be used to
arrange the non-simple letters of w so that they occur in alphabetical order, that is,

(15.1b)

w’
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Consider the factorization of w’ that displays all occurrences of x; and x;11 individually:
W, = axibxicxi_,_ldxi_‘_le
where a,b,c,d,e € X'*. There are two cases.

Case 1: b = () # c, that is, the two occurrences of x; are adjacent but the second z; is
not adjacent with the first x;;;. Then the two occurrences of x; can be separated by the
identities (15.1c):

, 5 (15.1c)
w' = az;cr;1dri1e =~ ax;cx;rip1dTige.

Case 2: ¢ = () # d, that is, the second z; is adjacent with the first z;;;1 but the two
occurrences of x; 41 are not adjacent. Then the second z; and the first x;41 can be separated
by the identities (15.1d):

, (15.1d) 2
w = axibxixi_‘_ldxi_,_le ~ amibzidzi+1e.

It is easily seen how the procedures in Cases 1 and 2 can be repeated until w’ is converted
by the identities {(15.1c), (15.1d)} into a word in a-canonical form. O

15.3.  B-canonical form

Let w be any word with cona(w) = {z1,..., 2} for some m > 0 and con§®(w) = {y1,...,yn}
for some n > 1. Suppose that the letters xy,...,z,, are in alphabetical order and the letters
Y1i,--.,Yn are in alphabetical order. In this section, such a word w is said to be in S-canonical
form if

-
W = px H(ysi) =PpX-ySi...ySp,
i=1

where all of the following are satisfied:

@D r=1
(IT) the letters of p,s, € X* and s1,...,s,_1 € X" are simple in w;
() x =2%...22;

(V) y =9 ...v;
Note that x is empty if m = 0, but y is nonempty because con3°(w) # (.

LEMMA 15.4. Let w be any non-simple word such that con$®(w) # (). Then there exists
some word W in f3-canonical form such that the identities (15.1) imply the identity w ~ W.

Proof. Tt suffices to convert w, using the identities (15.1), into a word in S-canonical form.
Since w is non-simple, generality is not lost by assuming cony(w) = {x1,...,2,,} with
Z1,...,ZTm in alphabetical order, and cong®(w) = {y1,...,yn} With y1,...,y, in alphabetical
order. Then w can be written in the form

W = pW1S] ... W;S,,

where (I) and (II) are satisfied and the letters of wq,...,w, € X" are all non-simple in w.
Let k € {1,...,n}. By assumption, y;, € con(w;) for some i. Suppose yj, ¢ con(w;1). Then
W
*
w = ...aygbs; - wW;i18;11... for some a,b € {z1,...,Zm, Y1, -,Yn}
(15.1a) 9 .
A~ ...ayibs; - Wir1Siq1 ... since occ(yg, w) > 3
(15.1c) . . . .
~  ...aykbs; - YpWir1Si1 .- since h(w; 1) is non-simple in w

- WS, - (ykwi+1)si+1 sy
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that is, w;41 is converted by the identities {(15.1a), (15.1¢)} into yxw;t1. If yx ¢ con(w;_1),
then by a symmetrical argument, w;_; can be converted by the identities {(15.1a), (15.1d)}
into w;_1yg. Since k is arbitrary in {1,...,n}, it is easily seen how this procedure can be
repeated until each w; is converted into a word that contains all the letters y1,...,y,. Now for
each 7, the letters of w; are non-simple in w and so can be arranged by the identities (15.1b) in
any manner. Hence each w; can be converted by the identities (15.1b) into a word of the form
X y1t .. ysn with eq,...,ep > 1 and x; € {21,..., 2, }". Since occ(y1, w),...,occ(yn, W) = 3,
the identities (15.1a) can be used to replace each exponent e; by 3. Hence the identities (15.1)
can be used to convert w into the word

/
W =P X1YS1 - X2yS2...X, ySr.

If the factor xo of w' is nonempty, then it can be moved to the left by the identities (15.1)
until it immediately follows the factor x;:

X2
’ /_/H
w = Pp-X1yS1-Z1...%2p ¥S2... for some z1,...,2, € {x1,..., 2}
(15.1a) » ) ,
R OP-X1YiyS1- 21 ... ZpYS2. .. since y1 = h(y) and occ(y;,w') > 3
(15.1b) » . . .y
R OPp-X121...2pYS1 - YLYSe ... since y1, 21, . . ., 2p are non-simple in w
(15.1a)

~ P-X1X2yS1-ySa....

By the same argument, if the factor x3 is nonempty, then it can be moved to the left by the
identities (15.1) until it immediately follows the factor x;xs. Continuing in this manner, w’
can be converted by the identities (15.1) into the word

w’ =p(x1X2...X,) - yS1 - ¥S2...ySp.

It is easily seen that when converting w into w”, the number of occurrences of each x; remained
unchanged throughout, that is, occ(z;,x1X3...x,) = occ(x;, w) = 2. Therefore if the letters
of the factor x1xs...x, are alphabetically ordered by the identities (15.1b), then it becomes

x = 27...22,. The resulting word is in S-canonical form. O

15.4. Proof of Proposition 15.1

Let S € { By, Bs, Bs, By, $10, 61} Tt is routinely checked that S satisfies the identities (15.1).
Hence it suffices to show that any identity w =~ w’ satisfied by S is implied by the
identities (15.1). If either w or w' is a simple word, then it follows from Lemma 15.2 parts (i)
and (iv) that the identity w ~ w’ is trivial and so is vacuously implied by the identities (15.1).
Therefore assume that w and w’ are both non-simple words. By Lemma 15.2(i), it can further
be assumed that:

(a) cong(w) = cong(w') = {x1,...,2:,} where z1,...,x,, are in alphabetical order;

(b) cong®(w) =cong®(w’) = {y1,...,Yn} Where y1,...,y, are in alphabetical order.
There are two cases.

Case 1: cong®(w) = con®(w’) = 0. Then by Lemma 15.3, the words w and w’ can be
chosen to be in a-canonical form, whence by (a),

2 2
W =p- 218121t ... TpSr Tty - 2Ly T

and
/ / !/ ! ! !/
W =p -xi8121t .. TS Xt xi/ﬂ N N o |

https://doi.org/10.1112/51461157014000412 Published online by Cambridge University Press


https://doi.org/10.1112/S1461157014000412

FINITE BASIS PROBLEM FOR SEMIGROUPS OF ORDER SIX 49

Therefore p = p’ and q = ¢ by parts (ii)—(iv) of Lemma 15.2, and
(€) {s1,t1,...,80, b} ={s],t},... 8L, t.}
by part (iv) of the same lemma, whence r = /. Consequently,
w' =p-zisiat) . ashatl 2?2k g

It now follows from (c) that w’ can be converted by the identities (15.1e) into w.

Case 2: cony®(w) = con3®(w’) # 0. Then by Lemma 15.4, the words w and w’ can be
chosen to be in S-canonical form, whence by (a) and (b),

/ ! ! ! !
W=pPX-yS1...YSr—1'yYS, and W =pX-ysS]...ySn_q YSy

2
m

where x = z3...22, and y = y5...y2. Therefore p = p’ and s, = s/, by parts (ii)—(iv) of

Lemma 15.2, and

(d) {s1,...,sp—1}={sl,...,sl, 1}
by part (iv) of the same lemma, whence r = r’. Consequently,

r_ / /
W =pX-yS;...YS,_1 YSr.

It now follows from (d) that w’ can be converted by the identity (15.1f) into w.

16. 61, 62, 63, 64, Z3, D5

This section establishes the finite basis property of the following semigroups.

6111 23456 6|1 23456 6|1 23456
11111111 1j111111 11111111
21111112 21111112 21111112
3111113 3tr11113 3111113
41112111 41112111 41112112
51555555 51555555 51955555
61121456 6122456 61121456
6111 23456 P51 2 3 456 D511 23456
11111111 1j1r11111 1111111
21111112 2111112 21111112
3111113 31111121 31111122
41112112 414444414 414444414
51555555 51444445 51444445
61122456 6123446 61123446

PROPOSITION 16.1. The variety generated by any S € {61, 62,5, 64, D3, D5} is defined by
the identities

o x?, 2Pyrxayr, wyr® ~ ay, (16.1a)
ryrz? ~ 2%y’ (16.1Db)
2?Hy? ~ zHy , (16.1c)

cHyKzy ~ csHyKyz. (16.1d)

The proof of Proposition 16.1 is given in §16.3.
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16.1. Identities satisfied by €, 6>, €3, €1, Y3, and Ds

LEMMA 16.2. Let S € {6, %>, %5, 61, P35, D5 }. Suppose that w = w' is any identity satisfied
by S. Then:

(i) ini(w) = ini(w');

(i) con(w) = con(w’) and sim(w) = sim(w’);

(iii) t(w) € sim(w) if and only if t(w') € sim(w’);
(iv) Fss(w) = Fss(w').

Proof. (i) The subsemigroup {1,5,6} of S’ € {%1, 62, 63, %4} and the subsemigroup {1, 4,6}
of §" € {Z5, D5} are isomorphic to Li. Therefore the result follows from Lemma 2.1(iii).

(ii) This follows from Lemma 2.1(v) since the subsemigroup {1,2,6} of S is isomorphic
to Nj.

(iii) This follows from Lemma 2.2 since the subsemigroup {1,4,6} of S’ € {%61,%>}, the
divisor {1,2,4,6}/{1,2} of S” € {%3,%4}, the subsemigroup {1,3,6} of %3, and the divisor
{1,2,3,6}/{1,2} of Z5 are isomorphic to J.

(iv) The semigroup S does not satisfy the identity (2.3) with n = 2 because

62-4-6%-3-62#6%-4-3-62 in S € {6, 6, C3,Cs)

and
62-3-6%-5-62#6%-3-5-62 in S" € {Zs, %}

Therefore Fss(w) = Fss(w’) by part (ii) and Lemma 2.10. O

16.2. A canonical form

Let w be any non-simple word and let xy be the first non-simple letter of w. Then there exist
p € X* and q € X* such that

W = pzoq, (16.2)
where the prefix p, if nonempty, consists of simple letters of w. Note that the suffix q is
nonempty since it contains all non-first occurrences of xg. In this section, such a non-simple
word w is said to be in canonical form if

W = pxj H aCial) = pad - xS alt L atralm (16.3)

where all of the following are satisfied:
(I) the letters xg,x1,...,z,, are all distinct;
(I) e1,...,em € {1,2};
(II) f1,..., fm € {0,2);
(IV) if fl = 27 then € = €41 = 1.
Note that occ(z;, w) = e; for each i € {1,...,m}. Therefore
(V) for each i € {1,...,m}, the letter x; is simple in w if and only if e; = 1.

LEMMA 16.3. Let w be any non-simple word. Then there exists some word W in canonical
form such that the identities (16.1) imply the identity w ~ W.

Proof. It suffices to convert w in (16.2), using the identities (16.1), into a word in canonical
form. Suppose ini(zoq) = zox1 ... T, for some m > 0. Then w can be written in the form

m
W = pz Hsz = pxj - TIWL ... Ty Wi,
1=1
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wherer > 1 and w; € {xo,...,2;}*. Since the letter z( is non-simple in w, the identities (16.1a)
can be used to replace the exponent r by 2. For each i, since the letters of w; are non-first
occurrences, the identities (16.1d) can be used to arrange them, within w;, in any order.
Specifically, any occurrence of x; in w; can be moved to the left and grouped with the z; in w
that immediately precedes w;. Hence

(16.1d)
w o~ prg-rlwi. . atrw!
w/
for some e; > 1 and W} € {zg,...,x;—1}".

Consider an arbitrary k € {1,...,m} such that wj # 0. Then wj = y;...y, for some
Yty Yn € {Toy ..., Tp—1}. Write

w =pzi-a-z'wy b

k—1 ) ) . . . .
where a = [[,Z (z{'w}) and b = [[\", ., (z{"w7}). Since ¥, is non-simple in w’,

(16.1a)
w o~ pri-a-ryi...ys—1y2 b
(16.1¢)
R pxo-a-xyr... yn,lyimo -b
(16.1a)

~ 2 e 2
XOpryca-Tyl.. . Yn—1YnTp - b.

w’!

If the letter y,, in w” is x, then it can be eliminated by the first identity from (16.1a). If the

letter y,, in w” is not xg, then it is one of x1,...,x;_1 and hence can be gathered, using the
identity (16.1b), with one of the factors z{',...,2;* " in a. In any case, the letter y,, in w”
is eliminated from wj,. Repeat the same argument to eliminate the letters yn—1,Yn—2,...,%1

from w).. Hence
16.1
”(z)pmg-a-xzkacg-b,
that is, the factor wj, of w is converted into z3. Since k € {1,...,m} is arbitrary, the same
argument can be repeated on any w; that is nonempty. Therefore w can be converted by the
identities (16.1) into the word (16.3) with (I) and (III) satisfied and ey, ..., e, > 1. If ¢; > 3,
then the identities (16.1a) can be used to reduce e; to 2. Hence (II) is satisfied.
If e, =2 and f; = 2, then

_ 2 ei—1_fi—1 2 2 eit1, fit1
W = pl‘oxz .’L'O -xil‘0~l‘i+1l‘0
(16.1c) 4 eic1 fio1 2 e fi
0 - -1 i1 fipa
Noprg...xg oy Tl el et
(16.1a) 2 e fi ) )
0 i1, fi—1 2 _eit1_fit1
Nopxy..exp g ewp s w gt

so that f; is reduced to 0. Similarly, if e;;1 = 2 and f; = 2, then

e 1 Fi_ , v
w = prj...z) lxg’ ! -xflxg-xf_,_lxg”l
(16.1b) 4 ei1 fi—1 e 2 fi
~ i— i—1 i i1
ROpxy..--T Ty T X%y
(16.1a)

fic1 e 2 fit1
R SR T S

€i—1

o 2
A pxy...T;

so that f; is reduced to 0. Consequently, (IV) is satisfied. O
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16.3. Proof of Proposition 16.1

Let S € {%1, %2, 63,64, P3, D5} 1t is routinely checked that S satisfies the identities (16.1).
Hence it suffices to show that any identity w ~ w’ satisfied by S is implied by the
identities (16.1). Note that ini(w) = ini(w’) and sim(w) = sim(w’) by Lemma 16.2 parts (i)
and (ii). Therefore if either w or w’ is a simple word, then the identity w ~ w’ is trivial and so
is vacuously implied by the identities (16.1). Hence assume that w and w’ are both non-simple
words and so, by Lemma 16.3, can be chosen to be in canonical form. Since ini(w) = ini(w’)
and sim(w) = sim(w’), it follows from (V) that

w=pzl- a9zl atrxlm and w =pad- a:flx(];l . xfnmxg
Case 1: fo, # f1., say (fm, f1,) = (2,0). Then e,, =1 by (IV), so that
w = pzd 28zl . .xf,;"jfxg’"’l Tpmri and W = pa - x‘flxgl . .x;’”:fxg’"’l Ty

But t(w) = zo ¢ sim(w) and t(w') = x,,, € sim(w’) violate Lemma 16.2(iii).
Case 2: f; # f! for some i < m, say (fi, f/) =(2,0). Then e; = e;41 = 1 by (IV), so that

7
2. e 1 2 fit1 P2 e f1 o figa
W =pax;-riiey xxy iy ... and wWo=paf - aitayt .oz xipry .

But z;z;11 ¢ Fss(w) and x;2,11 € Fss(w’) violate Lemma 16.2(iv).

Since both cases are impossible, f; = f/ for all 4. Therefore the identity w ~ w’ is trivial
and so is implied by the identities (16.1).

17. 5, 66, G0, D1

This section establishes the finite basis property of the following semigroups.

Cs Cs 6 %o 4 7

ST s W NN =

e e
N = = = = =N
— NN = = =W
I i

BN N = = | Ot
S W W =[O
D T e WD =

e e
N — = = = =N
N NN = =W
N N e

I N L e
S W NN W N

ST R W NN =

e e e e R
et e =l )
W W W = = =W
I N N i

Tt Ot Ot = = = Ot
[ I Y VL e
DD T W NN =

e e e R
W W~ = = N
W W W = = =W
[ N S
Ut Ot Ut = = = Ot
S O O W N =[O

17.1. Finite basis property of €5 and 6
PROPOSITION 17.1. The variety generated by S € {€5,%s} is defined by the identities

22yr ~ zyz, xyr® ~ zyz, (17.1a)
2?Hy? ~ y?Hz?, (17.1b)
23Hy? ~ y?Ha3, (17.1¢)
2 Hy? ~ y*Ha?, (17.1d)
z3yh? ~ 23yx>h?, (17.1e)
h2yx® ~ h2aya®, (17.1f)
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h2x?yk? ~ h?yx’k?, (17.1g)
hxhyh ~ hyhxh, (17.1h)
R xkyt? ~ hPyk?xt?. (17.1i)

A non-simple letter x of a word w is said to be restricted if w = az?b for some a,b € X'*
such that z ¢ con(ab); in this case, 22 is called a restricted square of w. A non-simple letter
that is not restricted is said to be unrestricted. For any word w, let res(w) denote the set of
restricted letters of w and let unres(w) denote the set of unrestricted letters of w. Note that
the disjoint union res(w) U unres(w) coincides with the set of non-simple letters of w.

LEMMA 17.2. Let S € {%5,%s}. Suppose that w = w' is any identity satistied by S. Then:
(i) con(w) = con(w’) and sim(w) = sim(w');
(ii) eéthe)réa) t((w))e sim(w), t(w’) € sim(w’), and t(w) = t(w'), or (b) t(w) ¢ sim(w) and
t(w') ¢ sim(w’);
(iii) either (a) h(w) € sim(w), h(w’) € sim(w’), and h(w) = h(w’), or (b) h(w) ¢ sim(w) and
h(w') ¢ sim(w');
(iv) res(w) = res(w’) and unres(w) = unres(w’);
(v) Fss(w) = Fss(w’).

Proof. (i) This follows from Lemma 2.1(v) since the subsemigroup {1, 2,6} of S is isomorphic
to Nj.

(ii) This follows from Lemma 2.2 since the subsemigroup {1,4,6} of 4; and the divisor
{1,2,4,6}/{1,2} of %5 are isomorphic to .J.

(iii) This follows from the dual result of Lemma 2.2 since the subsemigroup {1,3,6} of %;
and the divisor {1,2,3,6}/{1,2} of %% are isomorphic to the dual semigroup of J.

(iv) By part (i), the set of non-simple letters of w coincides with the set of non-simple
letters of w’. Therefore it suffices to verify that res(w) = res(w’). Suppose x € res(w). Then
w = az’b for some a,b € X* such that = ¢ con(ab). Let ¢ : X — S denote the substitution

{5 if z ==,
A
6 otherwise.
Then wp = ...5%... = 2. By part (i), the letter  is non-simple in w’, so occ(z,w') = k > 2.
If two occurrences of x in w’ sandwich some other letter, say w’ = cxdzxe for some c,e € X*
and d € X such that « ¢ con(d), then w'p =...5-6-5... =1 is a contradiction. Therefore
all k occurrences of x form the factor z* in w’, whence w’ = fzFg for some f, g € X* such
that = ¢ con(fg). If k > 3, then w'p = ...5F... = 1 is a contradiction. It follows that
k = 2 and x € res(w’). Consequently, the inclusion res(w) C res(w’) holds. The inclusion
res(w’) C res(w) holds by symmetry.

(v) The identity (2.3) with n = 3 is not satisfied by S since 6% -4-6%-3-6% #£6%-4-3-63.

Therefore Fss(w) = Fss(w’) by Lemma 2.10 and part (i). O
Let w be any word with res(w) = {z1,..., 2} for some m > 1 and unres(w) = (). Suppose
that the letters x1,...,x,, are in alphabetical order. In this subsection, such a word w is said

to be in a-canonical form if

W:p<ﬁ(xfsi))< ﬁ zf)q

i=1 i=r+1

_ 2 2 2 2
=P TiS1.. - TpSp Xpiq .- Ty Q,

where all of the following are satisfied:
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(M) re{0,...,m}

(I) the letters of p,q € X* and sy, ...,s, € X are simple in w;
(III) if r = m, then q = 0.
Note the extreme cases:

2

- p-z?...22 -q ifr=0
p-z?sy...x2 8, ifr=m.

LEMMA 17.3. Let w be any non-simple word such that unres(w) = (. Then there exists
some word W in a-canonical form such that the identities (17.1) imply the identity w ~ W.

Proof. Tt suffices to convert w, using the identities (17.1), into a word in a-canonical form.

Generality is not lost by assuming res(w) ={z1, ...,z } with 21, ..., z,, in alphabetical order.
Hence w is a product, in some order, of the restricted squares x2,... 22 and some simple

letters. The identities (17.1b) can be used to arrange these restricted squares so that they
appear in alphabetical order, that is,

(17.1b)
~ o at.owh 2t € XA L Xl X

w m

w/

If the squares 2 and 22, are adjacent but the squares z7,; and 7, , are not adjacent, so
that w’ = az?a?_ bz}, ,c for some a,c € X* and b € X", then the squares 27 and 27, can
be separated by the identity (17.1g):

17.1g)
I 02,2 o (7] 21,2 2
w' = ax;z; br;,c = aribr; zi,,c.

Tt is easily seen how this procedure can be repeated until w’ is converted by the identity (17.1g)

into a word in a-canonical form. O

Let w be any word with res(w) = {1, ..., 2y} for some m > 0 and unres(w) = {y1,...,yn}
for some n > 1. Suppose that the letters x1,...,z,, are in alphabetical order and the letters
Y1,-..,Yn are in alphabetical order. In this subsection, such a word w is said to be in -

canonical form if

T
W= pr(ysi) =PX-ySi...¥Sp,
i=1

where all of the following are satisfied:

@D r=>1
(IT) the letters of p,s, € X* and s1,...,s,_1 € XT are simple in w;
(II) x =a2%...22;

(V) y=9i ... up-
Note that x is empty if m = 0, but y is nonempty because unres(w) # ().

LEMMA 17.4. Let w be any non-simple word such that unres(w) # (). Then there exists
some word W in [3-canonical form such that the identities (17.1) imply the identity w ~ W.

Proof. Tt suffices to convert w, using the identities (17.1), into a word in S-canonical form.
Since w is non-simple, generality is not lost by assuming res(w) = {x1,...,Tm} with z1,..., 2y
in alphabetical order, and unres(w) = {y1,...,yn} with y1,...,y, in alphabetical order.
Then w can be written in the form

W = pW1Sy ... W;S,,
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where (I) and (II) are satisfied and the letters of wq,...,w, € X" are all non-simple in w.
The identities (17.1a) can be used to replace each unrestricted letter y; by y?. Hence it can
further be assumed that w; € {z?,..., 22, y3,...,y3}F for all i.

Let k € {1,...,n}. By assumption, y; is a factor of some w;, so that w; = ay;b for some
a,b e {z3,...,22,,y},...,y3}*. Suppose that y} is not a factor of w;;1. Let h = h(w;i1).
Then w;; begins with h? or h® depending on whether or not h is restricted. In any case,
w1 = h®*w]_, for some w/,; € X*. Hence

wW; Wit1
/3\ 7H (17.1¢)
= b s, h*w..,s; ~ ayrbs; -y hPwl, s;
W =...ay;bs; i+1 Sitl .- -+ YR DS - Yg i+1Si+1 -

= ... W;S; - (yiwiﬂ)siﬂ ey

that is, w;11 is converted by the identity (17.1e) into yiw;1. If ¥ is not a factor of w;_1,
then by a symmetrical argument, w;_; can be converted by the identity (17.1f) into w;_1y3.

Since k is arbitrary in {1,...,n}, it is easily seen how this procedure can be repeated until
(a) every w; is converted into a word that contains all the factors y3,. .., y3.
Now the letters x1,...,,, are restricted, so that each of the restricted squares z7,..., 22,
occurs precisely once in w as a factor of some w;. The identities {(17.1b), (17.1c), (17.1g)}
can thus be used to move the squares z?,...,22, to the left until they are grouped with w;.
Therefore in view of (a):
(b) wy is converted into a product involving x2,... 22 y$, ..., y3;
(c) each of wy, ..., w, is converted into a product involving only %3, ..., y3.
It then easily follows from (b) and (c) that the identities (17.1a)—(17.1d) can be used to
convert wi into Xy, and every one of wa, ..., w, to y. Hence (IIT) and (IV) are satisfied, and
the resulting word is in S-canonical form. U

Proof of Proposition 17.1. Let S € {%5,%s}. It is routinely checked that S satisfies the
identities (17.1). Hence it suffices to show that any identity w ~ w’ satisfied by S is implied
by the identities (17.1). If either w or w’ is a simple word, then it follows from Lemma 17.2
parts (i) and (v) that the identity w ~ w’ is trivial and so is vacuously implied by (17.1).
Therefore assume that w and w’ are both non-simple words. By Lemma 17.2 parts (i) and (iv),
it can further be assumed that:

(a) res(w) =res(w’') = {x1,..., 2} where z1,...,x,, are in alphabetical order;

(b) unres(w) = unres(w') = {y1,...,yn} where y1,...,y, are in alphabetical order.

There are two cases.

Case 1: unres(w) = unres(w’) = (). Then by Lemma 17.3, the words w and w’ can be
chosen to be in a-canonical form, whence by (a),

2

_ 2 2 2 2 ! 2/ / 2
W=P-T181...2;8 " Tryq.--Tpy - 4 and W =P 2981 ... XSy Loy - Ty

Therefore p = p’ and q = q’ by parts (ii), (iii), and (v) of Lemma 17.2, and

(€) {s1,...,sp}={s],....sl,}
by part (v) of the same lemma, whence r =+/. Thus w' = p-zfs| ... 228/ - 22, ... 22 -q. It
now follows from (c) that w’ can be converted by the identity (17.1i) into w.

Case 2: unres(w) = unres(w’) # (). Then by Lemma 17.4, the words w and w’ can be
chosen to be in S-canonical form, whence by (a) and (b),

!/ / ! !/ !
W=pPX-yS1...YSr—1'yYS, and W =px-ys]...yS._q ySy
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where x = z%...22, and y = y?...y3. Therefore p = p’ and s, = s/, by parts (ii), (iii),
and (v) of Lemma 17.2, and

(d) {s1,---ssr—1}t={sl,...,sl._1}
by part (v) of the same lemma, whence r = /. Thus w' = px -ys}...ys._; - ys,. It now
follows from (d) that w’ can be converted by the identity (17.1h) into w. O

17.2. Finite basis property of €19 and 2,
PROPOSITION 17.5. The variety generated by S € {610, 21} is defined by the identities

2~ 2lyr ~oyr, ayxr® ~ ayc, (17.2a)
22y?2? = yPa??, (17.2b)

z?Hy? ~ yz?Hy, (17.2¢)

xyHxKy ~ yaxHzKy. (17.2d)

For any word w, let Fi s(w) denote the set of factors of w of length two that begin with the
last occurrence of some non-simple letter and end with a simple letter:

Fis(w) = {zy € X% | w € X*xy(X\{z})*, 2 ¢ sim(w),y € sim(w)}.

LEMMA 17.6. Let S € {%10, Z1}. Suppose that w ~ w’ is any identity satisfied by S. Then:
(i) t(w) = t(w');
(ii) con(w) = con(w’) and sim(w) = sim(w’);
(iii) for any = € con(w) = con(w’) and y € sim(w) = sim(w’), the conditions x < y and
T <w’ Y are equivalent;
(IV) Wsim = w;im;
(v) Fus(w) = Fus(w));
(Vi) Fss(W) = Fss(W/).

Proof. The subsemigroup {4,5} of S is isomorphic to Rg, so part (i) holds by Lemma 2.1(ii).
Parts (ii)—(iv) hold by Lemma 2.3 because the subsemigroup {1, 3, 4,6} of %o and the divisor
{1,3,4,5,6}/{4,5} of 2, are isomorphic to J*.

(v) Suppose Fis(w) # Fis(w’), say xzy € Fis(w)\FLs(w’). Then

(a) w = azyb for some a,b € X* such that = € con(a)\con(b) and y ¢ con(ab).

By part (ii), the letter « is non-simple in both w and w’, while the letter y is simple in both w
and w’. Further, since x <y v, it follows from part (iii) that z < y. Hence

(b) w' = a’tyb’ for some t € X and some a’,b’ € X* such that x € con(a’)\con(tb’) and

y ¢ con(a’tb’).
Let 1 and @9 denote the following substitutions into %19 and %, respectively:

5 ifz=u, 4 ifz=u,
z— <2 if z =y, z—= <2 if z =y,
6 otherwise; 6 otherwise.

Then ap; € {5,6} C {4,5,6} and by, € {6}* by (a), so that
wpr =ap;-5-2-bp; =3 and wWpr=...6-2...=1,
and a’gs € {4,6}T C {4,5,6} and b'ps € {6}* by (b), so that
wipy=a'py-6-2-bpy=3 and wpy=...4-2...=1.

Both of these are impossible. Hence Fis(w) = Fis(w').
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(vi) Suppose Fss(w) # Fss(w'), say xy € Fss(w)\Fss(w’). Then it is easily seen from
part (ii) that xy € Fis(aw)\FLs(xw’). It then follows from part (v) that S does not satisfy
the identity xw ~ xw’, which is impossible. O

Let w be any non-simple word with distinct non-simple letters x4, ..., z,. In this subsection,
such a word is said to be in canonical form if

w = || (siw;), (17.3)
i=1
where all of the following are satisfied:

(I) the letters of s; € X* and sg,...,s,, € X" are simple in w;
(I1) wy,...,wWp_1 € X" and w,, € X* are such that

Wi, Wi €442 92 | Y1, ..., ye are distinet in {2q,...,2,} with £ > 0};

(III) con(wy) 2 ... D con(wyy,).

LEMMA 17.7. Let w be any non-simple word. Then there exists some word W in canonical
form such that the identities (17.2) imply the identity w ~ W.

Proof. Tt suffices to convert w, using the identities (17.2), into a word in canonical form.
Clearly w can be written in the form (17.3) with (I) satisfied, wy,..., w1 € {z1,..., 2.},
and wy, € {x1,...,2,.}* If y € con(w;41)\con(w;), say w, 1 = ayb for some a,b € X*, then
the identities (17.2) can be used to convert w; into yw;:

(17.2a) 9 9
)% = e SiW S 1 Wi - ~ Sz(h(Wz)) W; - S;y1ay b...
(17.2¢) (17.2a)
~ Sly(h(Wl))le ~si+1ayb... ~ .. Sl(ywl) *Si+1Wig1 ..

Hence (III) is satisfied by applying the identities (17.2).

Choose any k € {1,...,m}. It is convenient to let p = Hi:ll (siwi) and q =[], 1 (siwi),
so that w = pspwiq. Suppose t = t(wy) and con(wy) = {y1,...,9e,t} C {x1,...,2,.}. Let ¢
denote the substitution = + 22 for all € X. Since the letters of wy, are non-simple in w,

(17.2a) (17.2b)

w o~ psp(Wip)d ~  pspyiet...y;t**q for some ey, ... epe > 1
(17.2a)
~ pseyi. .- yita.
Hence wy, satisfies (II). O

LEMMA 17.8. Let S € {%10, Z1}. Suppose that S satisfies an identity w ~ w’, where

m

W= ﬁ(siwi) and w' = H(Szwi)
i=1

=1

are in canonical form. Then con(w;) = con(w}) for all i.

Proof. First note that |J;-, con(w;) = [J;~, con(w}) holds by Lemma 17.6(ii). Suppose
con(wy) # con(w}), say « € con(wy)\con(w?}). Since the letter x is non-simple in w by (II), it
is also non-simple in w’ by Lemma 17.6(ii). Hence by (II), there exists some ¢ > 1 such that
x € con(w}). But then (III) implies « € con(w}), contradicting the assumption. Therefore
con(wy) = con(w}).
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Now suppose con(wy) # con(wy,) for some k > 1, say = € con(wy)\con(w},). Then (III)
implies « € con(w ... wy) and = ¢ con(w), ... w,, ), whence z 4w h(sg) and  <w+ h(sg). But
this violates Lemma 17.6(iii). O

LEMMA 17.9. Let S € {610, 21 }. Suppose that S satisfies an identity w ~ w’, where
w = H(siwi) and w' = H(slw;)
i=1 i=1

are in canonical form. Then the identities (17.2) imply the identity w ~ w’.

Proof. It suffices to show that for any k € {1,...,m}, the identities (17.2) can be used to
convert the factor wy, of w into ch. For convenience, write

w =psywrq and w =p'spwiq’
where p = Hi:ll(siwi), q= H;ikﬂ(siwi), p = Hf;ll (siw}), and q' = H?;,H_l(siw;). Then
Lemma 17.8 and the assumption of this lemma imply
(a) con(wy) = con(wy,) C {z1,..., 2},
(b) con(a) = con(q’),
and con(p) = con(p’). There are two cases.

Case 1: t(wy) = t(w}) =t. By (a) and (II), there exist distinct yi,...,y¢ € {z1,...,2s}
with £ > 0 such that wy = y? .. .yt?t2 and w), = yio... yﬁﬂt2, where 7 is some permutation on
{1,...,£}. Then

(17.2b)
W=Psiyl . itPd A PSKYi. - Yiet'd = PSIWLQ.

Case 2: t(wy,) =t # t' = t(w}). Since t(w,,) = t(w) = t(w') = t(w/,) by Lemma 17.6(i),
it follows that k¥ < m and q # (. Recall that F s(w) = F s(w’) by Lemma 17.6(v). Hence if

(c) the last occurrence of t in wy, is the last occurrence of t in w,
so that th(sgy1) € FLs(w), then th(sg11) € Fis(w’) is a contradiction because the letter in w’
that immediately precedes the simple letter h(syy1) is ¢ = t(w},). By symmetry, the same
contradiction is obtained if

(d) the last occurrence of ¢’ in wj, is the last occurrence of ¢’ in w’.

Therefore neither (¢) nor (d) holds, whence ¢,¢' € con(q) by (b). Now by (a) and (II), there

exist distinct letters y1,...,ve, 21,...,25s € {21,..., 2}, where £,s > 0, such that
wr=yo. .yt ()22 2R
and wj, is a product of yf,...,y2,2%,...,22,t?,(¢)? in some order ending with (¢)%. Then
w = pspyt...yi(t)?2? .. 2% e psiys .. yizt . 22 ()2 q

~  psgp yi...yszi.. . 222 (t)*q  because t,t’ € con(q).

u

Since con(u) = con(wy,) and t(u) = t(w},), the procedure in Case 1 can be repeated to give
(17.2)
pspuq ~  PSpw,g. O

Proof of Proposition 17.5. Let S € {@10,21}. It is routinely checked that S satisfies the
identities (17.2). Hence it suffices to show that any identity w ~ w’ satisfied by S is implied
by the identities (17.2). If either w or w’ is a simple word, then it follows from Lemma 17.6
parts (ii) and (iv) that the identity w ~ w’ is trivial and so is vacuously implied by (17.2).
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Therefore assume that w and w’ are both non-simple and so by Lemma 17.7, can be chosen
to be in canonical form. Hence

’
m m

w = H(siwi) and w' = H(S;W;)

=1 i=1

/ /

Since 81 ...8;, = Wgm = W, =s}...s/, by Lemma 17.6(iv), it follows from Lemma 17.6(vi)

sim *Om/
that m = m’ and s; = s} for all 4, that is, w' = [[",(s;w}). By Lemma 17.9, the
identities (17.2) imply the identity w ~ w’. O
18. ¢;

This section establishes the finite basis property of the following semigroup.

¢|1 23456
1j1 11111
21111112
3jtr11113
41112141
51113151
61121416

PROPOSITION 18.1. The variety generated by ¢ is defined by the identities

rHyKxTy =~ sHyKxTyzx,

2 r?, 2Pyrxayr, zyx® ~ xyr, (18.1a)
w?y? = yPa?, (18.1b)

ha?yh ~ hyx?h, (18.1¢)

hzhyh ~ hyhxh, (18.1d)

)

)

cHyKzTy =~ yxHyKzTy.
The proof of Proposition 18.1 is given in §18.3.

18.1. A canonical form

LEMMA 18.2. Let w = syw;sy withs;,ss € X* and wy, € XT. Suppose that the letters of w
are non-simple in w with con(wy) = {x1,...,2,}. Then for any permutation = on {1,...,1},
the identities (18.1) imply the identity

~ a2 2
S1W182 = 81X7 1 ... L S2. (18.2)
Proof. Suppose Wi = y1...Ym Where y1,...,ym € {x1,...,2,}. Then since yi,...,y,, are
non-simple letters in w,
(18.1a) (18.1b)
S1W1S2 R~ Sly% Ce y?nSQ ~ Sll'?frl Ce .’)3?761."52 for some €1,...,er =1
(18.1a)

~ 2 2
N~ S1T7p .- TppS2.

Therefore the identities (18.1) imply the identity (18.2). O

COROLLARY 18.3. Suppose that w and w’ are any words such that con(w) = con(w’) and
sim(w) = sim(w’) = (0. Then the identities (18.1) imply the identity w ~ w’.
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LEMMA 18.4. Let w = s;W;SoWsS3 where the letters of s;,s3 € X* and sy € X are simple
in w and the letters of wi,wy € XT are non-simple in w. Suppose con(w1) N con(ws) # 0.
Then the identities (18.1) imply the identity

S1W{SoWoS3 & S1W{WoSoW{WaS3. (18.3)
Proof. Generality is not lost by assuming
con(wy) ={x1,..., Tk, Y1,---,Ymt and con(wa)={z1,...,Tk, 21,-.-,2n},

where k > 1 and m,n > 0 with y; # z; for all i and j. For brevity, write y = y7...y2, and

— 2 2
z=2{...2;. Then

(18.2) 2 2 2 2 9
S1W1S2W9oS3 ~ S1-X7...TLY S22 T1...Tp_1TLZ" S3
(18.2) 2 2.2 2 2 2.2
NS YT]...TRY  SoZIT]...Th_TRZ" - S3

(18.1¢) 2 2 2 2 2.2 2
A S| yTh...X% Sy ZXT...Th Y TIZ - S3

(18.1b) 2 2 2 2 2.2 9

~ S1 YTi... Ty 82 2Ty ...Tp,_1Y Z Ty *S3
(18.1¢) 2 2 2 2 2 2.9

N S| YT]...TRZ Sy ZITT...Th_ 1Y T} - S3
(18.2)

~ 31-x%...ziyzsz~z%...x%yz'53

(18.2)

X S1W1W32S9W]1W9S3.
Therefore the identities (18.1) imply the identity (18.3). O

Let w be any non-simple word such that sim(w) # 0 and h(w),t(w) ¢ sim(w), and let
Z1,...,Z, be the distinct non-simple letters of w listed in alphabetical order. In this section,
such a word w is said to be in canonical form if

m
W = Wy H(siwi)
i=1

for some m > 1, where the following are satisfied:
(I) the letters of sy, ...,s,, € XT are simple in w;
(1) wo,..., Wy €{a2 ...22 [1<ni<...<np<randk>1};
(IIT) if ¢ # j, then either w; = w; or con(w;) N con(w;) = 0;
(IV) if w; = wi, and w; = wy where i < j < k </, then w; = w; = wj, = wy.

LEMMA 18.5. Let w be any non-simple word such that sim(w) # (). Suppose that h(w) and
t(w) are non-simple letters of w. Then there exists some word W in canonical form such that
the identities (18.1) imply the identity w ~ W.

Proof. Suppose that x1,...,z, are the distinct non-simple letters of w listed in alphabetical
order. By Lemmas 18.2 and 18.4, it suffices to convert w, using the identities (18.1)—(18.3),
into a word in canonical form. It is easily seen that w can be written as a word of the form
w =wo [[/~,(siw;) with (I) satisfied and w; € {x1,...,z,}T. The letters of w; are non-simple
in w, so that (II) is satisfied by applying the identity (18.2).

Suppose that the factors w; and w;, where ¢ < j, do not satisfy (III). Then w; # w; and
con(w;) Ncon(w;) # (). Generality is not lost by assuming con(w;w,) = {zy,, ..., 2y, } where
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1<ny <...<ng <r. Since

W = ...8W;...S;Ww;... (the prefix...s; is empty if i =0)
(18.3)
~ e SWW L LU SW WL
(18-2) 2 2 2 2
~osi(my, ey, ) s, Ty, )

the factors w; and w; are converted by the identities {(18.2),(18.3)} into the same word

x} ...z} . Hence (III) is satisfied.
Suppose that w;, w;, wy, and w¢, where ¢ < j < k < £, violate (IV). Then w; = w;, = a
and w; = wy = b with a # b. Generality is not lost by assuming con(ab) = {zp,,...,Zn,}

where 1 <n; < ... <ng <r. Then

W = ...8;W;...S;W;...S;Wg...S¢Wp... (the prefix...s; is empty if i = 0)
= ...s;a...s;b...spa...s/b...
(18.1e)

~ ...s;a...s;b...spa...s/ba...
(18.1f)

~ ..s;ba...s;b...sga...s/ba...
(18.3) .

~  ...s;bab...s;bab...s;a...s/ba... since con(ba)Ncon(b) # 0
(18.3) .

~  ...s;bab...s;bab...syaba...sjaba... since con(a)Ncon(ba) # ()
(18.2)

X ...S,C...SjC...SpC...SC... wherec=217 ...z} .

Hence the factors w;, w;, wy and w, are converted by the identities (18.1)—(18.3) into the
same word ¢, whence (IV) is no longer violated. O

LEMMA 18.6. Let w be any product of pairwise disjoint connected words with sim(w) # ().
Then there exists some connected word W = wq [ [/~ (s;w;) in canonical form, with wo = W,
such that the identities (18.1) imply the identity w ~ W.

Proof. By Lemmas 18.2 and 18.4, it suffices to convert w, using the identities (18.1)—(18.3),
into a connected word in canonical form. First suppose that w is a single connected word
with sim(w) # 0. Then there exists a sequence h(w) = z1,2,..., Ty = t(w) of non-simple
letters of w occurring in an overlapping pattern such that the first z;; occurs between two
occurrences of z; and the last x;11 occurs to the right of all occurrences of ;. This sequence
can be chosen to have minimal length among all such sequences, so that

W=T1P122P27191T3P372q9224P42343 -.-- Qm—-1Tm

for some p1,...,Pm,d1,---,9dm-1 € X*. (Note that the factor p; follows the first x;, the
factor q; follows the last x;, and at least one simple letter of w belongs to some p; or q;.)
Then

(18.1e)
W X 21P172P22191T3P3T22019224P423493 .- Qm—1Tm
(18.1¢)
X T1P1T2P22191 X3 P3T2X1 Q2 X4 P4T32193 -+ Qm—1Tm
(18.1e)
N T1P122P2719123P3T2X1 Q2 L4 P4X3T193 --- Qm—1 TmT1,

w’
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where w’ is a word that satisfies sim(w’) # ) and h(w’) = t(w’). Repeat the proof of
Lemma 18.5 to convert w’, using the identities (18.1)—(18.3), into a word W = wo [[;~, (s;w;)
in canonical form. The letter x; is easily seen to belong to both wy and w,,, so that wy = w,,
by (III). It follows that W is connected.

Now suppose that w is a product of pairwise disjoint connected words with sim(w) # 0.
Then w = ¢y ...c, where cq, ..., c, are pairwise disjoint connected words. For each 4, since c;
is connected, the letters h; = h(¢;) and ¢; = t(¢;) are non-simple in c¢;. Therefore

w B 12012 h2eat  hlest2 . b2 icn 1B, Blentl

(181b) .5 .9 19 .9 9 ;9 2 2,2 2
/A hicih; -ticahs - ticshy ...t _ocn_1hy, - t,_iCut,,

w'!

that is, the word w is converted by the identities (18.1) into the connected word w” with
sim(w") # (. The procedure in the previous paragraph can then be repeated to convert w”
into a word with the required properties. O

18.2. Identities satisfied by ¢

LEMMA 18.7. Suppose that w = w’ is any identity satisfied by ¢~. Then:
(i) con(w) = con(w’) and sim(w) = sim(w');
(ii) Fss(W) = Fss(W/).

Proof. (i) This follows from Lemma 2.1(v) because the subsemigroup {1,2,6} of %7 is
isomorphic to NJ.

(ii) Since 62 -4-62-3-6% # 62-4-3-62 in 6, the identity (2.3) with n = 2 is not satisfied
by €7. Therefore Fss(w) = Fss(w’) by Lemma 2.10 and part (i). O

For any word
m

W =W H(siwi) (18.4)

in canonical form, it is convenient to call sq,...,s,, the maximal simple factors of w, and call
Wo, ..., Wy, the maximal non-simple factors of w. Recall from (III) that any two maximal
non-simple factors of w are either identical or disjoint.

For any distinct maximal non-simple factors a and b of the word w in (18.4), write a €y b
to indicate that within w, all occurrences of a are sandwiched between two occurrences of b.
Note that if a €y b, then (IV) implies that no occurrence of b is sandwiched between any two
occurrences of a.

LEMMA 18.8. Suppose that w = w’ is any identity satisfied by €%, where

m m/
w = W H(siwi) and w' =w H(s:w;)
i=1

i=1

are in canonical form. Then:
(i) m=m';
(i) (s1,.-.,8m) = (84,.-.,Sh,,) for some permutation = on {1,...,m};
iii) (wo,..., W)= (W},,...,w. ) for some permutation 7 on {0,...,m};
or mT
(iv) s;w; is a factor of w if and only if s;w; is a factor of w';
(v) w;s; is a factor of w if and only if w;s; is a factor of w’.

https://doi.org/10.1112/51461157014000412 Published online by Cambridge University Press


https://doi.org/10.1112/S1461157014000412

FINITE BASIS PROBLEM FOR SEMIGROUPS OF ORDER SIX 63

Further, if the words w and w’ are connected, then
/

(Vi) wo =Wy, = W) = wW,,.

Proof. Parts (i) and (ii) follow from Lemma 18.7.

Suppose that 22 and 3?2 are factors of different maximal non-simple factors of w. Generality
is not lost by assuming that z2 is a factor of a and y? is a factor of b with b &, a. Let p
be the least integer such that w, = a and let ¢ be the greatest integer such that w, = a.
If w; = b for some 7 with p < i < ¢, then it follows from (IV) that all occurrences of b
are sandwiched between w, = a and w, = a, whence the contradiction b €y, a is deduced.
Therefore b ¢ {wy, ..., w,}, so that b € {wo,...,w,_1} U{Wgt1,..., Wy}, whence (p,q) #
(0,m). Let 1 : X — €7 denote the substitution

4 if z = h(sp),

3 ifz=t
IO LR FETCn)
5 if z € con(SpWpSpt1Wpt1 - - SqWgSq+1) and z # h(sp), t(Sq+1),
6

otherwise.

(Note that s, = 0 if p=0, and sg41 =0 if ¢ = m.) If p =0 and ¢ < m, then

Wy = (Wo ﬁ(&m))% “Sq411 - <Wq+1 ﬁ (SiWi))%

i=1 i=q+2
:(5...5)-(5...5-3)~(6...6):3.

If 0 < p and ¢ = m, then

Wy = (Wo pl:[l(siwi)> P1-Spip1 - (Wp ﬁ (Sz’Wz‘)) P1

i=1 i=p+1
—(6...6)-(4-5...5)-(5...5) = 4.

If 0 < p and ¢ < m, then

wp = [ w 1 (s;w;) R - (siw;) - Sq | wy 1 (s;w;)
¥1 ( 0 Zl;[l )<P1 ¥1 ( 1:1111 )@1 +1¥1 ( +1i=112 ><P1
=(6...6)-(4-5...5)-(5...5)-(5...5-3)-(6...6) = 2.

Therefore wyo; # 1. Now it follows from Lemma 18.7(i), (I), and (II) that 2? and y? are
factors of w’. If 22 and 32 are factors of the same maximal non-simple factor of w’, say

wi =...z%...y*..., then

wipr €. {5,6}*-5% {56} -6% {56} ...={1}

’
Wi P1

is a contradiction. Therefore z? and y? are factors of different maximal non-simple factors
of w'. By symmetry, if 22 and y? are factors of different maximal non-simple factors of w’,
then they are factors of different maximal non-simple factors of w. Consequently,
(a) 22 and y? are factors of the same w; if and only if 2% and y? are factors of the same wi.
Let 22y? be a factor of some w;. Then w; = ...z%y?... and z alphabetically precedes y
by (II). By (a), the words 2? and y? are factors of some w’. Suppose that 2%y? is not a

factor of w;. Then w;« = ...2%. 2322, z,% -y2... for some letters zi, 2, ..., 2, such that
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x,21,22,---,2k, Y are in alphabetical order. By (II), the letter z; cannot belong to w;, so
that 22 and 27 are factors of different maximal non-simple factors of w. But this contradicts (a)
since 2 and 2? are factors of w;». Therefore 22y? is a factor of w;. By symmetry, if z2y? is a
factor of some wg-, then it is a factor of some w;. Consequently, x2y? is a factor of some w;
if and only if #%y* is a factor of some w. It then follows from Lemma 18.7(i), (I), and (II)
that w and w’ share the same set of maximal non-simple factors, that is,

(b) UiZofwi} = UZo{wi}-

Let s;a be a factor of w and s;b be a factor of w’, where a,b € |J.",{w;}. Suppose a # b.
Choose any letter z ¢ con(w) = con(w’) that alphabetically precedes all of z1,...,z,. Let g
denote the substitution t(s;) + t(s;)z2. Then wpy = ...z%a... and Wy = ...2%b....
Following the proof of Lemma 18.6, the words wps and w'ps can be converted by the
identities (18.1) into words W7 and W/, in canonical form. Since the identities (18.1) are
satisfied by €7, the identity W@z &~ W'y is also satisfied by 7. It is easily seen that Wy is
obtained from w by replacing all occurrences of a with z2a, while w/¢, is obtained from w’
by replacing all occurrences of b with z%b. It follows that W@; and W/, do not share the
same maximal non-simple factors, and this contradicts the result obtained in the previous
paragraph. Therefore a = b. Consequently, for any a € .- {w;} = Ui~ {W}},

(¢c) s;ais a factor of w if and only if s;a is a factor of w'.

By a symmetrical argument,

(d) as; is a factor of w if and only if as; is a factor of w’'.
Parts (iii)—(v) now follow from (b)—(d).

Finally, suppose that w and w’ are connected. Then wy = w,,, and w{, = w,, by Lemma 18.6.
Suppose a = wy = w,,, and b = wj, = w/,, with a # b. Then by picking any distinct letters
x,y,z ¢ con(w) = con(w’), the words w = zywzz and W = zyw’zz are in canonical form
such that the identity w ~ W’ is satisfied by 7. Now y € sim(w) = sim(w’) and ya is a factor
of W that is not a factor of W’. But this is impossible by part (iv). Therefore a = b, so that
part (vi) holds. O

LEMMA 18.9. The semigroup %7 has a basis of the form {(18.1)} UX, where ¥ is some set
of identities formed by connected words in canonical form.

Proof. It is easily verified that %7 satisfies the identities (18.1) and is idempotent-separable.
Let V denote the variety generated by €7. Then By € V because the subsemigroup {1, 3,5,6}
of €7 is isomorphic to By. The semigroup Ay does not satisfy the identity (18.1b) because
a?b? # b%a? in Ag. Therefore Ay ¢ V, and it follows from Lemma 2.6(ii) that €7 has a basis ¥
that consists of identities formed by words that are products of pairwise disjoint connected
words. Hence {(18.1)} U X is also a basis for é7.

Let w = w’ be any identity in X. Then con(w) = con(w’) and sim(w) = sim(w’) by
Lemma 18.7(i). If sim(w) = sim(w’) = @, then by Corollary 18.3, the identity w ~ w’ is implied
by the identities (18.1) and hence is redundant in the basis of 47. Therefore it can further be
assumed that sim(w) = sim(w’) # (. By Lemma 18.6, there exist connected words w and W’
in canonical form such that the identities (18.1) imply the identities w ~ W and w' ~ W'.
Hence the sets {(18.1),w ~ w’} and {(18.1), w =~ W'} define the same variety.

Now since the identity w &~ w’ is arbitrary in ¥, the construction of W ~ W' from w ~ w’
in the preceding paragraph can be repeated on every other identity in ¥ to obtain the set
Y ={w~W|waw € X} with the property that {(18.1)} UX is a basis for €. O

18.3. Proof of Proposition 18.1

By Lemma 18.9, the semigroup €7 has a basis of the form {(18.1)} UY where ¥ is some set of
identities formed by connected words in canonical form. Let w = w’ be any identity from .
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Then by Lemma 18.8 parts (i)—(iii),
w = wy H(siwi) and w' = w H(S;Wi)
i=1 ;

=

—

where:
® (S1,...,8m) = (8hx,-..,8h,,) for some permutation 7w on {1,...,m};
o (wo,...,Wp) = (W(,,...,w,, ) for some permutation 7 on {0,...,m}.

In the remainder of this proof, it is shown that the identities (18.1) can be used to convert w’
into w. It follows that the identity w ~ w’ is implied by the identities (18.1). Consequently,
the identities (18.1) imply every identity in X and so constitute a basis for €.

Since the words w and w’ are connected, wy = w{, by Lemma 18.8(vi). Suppose that £ > 1
is such that (syw1,...,sp_1we_1) = (siw1,...,s),_;wj_;) and sywy # s;wj. Then

w = hasyw;...s,,w,,, and w’ =has;w;...s, w,, (18.5)

where h = wo(Hf;lz(siwi))se,l = w{)(Hf;f(sgwg))sz_l and a = wy_; = wj_,. (Note that if
¢ =1, then h = and a = wy = w(,.) If sy # s}, then it is shown in Lemma 18.10 below that
the identities (18.1) can be used to convert w’ into a word w’ = hasy... in canonical form.
Hence it can be assumed that s, = sj. It then follows from Lemma 18.8(iv) that w, = wy,
whence sywy = s;wj. The argument in this paragraph can be repeated until w’ is converted
by the identities (18.1) into w.

LEMMA 18.10. Supposes; # s; in (18.5). Then the identities (18.1) can be used to convert w’
in (18.5) into hasy ... in canonical form.

Proof. By assumption, as,;w; # as,w, where as,w, is a factor of w and as,wy is a factor
of w'. Then it follows from Lemma 18.8 parts (iv) and (v) that:
e as;wy is a factor of w, say as;w} = WS, 1 Wy for some p > ¢
e as,wy is a factor of w', say as,wy = wys; ., wy . ; for some ¢ > /.

Thus
WpSp+1Wp+1
!/ !/
W =ha- s/W/-S; 1Wep1...Spa SyWy - SpioWpio. .. .S, Wi,
and
r_ P d / ’ / ’ A
w' =ha - syWy - Sj W) 1 ...S 8 SWy-S; oW 0. S, W,
WoSgr1Wat1
Note that by (I),
(a) con(h) Ncon(s¢sptt -..sp) = 0.
Further, the maximal non-simple factors wy, wj, ..., w;_; of W’ are sandwiched between
w;_, = a and w/, = a. Therefore by (IV),
!/ !/ / ! !/ !/ : :
(b) AWy, Wy 15y Wi} N {W 1, We o, ..., W,, } is either {a} or empty.
Suppose that
(f) ais not equal to any of the factors wy  ;, Wy o,...,w,, of w'".

By Lemma 18.8(iv), the factor spa of w is a factor of w’. Hence by (a) and (1),
(c) sp is a factor of syw) - s), W, | ...spwp.
By Lemma 18.8(v), the factor w,_1s, of w is a factor of w’. Hence (c) implies that
(d) wp_1 is a factor of a-sywj - s, Wy, ...s;W
If w,_1 = a, then (}) implies that

(e) wp_1 is not equal to any of wy 1, Wi o,..., Wy,

/
q-
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If w,_1 # a, then a = w; and (d) imply w, 1 € {wj,wy,,,...,w,_;}, which together
with (b), imply (e). Therefore (e) holds in any case. By Lemma 18.8(iv), the factor s,_1wp_1
of w is a factor of w'. Hence (d) and (e) imply that the factor s,_; of w is a factor of
SYWy * Sp Wy - SqWy.

The argument in the previous paragraph can be repeated to deduce that the factors
Sp—2,Sp-3,---,80+1 of w are factors of sywy - s, wj, ,...spw,. It follows that sywys;yq
is not a factor of w’. However, sywysyy;1 is a factor of w, whence Lemma 18.8 parts (iv)
and (v) are violated. Therefore the assumption (f) cannot hold, whence a = w for some

je{g+1,q+2,...,m}. Consequently,

/ _ !/ / !/ ! !/ / / /
w' = h(a-s;wy...s;-a-8;Wp...8;-a)S; Wi .8, W,
(181d) I ! !/ I ! / !/ /
~ h(a-s;wy...s}-a-s;wy...8;-a)s; Wi .. S, W,
where the latter word begins with has, and is in canonical form. O

19. %

This section establishes the finite basis property of the following semigroup.

¢s|1 23456
11111111
21111112
31111113
41112141
51113151
611 2244¢6

PrOPOSITION 19.1. The variety generated by 6g is defined by the identities

2~ a?, 2lyr ~oyr, ayxr® x ayc, (19.1a)

hxhyh ~ hyhzxh, (19.1b)

zHyKz Ty ~ sHzKz Ty, (19.1¢)

zHy?z ~ y?zHy?z, zHy’zKe ~ sHy oKy e, (19.1d)

cHyKzy ~ csHyKyz, xHyKzy ~ yHzKzxy, (19.1e)

cHy?zKy ~ zHy?zsKe, yHazKyz ~ zHzKy?z, 2HyKy’z ~ csHzKy z. (19.1f)

The proof of Proposition 19.1 is given in §19.4.

19.1. Z-perfect words

For any nonempty set Z = {z1,..., 2.} of letters where z1,..., 2, are in alphabetical order,
define the perfect Z-square to be the word

28— (z...2)%

More generally, a perfect square is a perfect Z-square for some nonempty set Z of letters.
Let w be any non-simple word and let Z be some nonempty set of non-simple letters of w.
Then w can be written in the form
n
w = ag H(ziai) = a9z1a1223y . ..Z,a,
i=1
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for some n > 1, where ag,a, € X*, aj,...,a,_1 € X7, and z1,...,2, € Z% are such that
con(ag...a,)N Z = (. In this case, the words z1, ..., z, are called maximal Z-factors of w. If
z1=... =2, = 2% then w is said to be Z-perfect.

For any distinct non-simple letters z and y of a word w, write x ~y ¥y to indicate that any
one of the following conditions holds:
(Cl) w € X*aX*yaX™ or w € X*yX*zyX*;
(C2) w e X x X yX* X *yX* or w € X yX* e X yX*x X*.
Note that x ~y y if and only if y ~ .

LEMMA 19.2. Let w be any non-simple word. Suppose that z; and zo are any distinct non-
simple letters of w such that z1 ~ z2. Then there exists some {z1, 23 }-perfect word w' such
that the identities (19.1) imply the identity w ~ w’.

Proof. By assumption,

n

W = H(ziai) = apZ1a1Z2a2 ...Zpa,
i=1

for somen > 1, where ag,a,, € X*,ay,...,a,-1 € X', and zy,...,2, € {21, 22} are such that
21,22 & con(ag ...a,). Generality is not lost by assuming that z; alphabetically precedes zs,
so that {z1,22}® = (2122)2. Then it suffices to convert w, using the identities (19.1), into the

{21, z2 }-perfect word
n

Wl = H((leg)Qai) .

i=1

There are two cases depending on whether (C1) or (C2) holds.

Case 1: (C1) holds. Then w € X*z;X*2,2;X* where {z;, 2z} = {21, 22}.
1.1. n = 1. Then
W = Qqp ijCZijd ap
——

zy

for some b, c,d € {21, 22}*. Hence
(02 b es2sdas oD g bl el 2l (1912) 2
w = Qqgbzjczpz;jda; = a()Zj Zij ZijZj ap ~ apgzjzpzjail
(19.1e) 9 ,
~ " ap(z122)°a; = w'.

1.2. n > 2. Then

w = ag (ﬁ(ziai)> %w( f[ (Ziai)>

i=0+1

Zy

for some b, c € {z1, z9}* with aO(Hf;ll (z;a;))b € X*2z;X*. Hence

£—1 n
9.1a
w e )ao (H(ziai))bzizjcag< H (zial-))

=1 i=0+1
—1 n
(19.1) 2| bl 2. _lel |2
~  ag H(zj a;) |z zp2%; A H (z; "a;)
=1 1=0+1
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-1 n
2,0z b 22z c| 2|z
ENICE SNBSS e Q1 (E SR
i=1 i=0+1
£—1 n
(19.3e) 2zl 2_|bl+1+]c| 2zl
~  ag (225 &) | 212, ay H (225 ')
i=1 i=0+1
{—1 n
(191a) 2 2 2.2 2 2
~ " ag (zpzjai) | zpz5ac H (zpzjai)
i=1 =041
-1 n
(19.1e) ) ) ,
~ ap H 2122) az) (2122) ay H ((2122) ai) = W.
i=1 i=0+1
Case 2: (C2) holds. Then w € X*2; X* 2, X*2; X* 2, X" where {z;, z;,} = {21, 22}. Hence
(19.1¢) 9
W= ...2j...2k- - Zj .. Zke-r R 0 Zje BB B,

u

where u belongs to X*z;X*z,2;X*. By Case 1, the word u can be converted by the
identities (19.1) into w’. O

Let w be any non-simple word and let Z and Z’ be some disjoint nonempty sets of non-
simple letters of w. Then ~, can be generalized: for any perfect Z-square x and any perfect
Z'-square y, write X ~, y whenever one of the following generalized conditions holds:

(Gl) w € X*xX*yxX* or w € X yX*xy X*;
(G2) w € X*xX* yX*xX*yX* or w € X*yX*xX*yX*xX*.

19.2. A canonical form

Let w be any connected word and let x1,...,x; be the distinct non-simple letters of w listed
in alphabetical order. In this section, such a word w is said to be in canonical form if some
partition Z1,..., 2, of {z1,..., 2} exists and

w =z H(sizi) (19.2)

for some n > 0 such that the following are satisfied:
(I) the letters of s1,...,s, € X* are simple in w;
(I1) the word w is Z;-perfect for each i € {1,...,7} and 2, ...,2, € {Z¥,..., 22} (so that
con(zg . ..2%,) = {21,...,2});
(IIT) if z; # z;, then z; by zj;
(IV) if z; = z; with ¢ < j, then s; # (;
(V) 2o = 2zy.
Note that since Zi, ..., Z, form a partition of {z1,...,z;}, it follows from (II) that
(VI) for any i and j, either z; = z; or con(z;) Ncon(z;) = 0.
In view of (I) and (II), it is convenient to call the words si,...,s, maximal simple factors
of w.

LEMMA 19.3. Let w be any connected word. Then there exists some word W in canonical
form such that the identities (19.1) imply the identity w ~ W.
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Proof. Tt suffices to convert w, using the identities (19.1), into a word in canonical form.
Let x1,...,x; be the distinct non-simple letters of w listed in alphabetical order. The proof is
trivial if ¢ = 1. Therefore assume ¢ > 2.

Since w is connected, there exist distinct non-simple letters h(w) = xp,, Tpy, . . ., Tp, = t(W)
from {z1,...,2:} occurring in w in an overlapping pattern such that the first x,, , occurs
between two occurrences of z,, and the last x,,,, occurs to the right of all occurrences of x..,.
This sequence can be chosen to have minimal length among all such sequences, so that

W = xrl P1 -rrz P2 xrl q1 $T3 P3 xrz q2 xr4 P4 ng q3 --- qu-1 x’l‘g

for some p1,...,Pe,q1,--.,q—1 € X*. (Note that the factor p; follows the first x,, and the
factor q; follows the last x,,.) Then ,, ~w Try ~w ... ~w Zp, by (G2). By Lemma 19.2, the
identities (19.1) can be used to convert w into some {x,, , x,, }-perfect word w’. Note that w’ is
obtained by replacing all maximal {z, ,z,, }-factors of w by the perfect square {z,, ,z,, }* =
(zr,7,,)% Tt is clear that {z,,, 7., }* ~w 2r,. Therefore the proof of Lemma 19.2 can be
repeated to convert w', using the identities (19.1), into some {x,,,Z,,z, }-perfect word.
Continuing in this manner, w is converted by the identities (19.1) into an {z,,,...,zy,}-
perfect word. This can be further repeated until w is converted by the identities (19.1) into a
Z;-perfect word, where Z; is some subset of {z1,...,z;} that contains z,,...,x,, and
(a) Z{Z ~w Z; if and only if z; € Z;.
Hence it can be assumed that

(4

w= 28w, 28w, ... 28w, 28 (19.3)

where

(b) wi,..., Wy, € XT are such that con(wy...w,,) N Z; = 0.

If = € con(w;) N con(w;) for some distinct i and j, then Z¥ ~, 2 by (G2), and this
contradicts (a) and (b). If t(w;) ¢ sim(w) for some i, then Z¥ ~, t(w;) by (G1), and
this again contradicts (a) and (b). Therefore

(¢) wi,...,w,, are pairwise disjoint and t(wy),...,t(w,,) € sim(w).

If x; ~w x; for some z;,z; € con(wy) (so that x;,2; ¢ Z1 by (c)), then by Lemma 19.2,
the identities (19.1) can be used to convert w into some {z;,x;}-perfect word. This can be
repeated until the word w in (19.3) is converted into a Zs-perfect word, where Z; is some
subset of {z1,...,2:}\Z; such that 25 ~, z; if and only if z; € Z,. (Note that by (c), all
perfect Zs-squares Zgg are factors of some wyg.) It is easily seen how this argument can be
repeated until a partition Z,..., 2, of {z1,...,2:} is obtained, and the word w in (19.3) is
converted by the identities (19.1) into a word W that is simultaneously Z;-perfect for all ¢ with
ZR Z;g whenever i # j.

Consequently, W is of the form (19.2) with (I), (II), (III), and (V) satisfied. Suppose z; = z;
with ¢ < 7 and Sj = (Z), so that w = ©..8iZj...S;_1Zj_1 "Zj.... Ifi < 7 — 1, then z; ~w Zj—1
by (G1), which contradicts (IIT). Therefore ¢ = j — 1, whence

o (19.1a)
W=...82%2;"2Z;... = ...S8Z;...,
that is, the factor z; is eliminated from W. Hence (IV) is satisfied. O

LEMMA 19.4. The semigroup s has a basis of the form {(19.1)} U X, where ¥ is some set
of identities formed by connected words in canonical form.

Proof. Tt is routinely verified that %% satisfies the identities (19.1) and is idempotent-

separable. Since the subsemigroup {1,4, 5,6} of 63 is isomorphic to Ay, the variety generated
by %z contains Ag. It follows from Lemma 2.6(1) that %3 has a basis ¥ that consists of
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identities formed by connected words. Therefore the set {(19.1)} UX is also a basis for 65. By
Lemma 19.3, the words that form the identities in ¥ can be chosen to be connected and in
canonical form. O

19.3. Identities satisfied by 63

Let x and y be any distinct perfect squares of a word w in canonical form. Then write x €y ¥y
to indicate that within w, all occurrences of x are sandwiched between two occurrences of y.
Note that if x €y y, then (III) implies that no occurrence of y is sandwiched between any
two occurrences of x.

A generalized version of the order < introduced in §2 is also required: write x <y y to
indicate that within w, each occurrence of x precedes the first occurrence of y.

REMARK 19.5. Suppose that x and y are distinct perfect squares of a word w in canonical
form. Then x 4y, y by (IIT), whence by (G1) and (G2), precisely one of the following holds:
(1) X <wy;

(2¢) ¥ <w x;
(3%) x Ew y and xy is not a factor of w;
(44) ¥y Ew x and yx is not a factor of w.

For the remainder of this subsection, suppose that w ~ w’ is any identity satisfied by the
semigroup %s, where the words

are in canonical form. Let
Z= =z}, s=Uts}, 7=z} and &' =[J{si)
i=0 i=1 i=0 i=1

o . ., PR _ ;L
Note that there are repetitions in zo,...,z, and in zg,...,z,,, since zg = z,, and z; = z,,

by (V). But by (I), the only repetition that can possibly occur in S and in S’ is when two or
more words equal the empty word.

LEMMA 19.6. The equality S = S’ holds.

Proof. The subsemigroup {1,2,6} of 63 is isomorphic to Ni. Therefore con(w) = con(w’)
and sim(w) = sim(w’) by Lemma 2.1(v). Further, €5 does not satisfy the identity (2.3) with
n = 2 because 62 - 4-6%-3-6% #6243 62 so that Fss(w) = Fss(w’) by Lemma 2.10. The
present lemma thus follows. O

LEMMA 19.7. The equality Z = Z' holds.

Proof. Since con(w) = con(w’) and sim(w) = sim(w’) by the proof of Lemma 19.6,

(a) con(zg...z,) =con(z...z,) and con(s; ...s,) =con(s}...sl,).

Let  and y be any distinct letters of some perfect square z’ from Z’, say

/

Z=(..z...y..)°%

It is shown in the remainder of this proof that the letters x and y belong to the same perfect
square in Z. Hence

(b) if 2,y € con(z’) for some 2z’ € Z', then z,y € con(z) for some z € Z.
The converse of (b) holds by symmetry. It then follows from (a), (II), and (VI) that Z = Z'.

https://doi.org/10.1112/51461157014000412 Published online by Cambridge University Press


https://doi.org/10.1112/S1461157014000412

FINITE BASIS PROBLEM FOR SEMIGROUPS OF ORDER SIX 71

Suppose that x and y are letters from distinct perfect squares x,y € Z, that is, x # y with
x=(..z..)%andy = (...y...)% Then x %y y by (III) and con(x) N con(y) = 0 by (VI).
As observed in Remark 19.5, both (3) and (4,.) cannot simultaneously hold. By symmetry,
assume that (4,) does not hold. Hence it follows from either (1), (2), or (3) that

(¢) no occurrence of y in w is sandwiched between any two occurrences of x.

Let p be the least integer such that z, = x and let ¢ be the greatest integer such that z, = x.

Then —_— <ﬁ(sizi)>sp x( ﬁ (SiZi)>qu ( ﬁ (SiZi)> .

i=1 i=p+1 i=q+1

a b c
By (V), either p = 0 or ¢ = n implies zg = z,, = x, whence (c) is violated. It thus follows that
0<p<g<nanda# # c. Now con(x)Ncon(ac) = () by the choice of p and ¢. Further,
since (III) implies x 4w h for all h € Z\{x}, it follows from (I) and (G2) that
(d) con(b) N con(ac) = 0.
Since zg = z, by (V), the sets {zo,...,zp—1} and {z411,...,2,} share some common
element. Let m € {0,...,p — 1} be the greatest integer such that

Zm € {Z0,...,Zp—1} N {Zgt+1,---,2Zn},

and let r € {¢+1,...,n} be the least integer such that z,, = z,. Then

W = 7g <iif[:(sizi)>smu<:lj+1(sizi)) sp b <iiq1:[;(sizi)) Sy u<i_li1(SiZi)>

where u = z,, = z, and ¢ = ¢’s,.¢”. Note that by (IV),

(e) s, # 0.
Now the choice of m and r implies that:

) ué¢ {zms1,---+2p—1} U{Zg41,---,2r_1};

(8) {Zm+1,---2Zp—1} N {Zgs+1,-- - 2r_1} = 0.
If there exists some k € {zg,...,Zpm—1} N {Zg+1,...,2,-1}, then k # u by (f) so that k ~y u
by (G2). If there exists some k' € {zgy1,...,2,—1} N {Zyy1,...,2,}, then k' # u by (f) so that
k' ~w u by (G2). But either of these contradicts (IIT). Thus k and k’ do not exist, whence

{zo, ..., Zm-1}N{Zg41,- -, Zr—1} ={Zg41,- - Zr_1} N {Zrs1, ... 2} = 0.
It then follows from (I), (d), (f), and (g) that
(h) con(c’) Ncon(abs,c”) = 0.
Let ¢ : X — %5 denote the substitution
5 if z € con(c’),
z 93 if z=h(s,),
6 otherwise.

Then by (d), (e), and (h),

_J(@b)p-cp-sp-cp ifc #0

e (ab)p -s.p-c’p ifc =0
~ J(6...6)-(5...5)-(3:6...6)-(6...6) ifc’ #0
~1(6...6)-(3-6...6)-(6...6) if ¢/ = ()
=2
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But z'¢ € ({5,6}*-6-{5,6}*-5-{5,6}*)% = {1} implies the contradiction w’¢ = 1. Therefore
the assumption that the letters x and y belong to the distinct perfect squares x,y € Z does
not hold. Consequently, the letters z and y belong to the same perfect square in Z. O

COROLLARY 19.8. Let ¢ be any endomorphism of X+. Suppose that the words we and w'
are converted by the identities (19.1) into the words Wi and w’¢ in canonical form. Then the
set of perfect squares of W is equal to the set of perfect squares of w’.

Proof. As observed in the proof of Lemma 19.4, the semigroup %s satisfies the
identities (19.1). Then by assumption, %y satisfies the identity we ~ w’p. Hence the result
follows from Lemma 19.7. O

LEMMA 19.9. Suppose that z € Z=7" ands € S =S’ with s # (). Then sz is a factor of w
if and only if sz is a factor of w'.

Proof. Let sz be a factor of w. Suppose that sz is not a factor of w’. Then there exists some
z' € Z =7 with 2’ # z such that sz’ is a factor of w’. Hence z 4w 2’ and z 4 2’ by (III),
and con(z) Ncon(z’) = @ by (VI). Since sz = syz;, for some k € {1,...,n} and sz’ = s, z}, for
some k' € {1,...,n'},

w0 Tl )sa( T (520 s w/_z;)(kiqll(s;z;))sz/( 1 )

=1 i=k+1 % i=k'+1

Choose any letter z ¢ con(ww’) and let ¢ denote the substitution h(s) — zzh(s). Then %5
satisfies the identity wg; ~ w'p1. It is easily seen that the set of perfect squares of

w1 = 2 (lﬁ(sizi))xzsz< ﬁ (sizi)>

=1 i=k+1

is equal to the set Z of perfect squares of w. Since (III) implies z %y, x for any x € Z\{z}, it
is easily shown that z 7., x for any x € Z\{z}. Therefore the word wy; = Wy is already
in canonical form and so its set of perfect squares is equal to Z. Similarly, the set of perfect
squares of

W = (H<>)( 1 )

=1 i=k’+1

is equal to the set Z of perfect squares of w’. Suppose z ~yw,, y for some y € Z\{z},
so that (III) is violated by w’p;. Then the word w’¢; is not in canonical form and so by
Lemma 19.3, can be converted by the identities (19.1) into some word w’¢; in canonical form.
Since z ~yy, y, the conversion of w’p; into w’p; will result in the letters of z and y being
grouped into the same perfect square. It follows that the set Z of perfect squares of Wiy is not
equal to the set of perfect squares of w/y, whence Corollary 19.8 is contradicted. Therefore y
does not exist, so that z 4w, x for all x € Z\{z}. Consequently, w’¢; is in canonical form.

Now let @9 denote the substitution t(s) — t(s)z’. Then %5 satisfies w192 & W12, Since

k' —1 n'
19.1¢
wioron = s [T st Jomsa's ([T tsta)) 57w

i=1 i=k'+1

where the word w'p; is in canonical form, the set of perfect squares of w/p1ps = W1 is
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equal to Z. On the other hand, the word

wores s )ows( 1T (50

i=1 i=k+1

is not in canonical form because z ~w,,, 2z by (G1). Therefore when the word wepq¢s is
converted by the identities (19.1) into the word Wiz in canonical form, the letters of z and z’
are grouped into the same perfect square. It follows that the set of perfect squares of Wiy
is not equal to the set Z of perfect squares of w’y;p2, whence Corollary 19.8 is contradicted.
Consequently, the assumption that sz is not a factor of w’ does not hold. O

LEMMA 19.10. Suppose that z € Z=7" ands € S =S’ with s # (). Then zs is a factor of w
if and only if zs is a factor of w'.

Proof. Let zs be a factor of w. Suppose that zs is not a factor of w’. Then there exists
some z' € Z = Z' with z’ # z such that z’s is a factor of w’. Hence z 7w 2z’ and z £y 2’
by (IIT), and con(z) N con(z’) = B by (VI). Now zs = zgsj41 for some k € {0,...,n — 1} and

z's = z,8),,, for some k' € {0,...,n" — 1}. Further, zx 1 = z;,,; by Lemma 19.9. Thus
k—1 n
W = 7o <H(sizl)) Sk - ZS - x( H (sizi))
i=1 i=k+2
and

k' —1 n’
w =g TL ) s s ox( T ).

i=1 i=k'+2

where X = 241 = 2,4
Suppose z € {z(,...,2},_,}. Let ¢ denote the substitution h(s) — zh(s). Then @3 satisfies
the identity we; ~ w’¢;. Since

k—1 n
W1 = Zg (H(S¢Z1)>Sk - ZZS - x( H (sizi)> (lfgla) w,

=1 i=k+2

where the word w is in canonical form, the set of perfect squares of Wip; = w is equal to Z.
On the other hand,

K1 n’
wor = s T i) s -os (T (st

i=1 i=k'+2

and z € {z(,...,2},_,} imply z ~w, 2’ by (G1). Hence the word w'¢; is not in canonical

form, and when it is converted by the identities (19.1) into the word w’¢; in canonical form,

the letters of z and z’ are grouped into the same perfect square. It follows that the set of perfect

squares of W/ is not equal to the set Z of perfect squares of Wiy, whence Corollary 19.8 is

contradicted. Thus z ¢ {z(,...,2},_,}. A symmetrical argument shows z’ ¢ {z,...,zr_1}.
Suppose x = z'. Let 2 denote the substitution t(s) — t(s)z. Then

wos (Tl o e 11 ).

=1 i=k+2
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It is clear that the set of perfect squares of wy, is equal to Z. Further, z ¢y, 2z’ because
z' ¢ {z0,...,2k—1} and z £y Z". It follows that the word w¢y, = W3 is in canonical form and
its set of perfect squares is equal to Z. On the other hand, the word

k'—1 n’
wion =y T] stz s s/ ] (st

i=1 i=k'+2

is not in canonical form because z ~y,, 2z’ by (G1). Therefore when the word w'yp, is
converted by the identities (19.1) into the word w’y in canonical form, the letters of z and 2’
are grouped into the same perfect square. It follows that the set of perfect squares of w/¢ps is
not equal to the set Z of perfect squares of w3, whence Corollary 19.8 is contradicted. Hence
x # z'. A symmetrical argument shows x # z.

Now the word z’ is a perfect square of w because z' € Z' = Z. But since it was shown that

7' ¢ {zg,...,2x—1} and Z’ # x, each factor z’ of w is one of zg12,...,2,. Let p € {k+2,...,n}
be the least such that z, = z’ and let ¢ € {k + 2,...,n} be the greatest such that z, = z’.
Then

i=1 i=k+2 i=p+1 i=q+1

a b c d

where

(a) any perfect square z’ of w is a factor of c.
Further, it follows from (G2), (I), and (III) that

(b) con(c) Ncon(abd) = 0.

Suppose that the factors b and d share some common perfect square. Then there exists
the least r € {g +1,...,n} such that z, € {X,2zp42,...,2p_1}, whence s, # 0 by (IV). Since
{Zgs1,-- . 2Zr—1} N{X,Z)12,...,2p—1} = 0 by the minimality of 7, it follows from (I) that

() con(b) N con(IT}= (s:2:)) = 0.

Further, since z, € {x,zx42,...,2,_1}, it follows from (G2), (I), and (III) that

(d) con(a) Neon(TT;Z, 4 (si2:)) = con(T[iZ, 4 (si2:)) Ncon([T7, 1y (siz:)) = 0.
Let @3 : X — %3 denote the substitution

r—1
5 if z € con (c H (Sizi)>a
1

Z i=q+
3 if z=h(s;),

6 otherwise.

Then by (a)—(d),

r—1 n
w3 = (ab)ps - (C H (SiZi)>S03 “Srs - (Zr H (SiZi)>803
i=q+1 i=r+1

—(6...6)-(5...5)-(3-6...6)-(6...6) = 2.

But (z's)ps = (5...5) - (6...6) = 1 so that w'p3 = 1, which is impossible. Hence b and d do
not share any common perfect squares. It then follows from (I) that

(e) con(b) Ncon(d) = 0.

Now since zg = z, by (V), the factors a and d share at least one common perfect square.
Let t € {¢g+1,...,n} be the least such that z, € {z,...,2zx_1,2}. Then s; # @) by (IV). Since
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{Zg11,...,2¢-1} N {20, ...,2k_1,2} = 0 by the minimality of ¢, it follows from (I) that

(f) con(a) N con(Hz;;H(sizi)) = 0.
Let 4 : X — %5 denote the substitution

t—1
5 if z € con <c H (Sizi))v
1

Z i=q+
3 ifz= h(St),

6 otherwise.

Then by (a), (b), (e), and (f),

t—1 n
Wiy = (ab)epy - (C II (Sizi)>904‘st904' (zt I1 (Sizi))§04
i=q+1 i=t+1

=(6...6)-(5...5)-(3-6...6)-(6...6) =2.

But (z's)ps = (5...5) - (6...6) =1 so that w/¢4 = 1, which is impossible. Consequently, the
assumption that zs is not a factor of w’ does not hold. O

LEMMA 19.11. Let x,y € Z=27' withx #y. Then x €y y if and only if X €y’ y.

Proof. By symmetry, it suffices to show x €y, y implies X €y y. Suppose X €y y. Then
all occurrences of x in w are sandwiched between two occurrences of y. Hence there exist p
and ¢ with p < ¢ such that z, = z, = x, and any occurrence of x in w is one of z,...,z,.
Let k € {0,...,p— 1} be the greatest such that z;, =y and let » € {g+1,...,m} be the least
such that z, =y. Then

a b c
w— (zolﬁ(sizi))sk y (iﬁl(sizi)>sp x (:ljil(sizi))sq x
' (i_lll(sizi)>5r y izlll(sz‘zz‘)
d e

with
(a) con(x) N con(abde) = con(y) N con(bed) = (.
Further, s, # § by (IV), and
(b) con(b) N con(ace) = con(c) N con(abde) = con(d) N con(ace) = ()
by (G2), (I), and (III). Suppose X & y. Then by Remark 19.5, either (1), (24), or (4,)
holds. But it is shown in the following that none of these is possible. Hence x €y y.

Case 1: y €yw x. By Lemma 19.9, the factor s,y of w is also a factor of w'. By the
assumption of this case, all occurrences of y in w’ are sandwiched between two occurrences
of x. Therefore the factor s,y is also sandwiched between those two occurrences of x, whence

w=...x...8y...x.... Let ¢ : X — %5 denote the substitution
r—1
5 if z € con (cx H (sizi)),
Z - i=q+1
3 if z=h(s,),

6 otherwise.
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Then by (a) and (b),

r—1
wipr = (ayb)ep - <XCX 11 (Sizi)>§01'sr§01 “(ye)pr
i=q+1

=(6...6)(5...5)-(3-6...6)-(6...6)=2.
It is routinely shown that {5,6}* - 5-{5,6}* = {1,4,5} in 5. Therefore

wor=(..X...8,y...X...)p1
€ 5,6} - (5...5)-{5,6}" - (3-6...6)-(6...6)- {5,6}" - (5...5) - {5,6}"
={1,4,5}-3-{1,4,5} = {1},

whence the contradiction wy; # w’p1 is obtained.

Case 2: y <w’ x. Then each occurrence of y in w’ precedes every occurrence of x. As
observed in Case 1, the factor s,y of w is also a factor of w’. Hence

wor=(..sy...x...)01 €{5,6}*-(3:6...6)-(6...6)-{5,6}* - (5...5) - {5,6}"
={1,4,5,6}-3-{1,4,5} = {1},

which implies the same contradiction as in Case 1.

Case 3: X <w y. Then each occurrence of x in w’ precedes every occurrence of y. Hence
there exist £/, m’, p’, and ¢ with 0 < ¢ < m/ < p’ < ¢ < n' such that:

e z),, =z, , =x and any occurrence of x in w’ is one of z,,...,z] ,;
e 7z, =z, =y and any occurrence of y in w’ is one of z,, ..., z,.

Note that 0 < ¢ and ¢’ < n’ because z, = z,, by (V). It follows that

a’ b’
-1 m’—1
! ! - !/ - !/
w = <z0 H(sizi)>sz, x < H (sizi)>sm, x
i=1 i=041
p/—l q/—l n'
- !/ - ! !,/
( H (Sizi)>sp’ }’< H (Sizi)>sq’ Yy H (siz;)
i=m’+1 i=p’+1 i=q’+1
c’ d’ e’

with
(c) con(x) Ncon(a’c’d’e’) = con(y) Ncon(a’b’c’e’) = 0.
It follows from (G2), (I), and (III) that
(d) con(b’) Ncon(a’c’d’e’) = con(d’) Ncon(a’b’c’e’) = (.
There are two subcases.
3.1. con(c’) Ncon(e’) = (. Since zy =z, by (V), it follows that the sets {z(,... 2}, _,} and
{z 15,2, } are not disjoint. Let ¢ € {¢' +1,...,n} be the least such that

2y € {20, ... 2Zp 1} N {zy g, 20},

and let &' € {0,...,¢ — 1} be the greatest such that z}, = z},. Then

t'—1 n’
w = a’xb’xc’yd’y( H (sizi)) Sy 2 ( H (siz;))

i=q'+1 i=t/+1

’ /
e e,

https://doi.org/10.1112/51461157014000412 Published online by Cambridge University Press


https://doi.org/10.1112/S1461157014000412

FINITE BASIS PROBLEM FOR SEMIGROUPS OF ORDER SIX 77

where z}, is a factor of a’. Note that

(e) sj, #0
by (IV), and that {z}, ,,...,2y_,} N {zg,..., 2y 1} = 0 by (I) and the minimality of ¢'.
Hence

(f) con(e}) Ncon(a’s} z; ) = 0.
If con(e}) Ncon(ey) # 0 so that 27 € {z), ,,...,2; 1} N {z}y,...,2,} for some j, then
2z ~w' 2y by (G2) due to zj, € {zg,...,2)_,}, whence (III) is violated. Hence

(g) con(e}) Ncon(ey) = 0.
Let @9 : X — %3 denote the substitution

5 if z € con(d'ye}),
zr> ¢ 3 if z=h(s}),

6 otherwise.
Then wyy = W'y in 65. By (c)—(g) and the assumption of this subcase,

wpy = (a'xb'xc’)p; - (yd'ye1)ps - iz - (z€h)p2
=(6...6)(5...5)-(3-6...6)-(6...6) =2.

Therefore wys = 2. More specifically,
Wpo =aps-5H-bpy-6-cps-6-dps-5-epy =2. (19.4)

By Lemma 19.6, the simple letter h(s},) of w’ is also a simple letter in w. Since zg = z, by (V),
the letter h(s}) cannot be the first or last letter of w. Further, x and y are perfect squares
of w. Therefore wys does not begin or end with 3, and it is a product, in some order, of more
than one 5, more than one 6, and precisely one 3. Since 3-5=3-6-5=5-6=1 in %, it is
routinely shown that the only way for wys to equal 2 is

wpo =(6...6)-(5...5)-3-(6...6).

But this is impossible in view of (19.4).
3.2. con(c’) Ncon(e’) # 0. Then there exists the least v’ € {¢' + 1,...,n’} such that

!/ !/ /! !/ !/
Zy €{Zpy i1y Ty 1} W {Zgri1y 20 )
and there exists the greatest h' € {z;,,,,,...,2, _,} such that z}, = z,,. Hence
¢} <)
h'—1 p'—1
w’ = a’xb'x ( H (stQ))sﬁL, v ( H (sézé))s;,,+1 yd'y

i=m’+1 i=h'+1

r'—1 n’
!/ !/ 1!

) ( H (sizi)> SV ( H (Sizi))
i=q'+1 i=r'+1
el e}

where v = z), = z/,. Note that (IV) implies

(b) s, 0,
and (I) and the choice of A’ and 7’ imply that
(i) cb, e, and v are pairwise disjoint.
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If f is a perfect square that is shared by ¢ and either a’, b, ¢}, or €], then f # v by (i), so
that £ ~y v by (G2). If g is a perfect square that is shared by e} and either a’, b’, ¢/, or €},
then g # v by (i), so that g ~w v by (G2). But either of these contradicts (IIT). Therefore
both f and g do not exist, whence

(j) con(ch) Ncon(a’b’ciel)) = con(e}) Ncon(a’b’cie)) = 0.
Let @3 : X — %3 denote the substitution

5 if z € con(d'ye}),
2 ¢3 if z=h(s],),

6 otherwise.
Then by (c), (d), (h), and (j),

W'y = (a'xb'xc’) @3 - (yd'yes)ps - 5.3 - (Ve )ps
=(6...6)-(5...5)-(3-6...6)-(6...6) =2.

But following the same argument as in Subcase 3.1, it is impossible for w3 to equal 2. O

19.4. Proof of Proposition 19.1

REMARK 19.12. Let w be any word in canonical form that contains two or more distinct
perfect squares. By (V), the word w begins and ends with some perfect square z. Hence by (IV),

n

W=z H(pisiz) = ZP{S1Z...PnSnZ
i=1

for some n > 1, where the following holds for each i:

(Rel) s; is a nonempty maximal simple factor of w;

(Re2) p; is a product of some of the following: maximal simple factors of w and perfect squares
of w different from z;

(Re3) if p; is nonempty, then it ends with some perfect square of w.

Note that (I), (III), and (G2) imply that:

(Re4) z,p1,S1,---,Pn, S, are pairwise disjoint;

(Reb) if x is any perfect square of w different from z, then x €y z.

By Lemma 19.4, the semigroup %s has a basis of the form {(19.1)} U X, where ¥ is some
set of identities formed by connected words in canonical form. Let w ~ w’ be any identity
from X. By Lemmas 19.6 and 19.7, the set Z of perfect squares of w is equal to the set of
perfect squares of w’, and the set S of maximal simple factors of w is equal to the set of
maximal simple factors of w’. The remainder of this subsection is devoted to the verification
of the following statement for each k£ > 1:

(tp) if w~ w’ is any identity in ¥ that involves at most k distinct perfect squares, then the
identities (19.1) imply the identity w =~ w’.
Consequently, the identities (19.1) imply every identity in ¥ and so form a basis for €.

First consider the case when the identity w ~ w’ from X involves k = 1 perfect square z.
Then w = z[[;_(s;z) = zs1z...s,z where Z = {z} and S = {sy,...,s,}. By Lemmas 19.9
and 19.10, there exists a permutation 7 on {1,...,n} such that w’ = zs1,z...8,,2. It is then
easily seen that the identity (19.1b) implies the identity w ~ w’. Hence statement (f;) holds.

Now suppose that statement (f,_;) holds for some k > 1 and that the identity w ~ w’
from ¥ contains k distinct perfect squares. By Remark 19.12; the word w is of the form

W = ZP1S1ZP2S2Z . . . PnSnZ
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where (Rel)—(Re5) are satisfied. By (V), the word w’ begins and ends with the same perfect
square; by Lemma 19.11 this perfect square must be z. Hence it follows from Lemma 19.9 and
Remark 19.12 that w' = zp)S1,2P582:2 . . . P},Snx2 for some permutation 7w on {1,...,n}. Since
the identity (19.1b) can be used to interchange any two factors p;s;, and p;sj,r, generality is
not lost by assuming that

w' = zp|$12psSaz ... Pl S,z

to begin with. By Lemmas 19.13 and 19.14 below, the identities (19.1) imply w &~ w’.
LEMMA 19.13. If n =1, then the identities (19.1) imply the identity w ~ w’.
Proof. Generality is not lost by writing

w =1zpsz and w = zp'sz,

where z, p, p’, and s satisfy (Rel)—(Re4). It then follows that con(p) = con(p’) by Lemmas 19.6
and 19.7. If p = p’ = (0, then the identity w ~ w’ is trivial and so is clearly implied by the
identities (19.1). Therefore suppose that the factors p and p’ are nonempty. Note that p can be
written as a product p = a,a,_; ...asa; of pairwise disjoint words a,,a,_1,...,as,a; € X
where each a; is either connected or a maximal simple factor of w. If a; is connected, then
since x oy y for any distinct perfect squares x and y of w, it follows from (Re2) that a;
begins and ends with the same perfect square of w. The same applies to connected factors of
the word p’. Therefore in summary, the words p and p’ can be written as

/ !/ / ! o7
P=a,a,_1...aa; and p =apa.,_;...aa;

for some 7,7’ > 1, where:
(a) a; is either a maximal simple factor of w or a word that begins and ends with the same
perfect square of w;
(b) a} is either a maximal simple factor of w’ or a word that begins and ends with the same
perfect square of w’';

(¢c) ay,...,a; are pairwise disjoint and a.,,...,a} are pairwise disjoint.
Note that (c¢) and (Re2) imply that
(d) ay,...,a1,s,z are pairwise disjoint and a,,...,a},s,z are pairwise disjoint.

Further, since the word w is in canonical form,
(e) any two maximal simple factors of w must sandwich at least one perfect square of w.
First, it is shown that the identities (19.1) imply the identity a; ~ a). To achieve this goal,
observe that by (e), the word a; is not a maximal simple factor of w since it is followed by the
maximal simple factor s. Therefore by (a), the word a; begins and ends with the same perfect
square of w. Hence w is of the form

W = za, ...ay z1b12; sz,
——

ay

where z; is some perfect square of w. By the same argument, the word aj also begins and
ends with the same perfect square of w’; by Lemma 19.10, this perfect square must equal z;.
Hence w’ is of the form
w' =zal,...a,z bz sz.
——

’

ay

Suppose that y is a perfect square of w that is a factor of by. If y = z;, then y is clearly a
factor of a}. If y # z1, then y €w z1 by (d), so that y €w z; by Lemma 19.11. Therefore in
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any case, y is a factor of aj. By symmetry, any perfect square of w’ that is a factor of aj is
also a factor of a;. Hence
(f) a; and a} share the same set of perfect squares.
Suppose that t is a maximal simple factor of w that is a factor of by. Then t is immediately
preceded and followed by perfect squares of w that occur in a; = z1byz;. More specifically,
yity2 is a factor of a; = z1by2z; for some perfect squares y; and yo. It follows from (f) and
Lemmas 19.9 and 19.10 that yity2 is a factor of aj = z1b/z;, whence t is a factor of b]. By
symmetry, any maximal simple factor of w’ that is a factor of b} is also a factor of by. Hence
(g) by and b) share the same maximal simple factors.

Tt then follows from (f) and (g) that con(a;) = con(a}). Let x; denote the substitution z — z;

19.1 19.1
for all z ¢ con(a;) = con(a]). Then the deductions wy; ( ma) a; and w'x; ( %a) a) imply

that @y satisfies the identity a; ~ a/. The identity a; & a} involves less than k distinct perfect
squares. Therefore by (f,_;), the identities (19.1) imply the identity a; = aj.

Next, it is shown that the identities (19.1) imply the identity as ~ aj. Based on (a), there
are two cases.

Case 1: ay is a maximal simple factor of w. Then by Lemma 19.9, the factor asz; of w
is also a factor of w’. But since con(a;) = con(a}), it follows from (d) that as is not a factor
of a). Therefore the only way for asz; to be a factor of w’ is when a; = aj,. The identity
ap ~ al, is trivial and so is implied by the identities (19.1).

Case 2: as begins and ends with the same perfect square of w. Then w is of the form

W = za, ...azzybyzs a;sz,
——

az

where zj is some perfect square of w. If a} is a maximal simple factor of w’, then the argument
in Case 1 shows a; = a, which is impossible. Therefore by (b), the word a), begins and ends
with the same perfect square of w’, whence

/ /

o / ! /N
W' =1za,, ...a5Z,b52Z, a;sz
N—_——

a;
for some perfect square z, of w’. Suppose zy # z}. Since the set of perfect squares of w is
equal to the set of perfect squares of w’, the perfect square z, of w is also a perfect square
of w'. If z5 is a factor of b}, then zo €y z), so that zy €y 2z5 by Lemma 19.11; but zo €y z)
implies that z} is a factor shared by both the prefix za, ...a3 and suffix a;sz of w, and this
is impossible due to (d). Therefore

(h) z2 is not a factor of a5, but is a factor of one of a/,,. .., a5.
By symmetry,
(i) z} is not a factor of ay, but is a factor of one of a,,...,as.

Let ¢ : X — %3 denote the substitution

5 if z € con(agay),
z— ¢ 3 if z=h(s),

6 otherwise.
Then

wo = (za,...a3)p - (azay)p-sp-zp=(6...6)-(5...5)-(3-6...6)-(6...6) =2.

https://doi.org/10.1112/51461157014000412 Published online by Cambridge University Press


https://doi.org/10.1112/S1461157014000412

FINITE BASIS PROBLEM FOR SEMIGROUPS OF ORDER SIX 81

But (d) and (i) imply 2z, = 6, so that (h) implies

(zal, ...a%z5)p=zp- (A, ...a5)p Zop = Zp ... Z2p ... Zhp
€6-{5,6)"-5-{5,61* 6= {11.

Hence the contradiction w’ = 1 is obtained. Therefore the assumption zs # 25 does not hold,
whence

r_ / ! / !
W' = za,, ...a3Z2bsZs a}sz.
N——

’
as

It can then be shown, by the arguments used in establishing (f) and (g), that con(as) = con(a}).

Let x2 denote the substitution x — zy for all ¢ con(ay) = con(a)). Then the deductions

(19.1a) (19.12) | . o .
W2 ~" as and w'xo ~" al, imply that %3 satisfies the identity ay = al. The identity

ap ~ a), involves less than k distinct perfect squares. Therefore by (},_4), the identities (19.1)
imply the identity as ~ aj.

In the two cases just considered, the identities (19.1) imply the identity as ~ a}. The
arguments in Cases 1 and 2 can be repeated to show that the identities (19.1) imply the
identity ag =~ a§. This can be continued so that the identities (19.1) imply the identity a; ~ a;
for all ¢ with r = 7/, Tt is then easily seen that the identities (19.1) imply w ~ w’. O

LEMMA 19.14. Ifn > 1, then the identities (19.1) imply the identity w =~ w’.

Proof. Let ¢ be the least integer such that con(p;) # con(pj). Then generality is not lost
by assuming that « € con(p})\con(p¢), so that = € con(p,) for some r > . Let ¢ : X — 63
denote the substitution

5 if z € con(p,),
z— ¢ 3 if z=h(s,),

6 otherwise.

Then

W = (z T_Hl(pz'SiZ))so "Pryp - Srp - (z ﬁ(pisi2)><p

=1 i=1

But x € con(pj) implies

(zpysez)p =zp...xp...20 €6-{56}"-5-{5,6}*-6 = {1}.

Hence the contradiction w'p = 1 is obtained. Therefore the integer ¢ does not exist, whence
con(p;) = con(p}) for all i € {1,...,n}.
Foreachi € {1,...,n}, let x; denote the substitution z — z for all z ¢ con(p;s;) = con(p’s;).

) (19.1a) (19.1a) . )
Then the deductions wy; =~ = zp;s;z and w'x; =  zp}s;z imply that @3 satisfies the

identity zp;s;z ~ zp;s;z. By Lemma 19.13, the identities (19.1) imply zp;s;z ~ zp}s;z. It is
then easily seen that the identities (19.1) imply w ~ w’. O
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20. D, Dy, &4

This section establishes the finite basis property of the following semigroups.

20.1.

2,11 23 456 P41 2 3 456 &)1 23456
1111111 1111111 11111111
2111112 2111112 2111113
31111121 31111122 3111133
4112344414 4112344414 411113414
511 23445 51123445 51123455
61123446 6123446 61123466

Finite basis property of Y5 and 9,

PROPOSITION 20.1. The variety generated by S € {Z2, 24} is defined by the identities

?Hz ~ rHz, (20.1a)
22y? ~ %22, (20.1b)
rHzyKy? ~ xHxKy?, (20.1¢)
zHyKy Tz ~ yHyKyz Tz, (20.1d)
yHzKyTz =~ yHyKyz Tz, (20.1e)
sHyKyTz ~ yHxKyTzx. (20.1f)

For any word w, let Fs.(w) denote the set of factors of w of length two that begin with a
simple letter and end with the last occurrence of some non-simple letter:

FsL(w) = {zy € X% | w € X*zy(X\{y})*, x € sim(w), y ¢ sim(w)}.

LEMMA 20.2. Let S € {Zs, P4}. Suppose that w =~ w’ is any identity satisfied by S. Then:

(i)
(ii)
(i)
(iv)

(v)

con(w) = con(w’) and sim(w) = sim(w');

for any letters x € con(w) = con(w’) and y € sim(w) = sim(w’), the conditions © < y
and x <y y are equivalent;

Wsim = W;im;

FsL(w) = FsL(w');

Fss(w) = Fss(w').

Proof. The subsemigroup {1,2,4,6} of S is isomorphic to J!, so that parts (i)—(iii) hold by
Lemma 2.3.

(iv) Seeking a contradiction, suppose Fsi (w) # Fs (w’). By symmetry, it suffices to assume
that zy € Fsi (w)\FsL(w’). Then

(a)

w = azyb for some a,b € A* such that = ¢ con(ab) and y € con(a)\con(b).

By part (i),

(b)

z is simple in both w and w’, while y is non-simple in both w and w’'.

Since y Aw , it follows from part (ii) that

()

Y Aw’ T.

Let ¢ : X — S denote the substitution

3 ifz=uz,
z— b if z =y,

6 otherwise.
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Then it follows from (a) that we € {5,6}" -3 -5-{6}* = {2}. This leads to the required
contradiction, as shown in the following collectively exhaustive cases.

Case 1: xy is a factor of w'. Since zy ¢ Fgi (W), the y that immediately follows z is not
the last occurrence; this, together with (b), imply w’ = a’zyb’yc’ for some a’,b’, ¢’ € X'* with
x ¢ con(a’b’c’). Therefore

woe{56}*-3-5-{5,6}*-5-{5,6}* = {1}.

Case 2: zy is not a factor of w'. Then it follows from (c) that w' = a’zhb’yc’ for some
a’,b’,c’ € X* and h € X such that x ¢ con(a’b’c’) and = # h # y. Hence

wo e {5,6}*-3-6-{5,6}"-5-{5,6}" = {1}.

(v) Suppose Fss(w) # Fss(w'), say zy € Fss(w)\Fss(w’). Then it is easily seen from part (i)
that 2y € Fs| (yw)\Fs.(yw’). It then follows from part (iv) that S does not satisfy the identity
yw &~ yw’, which is impossible. O

For any letter x € X', define an x-block to be a non-simple word of the form

r

X = <H(xsz)>xe = rs1TSs...1S,.I°, (20.2)

=1

where s1,...,s, € XT, e € {1,2}, and r > 0 satisfy the following:
(B1) the letters of sy, ...,s, are all simple in x;
(B2) if r =0, then e = 2.

REMARK 20.3. (i) In any a-block, the letter x is the only non-simple letter.
(ii) If 7 = 0 in (20.2), then the prefix [];_, (zs;) of x is empty, so that x = 2 by (B2).

Let w be any non-simple word and let « be any non-simple letter of w with occ(z, w) =r > 2,
so that
W = WoIW{IW3 ... TW,

for some wy, ..., w, € X* with & ¢ con(wyg ...w,). Then the letter x is said to be linked in w
if con(wy ... w,_1) C sim(w). In other words, a non-simple letter = of w is linked if any other
non-simple letter of w is not sandwiched between any two occurrences of . A non-simple word
is linked if each of its non-simple letters is linked.

LEMMA 20.4. Let w be any non-simple word. Then there exists some linked word W such
that the identities (20.1) imply the identity w ~ W.

Proof. Tt suffices to convert w, using the identities (20.1), into a linked word. Let = be the
last non-simple letter of w that is not linked. Then

w = prq

for some p,q € X* such that « € con(p)\con(q) and any non-simple letter of w that occurs
in q is linked. It follows that px and q are disjoint words. Since the letter x is not linked and
x € con(p)\con(q), some other non-simple letter y of w occurring in p is sandwiched between
two occurrences of x, that is,
w = arbyc zq (20.3)
——

P
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for some a,b,c € X* such that y € con(ab)\con(cq). If y € con(a), then a = a’ya’” for some
a’;a” € X*, so that

1o (20.1e) ,
w =a'ya rbycrq = a'ya"ybyrcrq = aybyrcrq.

If y € con(b), then b = b’yb” for some b’,b"” € X*, so that

! 1 (20'1(1) !/ 1
w = arb'yb"ycxq =~ " ayb'yb"yrcrq = aybyxrczq.

Therefore in any case, the two occurrences of x appearing in (20.3) no longer sandwich y. This
argument can be repeated until a word of the form

w' = p'xs|zsy...28,,2q

is obtained, where p’,s1,...,s,;, € X'* are such that con(sy ...s,,) C sim(w’) and z ¢ con(p’).
In particular, the letter x is linked in w’.

The procedure in the previous paragraph can be repeated on p’ to convert w’ into a word
where all non-simple letters are linked. O

In this subsection, a non-simple word w is said to be in canonical form if
W = pXj ...Xn(, (20.4)

where p,q € X*, x1,...,%X;, € X", and m > 1 satisfy the following;:
(I) x; is an x;-block;
(IT) the letters of p and q are simple in w;

(I11) p,x1,...,Xm,q are pairwise disjoint;
(Iv) if xf is a suffix of x; and x;41 = x?ﬂ, then z; alphabetically precedes ;1.
Note that z1,...,z,, are precisely all non-simple letters of the word w in (20.4).

LEMMA 20.5. Let w be any non-simple word. Then there exists some word W in canonical
form such that the identities (20.1) imply the identity w ~ W.

Proof. It suffices to convert w, using the identities (20.1), into a word in canonical form. By
Lemma 20.4, the word w can be assumed linked, say

W = pX1ti1Xato ... Xpm_1t;m_1Xnq,

where the letters of p,ty,...,t,—1,q € X* are all simple in w, each x; is a linked word that
begins and ends with z;, and z1, ..., z,, are precisely the non-simple letters of w. It is clearly
seen that the identities (20.1a) can be used to convert each x; into an z;-block. If t; # 0, then

(20.1a) 9
W~ pxity . Xt X - b 1Xim g
(20.1c) 9
=~ pX1t1 cee Xi$i+1ti$i+1xi+1 .o tm_lxmq
(20.1a)

~ pX1t1 e X LL’i+1tiXi+1 N tm,lxmq
N—_———

’
Xit1

where x| is an x;41-block. Therefore w can be converted into a word of the form (20.4) with
(I)—(III) satisfied.

It remains to convert w into a word that satisfies (IV). Suppose that 22 is a suffix of x; and
Xit1 = xfﬂ, where z;11 alphabetically precedes x;. Then x; = z;s12;82 .. .:cisrxf. In what
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follows, it is shown that the relabeling x; <> z;41 can be performed on w, so that (IV) is
satisfied. If r = 0, then x; = 22 so that

20.1b)
— 2 ( ~ 2 2
W = Ty Tip ~ BERUFNI R
X Xi+1
If r > 1, then
X Xit1
— 2 2
W = c o Ti81T482 .. . TSy Iy ‘(Ei+1...
(20.1b) 5 2
~ .. XiS1TiS2 ... TSy C LT -
(20.1a) r 2 2
~ < L§S1X82 - TS Lyy g Ty Ty .
(20.1f) roo2 2
~ c o XLi4181%44182 - . - Li4+18r T - $i+1l’i [N
(20.1a) 2 2 2
~ <o Li4181L34182 « - - Li+1Sp Tj © Ty 1Ly - - -
(20.1b) 2 2 o
~ e Lj4181%44182 - . - Lj4+1Sy £Ci+1 C X Ty
(20.1a) 9 9
~ < L4181 T54182 - - - Tip1Sp Xy q Ty - - -
as required. O

LEMMA 20.6. Let S € {Z2, 24} and let
W=pxi...X,,q and W =Ppyi...ymq

be any words in canonical form such that each x; is an x;-block and each y; is a y;-block
with {x1,...,2m} = {y1,...,Ym}. Suppose that S satisfies the identity w =~ w’. Then

(ml,...,xm) = (y17~~»ym)'

Proof. By assumption, 21 <w ... <w Tm. Let ¢ € {1,...,m — 1}. Then it suffices to show
T <w! Tiy1-

Case 1: x;41 contains some simple letter, say h, of w. Then

(a) @iy1 Aw h
and x; <w h, so that z; < h by Lemma 20.2(ii). If z; Aw Tit1, then x,41 <w @ <w B
this contradicts Lemma 20.2(ii) in view of (a). Hence x; <w’ 2t1.

Case 2: x;41 does not contain any simple letter of w. Then x;,1 = xfﬂ by (B2). Since x;
is an x;-block, it is of the form

— e
Xi; = XTiS1X4S2 ... TiSpT;,

where e € {1,2} and the letters of s1,...,s, € X" are all simple in w. There are two subcases.
2.1. e =1. Then r > 1 by (B2). Let s = t(s,.). Since s <w ;41 and sx; € Fg (W),
(b) Tiv1 Aw s
and sx; € Fs.(w’) by Lemma 20.2 parts (ii) and (iv). The letter s thus belongs to the z;-block
in w’. Suppose x; Aw’ Ti+1, 80 that x;11 <w x;. Then within w’, the x;1-block occurs before
the x;-block, so that ;11 <w s. In view of (b), this is impossible. Hence x; <ws ;1.
2.2. e = 2. Then (IV) implies that
(¢) x; alphabetically precedes x; .
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Seeking a contradiction with (c), suppose z; Aws T;+1. Then ;11 <w 2;, whence there exist k
and ¢ with 1 < k < ¢ < m such that yy is an x;11-block (so that yx = x;41) and y; is an
x;-block (so that y, = z;), that is,

W =Dy1...YEYkt1---Ye---YmQ

Suppose that the factor ygi1...yr of w' contains some simple letter h. Then ;11 = yx <w’ h
and

(d) =i = ye Aw h,
whence z;;1 <w h by Lemma 20.2(ii). The assumption z; < ;41 implies x; < h. But then
Lemma 20.2(ii) implies x; < h, which contradicts (d). Therefore the factor yjq1...ys of w’
cannot contain any simple letter. Since each y; is a y;-block, it follows from (B2) that

(Yerts-- 3 ¥0) = Whrrs-- - 02)-

By (IV), the letters ygy1,...,ys are in alphabetical order. Specifically,
(e) yr+1 alphabetically precedes y, = x;.
Now since yg is an x;41-block, it is of the form

Y = 931‘+1t1171:+1t2 . l‘i+1trI{+1,

where f € {1,2} and the letters of ty,...,t, € XT are all simple in w’. Suppose f = 1. Then
r > 1 by (B2). Let ¢t = t(t,.). Since t <y y¢ = x; and tx;11 € Fs (W'),

and tx; 11 € Fs (w) by Lemma 20.2 parts (ii) and (iv). Therefore the simple letter ¢ of w occurs
in the x;41-block x;41, whence x; <y t. In view of (f), this is impossible. Hence f = 2. Now
by (IV), the letter z;11 = yi alphabetically precedes y11. Therefore by (e), the letter z;41
alphabetically precedes x;. This is the required contradiction with (c). O

Proof of Proposition 20.1. Let S € {Z, Z4}. It is routinely checked that S satisfies the
identities (20.1). Hence it suffices to show that any identity w ~ w’ satisfied by S is implied by
the identities (20.1). If either w or w’ is a simple word, then it follows from Lemma 20.2 parts (i)
and (iii) that the identity w & w’ is trivial and so is vacuously implied by the identities (20.1).
Therefore assume that w and w’ are both non-simple words and so by Lemma 20.5, can be
chosen to be in canonical form. Since con(w) = con(w’) and sim(w) = sim(w’) by part (i) of
Lemma 20.2, it follows from parts (iii) and (v) of the same lemma that

W=pxX;...Xn,q and W =py;...ymq,

where each x; is an x;-block and each y; is a y;-block with {z1,...,2m} = {1, Ym}- It
then follows from Lemma 20.6 that each y; is an z;-block. Let

P,S1,--+,5n,q (20.5)

be all the maximal factors of w, in order of appearance, that consist of simple letters, so
that Wem = pS1...S,q. By part (v) of Lemma 20.2, the maximal factors of w’, in order of
appearance, that consist of simple letters coincide with the words from (20.5); by part (iii)
of the same lemma, w., = psi...s,q. Hence

_ e r_ f
W =P T1812182...218;01 X2...Xpq and w' = P T181X1S2...218kT7 Y2 ..-YmQ4.

X1 Y1

Suppose j # k, say j < k. Then 1 £y h where h = h(sy). But sy, is a factor of x3...x%,, and
50 T1 <w h, contradicting Lemma 20.2(ii). Hence j = k. Let ¢ = t(s;) = t(sy). If e # f, say
(e, f) = (1,2), then tx; € Fs(w) and tz; ¢ Fs (w'), contradicting Lemma 20.2(iv). Therefore
e = f, whence x; = y;. Similarly, it can be shown that x; = y; for each ¢ > 1, so that w = w’.
Consequently, the identity w ~ w’ is implied by the identities (20.1). O
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20.2. Finite basis property of &,

PRrROPOSITION 20.7. The variety generated by &, is defined by the identities

rHrKz? ~ zHzKz, (20.6a)

xHzKz ~ cKaHz, (20.6b)

zHz - Ky - Ty = aHz - Ty - Ky, (20.6¢)

z-Hy Kz -Ty~x- Kz Hy- Ty, (20.6d)
z-HyKy - Tox =~z - Tx - HyKy, (20.6¢)

zHz - KiyKoy - T12Toz &~ aHz - T12T2z - KiyKay. (20.6f)

For any word w, let Fsn(w) denote the set of factors of w of length two that begin with a
simple letter and end with a non-simple letter:

Fsn(w) = {zy € X? | w € X*zyX™*, z € sim(w), y ¢ sim(w)}.

LEMMA 20.8. Suppose that w =~ w’ is any identity satisfied by &,. Then:

(i) for each x € X, either occ(z,w) = occ(x,w’) < 2 or occ(x, w),occ(z, w') > 3;
(i) h(w) =h(w’);

(iii) Fsn(w) = Fsn(w');

(iv) Fss(w) = Fss(w’).

Proof. (i) This follows from Lemma 2.1(vii) since the subsemigroup {1,3,4,5} of &, is
isomorphic to Ni.
(ii) This follows from Lemma 2.1(i) since the subsemigroup {5, 6} of &, is isomorphic to Ls.
(iii) Suppose Fsn(w) # Fsn(w'), say zy € Fsn(w)\Fsn(w’). Then it follows from part (i)
that x is simple in w’ and y is non-simple in w’, whence zy is not a factor of w’. Let ¢ : X — &}
denote the substitution
2 ifz=u=,
z—= 95 ifz=y,

6 otherwise.

Thenwo=...2-5...=1and w'p € {5,6}*-2-6-{5,6}* = {3}, which is impossible. Hence
Fsn(w) = Fsn(w').

(iv) It follows from part (i) that con(w) = con(w’) and sim(w) = sim(w’). The identity (2.3)
with n = 3 is not satisfied by the semigroup &, because 53-2-5%-6-5% # 52.2.6-53. Therefore
Fss(w) = Fss(w’) by Lemma 2.10. O

For any letter x € X', define an x-rigid block to be a non-simple word of the form
X =S1TSoT...Sp_12 ST, (20.7)

where 51 € X*, sg,...,8, € X1, e € {1,2,3}, and 7 > 1 satisfy the following:

(Ril) the letters of sy, ...,s, are all simple in x;

(Ri2) the letters h(sg),..., h(s,«) are in strict alphabetical order;

(Ri3) if r =1, then e € {2,3};

(Rid) if r = 2, then e € {1,2};

(Rib) if r > 3, then e = 1.

The a-rigid block in (20.7) is fully z-rigid if

(Ri6) s; # 0 implies that the letters h(sy),...,h(s,) are in strict alphabetical order.

https://doi.org/10.1112/51461157014000412 Published online by Cambridge University Press


https://doi.org/10.1112/S1461157014000412

88 E. W. H. LEE AND W. T. ZHANG

REMARK 20.9. (i) In any a-rigid block, the letter x is the only non-simple letter.
(ii) The z-rigid block in (20.7) is vacuously fully z-rigid if s; = 0.

LEmMMA 20.10. Let h and x be any non-simple words that end with non-simple letters.
Suppose that x is the only non-simple letter of x and that t(x) = x. Then:
(i) there exists an x-rigid block X such that the identities (20.6) imply the identity x ~ X;
(ii) there exists a fully x-rigid block X such that the identities (20.6) imply the identity
hx ~ hx.

Proof. (i) It suffices to convert x, using the identities (20.6), into an z-rigid block. By
assumption, X = S 8% ...SE_12 ST for some s1,...,s; € X* with con(sy...s;) = sim(x).
The identities (20.6b) can be used to arrange the factors sox, . . . , s in any order. In particular,
the factors from sox, ..., syxr with empty s; can be gathered to the right, resulting in a word
of the form (20.7) with (Ril) satisfied and e > 1. Then the identities (20.6b) can be applied to
arrange the factors sqx, ..., s,z in (20.7) until (Ri2) is satisfied. Finally, the identities (20.6a)
can be applied until (Ri3)—(Ri5) are satisfied.

(ii) It suffices to convert the word hx, using the identities (20.6), into a word hx where X is
a fully z-rigid block. By assumption, h = ahbh for some a,b € X* and h € X. By part (i), the
identities (20.6) can be used to convert x into an z-rigid block, say the one in (20.7). Hence

(20.6) .
hx =~  ahbh sizsox...s,_1rs,.x

X

where X satisfies (Ril)—(Ri5). If s; # (), then the identities {(20.6b), (20.6¢)} can be applied
until (Ri6) is additionally satisfied. O

LEMMA 20.11. Let x; be any x;-rigid block, where i € {1,2,3}. Then the identities (20.6f)
imply the identity X1XsX3 &2 X1X3X2.

Proof. By assumption, x; = a;z;b;z; for some a;,b; € X*. Since
X1X92X3 = 31$1b1171 . a2x2b2x2 . a3m3b3x3
(20.6f)
~ airi1bix - azr3bsrs - asrobors = x1X3X%0,
the identities (20.6f) imply the identity x;1x9X3 ~ X1X3Xs. O
In this subsection, a non-simple word w is said to be in canonical form if

W =X]...XnZ, (20.8)

where x1,...,X,, € X7 and z € X'* are such that:
(I) x; is an z-rigid block;

(II) x; is a fully z;-rigid block for each i € {2,...,m};
(ITI) the letters xs, ..., z,, are in strict alphabetical order;
(IV) the letters of z are simple in w;

(V) x1,...,Xm,2 are pairwise disjoint.

LEMMA 20.12. Let w be any non-simple word. Then there exists some word W in canonical
form such that the identities (20.6) imply the identity w ~ W.

Proof. It suffices to convert w, using the identities (20.6), into a word in canonical form.
Consider a factorization of w that displays all of its non-simple letters individually, that is,
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W = S$1T1S2T3...S,px) Z where the letters x1, ..., z; are non-simple in w and the letters in the
factors s1,...,8;,2z € X'* are simple in w. Each letter in the list z1, ...,z is non-simple in w
and thus appears at least twice in the list, whence k > 2.

Let r > 2 be such that 21 = 292 = ... = 2,1 and z1 # z,. Suppose that ¢ > r is the least
integer such that x1 = x4. Then

oo (Toe) (T 11 5)

i=1 i=r i=0+1

a b

Note that the factor a is nonempty because z, € con(a), and that t(a) = x,—1 # 1 by the
minimality of ¢. Since the letter t(a) = z,_1 is non-simple in w, either occ(xy_1,a) > 2 or
x¢—1 € con(b). Hence

r—1 X ) r—1
w = s;zr1) ) -a-(spx1)-b-z (20'6612»3(20'66) s;x1) | -syx1-a-b-z
[1Giz) (sez1)

=1 =1
r—1 {—1 k
= (H(sm)) "S- <H(sm)>< 11 (Sixi)) -z,
i=1 i=r =41
that is, the identities {(20.6d), (20.6e)} can be used to move the factor spz; to the left until it
immediately follows the prefix ]/ (siz1).
Now z1 ¢ {x,,...,z¢—1} by the minimality of £. But if 1 € {z¢41,..., 2k}, say 1 = z; for

some least j € {£+1,...,k}, then the procedure in the previous paragraph can be repeated
to move the factor s;z; in Hf:Hl(sixi) to the left until it immediately follows the prefix

(Hz;ll (six1))sexy. It is easily seen how this can be repeated until w is converted into a word of
the form x; ...x,,z with (IV) and (V) satisfied, and each x; is a word that contains precisely
one non-simple letter, say x;, with t(x;) = z;. Then it follows from Lemma 20.10 that (I)
and (II) are satisfied by applying the identities (20.6). By Lemma 20.11, the factors xa, ..., X,
can be arranged by the identities (20.6f) in any manner. Hence (IIT) is satisfied. O

Proof of Proposition 20.7. Tt is routinely checked that &, satisfies the identities (20.6). Hence
it suffices to show that any identity w =~ w’ satisfied by &; is implied by the identities (20.6).
If either w or w’ is a simple word, then it follows from Lemma 20.8 parts (i) and (iv) that
the identity w &~ w’ is trivial and so is vacuously implied by (20.6). Therefore assume that w
and w’ are both non-simple words and so, by Lemma 20.12, can be chosen to be in canonical
form. Lemma 20.8(i) implies con(w) = con(w’) and sim(w) = sim(w’). Hence

wW=xX1...xpz and w =x)...x 7/,
where x; is an x;-rigid block, x; is a fully z;-rigid block for each i € {2,...,m}, x} is an
x}-rigid block, and x} is a fully x}-rigid block for each i € {2,...,m}.
By definition, x; and x} are of the form

/ P / ’o /e
X1 = S1%1 821 ...Sr—121 Spx]  and  xj =sjxsqr) .. s,z s (2])C.

Then Lemma 20.8 parts (ii)—(iv) imply s;21 = s}, and parts (iii) and (iv) of the same lemma
imply {s2,...,s.} = {s,...,s.,}. Since x; and x} are z;-rigid blocks, it follows from (Ri2)
that (s2,...,s,) = (8h,...,s.,). It is then easily shown by (Ri3)—(Ri5) and Lemma 20.8(i) that
e = ¢’. Hence x; = x). Now since w and w’ share the same set of non-simple letters, it follows
from (III) that z; =  for all ¢ € {2,...,m}.
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Now consider any i € {2,...,m}. Then x; and x} are of the form

X; = S$12;82T; . .. Sp_1T; Spws  and X, = sjx;shr; .. .sL 3 s’r,xf/.
Lemma 20.8 parts (iii) and (iv) imply {s1,...,s,} = {sf,...,s., }. Since x; and x| are fully
x;-rigid, it follows from (Ri2) and (Ri6) that (s1,...,s,) = (s],...,s].,). It is then easily shown
by (Ri3)—(Ri5) and Lemma 20.8(i) that e = e’. Therefore x; = x}. Since i € {2,...,m} is
arbitrary, X; ...X;, = X ...x},. Finally, z = 2’ by Lemma 20.8(iv). Consequently, the identity
w ~ w’ is trivial and is implied by the identities (20.6). O

21. Do, D7, Ds, Dy, &, &3

This section establishes the finite basis property of the following semigroups.

P61 23 456 2711 23 456 P11 23456
111111 1111111 1jr11111
21111112 21111112 21111112
31111141 3/1 11141 31111142
414444414 414444414 414444414
919559555 51555555 919559555
61123416 61123446 61123416
P91 2 3 456 &)1 23456 &)1 23456
1j1r11111 11111111 1j1r11111
21111112 2|1 11112 21111112
31111142 31333333 31333333
414444414 41333313 41333313
515559555 51555555 515559555
61123446 61123416 61123436

PROPOSITION 21.1. The variety generated by any S € {Ds, D7, D5, Do, &, 3} is defined by
the identities

rHz? ~ rHz, (21.1a)
rHzKy?z ~ HzKy?, (21.1b)
cHyKz Ty ~ zHyKyTx. (21.1c)

The proof of Proposition 21.1 is given in §21.3.
21.1. Identities satisfied by Ds, D7, D, Do, &>, and &3
LEMMA 21.2. The identities (21.1) imply the identity
zabhx ~ rarhzb (21.2)
for any a,b € X such that con(b) C con(za).

Proof. This is proved by induction on |b|. If |b| = 1, say b = y € con(za), then

(21.1a) (21.1c)
rabhx = rayhr =~ zayhzxr = zazrhxy = xazhzb.
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Assume that the identities (21.1) imply the identity (21.2) whenever 1 < |b| < n. If |b| = n,
say b = b’b” for some b’,b” € X with |b’| + |b”| = n, then

21.1 21.1
rabhz = zab'b'he A zablzhab’ X varchrb'b” (21.3)

21.1a
G zazhab’'b” = zazhab,

where the two deductions in (21.3) hold by induction hypothesis. O

For any word w, let F11(w) denote the set of factors of w of length two that consist of two
first occurrences in w:

Fiu(w) = {zy € X? | w € (X\{z,y})*zyX* and = # y}.

LEMMA 21.3. Let S € {%s, D7, D5, Do, 62,83 }. Suppose that w &~ w’ is any identity satisfied
by S. Then:

(1) ini(w) = ini(w');

(i) sim(w) = sim(w’);

(iii) ( )€ S|m( ) if and only if t(w') € sim(w’);
(iv) Fua(w) = Faa(w)).

Proof. (i) The subsemigroup {1,4,6} of S’ € {%s, D7, Ps, Do} and the subsemigroup {1, 3,6}
of §” € {&, &3} are isomorphic to Li. Therefore the result holds by Lemma 2.1(iii).

(ii) This holds by Lemma 2.1(v) since the subsemigroup {1,2,6} of S is isomorphic to NJ}.

(iii) This follows from Lemma 2.2 since the subsemigroup {1,3,6} of S’ € {%s, Z7}, the
subsemigroup {3,4,6} of S” € {&, &3}, and the divisor {1,2,3,6}/{1,2} of 8" € {Zs, Do}
are isomorphic to J.

(iv) Suppose Fi1(w) # Fi1(w'), say with 2y € F11(w)\F11(w’). Then w = azyb for some
a,b € X* such that z,y ¢ con(a). Since ini(w’) = ini(w) by part (i) and ini(w) =...zy..., it
follows that w’ = czdye for some c,e € X* and d € X" such that z ¢ con(c) and y ¢ con(cd).
Let ;1 and ¢35 denote the following substitutions into S” € {Zs, P, D5, Do} and S” € {&3, &3},

respectively:
3 ifz=uz, 4 if z ==,
z— b if z =y, z— b if z =y,
6 otherwise; 6 otherwise.

Then the following contradictions are obtained:
wp; €{6}*-3-5-bp; ={4} and w'p; € {6}*-3-{3,6}"-5-ep; = {1};
wpy € {6}*-4-5-bpy ={1} and Wy € {6} -4-{4,6}"-5-epy = {3}.
Hence Fq1(w) = Fqp(w'). O

21.2. A canonical form

Any non-simple word w can be written in the form w = puq, where p,q € X* and u € X+
are such that con(pq) C sim(w) and h(u),t(u) ¢ sim(w). Generality is not lost by assuming
ini(u) = x1 ... x,, for some m > 1, so that ini(w) = px1 ... 2,,q. In this section, such a word w
is said to be in canonical form if

w = p(H(xixi)>q, (21.4)
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where all of the following are satisfied:

(I) X1,y Xm—1 € {wv'xl}a

(II) Xy, = 25 ... 25 for some eq,...,em € {0,1} with (e1,...,em) # (0,...,0);
(IID) if (X1, Xm—1) # (0,...,0) and (eq,...,em) # (0,...,0), then e; = 0.

REMARK 21.4. Consider the word w in (21.4).
(i) If m = 1, then w = pz1x1q = pr3q by (II).
(ii) The assumption 1 = h(u) ¢ sim(w) implies

2 <occ(zy,w) =14 |x1...Xpm-1] +€1.

Therefore if (x1,...,%Xm_1) = (0,...,0), then e; = 1.

LEMMA 21.5. Let w be any non-simple word. Then there exists some word W in canonical
form such that the identities (21.1) imply the identity w ~ W.

Proof. By Lemma 21.2, it suffices to convert w, using the identities {(21.1),(21.2)}, into
a word in canonical form. As observed in the beginning of this subsection, the word w can
be written as w = puq where p,q € X* and u € X are such that con(pq) C sim(w) and
h(u), t(u) ¢ sim(w). Let ini(u) = 21 ...z, Then u can be written as u = [[\", (z;w;), where
w; € {r1,...,2;}* and w,,, # (). The letter ¢ = t(w,,) and any other letter in w,, are clearly
non-simple in w. By assumption, the letter 1 = h(u) is also non-simple in w. Therefore

—1 m—1
(21.1a)  ['% (21.1b)
W p( H (a:iwi)> T Wit?q = p( H (sciwi)) T Wint’z1q

i=1 i=1
(21.1a)
~ p

Hence generality is not lost by assuming h(w,,) = z; to begin with, so that w,, = x;w/, for
some W, € {T1,...,Tm}".

If wy # 0, then since wy € {z1}*, the identity 23 ~ 22 from (21.1a) can be used to reduce
the factor 1wy of w to x1x1. In other words, the word w; can be converted into z; = x;.
Now suppose wy # 0 for some k € {2,...,m — 1}. Since con(wy) C con((Hf;ll(xiwi))xk) and
h(w,,) = z1, it follows from Lemma 21.2 that

m

-1 m—1
(21.1c)
(il?zWi)>ImeIlq ~ p(H($¢W¢)>$m(I1Wm)Q~
=1

% =1

k—1 m—1 WAm
W = priwi (H(%Wz)) kak< H (xlwz)) T TIW, q
i=2 i=kt1
1

k-1 m—
(21.2)
~ p$1W1<H(1'iWi)>xkx1( 11 (:vz-wi))xmwlw;cWinq,

1=2 i=k+1

that is, the identities (21.2) can be used to simultaneously replace the factor wy by z1 = x;
and insert a copy of wy between the x; and w/, in w,,. It is easily seen how this can be
repeated until w is converted into the word

m
W= p(H(xixi))xm T1Wa ... Wy 1W,. q
i=1

1"
Wyn

where x; € {0}, z1}. Since the letters of w!/, are non-first occurrences in w, the identities (21.1c)

can be used to rearrange them into x,, = z7'...z%", where e1,...,¢e, > 0 are such that
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(e1,...,em) # (0,...,0). The identities (21.1a) can then be applied to reduce any nonzero
exponent e; to 1. Hence (I) and (IT) are satisfied. Since x; is a letter of w// | it is also a letter
of x,,,. Therefore e; = 1.

Suppose x; # () for some k < m and e, # 0 for some £ > 1. Then x5, = z1 and x,,, = r1ax/b,
where a = Hf;; zg* and b =[], | x7". Since the letters of x,,, are non-first occurrences in w,

Xim
—
W = PpPIiXi...TpXg...T,riar/dbq

A~ priXy... TEXk... xmxlax?bq

-~ 2

R priXi...TeXg ... Tmar;ribq

N OpPriXy.. . TEXEg- .. xmaxzbq since X = o1
PT1X1...XEXk ... Tparybq.

The first letter 1 of w,, is thus eliminated, resulting in e; = 0. Hence (III) is satisfied. O

21.3. Proof of Proposition 21.1

Let S € {Ds, D7, Ds, Do, &2, E3}. Tt is routinely checked that S satisfies the identities (21.1).
Hence it suffices to show that any identity w = w’ satisfied by S is implied by the
identities (21.1). If either w or w’ is a simple word, then it follows from Lemma 21.3 parts (i)
and (ii) that the identity w ~ w’ is trivial and so is vacuously implied by the identities (21.1).
Therefore assume that w and w’ are both non-simple words and so by Lemma 21.5, can be
chosen to be in canonical form. Hence

m ’rn/
w = p(H(Jcixi))q and w' =p’ (H(a;ixi)) q.

i=1 i=1
Then by Lemma 21.3(i),

(a) pz1...Tmq =ini(w) =ini(w') =p'z...2} ,q".

Since x1 ¢ sim(w) by assumption and sim(w) = sim(w’) by Lemma 21.3(ii), the letter
is non-simple in w’, so that x; ¢ con(p’). By a symmetrical argument, 2} ¢ sim(p). It then
follows from (a) that

(b) p=p"

If either q or q’ is empty, then q = ¢’ = 0 by Lemma 21.3(iii). Therefore suppose that q
and q' are nonempty. Seeking a contradiction, suppose q # q’. Then by (a), either q is a
proper suffix of q’ or ' is a proper suffix of q. By symmetry, it suffices to assume that q is
a proper suffix of q’. It then follows from (a) that z,,q is a suffix of ¢, whence z,, € sim(w’)
and z,, h(q) € F11(q'). However, x,,, # () by (II) so that x,, h(q) ¢ F11(q), and this contradicts
Lemma 21.3(iv). Therefore

(c)a=4d"

It now follows from (a)—(c) that m = m’ and z; = 2} for all i. If x; # x for some i < m, say
x; = 0 and x| = 1, then z;x;11 € F11(w)\F11(w’), contradicting Lemma 21.3(iv). Therefore
x; = x; for all i < m, whence

W =pzr,r{zy?...xirq and W = pzx, xfllzg/z .zt g

’

Xom Xm

with z = HZ":_ll(xzxz) Now (I) and (II) imply occ(z;, w) = 1+ ¢; and occ(z;, w') = 1+ € for

each i > 1. Hence (eg, ..., em) = (€5, ..., €,,) by Lemma 21.3(ii). In each of the following two
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cases, it is shown that e; = e). Consequently, the identity w =~ w’ is trivial and is implied by
the identities (21.1).

Case 1: (e2,...,em) = (0,...,0). Then e; =1=¢] by (II).

Case 2: (e2,...,em) # (0,...,0). If (x1,...,Xm—1) # (0,...,0), then e; =0 = e} by (III).
If (x1,.-.yXm—1) = (0,...,0), then e; =1 = €] by Remark 21.4(ii).

22. &, &5, &7
This section establishes the finite basis property of the following semigroups.
&)1 23456 &1 23456 &)1 23456
11111111 1111111 11111111
21111113 2111113 21111113
31111133 31111133 31333333
41123 444 414 444 44 41123451
51123455 51123455 51123453
6|1 23466 61123466 6/6 6 6666
22.1. Finite basis property of &
PROPOSITION 22.1. The variety generated by &5 is defined by the identities
2~ a?, 2Pyr ~oyr, ayxr® X ayc, (22.1a)
h2zyz ~ hya?, (22.1b)
h2x%y? ~ h2y2?. (22.1c)

For any word w, let Fsy(w) denote the set of factors of w of length two that begin with a
simple letter and end with a non-simple letter:

Fsn(w) = {zy € X% | w € X*oyX™*, z € sim(w), y ¢ sim(w)}.

LEMMA 22.2. Suppose that w =~ w’ is any identity satisfied by &s. Then:
(i) h(w) = h(w);
(ii) con(w) = con(w’) and sim(w) = sim(w’);
(iii) for any letters x € con(w) = con(w’) and y € sim(w) = sim(w’), the conditions x < ¥y
and x© <y y are equivalent;
(iv) Wem = WL ;

sim?’

(v) Fsn(w) = Fsn(w').

Proof. Parts (i)—(iv) follow from Lemmas 2.1(i) and 2.3 since the subsemigroups {5,6} and
{1,3,4,5} of & are isomorphic to Ly and J!, respectively.

(v) Suppose Fsn(w) # Fsn(w'), say axy € Fsn(w)\Fsn(w’). Then = € sim(w) = sim(w’) by
part (ii). Therefore w = azyb and w’ = a’zb’ for some a,b,a’, b’ € X* such that h(b’) # y
and z ¢ con(aba’b’). Let ¢ : X — &5 denote the substitution

2 if z=ux,
z—= <6 if z =y,

5 otherwise.
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Then 5-ap=5-a'p=b'p-5=5and 6-bp -5 =6, so that
5-wo-5=(5-ap)-2-(6-bp-5)=5-2-6=3

and
5-wp-5=(5-a'p)-2-(blp-5)=5-2-5=1,

which is impossible. O

In this subsection, a non-simple word w is said to be in canonical form if

m

w = [ [(siws), (22.2)

i=1

where all of the following are satisfied:
(I) the letters of s; € X* and ss,...,s,,, € X' are simple in w;
(IT) the letters of wy,..., w1 € XT and w,,, € X* are non-simple in w;
(III) con(wy) 2 ... 2D con(wy,).

LEMMA 22.3. Let w be any non-simple word. Then there exists some word W in canonical
form such that the identities (22.1) imply the identity w =~ W.

Proof. Tt suffices to convert w, using the identities (22.1), into a word in canonical form. It
is easily seen that w can be written as a word of the form (22.2) with (I) and (II) satisfied. If
x € con(w;y1)\con(w;), say w;11 = axb for some a, b € X'*, then the identities (22.1) can be
used to convert w; into w;x:

(22.1a) 9 9
W = o SiW S 1 Wi .. ~ SZWZ(t(Wl)) *S;41aT b...
(22.1b) 9 (22.1a)
~ e SiWi(t(Wi)) X - si+1axb R 2 SZ(WLJZ) *Si+1 Wit e
Hence (III) is satisfied by applying the identities (22.1). O

LEMMA 22.4. Suppose that & satisfies an identity w =~ w’, where

m m

W= H(Siwi) and w' = H(SZW;)

i=1 i=1

are in canonical form. Then con(w;) = con(w}) for all i.

Proof. First note that (J;-, con(w;) = [J;~, con(w}) holds by Lemma 22.2(ii). Suppose
con(wy) # con(w}), say = € con(wy)\con(w}). Then by (II), the letter = is non-simple in w
and so by Lemma 22.2(ii), it is also non-simple in w’. By (II), there exists some ¢ > 1 such
that & € con(w}). But then (IIT) implies = € con(w} ), contradicting the assumption. Therefore
con(wy) = con(w}).

Now suppose con(wy) # con(wy},) for some k > 1, say x € con(wy)\con(wy,). Then (III)
implies « € con(wy ... wy) and x ¢ con(wy, ... w,, ), whence z Aw h(sg) and z <y h(si). But
this violates Lemma 22.2(iii). O

Proof of Proposition 22.1. 1t is routinely checked that &5 satisfies the identities (22.1). Hence
it suffices to show that any identity w &~ w’ satisfied by &5 is implied by the identities (22.1).
If either w or w’ is a simple word, then it follows from Lemma 22.2 that the identity w ~ w’
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is trivial and so is vacuously implied by (22.1). Therefore assume that w and w’ are both
non-simple words and so by Lemma 22.3, can be chosen to be in canonical form. Hence

/
m

w=|]]|(siw;) and w' = H(S;W;)

i=1 i=1

Lm = S1...s, by Lemma 22.2 part (iv), it follows from parts (i)
and (v) of the same lemma that m = m’, s; = s}, and h(w;) = h(w}) for all i. Therefore

w' = T, (s;w}). Now Lemma 22.4 implies con(w;) = con(w}) for all i. Hence it can be

assumed that h; = h(w;) = h(w}) and con(w;) = con(w}) = {h;,z;1,...,%ir, }. Let ¢ denote

the substitution z — z? for all z € X. Then it follows from (II) that

: /
Since 81 ...8;, = Wsim = W,

(22.1a) 4~ (22.1¢) 15 S .
WA H(Si(WW)) ~° H(sihf"oxf”l’l :z:fr) for some e, ; € {2,4,6,...}
i=1 i=1
22.1a) 1o
R H(Slhfxfler)
i=1
.. . ’ (22.1) m 2 92 2 . .
Similarly, the deduction w' ~ ~ " [, (s;hiz7, ...x7 ) also holds. Consequently, the identity
w ~ w’ is implied by the identities (22.1). O

22.2. Finite basis property of &
PROPOSITION 22.5. The variety generated by &g is defined by the identities

2~ 2lyr ~oyr, ayr® ~ ayc, (22.3a)

rHy?z ~ 2?Hy?. (22.3b)

LEMMA 22.6. Suppose that w = w' is any identity satisfied by &s. Then ini(w) = ini(w’)
and sim(w) = sim(w’).

Proof. This follows from Lemma 2.1 since the subsemigroups {1,4,5} and {1,3,5} of & are
isomorphic to L3 and N}, respectively. O

In this subsection, a word w with ini(w) = 1 ...z, is said to be in canonical form if
w = H(JCsz), (22.4)

where all of the following are satisfied:
(I) wW; € {@,.’,El, - ,l‘i_l};
(I1) e1,...,em € {1,2};
(IIT) if z; ¢ sim(w), then w; = {;
(IV) if x; ¢ sim(w) and z; = w; for some j > i, then e; = 1.
Note that (IV) implies that the word w in (22.4) does not contain a factor of the form z?ar
where a € X'

LEMMA 22.7. Let w be any word. Then there exists some word W in canonical form such
that the identities (22.3) imply the identity w ~ W.
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Proof. Tt suffices to convert w, using the identities (22.3), into a word in canonical form.
Suppose that z and y are distinct non-simple letters of w such that w = arbyxc for some
a,b,c € X* with y € con(abc). Then

(22.3a) (22.3b) (22.3a)
w ~ azby’zc ~  azr’by’c ~ az’byc,

that is, using the identities (22.3), any non-first occurrence of x in w that immediately follows
another non-simple letter can be gathered with the first  in w. It follows that w can be
converted into a word of the form (22.4) with (I) and (III) satisfied. Then (II) and (IV) are
satisfied by applying the identities (22.3a). O

LEMMA 22.8. Suppose that & satisfies an identity w ~ w’, where

m m
’

W= H(xf‘wz) and w' = H(:cflwg)

i=1 =1

are in canonical form. Then e; = ¢} for all i.

Proof. Since occ(zp, W) = e, and occ(x,,w') = e, by (I), it follows from (II) and

Lemma 22.6 that e, = e;,. Suppose e; # € for some j < m, say (ej,e;) = (1,2). Then

xj ¢ sim(w’), so that x; ¢ sim(w) by Lemma 22.6. The second z; in w coincides with wy, for
some k > j, so that wy, # 0. Hence z, € sim(w) by (III), and
w = ax;j bzywic = az;bzizjc

for some a,b,c € X* with z; ¢ con(ab) and =) ¢ con(abc). By Lemma 22.6, the letter xy, is
also simple in w'. Since €, = 2, it follows from (I) and (IV) that occ(z;, w') = 2, whence

w = a'x;j b'zic = a’x?b'wkc'
for some a’,b’, ¢’ € X* with x;, z;, ¢ con(a’b’c’). Let ¢ : X — & denote the substitution

5 if z=ux;,
z <2 if z = xy,

6 otherwise.

Note that z;, 7y ¢ con(aba’b’c’), so 6-ap =6-a'p =c'p-6 =6 and 5-bp = 5% - b/ = 5.

Hence
6-wp-6=(6-ap)-(5-bp)-(2:5)-cp-6=6-5-1-cp-6=1
and
6-wp-6=(6-a"p) (52-b'p)-2-(c'p-6)=6-5-2-6=3,
which is a contradiction. Consequently, j does not exist, so that e; = ¢ for all i. O

Proof of Proposition 22.5. It is routinely checked that & satisfies the identities (22.3). Hence
it suffices to show that any identity w ~ w’ satisfied by & is implied by the identities (22.3).
By Lemma 22.7, the words w and w’ can be assumed to be in canonical form. Since ini(w) =
ini(w’) by Lemma 22.6, it follows from Lemma 22.8 that

m m

w= H(xS7Wz) and w = H(xlmwi)

i=1 i=1
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Suppose that ¢ is the least integer such that w, # w). Then (wg, w}) # (0,0), say w, # 0.
It follows from (I) that wy = x) for some k < £, whence x, € sim(w) and e, = 1 by (III). Thus

W = pzj‘Weq = pTTkq
where p = Hf;ll(xfwz) and q = [[1~,, , (z;"w;), and
w' = pzy‘wiq' = prewiq’
where q' = [[;%,  (z{"w}) and wj € {0, 21,...,z¢_1}\{zx}. Further, sim(w) = sim(w’) by
Lemma 22.6, so that zy ¢ con(pqw)q’). Let ¢ : X — & denote the substitution
5 if z = xy,
292 if z=xy,
6 otherwise.
Then 6-we -6 = (6-pyp)-2-(5-qp-6)=6-2-5=1. Note that if ' # 0, then h(q') = z¢+1
and x, ¢ con(q’), so that q'¢ - 6 = 6. Therefore
6 - 2:6-(d¢-6) if w,
6 w'p- 6= (6-py) /(qw ) %Wf#(b,
(6-pp)-2-(qp-6)  if wy=0,
=6-2-6=3,
and the contradiction 6 - we -6 £ 6 - w'p - 6 is established. Hence the integer £ does not exist.
Consequently, the identity w ~ w’ is trivial and is implied by the identities (22.3). O
22.3. Finite basis property of &7
PROPOSITION 22.9. The variety generated by &7 is defined by the identities

zHz? ~ zHz, zHyKzy ~ zHyKy, zHyKyz ~ zHyKz. (22.5)

In this subsection, a word w with ini(w) = 1 ...z, is said to be in canonical form if

m

w = [ [(ziw)), (22.6)

i=1

where wW; € {@, Tlyen- ,.’,Ui}.

LEMMA 22.10. Let w be any word. Then there exists some word W in canonical form such
that the identities (22.5) imply the identity w ~ W.

Proof. Tt suffices to convert w, using the identities (22.5), into a word in canonical form.

Suppose ini(w) = x1 ... x,,. Then w can be written in the form (22.6) with w; € {z1,...,z;}*.
Since any letter in w; is a non-first occurrence in w, the identities (22.5) can be used to
eliminate all except the last letter of w;. Therefore w; € {0, z1,...,2;}. O

Proof of Proposition 22.9. It is routinely checked that &7 satisfies the identities (22.5). Hence
it suffices to show that any identity w ~ w’ satisfied by &7 is implied by the identities (22.5).
By Lemma 22.10, the words w and w’ can be assumed to be in canonical form. Now the
subsemigroup {1, 3,5} of & is isomorphic to L3, so that ini(w) = ini(w’) by Lemmas 2.1(iii).

Hence
m m

w = H(%Wz) and w' = H(:CZW;)

i=1 i=1
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Suppose that ¢ is the least integer such that wy # w/}. Then

w =prywyq and w = pz,w,q

-1 -1
where p = Hi:1($iwi) = Hi:l(miW£)7 q = H?;Hl(xiwi)a and q' = H;1£+1(miwfi). By
symmetry, there are three cases.

Case 1: (wy,w)) = (0,z¢). Let ¢1 : X — & denote the substitution

2 if z = zy,
2= <6 if z=uwp4q,
4 otherwise.

Then xyp, 2941 ¢ con(p), so that 4 - ppy = 4. Hence
4-wpr-6=(4-pp1)-2-(qp1-6)=4-2-6=3
and
4w 6=(4-ppi)-2-2-(qp1-6)=4-2-2-6=1.
Case 2: (wy,w)) = (0, z) with k < {. Let @9 : X — & denote the substitution

5 if z = T,
2= 6 if z=uwpyq,
4 otherwise.
Then x¢41 ¢ con(p), so that 4 - pys € {4,5}. Hence
4-wipy-6=(4-pp2)-4-(ap2-6) € {4,5} 4.6 = {1}
and
4-w'p-6=(4-pps)-4-5-(qpy-6)€{4,5}-4-5-6={3}.
Case 3: (wy,w)) = (xj,x5) with j < k < €. Then since z,41 ¢ con(p), it follows that
(pze)p2 € {4,5} -4 = {4}. Hence
Wiy -6 = (pre)p2-4-(qp2-6)=4-4-6=1
and
w96 = (pz)p2-5-(qp2-6)=4-5-6=3.

Since all of the above cases are impossible, the integer ¢ does not exist. Consequently, the
identity w &~ w’ is trivial and so is implied by the identities (22.5). O

23. &g, &, E10, Fs

This section establishes the finite basis property of the following semigroups.

&1 23456 &|123456 &p|ll23456 F[(123456
1111111 1111111 1111111 11111111
2111113 2111113 21111122 21111122
31333333 31333333 31111133 31333333
41123451 41123453 4 14444414 41333344
511 23541 51123543 51113156 51121156
616 6 6666 616 6 6666 6 133156 61121256
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23.1. Finite basis property of & and &y
PROPOSITION 23.1. The variety generated by S € {&g, 9} is defined by the identities

w2yx ~ x3y3, (23.1a)
rHz® ~ rHa, (23.1b)
zHyz® ~ zHy®, dc
Hya? ~ zHy? 23.1
zHy3z ~ zHyz, (23.1d)
zHyKzy ~ xHyKyz, de
HyK HyK 23.1
yHryK2? ~ yHa Kz xy. (23.1f)

LEMMA 23.2. Let S € {&3,89}. Suppose that w ~ w' is any identity satisfied by S. Then
ini(w) = ini(w') and occ(z,w) = occ(z, w’) (mod 2) for all z € X.

Proof. This follows from Lemma 2.1 since the subsemigroups {1,3,4} and {4,5} of S are
isomorphic to L} and Zs, respectively. O

LEMMA 23.3. Let S € {&s,89}. Then S does not satisfy the identity
22322 ~ 2y, (23.2)
Proof. This holds because 4% -23 .62 =1#3=4%2.2.62in S. O

In this subsection, a non-simple word w with ini(w) = z¢...x,, is said to be in canonical
form if

w=uz’...z5 - 3:50 . .xfT__ll “Tpg1 ... Ty (23.3)
for some r € {0,...,m} such that all of the following are satisfied:

(M) eq,...,er € {1,2,3};

) foa"'7fr—1 € {0’1}7

) ife; >2and i€ {0,...,r— 1}, then f; = 0;

) if e, =1, then (fo,..., fr—1) # (0,...,0);

) if r > 1and (fo,..., fr-1) # (0,...,0), then e, < 2.

REMARK 23.4. (i) The word w in (23.3) satisfies occ(xz, w) < 3 for all z € X.
(ii) If r = 0, then the word w in (23.3) is 3’21 . . . Ty,

LEMMA 23.5. Let w be any non-simple word. Then there exists some word W in canonical
form such that the identities (23.1) imply the identity w ~ W.

Proof. Tt suffices to convert w, using the identities (23.1), into a word in canonical form.
Suppose ini(w) = zg...Zm,. Then w can be written as a word of the form w = []/",(z;w;)
with w; € {zg,...,z;}*. Let r be the largest integer for which w, # ), so that w; = () for all
j >r. Then w = ([;_o(ziw:))(I];2,, x:). Since the letters of w; are non-first occurrences,
the identities (23.1e) can be used to arrange them, within w;, in any order. Hence it can be
assumed that

W=z WL TTWL T Ty
where eg,...,e, = 1 and W} € {z0,...,2;-1}*. The assumption w, # ) implies that either
er = 2 or wi. # (). Therefore

. e, e / €r—1__/ ! .2 : /
(23.10) | g” - 2 WY L W BT WL Ty T if wi. =10,

~ €0 . €1/ er—1_ 1 err! 7\\2 . /
g’ - xP Wi W xwL(t(WL))P g I WL D
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In either case, there exists some z € {xy,...,2,} such that

(23.1b) o
woox o alawW W e wlEt e T

° T
Suppose w;, # () for some k < r. Then W), = 192 ...y, for some y; € {zo,...,z5_1}, whence

e 4 !/
W=D T 1Yz Yp AT W Tl T

where p = zg° Hi:ll (zf'w}) and q = H:;;H(xfwg) Since the prefix p contains the letters

Y1y Yps
(23.1b) . e 9
WO DTy Yp X WL T Ty
(23.1f) ertl , 9
XOpP-x T Yoy Yp A TTWLET TR Tpgl - Ty
(23.16) er+2 e /2
XOP-TY3Ya . Yp A X WLZT  TRY2  TRYL Tl - T
(23.11) oot
~ +p )
XOop-xfl QWL 2T TRYp  TkYp—1 - TRYL  Trgl - Ty
(23.1e) .
'~ 2k +p er, ! 2 P
X oprrtt w1y Y Trgl - - T
(23.1b) "
o P IP
X prf WL T 1Y Yp Trgl - T
er+|wi| vt W
= p-z, leqarrwoay P Wy Ty Ty

Hence the identities (23.1) can be used to move the factor w), to the right until it immediately

’
precedes the letter x,11 (while simultaneously introducing two copies of x‘kw‘“‘ to the word),
that is,
/ I
W o= P-IWLqQ-TW, Tl .. Ty
(23.1) / /
~ p- xzkﬂw’“l q- gcf,"wza:clcw’“lw;C Tyl e Ty

The above deduction holds vacuously if wj, = (). Since k < r is arbitrary, this deduction can
be repeated on every wi,...,wl_;, resulting in

-1 -1
@D e (TT 2 e w’ (T !
w o=z 1_[56z ToTwW. H(xZ W) | Zrg1 e T

i=1 i=1

Since the letters in W’T(]_[::_l1 (me“wg)) are non-first occurrences in w, the identities (23.1e)
can be used to order them. Hence w can be converted by the identities (23.1) into the word
in (23.3). As observed earlier, either e, > 2 or w). # ). Hence (IV) is satisfied. The identities
{(23.1b),(23.1¢)} can be used to reduce the exponents f,_1,..., fo to numbers in {0,1}, so
that (II) is satisfied.

Suppose e; > 2 and f; = 1 for some 7 < r. Then

_ _eo e; €itl e, fo fim1,,
w=uxy -a-ziw ) oaap’x wb
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el €i—1 _ i fr—1
where a =27 ...z, and b=a;\"\ ... 2"} @11 ... Ty, whence

W (2:;16) xSU .a- (x?x:j:ll L. 1’?"1'7;) . :cgo - x{l}l ‘b
PR o a et M@ ) ol b
= z-a- zf“”leﬁl Bl A Dt T B x{i_ll -b
(226) mgo a- mii—i_lerrll o xiifllm?xfj_?l o xie_rl—lxzer . xgo o m{L_EI b
(23!~Vlb) g’ -a- zfﬂxfﬁl I A SRR ST 1750 e xfi‘f b
(Q?gc) 2% - a- mii—i_lerll o xifll $$T+2(T—i)xgo .. xffll b
(2:;1113) ISO a- z?+1x§r-11 o Iir_—ll zir+2xgo o x{:—ll . b.

Therefore the identities (23.1) can be used to reduce the exponent f; from 1 to 0. Since ¢
is arbitrary, this argument can be repeated until (III) is satisfied. It is then easily shown
that (I) is satisfied by applying the identities (23.1b). Finally, (V) is satisfied by applying the
identities (23.1d). O

LEMMA 23.6. Let S € {&3,89}. Suppose that w =~ w’ is any nontrivial identity satisfied
by S. Then the words w and w’ are both non-simple.

Proof. By Lemma 23.2, it can be assumed that ini(w) = ini(w’) = z¢ ... x,. Therefore if
the words w and w’ are both simple, then the identity w ~ w’ is contradictorily trivial. Hence
it suffices to assume that w is non-simple. By Lemma 23.5, there exists a word W in canonical
form such that the identities (23.1) imply the identity w ~ W. It is routinely checked that S
satisfies the identities (23.1), whence S satisfies W =~ w'.

Suppose that the word w’ is simple. Then w’ = ini(w') = x¢ ... Z;,. Let z; be any non-simple
letter in W. Since occ(z;, W) = occ(x;, w') (mod 2) by Lemma 23.2, it follows from (I)—(III)
that occ(z;, W) = 3 and 3 is a factor of W. Let ¢ denote the substitution z; — 3. The

Lo (231b) . . .
deduction Wy =~ "W is easily verified. Since

/37(23‘1b)7 S , 3
. Iy =W W N WORKWQP=T0...L;—1L;Tij41:. LT,

the semigroup S satisfies the identity xq...2m &~ @o... 2 123Ti41 ... Ty It is then easily
shown that S satisfies the identity (23.2), contradicting Lemma 23.3. Consequently, w’ cannot
be simple. 0

LEMMA 23.7. Let S € {&s,&9}. Suppose that S satisfies an identity w ~ w', where

€r fO frfl

— €0
w=ux...2,7 Ty ... Ty Tpgl---Tm
and
’ ’ o’ /
/I __ € € fo f/fl
W =20 ... 2y’ T Xl T

are in canonical form. Then r = 7r'.

Proof. Seeking a contradiction, suppose 7 > 7’. Then the letter x, occurs in the suffix
ZTpig1 ... Ty of W, so that occ(z,,w’) = 1. Hence e, = occ(z,,w) € {1,3} by Lemma 23.2
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and Remark 23.4(i). Let ¢ denote the following substitution into S:

4 ifze{xg,...,xr-1},
z—= 2 if z=ux,,
6 ifze{x,i1,...,Tm}-

Then 4-w/p-6=4-2-6 =3 and
4-w<p-6:4-xir<p~(x£°.. frll)gp 6.
Ife, =3,then4-wp-6=4-23...6=1.1If e, = 1, then (fo,...,fr_1) # (0,...,0) by (IV),

so that 4-wy-6=4-2-4-6 = 1. In either case, the contradiction 4 - wp -6 # 4-w'p -6 is
obtained. 0

LEMMA 23.8. Let S € {&s,8}. Suppose that S satisfies an identity w ~ w’, where

er . .Jo frl

— p€0
w=x’. ..z ) X Ty
and )
e/ e/ e/ f7
w o=l el el e,

are in canonical form. Then:

(l) (an'- '7fT—1) = (fé??f’rl‘—l)7
(ii) (eg,...,er) = (ep,...,€h).
Consequently, w = w'.

Proof. (i) Seeking a contradiction, suppose f; > f/ for somei € {0,...,7—1}. Then (f;, f/) =
(1,0) by (II), so that e; = 1 by (I) and (III). Since occ(z;, w) = e; + f; = 2, it follows from
Remark 23.4(i) and Lemma 23.2 that 2 = occ(z;, w') = ¢, + f/ = el. Let ¢ : X — S denote
the substitution

4 ifze {130, e ,I]L’i_l},
2= <2 if z = xy,

6 otherwise.

Then e; = 1 and e, = 2 imply that

4-wp-6=4-(x...a; -2 (ai xir)p... =4-2-6...=3
and ) )
4w 6=4-(z°...2,; 7 )p 2% (zii ...27)p...=4-1-6... =1,
whence the contradiction wp # w’¢ is deduced.
(ii) Seeking a contradiction, suppose e; > e for some i € {0,...,r}.
Case 1: e, > e]. Since occ(z,,w) = e, and occ(z,,w') = e, it follows from (I) and
Lemma 23.2 that (er, e)=(3,1). If both » > 1 and (fo,..., fr—1) # (0,...,0) hold, then the

contradiction e, < 2 follows from (V). Therefore either r = 0 or (fo,..., fr—1) = (0,...,0),
whence the identity w ~ w’ is either

x%xl...xm A XLl ...Ty OF xo...xT,lexTH...xm R Xg... L.

In both cases, S satisfies the identity (23.2), which is impossible by Lemma 23.3.
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Case 2: e; > el for some i < r. Since f; = f/ by part (i) with occ(z;,w) = e; + f; and
occ(x;, w') = e} + fI, it follows from (I) and Lemma 23.2 that (e;,e}) = (3,1). Let o : X — S
denote the substitution given in part (i). Then

4-wp-6=4-(z0.. .27 ) 2% (22l )e...=4-1-6...=1
and
4~W’<p-6:4-(ajg"...x:i’ll)go-l(xfrll...x,eﬂr)go...:4-2-6...:3,
which is impossible. O

Proof of Proposition 23.1. Let S € {&s,89}. It is routinely checked that S satisfies the
identities (23.1). Hence it suffices to show that any nontrivial identity w = w’ satisfied by S is
implied by the identities (23.1). By Lemma 23.6, the words w and w’ are non-simple. Therefore
by Lemma 23.5, there exist words W and W’ in canonical form such that the identities (23.1)
imply the identities w ~# W and w’ ~ W’. Since ini(W) = ini(w') by Lemma 23.2,

W=’ ...z -wgo...xfr_’f “Tpgl .. Tm

and
’ ’ . ’
— __ _eg e fo frr_q
W o=z ...z X Ty Ty

Then r = v’ by Lemma 23.7, and W = W' by Lemma 23.8. Consequently, the identities (23.1)
imply the identity w =~ w’. O
23.2. Finite basis property of &1 and %5
PROPOSITION 23.9. The variety generated by S € {&10,-%5} is defined by the identities
B ra? 2yrxayr, rya® ~ oy, (23.4a)
ha?ky?tz? ~ hy*ta’kz>. (23.4b)

LEMMA 23.10. For all h,x,y,z € X%t such that h(x),h(y),h(z) ¢ sim(hxyz), the
identities (23.4) imply the identity
hxyz ~ hyxz. (23.5)

Proof. If = h(x), y = h(y), and z = h(z) are non-simple letters of hxyz, then

(23.4a) (23.4b) (23.4a)
hxyz ~" ha?xy?y 22z ~ hy’yz?x22z <" hyxz.

Hence the identities (23.4) imply the identity (23.5). O

For any word w, let Fys(w) denote the set of factors of w of length two that begin with a
non-simple letter and end with a simple letter:

Fns(w) = {zy € X% |w € X ayX*, o ¢ sim(w), y € sim(w)}.
LEMMA 23.11. Let S € {&10,-%5}. Suppose that w =~ w' is any identity satisfied by S. Then:
(i) con(w) = con(w’), sim(w) = sim(w’), h(w) = h(w'), and t(w) = t(w');

(ii) Fns(w) = Fns(w');
(iii) Fss(W) = Fss(W/).
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Proof. (i) This follows from Lemma 2.1 since the subsemigroups {1,4}, {5,6}, and {1,3,5}
of &9 are isomorphic to Lo, Re, and N3, respectively, while the subsemigroups {1, 3}, {5,6},
and {1,2,5} of %5 are isomorphic to Ly, Rs, and NJ, respectively.

(ii) Suppose Fns(w) # Fns(w'), say zy € Fns(w)\Fns(w’). Then it follows from part (i)
that x is non-simple in w’ and y is simple in w’, whence zy is not a factor of w'. Let
and o denote the following substitutions into &19 and F5, respectively:

5 ifz=ux, 5 ifz=u,
z—= <2 if z =y, 2= 4 if 2=y,
6 otherwise; 6 otherwise.

Then the following contradictions are obtained:

wpi € {5,6}*-5-2-{5,6}* ={1} and w'p; €{5,6}*-6-2-{5,6}* ={3};
wipo € {5,6}*-5-4-{5,6}" = {1} and w'py € {5,6}*-6-4-{56}" ={2}.

Hence Fns(w) = Fns(w').

(iii) Suppose Fss(w) # Fss(w'), say xy € Fss(w)\Fss(w’). Then z,y € sim(w) = sim(w’)
by part (i) so that xy € Fys(xw)\Fns(zw’). Therefore by part (ii), the semigroup S does not
satisfy the identity xw ~ xw’, but this is impossible. O

For any non-simple word w, define w = 3% ... y% where y1, ...,y are precisely all the distinct
non-simple letters of w listed in alphabetical order. In this subsection, a non-simple word w
is said to be in canonical form if it can be written as

W =Wq W TIWi...TmWm, (23.6)

where wq,...,w,, € X" and z1,...,2,, € X satisfy the following:
(I) the letters of wy, ..., w,, are precisely all simple letters of w;
(IT) the letters z1,...,x,, are non-simple in w;
(III) the letters x4, ..., 2,1 are in alphabetical order.
Note that the letters x1,..., 2, need not be distinct, but it follows from (I) that the words
T1W1, ..., Tm Wy, are distinct.

LEMMA 23.12. Let w be any non-simple word such that h(w),t(w) € sim(w). Then there
exists some word W in canonical form such that the identities (23.4) imply the identity w ~ W.

Proof. By Lemma 23.10, it suffices to convert w, using the identities {(23.4), (23.5)}, into a
word in canonical form. Consider a factorization of w that displays all of its non-simple letters
individually, that is, w = woz1wy ...z, W, where the letters x1,...,x, are non-simple in w
and the letters in the factors wy, ..., w, € X'* are simple in w. The assumption h(w),t(w) €
sim(w) implies wq, w,. # ). Further, each letter in the list z1,...,z, is non-simple in w and
thus appears at least twice in the list, whence r > 2.

Now the words x1w1,...,x,w, begin with non-simple letters of w. Therefore by applying
the identity (23.5) sufficiently many times, the factors

T1Wlyeo oy Lp 1 Wp_1 (237)

of w can be rearranged in any manner. In particular, the factors from (23.7) with nonempty w;
can be gathered to the right, resulting in a word of the form

WO<H x) (1‘[ <xiwi))xrwr

i€l i€l
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for some I; and I such that I; Ul = {1,...,r — 1} and I; N Iy = (). Hence

—_—— WO(H :1:) <H (xiw,;)>xrwr o WO(H x2) <H (xfmiw,;)>xfxrwr

iEh i€ls i€l i€ls
23.5
% H x5 H (x;w;) |z W,
i€ly

The identities {(23.4),(23.5)} can be used to convert the factor [[;_, 7 of the latter word
into w, resulting in a word of the form (23.6) with (I) and (II) satisfied. The identities (23.5)

can then be used to rearrange the factors z;w; in [[;c;, (z;w;) until (I1I) is satisfied. O

Let X(23.4) denote the variety defined by the identities (23.4).

LEMMA 23.13. Suppose that w,w’ € X+ and x,y € X are such that con(w) = con(w'),
sim(w) = sim(w’), h = h(w) = h(w'), t = t(w) = t(w’'), and z,y ¢ con(w) = con(w’). Then
X(23_4){W =~ W/} = X(23.4){U} where the 1dent1ty

xw ~ zw’ if h ¢ sim(w) = sim(w’) and ¢ € sim(w) =
ois Swyxwy ifh€sim(w): m(w’) and t ¢ sim(w) =

axwy ~ zw'y  if h,t ¢ sim(w) = sim(w’).

Proof. Tt suffices to consider the case when h ¢ sim(w) and ¢ € sim(w) since the other two
cases can be established similarly. Let o denote the identity xw ~ zw’. Then the inclusion
Xs.0{w = W'} C X(a3.4){0} holds trivially. Conversely, since the words w and w’ begin
with the non-simple letter h,

(23.42) - (23.42)
w ~ hwrhw =~ w.

Hence the inclusion X3 4){0} € X(23.4){W ~ W'} holds. O

Proof of Proposition 23.9. Let S € {&10,-Z5}. It is routinely verified that S satisfies the
identities (23.4). Therefore there exists some set ¥ of identities satisfied by S such that
{(23.4)} U X is a basis for S. If w & w’ is an identity in X such that either w or w’ is a
simple word, then it follows from Lemma 23.11(i) that the identity w ~ w’ is trivial. Hence
generality is not lost by assuming that all identities in ¥ are formed by non-simple words.

Let w = w' be any identity from 3. By Lemma 23.11(i),

(a) con(w) = con(w’), sim(w) = sim(w’), h(w) = h(w’), and t(w) = t(w’).
By Lemma 23.13, the words forming the identities in ¥ can be chosen to begin and end with
simple letters. Therefore by Lemma 23.12,

(b) the words forming the identities in ¥ can be chosen to be in canonical form.
It then follows from (a) and (b) that w and w’ are of the form

W=Wq W TIW]...Tp, Wy, and W =Wy W y1W]...Yn W,

where con(wyg ... W) =sim(w) = sim(w’) = con(w{,...w,,), h(wg) = h(w(), t(w,,) = t(w),),
and T1,...,Tm,Y1,.--,Yn € con(w). Then by Lemma 23.11:

(¢) wo = wp;

(d) ITmWm = Yn'W.

(e) {z1w1,. .., Tm—1Wm—1} = {1Wl, ..., yn—1W_1 }.
Therefore (z1W1,...,Tm-1Wm—1) = (11 Wi, ..., Yyn—1W,_1) by (c)—(e) and (IIT), whence the
identity w a~ w’ is trivial. Since the identity w ~ w’ is arbitrary in X, the identities (23.4)
constitute a basis for 5. O
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24. F, Fo

This section establishes the finite basis property of the following semigroups.

F1|1 23456 Fa|1 23456
11111111 11111111
21111122 21111122
31111133 31112133
41444444 414444414
51113456 51123456
6 11 3345€6 6 |1 23456

24.1. Finite basis property of %,
PROPOSITION 24.1. The variety generated by %1 is defined by the identities

2~ r?, 2Pyrxayr, zyr® ~ ayc, (24.1a)

ryxz? ~ xlyz?. (24.1b)

LEMMA 24.2. Suppose that w = w' is any identity satisfied by #;. Then ini(w) = ini(w’),
sim(w) = sim(w’), and t(w) = t(w').

Proof. This follows from Lemma 2.1 since the subsemigroups {1,4,6}, {1,3,5}, and {5,6}
of .Z; are isomorphic to L3, N4, and Ry, respectively. O

In this subsection, a word w with ini(w) = x1 ...z, is said to be in canonical form if

m

w = [ [ (5 w)), (24.2)

=1

where all of the following are satisfied:
(I) w; € {®71’1a v axi—l};
(II) eq,...,em € {1,2};
(III) if x; ¢ sim(w), then w;_1 = (;
(IV) if z; ¢ sim(w) and z; = w; for some j > i, then e; = 1.
Note that (I) and (IV) imply that the word w in (24.2) does not contain a factor of the form

x?ax where a € X'*.

LEMMA 24.3. Let w be any word. Then there exists some word W in canonical form such
that the identities (24.1) imply the identity w ~ W.

Proof. Tt suffices to convert w, using the identities (24.1), into a word in canonical form.
Suppose that z and y are non-simple letters of w such that w = axbxyc for some a,b,c € X*
with y € con(abc). Then

24.1 24.1b 24.1a
w ( %a) arbzy’c ( ~ ) azr’by’c ( ~ ) ar’byc,
that is, using the identities (24.1), any non-first occurrence of z in w that immediately precedes
another non-simple letter can be gathered with the first  in w. It follows that w can be
converted into a word of the form (24.2) with (I) and (III) satisfied. Then (II) and (IV) are
satisfied by applying the identities (24.1a). O
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LEMMA 24.4. Suppose that %, satisfies an identity w ~ w’, where
m m ,
W= H(xffwl) and w' = H(x?w;)

i=1 i=1

are words in canonical form. Then e; = € for all i.

Proof. Observe that occ(zy, W) = e, and occ(zy,, w') = e, by (I) and that

(a) sim(w) = sim(w’)
by Lemma 24.2. Therefore e,, = e/, by (II). Seeking a contradiction, suppose e, # e for some
r < m, say (er,e) = (1,2). Then z, ¢ sim(w’), whence z, ¢ sim(w) by (a). Since w is in
canonical form, the second z, in w coincides with one of w,41,...,w,,, say x, = wy. Then
z, # x¢ by (I), and the word w can be written as

— €r
W = px,W,.qr,’ T, u,

Wy

_ ) - ) ) .

where p = H;zll(xflwi), q= Hiziﬂ(xflwi), and u = H?;Hl(:c?wi) with
(b) x, ¢ con(pw,qzy).

As for the word w’, since e/, = 2, it can be written as

’
P2 ) ) € )
W —p.]fTWTq sz Weu,

where p’ = [[12) (¢'w)), @ = [T}, (o' w)), and w' = [}, (a{'W}) with . & con(p')
and z¢ ¢ con(p’z,w..q'). In fact, it follows from (I) and (IV) that
(c) z, ¢ con(p’w,.q' zewyu’).
In particular, t(w’) # x,.. Since t(w) = t(w’) by Lemma 24.2, it follows that u # @), whence
(d) h(u) = x¢41 € sim(w)
by (III), and
(e) h(u') = zpq1 € sim(w’)
by (a). Let ¢ : X — .%#; denote the substitution

6 if z=x,,
z Q2 if z =241,
5 otherwise.

Then up = 2 and u'¢ = 2 by (d) and (e). Since z,,zs41 ¢ con(pw,qxe) by (b) and (d), it
follows that 5 - pp = (w,qz;* )¢ = 5. Thus

5-wo=(5-pp)- - (Weqry’)p -z, -up=5-6-5-6-2=3.
Similarly, x,, z¢+1 ¢ con(p'w,.q'z,w}) by (c) and (e), so 5-p'p = (W’Tq’xzzwz)go = 5. Hence
5-w'o=(5-Py) alp- (Wid'ziwy)p wp=5-6-5-2=1.
Consequently, the contradiction 5- wp # 5 - w/¢ is established. O

Proof of Proposition 24.1. It is routinely checked that .%; satisfies the identities (24.1).
Hence it suffices to show that any identity w = w’ satisfied by .#; is implied by the
identities (24.1). By Lemma 24.3, the words w and w’ can be assumed to be in canonical
form. By Lemmas 24.2 and 24.4,

m m

—— H(xfwl) and w' = H(QTSW;)

i=1 =1
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with w,,, = w/,. Let £ < m be the least integer such that w, # w}. Then the words w and w’
share the prefix p = Hf;ll (z{iw;) = Hf;ll (xf*w!). Since (w¢, w)) # (0,0), generality is not
lost by assuming w; # ). Then (I) implies w, = z}, for some k € {0,...,£ — 1} and

(a) W2 € {Q]’ Lo, - .- ’xf—l}\{fk}a

whence
ey €r41 !/ ey /€41
w=pz,’ 2, z,,7q and W =pz,‘wx,,q
¢ o+l ¢ +1 9>
Wy
where q = wer [[12, o(z{'w;) and o' = wy [[i%,,,(z{"w]). The conditions w, # 0

and (III) imply x¢4+1 € sim(w); since sim(w) = sim(w’) by Lemma 24.2,
(b) z¢y1 € sim(w) =sim(w’) and eg11 = 1.
Let ¢ : X — %, denote the substitution

6 if z =z,
292 ifz=uxp4q,

5 otherwise.
Since x¢41 ¢ con(pz¢q) by (b), it follows that (pz;*)p =5 and qp € {0,5,6}. Thus
wp = (pzy')p - Tpp - Top10-qe =5-6-2-qp =3.
On the other hand, wjp € {0,5} by (a), so that

w'o = (pay')p - Wip - xp1p-qde=5-wyp-2-qd'p=1

/

The contradiction we # w'p implies that the integer ¢ does not exist. Consequently, w; = w/

for all 4, whence the identity w ~ w’ is trivial and is implied by the identities (24.1). O

24.2. Finite basis property of 5

PROPOSITION 24.5. The variety generated by %, is defined by the identities

ot~ a3, (24.3a)
Py ~ 22y, (24.3Db)
TYTZ N T2YZ. (24.3¢)

In this subsection, a word w is said to be in canonical form if

— €1 €,
W= .. .I'n;"y,

where all of the following are satisfied:
(M) e1,...,em € {1,2,3};
(I0) z1,...,x;,m € X are distinct;
(III) either (a) y =0 or (b) y = x¢ for some £ < m with e, € {1,2}.

LEMMA 24.6. Let w be any word. Then there exists some word W in canonical form such
that the identities (24.3) imply the identity w ~ W.

Proof. Tt suffices to convert w, using the identities (24.3), into a word in canonical form.
This is easily achieved if |con(w)| = 1. Hence assume |con(w)| > 2. Then w = py for some
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p € XT with y = t(w). If a letter 2 occurs more than once in p, then the identity (24.3¢) can
be used to gather any non-first = in p with the first = in p:

(24.3¢) o
w=azbxcy = azx‘bcy.
———

P

Hence the identity (24.3c) can be used to convert w into a word of the form w' = z7* ... 25y
that satisfies (II). If y = 2, then W' = 2{' ... 2,7 21 and the identity (24.3a) can be

used to reduce the exponents eq,..., e, _1,€m + 1 in w' to numbers in {1,2,3}, whence (I)
and (IIIa) are satisfied. If y = x; for some ¢ < m, then (I) and (IIIb) are satisfied by applying
the identities {(24.3a), (24.3b)}. O

Proof of Proposition 24.5. Tt is routinely checked that %, satisfies the identities (24.3).
Therefore it suffices to show that any identity w ~ w’ satisfied by .%5 is implied by the
identities (24.3). By Lemma 24.6, the words w and w’ can be assumed to be in canonical form.
Since the subsemigroups {1,4,6} and {5,6} of .7, are isomorphic to L} and Ra, respectively, it
follows from Lemma 2.1 that w = 2{' ... 2¢"y and w' = x(f/l e x;/%”y Since the subsemigroup
{1,2,3,5} of #, is isomorphic to N3, it follows from (I), (III), and Lemma 2.1(vii) that e; = €/
for all i. Hence the identity w &~ w’ is trivial and so is implied by the identities (24.3). O

25. F3, Py

This section establishes the finite basis property of the following semigroups.

F311 23456 F411 23456
1111111 1111111
21111122 21111122
31123111 31123122
41444444 4 14 44 444
51111456 51111456
6 (444165 6 1444165
Let W denote the variety generated by J and O, where J is the dual semigroup of J and O

is the semigroup from Remark 6.6.

LEMMA 25.1. The variety W is defined by the identities

zy® ~ xy, (25.1a)
3y ~ zyx?, (25.1b)
Tyxy ~ Tyt (25.1¢)

Proof. Let X251y denote the variety defined by the identities (25.1). It is routinely checked

%
that J,0 € X(25.1). Results from Edmunds et al. [9, § 6] (specifically, the proofs of Lemmas 6.3,
6.4, and 6.9-6.11) imply that any proper subvariety of X (5 1) must satisfy either 3y ~ a2y

E
or zyx ~ x2y; it is routinely verified that these two identities are not satisfied by J and O,
respectively. Consequently, W = X o5 1). O

A finite basis for the variety Ag V W is established in §25.1. It is then routinely checked
that 4 € Ao V W. But since the subsemigroups {1,2,3,5}, {1,2,5}, and {1,4,5,6} of %,
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are isomorphic to Ay, 7, and O, respectively, the semigroup %, generates the variety AgV'W
and so is finitely based.

Similarly, a finite basis for the variety Bg V W is established in §25.2, from which the
condition #3 € Bg V W can be routinely checked. The subsemigroups {1,2,3,5}, {1,2,5},
and {1,4,5,6} of #3 are isomorphic to By, 7, and O, respectively, whence #3 generates the
variety Bo V W and is finitely based.

25.1. A basis for Ag VW
PROPOSITION 25.2. The variety Ag V W is defined by the identities

rHz?*Kz ~ 2HKz, (25.2a)
zHyKy? Tz ~ zHyKTz, (25.2Db)
rHyKz?Ty ~ cHyKTyz?, (25.2¢)
zHyKzy ~ rHyKyzx. (25.2d)

LEMMA 25.3. Suppose that w is any connected word. Then there exists some word w with
con(w) = con(w) and h(w) = h(w) = t(w) such that the identities (25.2) imply w = Ww.

Proof. If h(w) = t(w), then the lemma holds vacuously with w = w. Therefore assume
h(w) # t(w). Since w is connected, there exists a sequence h(w) = x1,za,..., 2, = t(w) of
non-simple letters of w occurring in an overlapping pattern such that the first z; 1 occurs
between two occurrences of x; and the last x;11 occurs to the right of all occurrences of z;.
This sequence can be chosen to have minimal length among all such sequences, so that

W=21P122P2219123P322q92L4P4234Q3 --- Qm—-1Tm

for some p1,...,Pm;d1,---,qdm-1 € X*. (Note that p; follows the first z; while q; follows the
last x;.) Then

W = (21P122P2%1)q1T3P3L2Q2L4P4T3G3 - Am—1 Ty
(25.2a 3
~ (T1P122P221 Q1 T3P372) Q2 T4 P4 L33 - .- Uy—1 T
(25.2¢) 9
X (T1P122P221Q1 T3 P32 27 Q2 4 P4 L3) A3 .- Am—1 Ty
(25.2¢)

~ 2
~ T1P122P2719q1T3P3T2Q92T4P4T3T1Q3 -+ Qm—1Tm

(25.2¢)

N T1P122P22191 23 P37292T4 P4 7343 - - - Qm—lxmﬂﬂ%v
w
where the word w satisfies the required properties. O

Let X(25.2) denote the variety defined by the identities (25.2).

%
LEMMA 25.4. Let w ~ w’ be any identity satisfied by Ag, J, and O. Then
X(QS.Q){W ~ Wl} = X(25'2){Wi ~ W; | 1 < ) < m}

for some identities w; ~ w, such that h(w;) = t(w;) = h(w}) = t(w}).
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Proof. Since Ay satisfies w ~ w’, it follows from Lee and Volkov [21, Proposition 3.2(i)]

that
m m
w = s H(wisi) and w' = sg H(wgsi),
i=1 i=1
where:
(a) the letters of sg,s,, € X* and s1,...,8,_1 € X" are simple in w and w’;
(b) Wi,..., Wy, W),...,w, € X7 are connected;
(¢) S0, W1,81,..., W, S, are pairwise disjoint;
(d) sp,w,S1,...,W,,, Sy, are pairwise disjoint;
(e) con(w;) = con(w}) and Ag satisfies w; ~ w/ for all i.

It is easily seen that the inclusion X (o5 0y{w; =~ wj |1 <i < m} C X(a5.0){w ~ w’'} holds.
Consider any i € {1,...,m}. The subsemigroup {a, ba, 1} of O is isomorphic to Li. Therefore
ini(w;) = ini(w}) by Lemma 2.1(iii); in particular, h(w;) = h(w}). Further, by Lemma 25.3, the
words w; and w) can be chosen to satisfy h(w;) = t(w;) and h(w}) = t(w}). For convenience,
let h; = h(w;) = t(w;) = h(w}) = t(w}). Let ¢ denote the substitution x +— h? for all
(25.2a) (25.2a)

x ¢ con(w;) = con(w}). Then the deductions wy =~ ~ w; and w'¢ =~ " w) hold, so that
the identities {(25.2),w = w'} imply w; ~ w}. Since i € {1,...,m} is arbitrary, the inclusion
X25.20{w = W'} C X(25.9){w; = wj |1 <4 < m} holds. O

Proof of Proposition 25.2. It is routinely checked that Ay, 7, and O satisfy the
identities (25.2). Hence Ag VW = X(35.2)X for some set ¥ of identities. By Lemma 25.4,
each identity w ~ w’ in ¥ can be chosen to satisfy h(w) = t(w) = h(w’) = t(w’). Let
w ~ w’ be any such identity with h = h(w) = t(w) = h(w’) = t(w’). Since J and O satisfy
the identity w = w’, it follows from Lemma 25.1 and Birkhoff’s completeness theorem of
equational logic [3] that there exists a deduction sequence

W=29=>%2 = = Z =W, (25.3)

where each deduction z; = z;,1 involves an identity from (25.1), that is, there exist e;, f; € X'*,
an identity u; ~ v; from (25.1), and an endomorphism ¢; of X* such that z; = e;(u;;)f; and
Zi+1 = €;(v;p;)f;. In what follows, it is shown that each deduction z; = z;11 in (25.3) can be
replaced by a deduction sequence that involves only identities from (25.2), whence the variety
X (25.2) satisfies the identity w ~ w’. Since the identity w ~ w’ is arbitrary in 3, it follows
that X(25_2) = X(25_2)Z = AO VW,

Multiplying each word in (25.3) by h? on both the left and the right results in

h*wh? = h*zoh* = W’z h* = --- = B’z,h* = B*w'Rh”.
Since the identities h?wh? ~ w and h*w’h? ~ w' are implied by the identities (25.2a) of

X (25.2), generality is not lost if every word in (25.3) is assumed to begin and end with the
letter h. Let i be any fixed number from {0,...,r — 1}.

Case 1: z; = z;,1 involves (25.1a). Then {z;,z;1} = {eab?f, eabf} for some a,b € X"
and e, f € X'*. Since

25.2 25.2b 25.2¢
cab’f U n2eab3th? “E” n2eabfh? UL cabf,

the deduction z; = z,41 can be replaced by a deduction sequence that involves identities
from (25.2).
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Case 2: z; = z;,1 involves (25.1b). Then {z;,z;,1} = {ea’bf, eaba’f} for some a,b € X
and e, f € X*. Since

25.2a 25.2b 25.2b 25.2a
easbf( & )h2ea3bfh2 ( = )h2eabfh2 ( ~ )hgeabathQ ( ~ )eabazf,

the deduction z; = z;;; can be replaced by a deduction sequence that involves identities
from (25.2).

Case 3: z; = z;41 involves (25.1c). Since the identity (25.1c) belongs to (25.2d), the
deduction z; = z;;+1 can be replaced by a deduction that involves an identity from (25.2). O

25.2. A basis for Bo VW
PROPOSITION 25.5. The variety Bg V W is defined by the identities

rH2?Kz ~ 2HKz, (25.4a)

zHyKy? Tz ~ zHyK Tz, (25.4b)

rHyKz?Ty ~ cHyKTyz?, (25.4c)

rHyKzy ~ zHyKyz, (25.4d)

22y?a?y? ~ 2?2, (25.4e)

LEMMA 25.6. Let w = w1 ...w,, where wy,...,w,, are pairwise disjoint connected words.

Then there exists some word w with con(w) = con(w) and h(w) = h(w) = t(w) such that the
identities (25.4) imply the identity w ~ w.

Proof. 1t suffices to verify the lemma for m = 2 since the general case can be obtained by
induction. Since the word w; is connected, the letter ¢ = t(wy) occurs at least twice in wy.
Hence w; = atbt for some a,b € X*. Similarly, the letter h = h(ws) occurs at least twice
in ws, so that wo = hchd for some c,d € X*. Then w;h?t?>wy is a connected word such that

(25.4a) (25.4e) (25.4a)
wih?t?we  ~  witPh Phiwe  ~  wit’hPwy A~ wiws.

Since the identities (25.2) belong to (25.4), the proof of Lemma 25.3 can be repeated to convert

the connected word wqh?t?wa, using the identities (25.4), into a word w with con(w) = con(w)

and h(w) = h(w) = t(w). O
Let X(95.4) denote the variety defined by the identities (25.4).

%
LEMMA 25.7. Let w ~ w’ be any identity satisfied by By, J, and O. Then
X(25.4){W ~ Wl} = X(25.4){Wi ~ W; | 1 é 7 < m}
for some identities w; ~ w/, such that h(w;) = t(w;) = h(w}) = t(w}).

Proof. Since By satisfies w =~ w’, it follows from Lee and Volkov [21, Proposition 3.2(ii)]
that

w=sg H(wisi) and w' =sg H(wgsi),

i=1 =1

https://doi.org/10.1112/51461157014000412 Published online by Cambridge University Press


https://doi.org/10.1112/S1461157014000412

114 E. W. H. LEE AND W. T. ZHANG

where the following holds:

(a) the letters of sg,s,, € X* and s1,...,8,_1 € X" are simple in w and w’;
(b) each wy,..., Wy, w},...,wl € X% is a product of pairwise disjoint connected words;
(¢c) so,W1,S1,..., W, Sy, are pairwise disjoint;
(d) sp,w,S1,..., W, , sy, are pairwise disjoint;
(e) con(w;) = con(w}) and By satisfies w; ~ w/ for all i.
By Lemma 25.6, each word in (b) can be replaced with a connected word. Since the
identities (25.2) belong to (25.4), the proof of Lemma 25.4 can be repeated to establish the
present lemma. O

Proof of Proposition 25.5. It is routinely shown that By, 7, and O satisfy the identities
{(25.2),(25.4)}. Therefore Bo VW = X(95 43 for some set ¥ of identities. By Lemma 25.7,
each identity w =~ w’ in ¥ can be chosen to satisfy h(w) = t(w) = h(w’) = t(w’). Let
w ~ w' be any such identity with h = h(w) = t(w) = h(w’) = t(w’). Then the proof of
Proposition 25.2 can be repeated to show that the identity w = w’ is deducible from the
identities (25.2). Since the identities (25.2) belong to (25.4), the identity w ~ w’ is also
deducible from the identities (25.4). Consequently, the variety X(,54) satisfies the identity
w ~ w'. Since the identity w ~ w’ is arbitrary in X, it follows that X(o54) = X(25.4% =
Bo VW.

26. Fs, Fr, F3

This section establishes the finite basis property of the following semigroups.

F6|l1 23456 F7|1 23456 Fs|1 23456
11111111 11111111 11111111
21111122 2111122 21111122
31333333 31333333 31333333
41444444 41444444 41444444
51111456 51121456 51333456
6 |1 14456 6 |1 24456 6 (443456

26.1. Finite basis property of %7
PROPOSITION 26.1. The variety generated by %, is defined by the identities
2*Hx ~ xHz, (26.1a
zH2? ~ zHz, (
zHyKzy ~ 2*HyKy, (26.1c
tHyzyx ~ xHy?zz. (26.1d

In this section, a word w with ini(w) = zg ..., is said to be in a-canonical form if

w =z | [ (=5 wy), (26.2)

where all of the following are satisfied:
(I) wW; € {@,.ﬁo,...,xi_l};
(II) €0,.--36m € {172}1

(IIT) w does not contain a factor of the form x?

axr where a € X+.
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Note that (I) and (II) imply that the word w in (26.2) does not contain a factor of the form
raz? where a € X*.

LEMMA 26.2. Let w be any word. Then there exists some word W in a-canonical form such
that the identities (26.1) imply the identity w ~ W.

Proof. Tt suffices to convert w, using the identities (26.1), into a word in a-canonical form.
Suppose ini(w) = zg...Zm,. Then w can be written as a word of the form w = [ (z;w;)
with w; € {zo,...,2;}*. Suppose |w,| > 2 for some r € {0,...,m}. Then w, = wlz,x, for
some w, € X* with con(w,zixe) C {z0,...,z,}. Hence

W = pI,W,q

where p = H::_é(a:lwl) and q = [, (z;w;). Since the letters z; and x¢ in w,. are non-first
occurrences, the first x; and x; of w occur somewhere in the prefix px,. If kK = ¢, then

) o (260D) ,
W= ...Z¢g... W.ITy, q =~ ...T¢p... W, .2¢q.
————
PT, W
If kK < 4, then
, (26.1c) 2 ,
W= ...2...Z¢... W.TETy q = T Ty WX QL
—_—— ——
PZr W
If ¢ < k, then
, (26.1d) 2 o
W= ...2¢...0... W Ty q =~ Ly T W T2 Q.
———
Pxr W,

In each of the three cases just considered, an identity from (26.1) has been used to convert the
factor w, = wl.z,xy of w into wl.zy, that is, the length of w, is reduced by one. This argument
can be repeated until the length of w, is reduced to one. Hence it is easily shown that w can be
converted by the identities (26.1) into the form (26.2) with (I) satisfied. The identities (26.1a)
can then be used to convert this word into one that satisfies (II) and (III). O

LEMMA 26.3. Suppose that w ~ w’ is any identity satisfied by .%#7. Then ini(w) = ini(w’),
sim(w) = sim(w’), and t(w) = t(w').

Proof. This follows from Lemma 2.1 since the subsemigroups {1,4,5}, {1,2,5}, and {5,6}
of F; are isomorphic to L}, N4, and Ry, respectively. O

LEMMA 26.4. Suppose that .7, satisfies an identity w ~ w’, where
m ’ m 7
w =z’ H(mfwl) and w' =g H(mfwé)
i=1 i=1

are words in a-canonical form. Then e; = €} for all i.

Proof. Seeking a contradiction, suppose e, # e, for some r, say (e, el.) = (1,2). Then the
letter x, is non-simple in w’. By Lemma 26.3, the letter x, is also non-simple in w. Since w
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is in a-canonical form, the second z, in w coincides with one of w,y1,...,w,, say z, = wy.
Then x, # x4 by (I), and the word w can be written as

— e
W = px,W.qr," T, u,

Wy

where p = 2§ [[/-) (z5'w;), @ = [[;_}, 1 (z8'w;), and u = [}, (a5'w;) with
(a) z, ¢ con(pw,qzy).
As for the word w’, since e!. = 2, it can be written as

’
o2 ) €p 1)
W =Pp xrqu xé Wﬁu )

where p’ = x86 H:;ll (mf/ wi), q = Hf;:Jrl(xf;Wg), and u’ = H?ieﬂ(xf;wg) with z,. ¢ con(p’)
and zy ¢ con(p’z,w..q'). In fact, it follows from (I) and (IIT) that

(b) z, ¢ con(p’'w.q' zewjyu’).
In particular, t(w’) # z,. Since t(w) = t(w’) by Lemma 26.3, it follows that u # ), whence

(¢) h(u) = xp41 ¢ con(pz,w,qzy)
and ini(w) = ...zxeqq . ... Further, ini(w) = ini(w’) by Lemma 26.3, so that u’ # () and

(d) h(u') = zp11 ¢ con(p’z, w,.q' xew)).
Let ¢ : X — %7 denote the substitution

6 if z=x,,
2= 93 if 2=y,

5 otherwise.

Since x,, xs41 ¢ con(pw,qx,) by (a) and (c), it follows that py € {0,5} and (w,qz}*)p = 5.
Thus

W =pp -z (Weqry)p - z,0 up=pp-6-5-6-3...=4.
Similarly, since z,,z¢11 ¢ con(p’w.q'z,w}) by (b) and (d), it follows that p’¢ € {0,5} and

(wi.q'z,*w})p = 5. Hence

wo=plp-alp (Widziw))e wp=pp-6-5-3... =1
Consequently, the contradiction wy # w’¢ is established. O

Proof of Proposition 26.1. It is routinely checked that .#; satisfies the identities (26.1).
Hence it suffices to show that any identity w = w’ satisfied by .%; is implied by the
identities (26.1). By Lemma 26.2, the words w and w’ can be chosen to be in a-canonical
form. By Lemmas 26.3 and 26.4,

m m
w = z° H(J:fwl) and w' =z | [(z{'w))
i=1 i=1

with w,,, = w},,. Let £ < m be the least integer such that wy # wj}. Then it is convenient to
write

(a) p = [} @ w,) = o T} (@ wh).
Since (wg, w}) # (0,0), generality is not lost by assuming wy # (). Then (I) implies wy = x,
for some k € {0,...,¢ — 1} and

(b) wy € {0, xo,..., w1 }\{zx},
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whence
e €r4 !/ _€e41 )
w=pzy’ rp r,\'q and w =prywpr,q,
wy
m i m i .
where q = wyy1 [[;-, o (2i'w;) and @ = wy | [T, 5 (27" w)). Let ¢ : X — F7 denote the
substitution
6 if z = xy,

293 ifz=xp41,

5 otherwise.
Since the prefix p contains the first x; of w and x¢41 ¢ con(pz,) by (I) and (a), it follows
that (pzy*)p = 5. Hence
wo = (pzy)e - Trp - T, 0 qp="5-6-3-qp = 4.
On the other hand, wjp € {0,5} by (b), so that
wo = (pzy ) wip -zl o do=5-wip-3-qp=1L

/

The contradiction we # w'p implies that the integer ¢ does not exist. Consequently, w; = w/

for all 4, whence the identity w ~ w’ is trivial and so is implied by the identities (26.1). O

26.2. Finite basis property of %g and g

The semigroup .Z#° given by the following multiplication table is isomorphic to the
semigroup Zg via the relabeling 1 <> 3.

—_
[\
>~

1328180

(=23 G UV
=R s W W
=R W W =
AR A W oW | w
=~k s W W
UL T = W N = | Ut
DO W NN =D

It turns out that arguments in the present subsection will become simpler if .71 is considered
instead of %s.

PROPOSITION 26.5. The variety generated by S € {Fg, F°} is defined by the identities

2?Hzx ~ zHz, (26.3a)
rH2? ~ xHz, (26.3b)
rHyKzy ~ z?*HyKy, (26.3¢)
rHyzyr ~ rHyzz, (26.3d)
zy? ~ zy. (26.3¢)

In this section, a word w with ini(w) = g ...z, is said to be in S-canonical form if

m
wW = 3;‘ 1‘ Wz
=1
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where all of the following are satisfied:
(I) wW; € {@,5607 - ,1‘,'_1};
(I1) e e {1,2};
(ITT) if w; = ¢ for some i > 1, then e = 1.
It is easily shown that a word in S-canonical form is also in a-canonical form.

LEMMA 26.6. Let w be any word. Then there exists some word W in (3-canonical form such
that the identities (26.3) imply the identity w ~ W.

Proof. Tt suffices to convert w, using the identities (26.3), into a word in S-canonical form.
Let ini(w) = x¢...2Z,,. Note that the identities (26.3) imply the identities (26.1). Hence by
Lemma 26.2, the identities (26.3) can be used to convert w into a word in a-canonical form,
that is, a word of the form z° [T}, (' w;) that satisfies (I). The identity (26.3¢) can be used
to reduce the exponents eg,...,e,, to 1. It is easily seen that (II) and (III) are satisfied by
applying the identities (26.3a). O

LEMMA 26.7. Let S € {Fg, Zi°}. Suppose that w ~ w’ is any identity satisfied by S. Then
ini(w) = ini(w’) and t(w) = t(w’).

Proof. This follows from Lemma 2.1 since the subsemigroups {1,4,5} and {5,6} of S are
isomorphic to L and Rs, respectively. O

LEMMA 26.8. Let S € {F, Zi5°}. Suppose that S satisfies an identity w ~ w’, where
m m
w = H(xiwi) and w'=zf H(mlwg)
i=1 i=1

are words in [3-canonical form. Then e = ¢’.

Proof. Let u =[], (z;w;) and v’ = [[;~, (z;w}). Seeking a contradiction, suppose e # €',
say (e,e’) = (1,2). Then zy ¢ con(u’) by (I) and (III). There are two cases to consider.

Case 1: xg ¢ con(u). Let p; : X — S denote the substitution
2 if z = x,
A d
5 otherwise.
Then wip; = 2-up; = 2 and W = 3¢ - W' € {1,3}, whence wy; # Wi is impossible.

Case 2: zg € con(u). Then z is non-simple in w. Since the word w is in -canonical form,
the second xp in w coincides with one of wq,...,w,,, say g = wy for some least possible
¢e{l,...,m}. Then zo # x, by (I), and w can be written as

W = TopZ¢ ZTo 4,
~
Wy
where p = Hf;ll(:ciwl) and q =[]\~ (z;w;) with z; ¢ con(zop) and
(a) xo ¢ con(pxy).

As for the word w’, since ¢/ = 2, it can be written as

/ 2./ ! !
W =T3P T¢yWyq,
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where p’ = Hf;ll (ziw}) and q' =[], (z;w}) with z¢ ¢ con(zep’). By (I) and (III),

(b) xo ¢ con(p’z,w)q’).
In particular, t(w’) # xg. Since t(w) = t(w’) by Lemma 26.7, it follows that t(w) # .
Therefore q # 0, whence

(¢) h(a) = zet1 ¢ con(zopae)
and ini(w) = ...zxeqq . ... Further, ini(w) = ini(w’) by Lemma 26.7, and this implies q’ #
and

(d) h(d') = z¢41 ¢ con(zop’z,wy).
Let @9 : X — S denote the substitution

6 if z =z,
2= <3 if z=uwp4q,

5 otherwise.

Since xg, 2441 ¢ con(paxy) by (a) and (c), it follows that (pxz¢)ps = 5. Hence

Wpo = Zows - (Pxe)wa - Topa Q2 =6-5-6-3...=4.
On the other hand, z¢, z¢+1 ¢ con(p’zewy) by (b) and (d), so that (p’zew})p2 = 5. Therefore
W'p2 = w30s - (P'aew))p2 - q'p2 =6-5-3... = 1.
Consequently, the contradiction wyg # W ps is deduced. O

Proof of Proposition 26.5. Let S € {Fg, Z&°}. Tt is routinely checked that S satisfies the
identities (26.3). Hence it suffices to show that any identity w ~ w’ satisfied by S is implied by
the identities (26.3). By Lemma 26.6, the words w and w’ can be assumed to be in 3-canonical
form. By Lemmas 26.7 and 26.8,

3

m
w = 1z H(%Wz) and w' =z | |(z;w))
i=1 =1

7

with w,,, = w/,. Let £ < m be the least integer such that w, # wj). For convenience, write
-1 -1
(&) p=a§[[ic; (zsw;) = 2§ [[;=; (ziw)).
Since (wg, wj) # (0,0), generality is not lost by assuming w, # (). Then (I) implies w, = xy,
for some k € {0,...,¢—1} and
(b) w, € {0,z0,...,ze—1}\{x1},
whence
W =pry Tp Ter1q and W = pr,wizei1q,
<~
We
where q = w1 [T12,, o (zsw;) and ' = wi [[72, ,(ziw)). Let ¢ : X — S denote the
substitution
6 if z = xy,
z—= <3 ifz= To+1,
5 otherwise.
Since p contains the first z of w and x¢11 ¢ con(pzy) by (I) and (a), it follows that (pxe)p = 5.
Hence
W = (Prg)p - Thp - T qp=5-6-3-qp=4.
On the other hand, wjp € {0,5} by (b), so that

W= (po)p - Wip-zip1p-de=5-wyp-3-qdp=1
/

The contradiction wp # w'y implies that the integer ¢ does not exist. Consequently, w; = w/

for all ¢, whence the identity w ~ w’ is trivial and so is implied by the identities (26.3). O
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27. ng.97 3\105 gl} gQ

This section establishes the finite basis property of the following semigroups.

F9|l 23456 Fp|l23456 “%|123456 %|[12345¢6
11111111 1 (111111 1111111 1111111
21111123 2 /111123 21111123 21111223
31333333 31333333 31333333 31333333
41123411 4 1123423 41123433 41123456
51111156 5111156 51333356 51123456
6 |6 6 6 6 6 6 6 |6 6 6 6 66 616 6 6 666 6|16 6 6 666

27.1. Finite basis property of %1
PROPOSITION 27.1. The variety generated by %#1¢ is defined by the identities

rHz? ~ rHz, (27.1a
rHyKzy ~ rHyKyz, (
zHyKyr ~ xHyKz, (27.1c

cHyKzTy ~ zHyKzTz. (27.1d

where:
(I) w; € {(2)7£C17 - ,xi};
(II) w does not contain any factor of the form x;ax;bxzjcx) where a,b,c € X* and j < k.

LEMMA 27.2. Let w be any word. Then there exists some word W in a-canonical form such
that the identities (27.1) imply the identity w ~ W.

Proof. It suffices to convert w, using the identities (27.1), into a word in a-canonical form.
Let ini(w) = 21 ... 2y, so that w = [, (z;w;) for some w; € {z1,...,2;}*. Suppose w; # 0.
Then there exists a least integer ¢ such that x, € con(w;), whence con(w;) C {xg,...,2;}.
Since the letters of w; are non-first occurrences in w, the identities (27.1b) can be used
to arrange them, within w;, in any order. In particular, the identities (27.1b) can be used to
move all occurrences of x, in w; to the right, so that

(27.1b) ! e
W = ... Z¢yWy...ZT;W; ... ~ YWy LW T e,

where e = occ(xg, w;) and W, is obtained from w; by removing all occurrences of z,. Note
that con(w}) C {zs41,...,2;} and any letter in w; is a non-first occurrence in w that is
sandwiched between two occurrences of z,. The identities (27.1¢) can be used to remove the
letters of w; one by one starting from the right, and the identities (27.1a) can be used to

reduce the exponent e to 1:

/e (27.1c) e (27.1a)
YWy T W T ~ o TgWy LT ~ Wy o XX
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Therefore the factor w; is converted into xy, whence (I) is satisfied. Since

(27.1d)
w = ...zjaribzjcr, ... & ... .zjaribzjer;. ..,
the identities (27.1d) can be used to convert w into a word that satisfies (II). O

Proof of Proposition 27.1. It is routinely checked that .%o satisfies the identities (27.1).
Hence it suffices to show that any identity w = w’ satisfied by %1 is implied by the
identities (27.1). By Lemma 27.2, the words w and w’ can be assumed to be in a-canonical
form. Since the subsemigroup {1, 3,4} of %14 is isomorphic to L3, it follows from Lemma 2.1(iii)
that

m m

w = H(Jciwi) and w' = H(chwi)

i=1 i=1

Let ¢ be the least integer such that wy # wj. Multiplying both sides of the identity w ~ w’
on the right by x2, 41 if necessary, generality is not lost by further assuming £ < m. Hence

! ! A
W = pryWeTer1q and W' = pryW,Tei1dq,

-1 m / / m
where p = [[;Z; (z:w;), @ = wei1 [[;Z g o (wiwi), and ' = wi, | [T;Z, o (ziw;). By symmetry,
there are four cases to consider.

Case 1: (wy, w)) = (2¢,0). Then
W= ngxeﬂq and w' = pxzmz“q/
with @, z¢11 ¢ con(p). Let 1 : X — %1 denote the substitution

4 if z € con(p),
z— <2 if z =y,
6 otherwise.

Then wo; = pp; - 22-6-qp; = 1 and wp; = pp; - 2-6-q'p; = 3, whence the contradiction
w1 # w1 is deduced.

Case 2: (wy, w)) = (x;,0) for some i < £. Then

w = azr;b xy2;20.1q and w = az;b x,2.1q for some a,b € X*
N~ S~

P o

such that z; ¢ con(a), z; ¢ con(az;b), and z,11 ¢ con(az;bx,). Let o : X — F1 denote the
substitution

4 if z € con(az;b),
2= <2 if 2= xy,

6 otherwise.

Then wyps =4-2-4-6-qps =1 and wyps =4-2-6-q'ps = 3, whence the contradiction
wWps # W' g is deduced.

https://doi.org/10.1112/51461157014000412 Published online by Cambridge University Press


https://doi.org/10.1112/S1461157014000412

122 E. W. H. LEE AND W. T. ZHANG

Case 3: (wg,w)) = (x;,x¢) for some i < £. Then
w = cxyd zpzize1q and W = cx;d 2224,1q for some ¢, d € X*
N~~~ e
p p

such that x; ¢ con(c), z; ¢ con(cz;d), and 441 ¢ con(cz;day). Let @3 : X — Fo denote the
substitution
4 if z € con(cx;d),

z— <5 if z =y,

6 otherwise.
Then wps =4-5-4-6-qps =1 and w3 = 4-52-6-q 3 = 3, whence the contradiction
w3 # W3 is deduced.
Case 4: (W, w}) = (x;,x;) for some i and j with i < j < {. Then
w = ex;fr;g zyr;zp1q and W = ex;fx;g xyxjrei1q’ for some e, f, g € X*
—— ——
P P

such that z; ¢ con(e), z; ¢ con(ex;f), z; ¢ con(ex;fz;g), and x¢41 ¢ con(ex;fz;gzy). If the
words ex;f and gz, share a common letter, then (II) is violated by the word w'. It follows
that con(ex;f) Ncon(z;gz,) = 0. Let ¢4 : X — Fy1¢ denote the substitution

4 if z € con(ex;f),
2+ <5 if z € con(z;gxe),
6 otherwise.

Then the contradiction wpy # W'y is deduced because
wips = (ex;f)ps - (2;8%e) s Tipa - Toy102-Apa=4-5-4-6-qps =1

and
w'oy = (exif)ps - (2;8T0x;) s - Top104 - Qs =4-5-6-q' 04 = 3.

Since none of the four cases just considered is possible, the integer ¢ does not exist.
Consequently, w; = w for all 7, whence the identity w ~ w’ is trivial and so is implied
by the identities (27.1). O
27.2. Finite basis property of %9 and %

PROPOSITION 27.3. The variety generated by S € {Z%9,% } is defined by the identities

rHz? ~ rHz, (27.2a)
rzHyKzy ~ rHyKyz, (27.2b)
rHyKyz ~ zHyKz, (27.2¢)
cHyKaTy ~ aHyKx Tz, (27.2d)
rHzyKy ~ cHzyKz. (27.2e)

In this section, a word w with ini(w) = z1 ... x,, is said to be in S-canonical form if

m

w = H(a:iwi),

i=1
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where all of the following are satisfied:
(D) w; €{0,21,...,7;:};
(II) w does not contain any factor of the form x;axrybxzjcry where a,b,c € X* and j < k;
(III) w does not contain any factor of the form z;dz;zrex, where d,e € X* and j < k.
Observe that a word in [-canonical form is also in a-canonical form.

LEMMA 27.4. Let w be any word. Then there exists some word W in (3-canonical form such
that the identities (27.2) imply the identity w ~ W.

Proof. It suffices to convert w, using the identities (27.2), into a word in S-canonical form.
Let ini(w) = @1 ... %y,. Then w can be written as w = [[;~, (z;w;) where w; € {z1,...,2;}*.
Note that the identities (27.2) contain the identities (27.1). Hence by Lemma 27.2, the
identities (27.2) can be used to convert w into a word in a-canonical form, that is, a word
that satisfies (I) and (II). Since

(27.2¢)
W = ...xjdxjxkelxkegxk...erxk... ~ ...xjdxjxkelxjeng...ergcj...,

the identities (27.2e) can then be used to convert w into a word that satisfies (III). O

Proof of Proposition 27.3. Let S € {Fy,%}. It is routinely checked that S satisfies the
identities (27.2). Hence it suffices to show that any identity w ~ w’ satisfied by S is implied
by the identities (27.2). By Lemma 27.4, the words w and w’ can be assumed to be in (-
canonical form. Since the subsemigroup {1,3,4} of S is isomorphic to L3, it follows from
Lemma 2.1(iii) that

m m

H(xlwl) and w' = H(azlw:)

i=1 i=1

Let ¢ be the least integer such that wy # wj. Multiplying both sides of the identity w ~ w’
on the right by x2, 41 if necessary, generality is not lost by further assuming ¢ < m. Hence

w

/ / I
W = pryWiTrr1q and W = pTywyTeiid,

-1
where p = [[;Zy (25wi), @ = W1 [[72 ) o (ziws), and ' = wy, [, o (ziw}). By symmetry,
there are three cases to consider.

Case 1: (wg,w}) = (x;,0) for some i < £. Then a contradiction is obtained by the same
arguments as in Cases 1 and 2 of the proof of Proposition 27.1.

Case 2: (wy, w)) = (x;,x¢) for some i < . Then
w = cx;d zpziwe1q and W = ca;d 272041q for some ¢, d € X*
—— ——
P p
such that x; ¢ con(c), x¢ ¢ con(cx;d), and z411 ¢ con(cx;dxy). There are two subcases.
2.1.d # 0. Then d = ut for some u € X* with ¢ = t(d), whence
w = crut xprve1q and W o= cxyut rireq.
N~ S~~~
P P

If t € con(cz;u), then (III) is violated by the word w’. Hence ¢ ¢ con(cz;u). Let 1 : X — S
denote the substitution

if z € con(cz;u),

if z =t,

if z = xy,

Z =

S O N

otherwise.
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Then wp; =4-2-5-4-6-qp; = 1 and w/p; =4-2-52-6-q'¢1 = 3, whence the contradiction
w1 # W' is deduced.
2.2.d = (. Then
w = cr; xrivei1q and W= e xireaq.
— —
p p
Let @9 : X — S denote the substitution

if z € con(c),

if z = a;,
Z > )
if z = xy,

S O N

otherwise.

Then Wy = cpo-2-5-2-6-qps = 1 and Wiy = cpa -2 -52-6-q'¢ps = 3, whence the
contradiction wps # W'pg is deduced.

Case 3: (wg,w)) = (x;,x;) for some i and j with ¢ < j <. Then
w = ex;fr;g zrize1q and W = ex;fx;g xyxjrei1q’ for some e, f, g € X*
—— ——

P P

such that z; ¢ con(e), z; ¢ con(ex,f), z; ¢ con(ex;fz;g), and x¢41 ¢ con(ex;fz;gzy). If the
words ex;f and gz, share a common letter, then (II) is violated by the word w’. It follows
that con(ex;f) N con(z;gz,) = 0. There are two subcases.

3.1. £ # (. Then f = vt for some v € X* with ¢t = t(f), whence

w = ex;vtr;g ror;xe11q and W = ex;vir;g ror;xi1q'.
—— N——
p p

If t € con(ex;v), then (III) is violated by w’. Hence the observation con(ex;f) N con(z;gzy) = 0
from above implies ¢ ¢ con(ex;vz,;gx,). Let @3 : X — S denote the substitution
4 if z € con(ex;v),
2 ifz=t,
5

if z € con(xjgxy),

A

6 otherwise.
Then the contradiction wes # w'p3 is deduced because

Wz = (ex;V)ps - tp3 - (T,8T0)Ps3 - Tis - Ter193 dps =4-2-5-4-6-qps =1
and
Wy = (ex;v)ps - tws - (2j8ex)) s - Tes193 - d'p3 =4-2-5-6-q'p3 = 3.
3.2. f = 0. Then
W = €eT;T;8 TyTiTe+19 and W, = exr;r;g 93te1‘[+1(]/.
——— ———
p p

Let ¢4 : X — S denote the substitution

if z € con(e),

if z = Ty,
Z = .
if z € con(xjgxy),

DD Ot N

otherwise.
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Then wpys = epy -2-5-2-6-qpqs = 1 and wps = eps -2-5-6-q'ps = 3, whence the
contradiction wpy # W'y is deduced.

Since none of the three cases just considered is possible, the integer ¢ does not exist.
Consequently, w; = w; for all 4, whence the identity w ~ w’ is trivial and so is implied
by the identities (27.2). O
27.3. Finite basis property of %,

PROPOSITION 27.5. The variety generated by %, is defined by the identities

rHz? ~ 2Hz, (27.3a)
xHzKat =~ xHzKE, (27.3b)
cHyKzyt ~ HyKyzt. (27.3c)

LEMMA 27.6. Suppose that w =~ w' is any identity satisfied by %,. Then:
(1) ini(w) = ini(w');
(ii) con(w) = con(w’) and sim(w) = sim(w’);
(i) t(w) = t(w');
(iv) t(w) € sim(w) if and only if t(w') € sim(w’).
Further, if occ(x, w),occ(x,w') < 2 for all x € X, then
(v) occ(y,z,w) =occ(y,z,w’) for all y,z € X.

Proof. The subsemigroups {1,3,4}, {1,2,4}, and {4,5} of % are isomorphic to L, Ni,
and R, respectively. Therefore parts (i)—(iii) follow from Lemma 2.1, and part (iv) is a
consequence of parts (ii) and (iii).

(v) Suppose occ(x,w), occ(x,w’) < 2 for all x € X. Seeking a contradiction, suppose
occ(y, z, w) < occ(y, z,w’) for some y, z € X. Let p = occ(y, 2z, w) and p’ = occ(y, z, w'). Then
0 <p<yp <2so0that (p,p) € {(0,1),(0,2),(1,2)}. If p = 0, then ini(w) # ini(w’) by (ii),
whence (i) is violated. Therefore (p,p’) = (1,2), so that

w=wiywozws and W = Wjywoywszw)

for some wi,wa, Wg, Wi, Wh, wh, Wy € X* with y,z ¢ con(wiwawiwiws). Let ¢ : X — %
denote the substitution
2 ifx=y,
r—= 6 ifz=z,
4 otherwise.

Then wp € {4}*-2-{4}*-6-wsp = {3} and w'p € {4} -2 {4}*-2-{4}* - 6-w)p = {1}, s0
the contradiction w # w’¢ is deduced. O

A word w with t(w) € sim(w) is said to be simple-tailed. An identity w ~ w’ is simple-tailed
if w and w’ are simple-tailed words.

LEMMA 27.7. The variety generated by % is defined by the identities (27.3) and some set
of simple-tailed identities.

Proof. Let V denote the variety generated by . It is routinely checked that % satisfies
the identities (27.3), so that V is defined by (27.3) and some set ¥ of identities. Suppose
that o : w &~ w’ is any identity from ¥ that is not simple-tailed. Then Lemma 27.6 implies
t(w) =t(w') =t and t ¢ sim(w) = sim(w’). Hence w = witwst and w' = witwit for some

https://doi.org/10.1112/51461157014000412 Published online by Cambridge University Press


https://doi.org/10.1112/S1461157014000412

126 E. W. H. LEE AND W. T. ZHANG

w1, Wo, Wi, wh € X*. Choose any letter z ¢ con(w) = con(w’). Then the identity o clearly
implies the simple-tailed identity o : wz ~ w’z. Conversely, since

(27.3a)

7 / !/
W = WiRWL

(27.3a)
~ o w,
the identities {(27.3),0} imply the identity o. It follows that if o in ¥ is replaced by the
simple-tailed identity &, then the resulting set, together with (27.3), is still a basis for V.
The same argument can be repeated to replace any non-simple-tailed identity o in ¥ with a
simple-tailed identity o. The resulting set ¥ consists of simple-tailed identities; these identities,
together with (27.3), constitute a basis for V. O

In this subsection, a simple-tailed word w with ini(w) = 1 ...x,,t and t € sim(w) is said

to be in canonical form if
w= (H(miwi)>t, (27.4)

i=1

where:

(1) occ(x;, w) < 2;

1) w; € {a7 ... x5 e1,...,e; € {0,1} };
(I1I) wy,...,w,, are pairwise disjoint.

LEMMA 27.8. Let w be any simple-tailed word. Then there exists some simple-tailed word W
in canonical form such that the identities (27.3) imply the identity w ~ W.

Proof. Let w be any simple-tailed word with ini(w) = z7...x,t. Then it suffices to
convert w, using the identities (27.3), into a simple-tailed word in canonical form. It is easily
shown that w can be written in the form (27.4) with w; € {z1,...,2;}* for all ¢. For each 1,

since the letters of w; are non-first occurrences, the identities (27.3c) can be used to arrange
them within w; in any order, whence w; € {z{* ...z |e1,...,e; > 0}. Any z; that is neither a
first nor a second occurrence can be eliminated by the identities (27.3b), so that (I) is satisfied.
It is then easily seen that (II) and (III) are also satisfied. O

Proof of Proposition 27.5. By Lemma 27.7, the variety generated by % is defined by the
identities (27.3) and some set ¥ of simple-tailed identities. By Lemma 27.8, the simple-tailed
words forming the identities in ¥ can further be chosen to be in canonical form. Let w ~ w’
be any such identity, so that by Lemma 27.6,

w = (f[l(xiwi)>t and w' = (f[l(xiwg)>t.

Suppose that ¢ is the least integer such that con(wy,) # con(w}). Then by (II), there exists
some k < ¢ such that xj belongs to either w, or wj but not both, say x, € con(w,)\con(wy}).
It follows from (II) and the minimality of ¢ that w; = w} for all i < £. Hence

occ (zk,ﬁ(xiwi)) = occ <xk,1ﬁ(;ciw;)>. (27.5)

i=1 i=1

There are two cases to consider.
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Case 1: £ <m. Then

{—1

occ(xg, Tpt1, W) = 0CC (xk, H(a:,wﬁ) + occ(zg, xgwy)
i=1
and
-1
occ(Tg, Toy1, W) = occ(xk, H(mlwg)) + occ(zg, Tewy).
i=1

But Lemma 27.6(v) and (27.5) imply occ(zy, z¢w,) = occ(zk, zywy), and this is impossible
because xj, € con(wy)\con(wy}).

Case 2: { =m. Then

Ju

3

occ(xy, W) = occ (xk, (miwi)) + occ(zg, T W)

i=1
and
m—1
occ(zg, w') = occ (:ck, (mzw;)) + occ(xg, TmWh,).
i=1
But Lemma 27.6(ii), (I), and (27.5) imply occ(zg, TmWm) = occ(zk, zmwh,), and this is

impossible because z;, € con(w,,,)\con(w/,).

Neither of the two cases just considered is possible. Therefore the integer ¢ does not exist,

whence con(w;) = con(w}) for all i. It follows from (II) that w; = w; for all i. The identity

w =~ w’ is thus trivial. Since the identity w ~ w’ is arbitrary in X, every identity in X is

trivial. Consequently, the variety generated by % is defined by the identities (27.3). O
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