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Abstract

Two semigroups are distinct if they are neither isomorphic nor anti-isomorphic. Although there
exist 15 973 pairwise distinct semigroups of order six, only four are known to be non-finitely
based. In the present article, the finite basis property of the other 15 969 distinct semigroups of
order six is verified. Since all semigroups of order five or less are finitely based, the four known
non-finitely based semigroups of order six are the only examples of minimal order.
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Part I. Introduction

1. Main result

1.1. Finite basis problem for semigroups of order five or less

An algebra is finitely based if the identities it satisfies are finitely axiomatizable. In the 1950s,
Lyndon initiated the investigation of identities satisfied by finite algebras; he first proved that
all algebras of order two are finitely based [25], and shortly after exhibited a non-finitely
based example with only seven elements [26]. Smaller examples of non-finitely based algebras
have since been discovered [31, 46], the smallest of which are groupoids of order three, due
to Ježek [11] and Murskĭı [29]. In view of the pioneering result of Lyndon [25], non-finitely
based algebras of order three are minimal with respect to being non-finitely based, or minimal
non-finitely based.

The class of finite groups was the first significant class of finite algebras for which the finite
basis property was established; this result, due to Oates and Powell [30], was published in 1964.
In the years that followed, the finite basis property was also established for other classical finite
algebras such as lattices [28], rings [13, 24], and Lie algebras [2]. The fundamental result of
Oates and Powell [30] may have led to the conjecture that all finite semigroups are finitely
based. But any hope for such a generalization was quickly extinguished when only a few years
later, Perkins demonstrated that the monoid B1

2 , obtained by adjoining a unit element to the
Brandt semigroup

B2 = 〈a, b | a2 = b2 = 0, aba = a, bab = b〉

of order five, is non-finitely based [31]. The discovery of a non-finitely based semigroup with
only six elements naturally focused attention upon the finite basis problem for semigroups of
order less than six. This problem, first raised by Tarski [40] in 1966, attracted considerable
interest [4, 8, 12, 41, 42]. A solution to the problem was eventually completed by
Trahtman [43] in the early 1980s and published a few years later [45].

Theorem 1.1. Every semigroup of order five or less is finitely based.

Refer to Shevrin and Volkov [39] for a more complete historical account of results leading
to the proof of Theorem 1.1. This theorem is also a consequence of a recently established
generalization [18].

1.2. Minimal non-finitely based semigroups

It follows from Theorem 1.1 that the semigroup B1
2 and any other minimal non-finitely based

semigroup are of order six. Since Perkins’s publication of the semigroup B1
2 , only three other

minimal non-finitely based semigroups have been discovered: the monoid A1
2 obtained by

adjoining a unit element to the 0-simple semigroup

A2 = 〈a, b | a2 = aba = a, bab = b, b2 = 0〉,
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the semigroup Ag2 obtained by adjoining a new element g to A2 where multiplication is given
by g2 = 0 and gx = xg = g for all x in A2, and the J -trivial semigroup

L = 〈a, b | a2 = a, b2 = b, aba = 0〉.

These four minimal non-finitely based semigroups can also be given by the following
multiplication tables.

B1
2 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 2 2 3

3 1 2 3 1 3 1

4 1 1 1 4 4 6

5 1 2 3 4 5 6

6 1 4 6 1 6 1

A1
2 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 2 2 3

3 1 2 3 2 3 3

4 1 1 1 4 4 6

5 1 2 3 4 5 6

6 1 4 6 4 6 6

Ag2 1 2 3 4 5 6

1 1 1 1 1 1 6

2 1 1 1 2 3 6

3 1 2 3 2 3 6

4 1 1 1 4 5 6

5 1 4 5 4 5 6

6 6 6 6 6 6 1

L 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 1 2

3 1 1 1 1 1 3

4 1 1 2 1 4 2

5 1 1 3 1 5 3

6 1 2 2 4 4 6

The non-finite basis property of the semigroup A1
2 was independently established by

Sapir [38] and Trahtman [44] in the 1980s. The semigroup Ag2, discovered by Volkov (private
communication, 3 April 2006), is non-finitely based by either Mashevitskĭı [27] or Volkov [47].
The semigroup L was recently shown to be non-finitely based by Zhang and Luo [50].

1.3. Finite basis problem for semigroups of order six

Two semigroups are distinct if they are neither isomorphic nor anti-isomorphic. There exist
15 973 pairwise distinct semigroups of order six [33], among which 1373 are monoids [6] and
14 600 are non-unital. In view of these large numbers, it is natural to question the existence of
minimal non-finitely based semigroups that are distinct from the four known examples. The
answer to this fundamental question clearly depends on a complete solution to the following
problem.

Problem 1.2. Identify all finitely based semigroups of order six.

This problem was solved by Lee and Li for the special case of monoids. Specifically, they
proved that among the 1373 pairwise distinct monoids of order six, only B1

2 and A1
2 are non-

finitely based semigroups [19]. The objective of the present article is to continue with the
investigation by verifying that among the 14 600 pairwise distinct non-unital semigroups of
order six, only Ag2 and L are non-finitely based. A complete solution to Problem 1.2 is thus
established.

Main Theorem. Among all distinct semigroups of order six, only B1
2 , A1

2, Ag2, and L are
non-finitely based.

Consequently, there exist precisely four distinct minimal non-finitely based semigroups. This
result was first announced in Lee et al. [20].

1.4. Organization

The set of all sections in the present article, under the prerequisite relation, constitutes the
directed tree in Figure 1; every section that follows § 2 can be read independently. Notation
and background information are given in § 2. An outline of the proof of the main theorem is
given in § 3, while the finer details are deferred to §§ 4–27.
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Section 1
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Section 3
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Section 10

Section 11

Section 27

Part I

Part II

Part III

Figure 1. Prerequisites of sections.

Acknowledgements. The authors are indebted to the following colleagues: the anonymous
referee for a detailed review of the article and for many helpful comments and suggestions,
K. W. K. Lee for assistance in testing the 14 600 non-unital semigroups of order six against
Conditions 1–20 in § 3 with Java, and J. D. Mitchell for independently performing the same
test with GAP [7]. Special thanks are due to M. V. Volkov for invaluable advice over the years.

2. Preliminaries

2.1. Words, identities, and varieties

Let X be a countably infinite alphabet throughout. For any subset Y of X , let Y+ and Y∗
denote the free semigroup and free monoid over Y, respectively. Elements of X are called
letters and elements of X ∗ are called words. For any word w:
• the head of w, denoted by h(w), is the first letter occurring in w;
• the tail of w, denoted by t(w), is the last letter occurring in w;
• the initial part of w, denoted by ini(w), is the word obtained by retaining the first

occurrence of each letter in w;
• the content of w, denoted by con(w), is the set of letters occurring in w;
• the number of occurrences of a letter x in w is denoted by occ(x,w);
• a letter x is simple in w if occ(x,w) = 1;
• the set of simple letters of w is denoted by sim(w).

For any letters x and y of w, let occ(x, y,w) denote the number of occurrences of x before the
first y in w. In other words, if occ(x, y,w) = m, then retaining only the letters x and y in w
results in a word in xmy{x, y}∗. Two words w and w′ are disjoint if con(w) ∩ con(w′) = ∅.

An identity w ≈ w′ is nontrivial if w 6= w′. A semigroup S satisfies an identity w ≈ w′

if, for any substitution ϕ : X → S, the elements wϕ and w′ϕ of S are equal. An identity
w ≈ w′ containing one or more of the sans-serif letters from {H,K,T}, with or without
indices, represents the system that contains w ≈ w′ and any identity that can be obtained
by eliminating all occurrences of some letters from {H,K,T}. For instance, xHxKy ≈ xHyKx2
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represents the system

xhxky ≈ xhykx2, xhxy ≈ xhyx2, x2ky ≈ xykx2, x2y ≈ xyx2.

Let Σ be any set of identities. By Birkhoff’s completeness theorem of equational logic [3],
an identity w ≈ w′ is deducible from or implied by Σ if some deduction sequence

w = z0 ⇒ z1 ⇒ · · · ⇒ zm = w′

exists, where each deduction zi ⇒ zi+1 involves an identity from Σ, that is, there exist words
ei, fi ∈ X ∗, an identity ui ≈ vi in Σ, and an endomorphism ϕi of X+ such that zi = ei(uiϕi)fi

and zi+1 = ei(viϕi)fi. The deducibility of an identity w ≈ w′ from Σ is indicated by w
Σ
≈ w′.

For any set Σ of identities, the variety defined by Σ is the class of all semigroups that satisfy
all identities in Σ; in this case, Σ is a basis for the variety. A variety is finitely based if it
has a finite basis, and a semigroup is finitely based if it generates a finitely based variety.
For any variety V and any set Σ of identities, let VΣ denote the subvariety of V defined
by Σ. For more information on universal algebra and semigroup varieties, refer to Burris and
Sankappanavar [5], Shevrin and Volkov [39], and Volkov [49].

2.2. Identities satisfied by some small semigroups

For any nonempty subset U of a semigroup S, the semigroup S/U obtained from S by
identifying all elements in U is called a quotient of S. A quotient of a subsemigroup of a
semigroup S is called a divisor of S. Any identity satisfied by a semigroup S is also satisfied
by all subsemigroups, quotients, and divisors of S.

The following small semigroups are required throughout the article:

J = 〈a, b | ab = 0, ba = a, b2 = b〉,
L2 = 〈a, b | a2 = ab = a, b2 = ba = b〉,
R2 = 〈a, b | a2 = ba = a, b2 = ab = b〉,
N2 = 〈a | a2 = 0〉,
N3 = 〈a | a3 = 0〉,
Z2 = 〈a | a2 = 1〉.

For any non-unital semigroup S, let S1 denote the monoid obtained by adjoining a unit element
to S. Let J, L1

2, N1
2, N3, N1

3 and Z2 denote the varieties generated by the semigroups J , L1
2,

N1
2 , N3, N1

3 , and Z2, respectively.

Lemma 2.1. Let w ≈ w′ be any identity. Then:
(i) L2 satisfies w ≈ w′ if and only if h(w) = h(w′);
(ii) R2 satisfies w ≈ w′ if and only if t(w) = t(w′);

(iii) L1
2 satisfies w ≈ w′ if and only if ini(w) = ini(w′);

(iv) N2 satisfies w ≈ w′ if and only if either |w|, |w′| > 2 or w = w′;
(v) N1

2 satisfies w ≈ w′ if and only if con(w) = con(w′) and sim(w) = sim(w′);
(vi) N3 satisfies w ≈ w′ if and only if either |w|, |w′| > 3 or occ(x,w) = occ(x,w′) for all

x ∈ X ;
(vii) N1

3 satisfies w ≈ w′ if and only if for each x ∈ X , either occ(x,w) = occ(x,w′) 6 2 or
occ(x,w), occ(x,w′) > 3;

(viii) Z2 satisfies w ≈ w′ if and only if occ(x,w) ≡ occ(x,w′) (mod 2) for all x ∈ X .

Proof. These are easily verified. For instance, see Petrich and Reilly [32, Theorem V.1.9] for
parts (i)–(iii) and Almeida [1, Lemma 6.1.4] for parts (v) and (vii).
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Lemma 2.2 [10, Lemma 7]. The semigroup J satisfies an identity w ≈ w′ if and only if
con(w) = con(w′) and either one of the following conditions holds:

(i) t(w) ∈ sim(w), t(w′) ∈ sim(w′), and t(w) = t(w′);
(ii) t(w) /∈ sim(w) and t(w′) /∈ sim(w′).

For any letters x and y of a word w, write x ≺w y to indicate that within w, each occurrence
of x precedes the first y. In other words, if x ≺w y, then retaining only the letters x and y
in w results in a word in {x}+{y}+. The simple part of a word w, denoted by wsim, is the
word obtained by retaining the simple letters of w. For example, if w = x3abycxzy2ext, then
wsim = abczet.

Lemma 2.3. Suppose that w ≈ w′ is any identity satisfied by J1. Then:
(i) con(w) = con(w′) and sim(w) = sim(w′);
(ii) for any letters x ∈ con(w) = con(w′) and y ∈ sim(w) = sim(w′), the conditions x ≺w y

and x ≺w′ y are equivalent;
(iii) wsim = w′sim.

Proof. (i) This follows from Lemma 2.1(v) because the subsemigroup {0, a, 1} of J1 is
isomorphic to N1

2 .
(ii) Seeking a contradiction, suppose x ≺w y and x 6≺w′ y where x ∈ con(w) = con(w′) and

y ∈ sim(w) = sim(w′). Then retaining the letters x and y in the identity w ≈ w′ results in an
identity of the form xpy ≈ xqyxr with p, r > 1 and q > 0. Since J1 has a unit element, the
semigroup J satisfies xpy ≈ xqyxr, but this is impossible because bpa 6= bqabr in J .

(iii) This is a consequence of part (ii).

2.3. Connected words

A word that is a single letter is called a singleton. A non-singleton word is connected if it
cannot be written as a product of two nonempty disjoint words.

Let A0 and B0 denote the varieties generated by the following semigroups of order four:

A0 = 〈a, b | a2 = a, b2 = b, ba = 0〉,
B0 = 〈a, b, c | a2 = a, b2 = b, ab = ba = 0, ac = cb = c〉.

Lemma 2.4. Let w and w′ be any words where w is connected. Then A0 satisfies w ≈ w′

if and only if w′ is connected and con(w) = con(w′).

Proof. This follows from Edmunds [8, proof of part 4 of the first proposition].

A semigroup S is left idempotent-separable if, for any distinct x, y ∈ S, there exists an
idempotent e ∈ S such that ex 6= ey. A right idempotent-separable semigroup is dually
defined. A semigroup is idempotent-separable if it is both left idempotent-separable and right
idempotent-separable.

Lemma 2.5 [21, § 3]. The following semigroups are idempotent-separable: A0, B0, any
monoid, and the direct product of any two idempotent-separable semigroups.

Lemma 2.6. Let V be the variety generated by any idempotent-separable semigroup S.
(i) If A0 ∈ V, then S has a basis that consists of identities formed by connected words.
(ii) If B0 ∈ V and A0 /∈ V, then S has a basis that consists of identities formed by words

that are products of pairwise disjoint connected words.
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Proof. This follows from Lee and Volkov [21, Proposition 3.2].

2.4. Exclusion identities

Let S be any semigroup in a variety V. An identity w ≈ w′ is called an exclusion identity
for S in V if the following are all satisfied:
(E1) S does not satisfy w ≈ w′;
(E2) any subvariety of V not containing S satisfies w ≈ w′.
For any fixed integer n > 2, let Vn denote the variety defined by the identity

νn : x2n ≈ xn

and let ψn : X → X+ denote the substitution x 7→ hnxhn for all x ∈ X .

Lemma 2.7 [15, Theorem 2]. Let S be any non-unital semigroup such that S, S1 ∈ Vn.
Suppose that w ≈ w′ is an exclusion identity for S in Vn with h /∈ con(ww′). Then the
identity wψn ≈ w′ψn is an exclusion identity for S1 in Vn.

Lemma 2.8. For each n > 2, the following is an exclusion identity for A0 in Vn:

(xnyn)n+1 ≈ xnyn. (2.1)

Proof. By Lemma 2.4, the identity (2.1) is not satisfied by A0. Suppose that a subvariety V
of Vn does not satisfy the identity (2.1). Then there exists some semigroup S ∈ V with
elements a, b ∈ S such that

(a) (anbn)n+1 6= anbn.

Let T = 〈an, bn〉 be the subsemigroup of S generated by the elements an and bn. Since a2n νn= an

and b2n
νn= bn, it is easily shown by (a) that

(b) an, bn, anbn, and bnan are distinct elements of T .
Suppose that there exists some x ∈ {an, bn, anbn} such that x ∈ TbnanT . Then

anxbn ∈ an{an, bn, anbn}bn νn= {anbn},

so that anxbn = anbn. Therefore

anbn = anxbn ∈ an(TbnanT )bn
νn
⊆ {(anbn)2, (anbn)3, . . .},

whence anbn = (anbn)r+1 for some r > 1. But

anbn = (anbn)r+1 = (anbn)2r+1 = . . . = (anbn)nr+1 νn= (anbn)n+1,

which is impossible by (a). Therefore x does not exist, so that {an, bn, anbn} and TbnanT are
disjoint sets. It follows that

(c) I = TbnanT is an ideal of T with an, bn, anbn /∈ I.
By (b) and (c), the divisor T/(TbnanT ) of S is isomorphic to A0. Hence A0 ∈ V.

Lemma 2.9. For each n > 2, the following is an exclusion identity for N1
2 in Vn:

hn(xhn)n+1 ≈ hnxhn. (2.2)

Proof. Suppose that V is any subvariety of Vn such that N2 /∈ V. Then by Lemma 2.1(iv),
the variety V satisfies an identity α : x ≈ xr+1 for some r > 1. The variety V also satisfies
xn+1 ≈ x because

x
α
≈ xr+1 α

≈ x2r+1 α
≈ . . .

α
≈ xnr+1 νn≈ xn+1.
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Hence the identity xn+1 ≈ x is an exclusion identity for N2 in Vn. By Lemma 2.7, the identity
(xn+1)ψn ≈ xψn is an exclusion identity for N1

2 in Vn; this identity can be converted into the
identity (2.2) by νn.

2.5. Factors of length two formed by simple letters

For any word w, let FSS(w) denote the set of factors of w of length two that are formed by
simple letters:

FSS(w) = {xy ∈ X 2 | w ∈ X ∗xyX ∗, x, y ∈ sim(w)}.

Lemma 2.10. Let S be any semigroup that satisfies νn for some n > 2. Suppose that S
satisfies an identity w ≈ w′ with con(w) = con(w′), sim(w) = sim(w′), and FSS(w) 6= FSS(w′).
Then S satisfies the identity

xnyxnzxn ≈ xnyzxn. (2.3)

Proof. Generality is not lost by assuming yz ∈ FSS(w)\FSS(w′). Let ϕ : X → X+ denote
the substitution

t 7→


xny if t = y,

zxn if t = z,

xn otherwise.

Then the deduction xn(wϕ)xn
νn≈ xnyzxn holds because yz is a factor of w and y, z ∈ sim(w).

But since yz is not a factor of w′ and y, z ∈ sim(w) = sim(w′), either

xn(w′ϕ)xn
νn≈ xnyxnzxn or xn(w′ϕ)xn

νn≈ xnzxnyxn

holds. Hence S satisfies either the identity (2.3) or the identity α : xnyzxn ≈ xnzxnyxn. Since

xnyzxn
α
≈ xnz(xny)xn

α
≈ xnxnyxnzxn

νn≈ xnyxnzxn,

the semigroup S satisfies the identity (2.3) in either case.

3. Proof of the main theorem

The following twenty sufficient conditions for the finite basis property are required.

Condition 1 [37]. Any finite semigroup that satisfies the identities

x13 ≈ x, x12y12x12y12 ≈ x12y12

is finitely based.

Condition 2 [9, Theorem 6.1]. Any semigroup that satisfies the identities

xy3 ≈ xy, xyx2 ≈ x3y, xyxy ≈ xy2x

is finitely based.

Condition 3. Any semigroup that satisfies the identities

x3y ≈ x2y, xy3 ≈ xy2, xyx ≈ yxy, xyx ≈ xyxy

is finitely based.
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Condition 4 [36, Proposition C]. Any semigroup that satisfies the identity

xyzy ≈ xy2z

is finitely based.

Condition 5 [16, Theorem 1.3]. Any semigroup that satisfies the identities

x3 ≈ x2, xyxyx ≈ xyx, xyxzx ≈ xzxyx
is finitely based.

Condition 6 [17, Theorem 3.3]. Any semigroup that satisfies the identities

x3 ≈ x2, x2yx ≈ xyx, xyx2 ≈ xyx, xyxzx ≈ xyzx
is finitely based.

Condition 7. Any semigroup that satisfies the identities

x4 ≈ x2, x3yx ≈ xyx, xy2x ≈ yx2y, xyzx ≈ xzyx
is finitely based.

Condition 8. Any semigroup that satisfies the identities

x3yz ≈ xyz, x3y ≈ xy3, xyx2 ≈ x3y, xyxy ≈ xy2x

is finitely based.

Condition 9. Any semigroup that satisfies the identities

x4 ≈ x2, x3yx ≈ xyx, xyxy ≈ x2y2, xy2z ≈ xzy2

is finitely based.

Condition 10. Any semigroup that satisfies the identities

x3 ≈ x2, x2yx ≈ xyx, xyx2 ≈ xyx, x2y2 ≈ y2x2, x2yz2 ≈ xyz2x

is finitely based.

Condition 11 [18, Theorem 5.1]. Any semigroup that satisfies the identities

x4 ≈ x2, x3yx ≈ xyx, x2yx ≈ xyx2, x2yz2 ≈ xyz2x, xyxzx ≈ xzxyx

is finitely based.

Condition 12 [22, Proposition 3.2]. Any semigroup that satisfies the identities

x4 ≈ x2, x(yx)3 ≈ xyx, x2y3x2 ≈ x2yx2, (x2y2)3 ≈ (x2y2)2, xyxzx ≈ xzxyx

is finitely based.

Condition 13 [22, Proposition 3.2]. Any semigroup that satisfies the identities

x5 ≈ x2, x(yx)4 ≈ xyx, x2y4x2 ≈ x2yx2, (x3y3)3 ≈ (x3y3)2, xyxzx ≈ xzxyx

is finitely based.
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Condition 14. Any semigroup that satisfies the identities

x4 ≈ x2, xy3x ≈ xyx, xyx3 ≈ xyx, x2yx ≈ xyx2, xyxzx ≈ x2yzx, xyxy ≈ xy2x

is finitely based.

Condition 15 [23, Corollary 4.6]. Any semigroup that satisfies the identities

x8y ≈ x2y, xy8 ≈ xy2, x7yx ≈ xyx, x2yx ≈ xyx2, xyxzx ≈ x2yzx, xyxy ≈ x2y2

is finitely based.

Condition 16 [31, Theorem 22]. Any finite semigroup that satisfies the identity

hxyk ≈ hyxk

is finitely based.

Condition 17 [35, Theorem A]. Any semigroup that satisfies the identity

hxyxk ≈ hxy2k

is finitely based.

Condition 18 [35, Theorem A]. Any semigroup that satisfies the identity

hxkxyt ≈ hx2ky2t

is finitely based.

Condition 19 [19, Condition 9]. Any semigroup that satisfies the identities

x4 ≈ x2, x3yx ≈ xyx, xyx2 ≈ x3y, xyxy ≈ xy2x

but violates both of the identities

xyxy ≈ x2y2, xy3x ≈ xyx

is finitely based.

Condition 20. Any semigroup that satisfies the identities

x3 ≈ x2, xhx2 ≈ xhx, x2hxk ≈ x2hk,

xhykxy ≈ xhykyx, xhyxy ≈ xhy2x, xykxy ≈ xykyx, xyxy ≈ xy2x

but violates the identity
h2xyxy ≈ h2x2y2

is finitely based.

Conditions 3, 7, 8, 9, 10, 14, and 20 are established in §§ 4–10.
It is routinely verified, with the aid of a computer, that 14 534 of the 14 600 pairwise

distinct non-unital semigroups of order six are finitely based by Conditions 1–20 or their
dual conditions. Multiplication tables of the 66 sporadic cases to which the twenty sufficient
conditions do not apply are listed below in lexicographical order; the underlying set of each
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semigroup is {1, 2, 3, 4, 5, 6}, and each multiplication table is represented by a 6×6 array where
the (i, j)-entry denotes the product of the elements i, j ∈ {1, 2, 3, 4, 5, 6}.

111111
111111
111113
111314
555555
123456
§11

111111
111111
111123
444444
111123
123456
§12

111111
111111
113156
121411
555555
556513
§13

111111
111111
113156
444444
113656
666666
§14

111111
111111
113333
114444
123456
124365
§13

111111
111111
113356
123456
555555
556613
§13

111111
111111
123156
444444
123656
666666
§14

111111
111111
123333
123456
125555
125634
§13

111111
111111
123456
124365
555555
666666
§13

111111
111111
123456
444444
444444
456123
§13

(A )

111111
111111
123456
444444
445444
446445
§11

111111
111111
333333
333456
555555
553456
§14

111111
111112
111112
111214
555555
123456
§11

111111
111112
111113
111214
112111
121456
§15

111111
111112
111113
111214
112111
122456
§15

111111
111112
111113
111214
112112
122456
§15

111111
111112
111113
111214
113151
121416
§12

111111
111112
111113
111214
113153
121416
§12

111111
111112
111113
111224
112224
121456
§15

111111
111112
111113
111224
112224
122456
§15

(B)

111111
111112
111113
112111
555555
121456
§16

111111
111112
111113
112111
555555
122456
§16

111111
111112
111113
112112
555555
121456
§16

111111
111112
111113
112112
555555
122456
§16

111111
111112
111113
112121
112123
121446
§17

111111
111112
111113
112122
112123
122446
§17

111111
111112
111113
112141
113151
121416
§18

111111
111112
111113
112141
113151
122446
§19

111111
111112
111113
112142
113153
122446

L

111111
111112
111113
113454
133454
113456
§17

(C )

111111
111112
111113
113455
133455
133456
§17

111111
111112
111121
123444
123445
123446
§20

111111
111112
111121
444444
444445
123446
§16

111111
111112
111122
123444
123445
123446
§20

111111
111112
111122
444444
444445
123446
§16

111111
111112
111141
444444
555555
123416
§21

111111
111112
111141
444444
555555
123446
§21

111111
111112
111142
444444
555555
123416
§21

111111
111112
111142
444444
555555
123446
§21

111111
111112
112123
444444
112123
123456
§11

(D)

111111
111112
112125
112224
112225
123556
§15

111111
111112
333333
333313
555555
123416
§21

111111
111112
333333
333313
555555
123436
§21

111111
111113
111133
111344
123455
123466
§20

111111
111113
111133
123444
123455
123466
§22

111111
111113
111133
444444
123455
123466
§22

111111
111113
333333
123451
123453
666666
§22

111111
111113
333333
123451
123541
666666
§23

111111
111113
333333
123453
123543
666666
§23

111111
111122
111133
444444
113156
133156
§23

(E )

111111
111122
111133
444444
113456
133456
§24

111111
111122
112133
444444
123456
123456
§24

111111
111122
123111
444444
111456
444165
§25

111111
111122
123122
444444
111456
444165
§25

111111
111122
333333
333344
121156
121256
§23

111111
111122
333333
444444
111456
114456
§26

111111
111122
333333
444444
121456
124456
§26

111111
111122
333333
444444
333456
443456
§26

111111
111123
333333
123411
111156
666666
§27

111111
111123
333333
123423
111156
666666
§27

(F )

111111
111123
333333
123433
333356
666666
§27

111111
111223
333333
123456
123456
666666
§27

111111
121256
333333
121256
126256
666666
§14

111111
122256
122256
123456
555555
566612
§13

111111
122446
123456
644221
644221
666666
§13

111116
111236
123236
111456
145456
666661
Ag

2

(G )

For each X ∈ {A ,B, . . . ,G }, let Xn denote the nth semigroup in row (X) above. The
semigroups C9 and G6 are isomorphic to the non-finitely based semigroups L and Ag2,
respectively. The remaining 64 semigroups are shown to be finitely based in §§ 11–27.
Specifically, it is indicated below each multiplication table the section in which the semigroup
is shown to be finitely based. Consequently, among the 14 600 pairwise distinct non-unital
semigroups of order six, only Ag2 and L are non-finitely based.
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As observed in § 1, the monoids B1
2 and A1

2 are the only non-finitely based semigroups among
the 1373 pairwise distinct monoids of order six [19]. The proof of the main theorem is thus
complete.

Remark 3.1. There is no redundancy with Conditions 1–20 since they are distinguished by
semigroups with the following multiplication tables.

111111
121111
113156
444444
113656
666666
S1

111111
111111
111133
444444
111456
444165
S2

111111
111111
111113
111211
113153
111116
S3

111111
111111
111113
111114
111335
113456
S4

111111
111111
111134
113434
111156
115656
S5

111111
111111
111133
113434
111155
113456
S6

111111
111112
111113
113453
113543
121116
S7

111111
111111
112111
111456
555555
555614
S8

111111
111122
111133
111144
122456
144265
S9

111111
111122
111211
111144
111155
123156
S10

111111
111111
111114
111144
113455
113466
S11

111116
111236
123116
111456
145116
666661
S12

111111
111112
123452
124532
125342
111116
S13

111111
111112
123152
444444
125132
111416
S14

111111
111111
111133
444444
123456
123465
S15

111111
111111
111113
111114
111135
123156
S16

111111
111111
111112
123453
555555
111112
S17

111111
122456
122456
122456
124456
666666
S18

111111
111112
113451
444444
445134
121116
S19

111111
111111
111134
444444
113456
666666
S20

Specifically, the semigroup Sm is finitely based by Condition n if and only if m = n.

Part II. Sufficient conditions for the finite basis property

4. On Condition 3

Let X(4.1) denote the variety defined by the identities

x3y ≈ x2y, xy3 ≈ xy2, (4.1a)

xyx ≈ yxy, (4.1b)

xyx ≈ xyxy. (4.1c)

Then Condition 3 is equivalent to the following result.

Proposition 4.1. All subvarieties of X(4.1) are finitely based.

It is shown in § 4.1 that X(4.1) = A0 ∨N3. The proof of Proposition 4.1 is then given in
§ 4.2.

4.1. Identities satisfied by X(4.1)

Lemma 4.2. For any k > 2, the identity (4.1c) implies the identity

(x1x2 . . . xk)3 ≈ (x1x2 . . . xk)2. (4.2)

Proof. The identity (4.1c) clearly implies the identity (x1x2)3 ≈ (x1x2)2, which in turn
implies the identity (4.2) for any k > 2.

Lemma 4.3 [21, Theorem 4.1]. The variety A0 is defined by the identities (4.1) and

x3 ≈ x2. (4.3)

Proposition 4.4. The equality X(4.1) = A0 ∨N3 holds.
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Proof. It is routinely verified, either directly or by Lemmas 2.1(vi) and 4.3, that A0 and N3

satisfy the identities (4.1). Hence the inclusion A0 ∨N3 ⊆ X(4.1) holds. To complete the proof,
it remains to show that any nontrivial identity w ≈ w′ satisfied by A0 ∨N3 is implied by the
identities (4.1). Since A0 satisfies the identity w ≈ w′, the identities {(4.1), (4.3)} imply the
identity w ≈ w′. Hence there exists a deduction sequence

w = z0 ⇒ z1 ⇒ · · · ⇒ zr = w′, (4.4)

where each deduction zj ⇒ zj+1 involves an identity from {(4.1), (4.3)}. For each j, since A0

satisfies the identity w ≈ zj , it is easily shown that con(w) = con(zj).
Let con(w) = {x1, . . . , xk}. If k = 1, then the assumption w 6= w′ and Lemma 2.1(vi) imply
|w|, |w′| > 3, whence the identity w ≈ w′ is implied by the identities (4.1a). Thus assume
k > 2. Suppose that some deduction zj ⇒ zj+1 in (4.4) involves the identity (4.3). Then
zj = eupf and zj+1 = euqf for some e, f ∈ X ∗, u ∈ X+, and {p, q} = {2, 3}. If either e 6= ∅ or
f 6= ∅, then

zj = eupf
(4.1a)
≈ euqf = zj+1.

If e = f = ∅, then since |u| > |con(w)| > 2,

zj = up
(4.2)
≈ uq = zj+1.

Therefore any deduction zj ⇒ zj+1 in (4.4) that involves the identity (4.3) can be replaced
by a deduction that involves an identity from (4.1a) or (4.2). Hence the identity w ≈ w′ is
implied by the identities {(4.1), (4.2)}. It follows from Lemma 4.2 that the identity w ≈ w′

is implied by the identities (4.1).

Corollary 4.5. The variety X(4.1) satisfies the identities

x2yx ≈ xyx2 ≈ xyx, (4.5a)

xyxzx ≈ x2yzx. (4.5b)

Proof. It is routinely shown, either directly or by Lemmas 2.1(vi) and 2.4, that A0 and N3

satisfy the identities (4.5). The result now follows from Proposition 4.4.

4.2. Proof of Proposition 4.1

Let V be any proper subvariety of X(4.1). Then by Proposition 4.4, either A0 /∈ V or N3 /∈ V.

Case 1:A0 /∈ V. Then by Lemma 2.8, the variety V satisfies the identity α : (x2y2)3 ≈ x2y2.
Since

x2y2 α
≈ x2y2x2y2x2y2

(4.5b)
≈ x4y4x2y2

(4.5a)
≈ xyxy,

the variety V satisfies the identity xyxy ≈ x2y2. Since V satisfies the identities {(4.1), (4.5)},
it satisfies the identities in Condition 15 and so is finitely based.

Case 2: N3 /∈ V. Then it follows from Lemma 2.1(vi) that the variety V satisfies the
identity x3 ≈ x2 and so, by Lemma 4.3, is a subvariety of A0. Since every subvariety of A0 is
finitely based [14, Corollary 4.3], the variety V is finitely based.
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5. On Condition 7

Let X(5.1) denote the variety defined by the identities

x3Hx ≈ xHx, (5.1a)

xy2x ≈ yx2y, (5.1b)

xyzx ≈ xzyx. (5.1c)

Then Condition 7 is equivalent to the following result.

Proposition 5.1. All subvarieties of X(5.1) are finitely based.

It is shown in § 5.1 that X(5.1) = A0 ∨N1
2 ∨ Z2. The proof of Proposition 5.1 is then given

in § 5.2.

5.1. Identities satisfied by X(5.1)

Lemma 5.2. The identities (5.1) imply the identities

xHxKx ≈ x2HKx, (5.2a)

xHyzKx ≈ xHzyKx, (5.2b)

xHyKxy ≈ xHyKyx, xyHxKy ≈ yxHxKy. (5.2c)

Proof. It is easily shown that the identity (5.1c) implies the identities (5.2a). Since

xHyzKx
(5.1a)
≈ x3HyzKx

(5.2a)
≈ xHxyzxKx

(5.1c)
≈ xHxzyxKx

(5.2a)
≈ x3HzyKx

(5.1a)
≈ xHzyKx,

the identities (5.1) imply the identities (5.2b). Since

xHyKxy
(5.1a)
≈ x3Hy3Kxy

(5.2a)
≈ x2Hy2Kyx2y

(5.1b)
≈ x2Hy2Kxy2x

(5.2a)
≈ x3Hy3Kyx

(5.1a)
≈ xHyKyx,

the identities (5.1) imply xHyKxy ≈ xHyKyx. By a symmetrical argument, the identities (5.1)
also imply xyHxKy ≈ yxHxKy. Hence the identities (5.1) imply the identities (5.2c).

In this section, a non-simple word w is said to be in canonical form if

w = xe00 x
e1
1 . . . xerr y1 . . . ysx0,

where all of the following are satisfied:
(I) x0, x1, . . . , xr are distinct non-simple letters of w in alphabetical order;

(II) e0 ∈ {1, 2} and e1, . . . , er ∈ {2, 3};
(III) y1, . . . , ys are distinct simple letters of w in alphabetical order.
Note that if the above word w in canonical form does not contain any simple letter, then s = 0
and y1 . . . ys = ∅.

Lemma 5.3. Let w be any non-simple word with h(w) = t(w). Then there exists some word
w in canonical form such that the identities (5.1) imply the identity w ≈ w.
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Proof. By Lemma 5.2, it suffices to convert w, using the identities {(5.1), (5.2)}, into a word
in canonical form. By assumption, w = xux for some u ∈ X ∗. The identities (5.2a) can be used
to group every x in u with the first x in w, resulting in a word xeu′x, where e = occ(x,u) + 1
and u′ is obtained from u by removing all occurrences of x. The identities (5.2b) can then be
used to arrange the letters of u′ in any order. Specifically, the non-simple letters of u′ can be
grouped to the left in alphabetical order to form a prefix of u′, while the simple letters of u′

can be grouped to the right in alphabetical order to form a suffix of u′. The resulting word
is of the form xexe11 . . . xerr y1 . . . ysx for some e1, . . . , er > 2. The identities (5.1a) can be used
to reduce the exponents, so that e ∈ {1, 2} and e1, . . . , er ∈ {2, 3}. The resulting word is in
canonical form if x alphabetically precedes x1. If x does not alphabetically precede x1, then

xexe11 x
e2
2 . . . xerr y1 . . . ysx

(5.2b)
≈ xexe1−1

1 xe22 . . . xerr y1 . . . ysx1x

(5.2c)
≈ xe1−1

1 xexe22 . . . xerr y1 . . . ys xx1

(5.2b)
≈ xe1−1

1 xe+1xe22 . . . xerr y1 . . . ysx1,

and the factors xe+1, xe22 , . . . , x
er
r in the latter word can be alphabetically ordered by the

identities (5.2b), resulting in a word in canonical form.

Lemma 5.4. Let w be any connected word. Then there exists some word w in canonical
form such that the identities (5.1) imply the identity w ≈ w.

Proof. By Lemma 5.2, it suffices to convert w, using the identities {(5.1), (5.2)}, into a word
in canonical form. Since w is connected, the letter x = h(w) occurs at least twice in w. Hence
w = xuxv for some u,v ∈ X ∗ such that x /∈ con(v). If the factor v is empty, then the result
follows from Lemma 5.3. Therefore assume that v is nonempty, whence w = xuxyv′ for some
y ∈ X and v′ ∈ X ∗. There are two cases to consider.

Case 1: y /∈ con(u). Since w is connected, the factors xux and yv′ cannot be disjoint. It

follows that u and v′ share some common letter, whence w = xuxyv′
(5.2b)
≈ xuyxv′.

Case 2: y ∈ con(u). Then clearly w = xuxyv′
(5.2c)
≈ xuyxv′.

In either case, the identities (5.2) can be used to interchange the last x in w with the letter y
that immediately follows it. It is easily seen that the resulting word is connected. The same
argument can be repeated to move the last x in w to the right until it becomes the last letter

of the word. Hence w
(5.2)
≈ xuvx and the result now holds by Lemma 5.3.

Proposition 5.5. The equality X(5.1) = A0 ∨N1
2 ∨ Z2 holds.

Proof. By Lemma 2.5, the semigroup A0 ×N1
2 × Z2 is idempotent-separable. Therefore by

Lemma 2.6(i), there exists some basis Σ for A0×N1
2 ×Z2 that consists of identities formed by

connected words. It is routinely verified, either directly or by Lemmas 2.1 and 2.4, that A0,
N1

2 , and Z2 satisfy the identities (5.1). Hence the inclusion A0 ∨ N1
2 ∨ Z2 ⊆ X(5.1) holds.

To complete the proof, it remains to show that any identity w ≈ w′ in Σ is implied by the
identities (5.1).

By Lemma 5.4, the words w and w′ can be chosen to be in canonical form. Since N1
2 satisfies

w ≈ w′, it follows from Lemma 2.1(v) that con(w) = con(w′) and sim(w) = sim(w′), whence

w = xe00 x
e1
1 . . . xerr y1 . . . ysx0 and w′ = x

e′0
0 x

e′1
1 . . . x

e′r
r y1 . . . ysx0 for some e0, e

′
0 ∈ {1, 2} and

e1, e
′
1, . . . , er, e

′
r ∈ {2, 3}. Since Z2 satisfies w ≈ w′, it follows from Lemma 2.1(viii) that

ei = e′i for all i. Hence the identity w ≈ w′ is trivial and is implied by the identities (5.1).
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5.2. Proof of Proposition 5.1

Let V be any proper subvariety of X(5.1). Then by Proposition 5.5, the variety V does not
contain one of the following semigroups: A0, N1

2 , and Z2.

Case 1: A0 /∈ V. Then it follows from Lemma 2.8 that the variety V satisfies the identity
α : (x2y2)3 ≈ x2y2. Since

x2y2 α
≈ x2y2x2y2x2y2

(5.1c)
≈ x5y5xy

(5.1a)
≈ xyxy,

the variety V satisfies the identity xyxy ≈ x2y2. It is then routinely shown that V satisfies
the identities in Condition 15 and so is finitely based.

Case 2: N1
2 /∈ V. Then it follows from Lemma 2.9 that the variety V satisfies the identity

β : h2(xh2)3 ≈ h2xh2. Since

x(yx)3
(5.1a)
≈ x3yx3yxyx

(5.2a)
≈ x2yx2yx2yx2 β

≈ x2yx2
(5.2a)
≈ x3yx

(5.1a)
≈ xyx

and

x2yx2 β
≈ x2yx2yx2yx2

(5.2a)
≈ x6y3x2

(5.1a)
≈ x2y3x2,

the variety V satisfies the identities x(yx)3 ≈ xyx and x2y3x2 ≈ x2yx2. It is then routinely
shown that V satisfies the identities in Condition 12 and so is finitely based.

Case 3: Z2 /∈ V. Then it follows from Lemma 2.1(viii) that the variety V satisfies the
identity x3 ≈ x2. It is easily shown that V satisfies the identities in Condition 6 and so is
finitely based.

6. On Condition 8

Let X(6.1) denote the variety defined by the identities

x3yz ≈ xyz, x3y ≈ xy3, xyx2 ≈ x3y, xyxy ≈ xy2x. (6.1)

Then Condition 8 is equivalent to the following result.

Proposition 6.1. All subvarieties of X(6.1) are finitely based.

Some preliminary results are established in §§ 6.1 and 6.2. The proof of Proposition 6.1 is
then given in § 6.3.

6.1. Identities satisfied by X(6.1)

Lemma 6.2. The identities (6.1) imply the identities

x3yz ≈ xy3z ≈ xyz3 ≈ xyz, (6.2a)

xyx2z ≈ xyz, xyzy2 ≈ xyz, (6.2b)

xHyKxy ≈ xHyKyx. (6.2c)

Proof. It is easily seen that the identities (6.1) imply the identities {(6.2a), (6.2b)}. Note
that the fourth identity in (6.1) implies the identity α : y2x2y ≈ y2xyx. Since

xHyKxy
(6.2a)
≈ xHyKxx2y

(6.2b)
≈ xHyKx(y2x2y)

α
≈ xHyKxy2xyx

(6.2b)
≈ xHyKx2yx

(6.2b)
≈ xHyKyx,

the identities (6.1) also imply the identities (6.2c).
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6.2. A canonical form

In this section, a word w with ini(w) = x0 . . . xm is said to be in canonical form if the following
are satisfied:

(I) if m = 0, then w is any one of the words

x0, x
2
0, x

3
0, x

4
0; (6.3a)

(II) if m = 1, then w is any one of the words

x0x1, x
2
0x1, x

3
0x1, x0x

2
1, x

2
0x

2
1, x0x1x0, x

2
0x1x0, x0x

2
1x0, x

2
0x

2
1x0; (6.3b)

(III) if m > 2, then

w = xe00

m∏
i=1

(xeii wi) (6.4)

where ei ∈ {1, 2} and wi ∈ {xf00 . . . x
fi−1

i−1 | f0, . . . , fi−1 ∈ {0, 1}}.

Lemma 6.3. Let w be any word. Then there exists some word w in canonical form such
that the identities (6.1) imply the identity w ≈ w.

Proof. Suppose ini(w) = x0 . . . xm. Then by Lemma 6.2, it suffices to convert w, using the
identities {(6.1), (6.2)}, into a word in canonical form. This is routine if m ∈ {0, 1}. Hence
assume m > 2. Then w can be written as w =

∏m
i=0(xiui) for some ui ∈ {x0, . . . , xi}∗. Since

the letters in each ui are non-first occurrences in w, the identities (6.2c) can be used to arrange
them, within ui, in any order. Specifically, any occurrence of xi in ui can be moved to the left
and grouped with the singleton factor xi that precedes ui, and any remaining letters in ui can
be ordered according to their indices. Thus w can be converted into the word in (6.4) with

ei > 1 and wi ∈ {xf00 . . . x
fi−1

i−1 | f0, . . . , fi−1 > 0}. The identities {(6.2a), (6.2b)} can then be

applied so that ei ∈ {1, 2} and wi ∈ {xf00 . . . x
fi−1

i−1 | f0, . . . , fi−1 ∈ {0, 1}}.

Lemma 6.4. Let V be any subvariety of X(6.1) that satisfies an identity w ≈ w′.
(i) If ini(w) 6= ini(w′), then V is finitely based.

(ii) If occ(x,w) 6≡ occ(x,w′) (mod 2) for some x ∈ X , then V is finitely based.
(iii) If occ(x, y,w) 6≡ occ(x, y,w′) (mod 2) for some x, y ∈ X , then V is finitely based.

Proof. It is shown in each of the following parts that V satisfies the identity xyx ≈ x2y and
so is finitely based by Condition 4.

(i) Suppose ini(w) 6= ini(w′). Then L1
2 /∈ V by Lemma 2.1(iii). If x4, x4y4z4, and x4z4y4 are

distinct elements in the V-free semigroup FV over X , then they form a subsemigroup of FV

isomorphic to L1
2, and this implies the contradiction L1

2 ∈ V. Hence these three elements of FV

cannot be distinct, so that V satisfies either x4 ≈ x4y4z4, x4 ≈ x4z4y4, or x4y4z4 ≈ x4z4y4;
it is easily seen that any one of the first two identities implies the third identity, whence V
satisfies the third identity. It follows that V satisfies the identity α : x2y2z2 ≈ x2z2y2. Since

xyx
(6.2a)
≈ x3yx

(6.2b)
≈ (x2(xy)2y2)y

α
≈ x2y2(xy)2y

(6.2)
≈ x2y,

the variety V satisfies the identity xyx ≈ x2y.
(ii) Suppose occ(x,w) 6≡ occ(x,w′) (mod 2) for some x ∈ X . Then V satisfies the identity

β : x4 ≈ x3. Since

xyx
(6.2a)
≈ x3yx3 β

≈ x4yx4
(6.2b)
≈ x4y

(6.2a)
≈ x2y,

the variety V satisfies the identity xyx ≈ x2y.
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(iii) Suppose occ(x, y,w) 6≡ occ(x, y,w′) (mod 2) for some x, y ∈ X . Then by parts (i)
and (ii), it suffices to further assume:

(a) ini(w) = ini(w′);
(b) occ(x,w) ≡ occ(x,w′) (mod 2).

Write w = w1yw2 and w′ = w′1yw
′
2 where w1,w2,w

′
1,w

′
2 ∈ X ∗ are such that y /∈ con(w1w

′
1).

Let ei = occ(x,wi) and e′i = occ(x,w′i). Then e1 = occ(x, y,w) 6≡ occ(x, y,w′) = e′1 (mod 2)
by assumption, whence (e1, e

′
1) 6= (0, 0). If either e1 or e′1 is zero, then (a) is violated. Thus

e1, e
′
1 > 1. By symmetry, it suffices to assume:

(c) e1 ∈ {1, 3, 5, . . .};
(d) e′1 ∈ {2, 4, 6, . . .}.

Since e1 + e2 = occ(x,w)
(b)
≡ occ(x,w′) = e′1 + e′2 (mod 2), it follows that e2 6≡ e′2 (mod 2).

Let r ∈ {0, 1} be such that e2 + r ≡ 1 (mod 2) and e′2 + r ≡ 0 (mod 2). Let ϕ denote the
substitution

t 7→

{
y2 if t = y,

x2 if t ∈ X\{x, y}.
Then w1ϕ = xe1+2k for some k > 0, and w2ϕ ∈ {x, y2}∗ with occ(x,w2ϕ) = e2 + 2` for some
` > 0. In view of (c),

(wϕ)yxr = w1ϕ · yϕ ·w2ϕ · yxr
(6.2a)
≈ xy2(w2ϕ)yxr

(6.2b)
≈ xy2xe2yxr

(6.2c)
≈ xy3xe2+r

(6.2a)
≈ xyx.

Similarly, w′1ϕ = xe
′
1+2k′ for some k′ > 0, and w′2ϕ ∈ {x, y2}∗ with occ(x,w′2ϕ) = e′2 + 2`′ for

some `′ > 0. In view of (d),

(w′ϕ)yxr = w′1ϕ · yϕ ·w′2ϕ · yxr
(6.2a)
≈ x2y2(w′2ϕ)yxr

(6.2b)
≈ x2y2xe

′
2yxr

(6.2c)
≈ x2y3xe

′
2+r

(6.2b)
≈ x2y3

(6.2a)
≈ x2y.

Consequently, V satisfies the identity xyx ≈ x2y.

Lemma 6.5. Let w and w′ be any words in canonical form such that |con(w)| > 3. Suppose:
(i) ini(w) = ini(w′);
(ii) occ(x,w) ≡ occ(x,w′) (mod 2) for all x ∈ X ;

(iii) occ(x, y,w) ≡ occ(x, y,w′) (mod 2) for all x, y ∈ X .
Then the words w and w′ are identical.

Proof. By assumption, ini(w) = x0 . . . xm for some m > 2. It follows from (i) and (III) that

w = xe00

m∏
i=1

(xeii wi) and w′ = x
e′0
0

m∏
i=1

(x
e′i
i w′i)

for some ei, e
′
i ∈ {1, 2} and wi,w

′
i ∈ {x

f0
0 . . . x

fi−1

i−1 | f0, . . . , fi−1 ∈ {0, 1}}. It is obvious that
occ(xm,w) = em and occ(xm,w

′) = e′m, so that em = e′m by (ii). For each i < m, since
occ(xi, xi+1,w) = ei and occ(xi, xi+1,w

′) = e′i, it follows from (iii) that ei = e′i. Therefore
(e0, . . . , em) = (e′0, . . . , e

′
m).

If (w1, . . . ,wm−1) = (w′1, . . . ,w
′
m−1) and wm 6= w′m, say xj ∈ con(wm)\con(w′m) for some

j < m, then (ii) is violated because

occ(xj ,w) = occ(xj , x
e0
0 x

e1
1 w1x

e2
2 w2 . . . x

em−1

m−1 wm−1) + occ(xj , x
em
m wm)

= occ(xj , x
e′0
0 x

e′1
1 w′1x

e′2
2 w′2 . . . x

e′m−1

m−1 w′m−1) + 1
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and

occ(xj ,w
′) = occ(xj , x

e′0
0 x

e′1
1 w′1x

e′2
2 w′2 . . . x

e′m−1

m−1 w′m−1) + occ(xj , x
e′m
m w′m)

= occ(xj , x
e′0
0 x

e′1
1 w′1x

e′2
2 w′2 . . . x

e′m−1

m−1 w′m−1) + 0.

Hence wm = w′m. Suppose that ` < m is the least integer such that w` 6= w′`, say k < ` is such
that xk ∈ con(w`)\con(w′`). Then (w1, . . . ,w`−1) = (w′1, . . . ,w

′
`−1), whence (iii) is violated

because

occ(xk, x`+1,w) = occ(xk, x
e0
0 x

e1
1 w1x

e2
2 w2 . . . x

e`−1

`−1 w`−1) + occ(xk, x
e`
` w`)

= occ(xk, x
e′0
0 x

e′1
1 w′1x

e′2
2 w′2 . . . x

e′`−1

`−1 w′`−1) + 1

and

occ(xk, x`+1,w
′) = occ(xk, x

e′0
0 x

e′1
1 w′1x

e′2
2 w′2 . . . x

e′`−1

`−1 w′`−1) + occ(xk, x
e′`
` w′`)

= occ(xk, x
e′0
0 x

e′1
1 w′1x

e′2
2 w′2 . . . x

e′`−1

`−1 w′`−1) + 0.

Thus (w1, . . . ,wm) = (w′1, . . . ,w
′
m), so that w = w′.

6.3. Proof of Proposition 6.1

Let V be any proper subvariety of X(6.1). Then V = X(6.1)Σ for some set Σ of nontrivial
identities. By Lemma 6.3, words that form the identities in Σ can be chosen to be in canonical
form. Let w ≈ w′ be any identity in Σ. By Lemma 6.4, the variety V is finitely based if w
and w′ violate any of the following conditions:

(a) ini(w) = ini(w′);
(b) occ(x,w) ≡ occ(x,w′) (mod 2) for all x ∈ X ;
(c) occ(x, y,w) ≡ occ(x, y,w′) (mod 2) for all x, y ∈ X .

Hence assume that w and w′ satisfy (a)–(c). If the identity w ≈ w′ involves at least three
distinct letters, then it is trivial by Lemma 6.5, contradicting the choice of identities for Σ.
Therefore w ≈ w′ involves at most two distinct letters, whence w and w′ are from (6.3). Since
w ≈ w′ is arbitrary in Σ, it follows that Σ contains finitely many identities. (In fact, since the
identities in Σ satisfy (a)–(c), it is easily shown that Σ ⊆ {x3 ≈ x, x4 ≈ x2, x3y ≈ xy}.)

Remark 6.6. It is routinely shown that N3 and the orthodox completely regular semigroup

O = 〈a, b | a2 = ab = a, b2 = 1〉

of order four belong to the variety X(6.1). From the proofs in this section, a proper subvariety
of X(6.1) satisfies one of the following identities:

x4 ≈ x2, (6.5)

xyx ≈ x2y. (6.6)

By Lemma 2.1(vi) or direct verification, the semigroup N3 does not satisfy the identity (6.5).
The semigroup O does not satisfy the identity (6.6) because bab 6= b2a in O. Consequently,
the variety X(6.1) is generated by N3 and O.

7. On Condition 9

Let X(7.1) denote the variety defined by the identities

x3Hx ≈ xHx, xyxy ≈ x2y2, xy2z ≈ xzy2. (7.1)

Then Condition 9 is equivalent to the following result.
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Proposition 7.1. All subvarieties of X(7.1) are finitely based.

It follows from Lemma 2.1(i) that the variety X(7.1) contains the semigroup L2. All
subvarieties of X(7.1) that contain L2 are shown to be finitely based in § 7.2, while those
that do not contain L2 are shown to be finitely based in § 7.3. The proof of Proposition 7.1 is
thus complete.

7.1. Identities satisfied by subvarieties of X(7.1)

Lemma 7.2. The identities (7.1) imply the identities

x4 ≈ x2, x3yx ≈ xyx, xyx3 ≈ xyx, (7.2a)

xHxyx2 ≈ xHxy, (7.2b)

hx2y ≈ hyx2, (7.2c)

hxyKxTy ≈ hyxKxTy, xHxyKy ≈ xHyxKy, xHyKxy ≈ xHyKyx. (7.2d)

Proof. It is clear that the identities (7.1) imply the identities (7.2a)–(7.2c). Since

hyxKxTy
(7.2a)
≈ hyy2x2xKxTy

(7.2c)
≈ hx2yxy2KxTy

(7.1)
≈ hx3y3KxTy

(7.2a)
≈ hxyKxTy,

the identities (7.1) imply hxyKxTy ≈ hyxKxTy in (7.2d). A similar argument shows that (7.1)
also imply the other identities in (7.2d).

Lemma 7.3. Let V be any subvariety of X(7.1) that satisfies an identity w ≈ w′. Suppose
that any of the following holds:

(i) either con(w) 6= con(w′) or sim(w) 6= sim(w′);
(ii) occ(x,w) 6≡ occ(x,w′) (mod 2) for some x ∈ X ;

(iii) occ(x, y,w) 6≡ occ(x, y,w′) (mod 2) for some x ∈ con(w) and y ∈ sim(w).
Then V is finitely based.

Proof. It is shown that each of (i)–(iii) implies that V satisfies the identity xyx ≈ x2y and
so is finitely based by Condition 4.

Suppose that (i) holds. Then N1
2 /∈ V by Lemma 2.1(v). Hence by Lemma 2.9, the variety V

satisfies the identity h2(xh2)3 ≈ h2xh2; this identity can be converted into α : h2x3 ≈ h2x by
the identities (7.2b). Then V satisfies the identity xyx ≈ x2y because

xyx
(7.2a)
≈ x3yx

α
≈ x3y3x

(7.2a)
≈ xy3x

(7.2c)
≈ xyxy2

(7.2d)
≈ x2y3 α

≈ x2y.

Suppose that (ii) holds. Then it is easily shown that V satisfies the identity β : x3 ≈ x2; it
also satisfies the identity xyx ≈ x2y because

xyx
(7.2a)
≈ x3yx3 β

≈ x2yx2
(7.2b)
≈ x2y.

Suppose that (iii) holds, that is, occ(x, y,w) 6≡ occ(x, y,w′) (mod 2) for some x ∈ con(w)
and y ∈ sim(w). As established in the last two paragraphs, V is finitely based if (i) or (ii) holds.
Hence it suffices to further assume that (i) and (ii) do not hold, that is, con(w) = con(w′),
sim(w) = sim(w′), and occ(x,w) ≡ occ(x,w′) (mod 2). Since y ∈ sim(w) = sim(w′), it follows
that w = w1yw2 and w′ = w′1yw

′
2 for some w1,w2,w

′
1,w

′
2 ∈ (X\{y})∗. Let ei = occ(x,wi)

and e′i = occ(x,w′i). Then e1 = occ(x, y,w), e′1 = occ(x, y,w′), and

e1 + e2 = occ(x,w) ≡ occ(x,w′) = e′1 + e′2 (mod 2).
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Since e1 6≡ e′1 (mod 2) by assumption, it follows that e2 6≡ e′2 (mod 2). By symmetry, it suffices
to assume that e1 is even and e′1 is odd. Then there exists some r ∈ {0, 1} such that e2 + r is
even and e′2 + r is odd. Let ϕ denote the substitution z 7→ x2 for all z ∈ X\{x, y}. Then

x2(wϕ)xr+2 = x2(w1ϕ)y(w2ϕ)xr+2
(7.2a)
≈ x2yx2

(7.2b)
≈ x2y

and

x2(w′ϕ)xr+2 = x2(w′1ϕ)y(w′2ϕ)xr+2
(7.2a)
≈ xyx,

so that V satisfies the identity xyx ≈ x2y.

7.2. Subvarieties of X(7.1) containing L2

Proposition 7.4. Let V be any subvariety of X(7.1) such that L2 ∈ V. Then V is finitely
based.

The proof of this result is given at the end of the subsection.

Lemma 7.5. Let x ∈ X and w,w′ ∈ X+ be such that con(w) = con(w′), sim(w) = sim(w′),
and x /∈ con(ww′). Suppose that the words w and w′ begin with the same non-simple letter.
Then X(7.1){w ≈ w′} = X(7.1){xw ≈ xw′}.

Proof. By assumption, w,w′ ∈ zX ∗zX ∗ with z = h(w) = h(w′), so that the deductions

z2w
(7.2a)
≈ w and z2w′

(7.2a)
≈ w′ hold. Since the identity xw ≈ xw′ clearly implies the identity

z2w ≈ z2w′, the inclusion X(7.1){xw ≈ xw′} ⊆ X(7.1){w ≈ w′} holds. It is obvious that the
inclusion X(7.1){w ≈ w′} ⊆ X(7.1){xw ≈ xw′} also holds.

Let w be any non-simple word with h(w) ∈ sim(w) and let x1, . . . , xr be all its distinct
non-simple letters listed in alphabetical order. In this section, such a word is said to be in
canonical form if

w =

m∏
i=1

(yiwi) (7.3)

for some m > 1 such that all of the following are satisfied:
(I) the letters y1, . . . , ym are all simple in w;

(II) the letters of w1, . . . ,wm ∈ X ∗ are all non-simple in w;
(III) w1, . . . ,wm−1 ∈ {xe11 . . . xerr | e1, . . . , er ∈ {0, 1}};
(IV) wm = xf11 . . . xfrr for some f1, . . . , fr ∈ {0, 1, 2, 3};
(V) if occ(xi,w1 . . .wm−1) = 0, then fi ∈ {2, 3};

(VI) if occ(xi,w1 . . .wm−1) = 1, then fi ∈ {1, 2};
(VII) if occ(xi,w1 . . .wm−1) > 2, then fi ∈ {0, 1}.

Lemma 7.6. Let w be any non-simple word with h(w) ∈ sim(w). Then there exists some
word w in canonical form such that the identities (7.1) imply the identity w ≈ w.

Proof. Generality is not lost by assuming that x1, . . . , xr are all the distinct non-simple
letters of w listed in alphabetical order. By Lemma 7.2, it suffices to convert w, using the
identities (7.2), into a word in canonical form. It is clear that w can be written in the form (7.3)
with (I) and (II) satisfied. The identities (7.2d) can be used to order the letters in each wi

alphabetically, resulting in wi ∈ {xe11 . . . xerr | e1, . . . , er > 0}. The identities (7.2a) can then be
used to reduce the exponent of each xj , so that wi ∈ {xe11 . . . xerr | e1, . . . , er ∈ {0, 1, 2, 3}}. If
i < m is such that wi contains the factor x2

j , then this factor can be moved by the identity (7.2c)
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to the right and combined with the corresponding power of xj in wm. Hence (III) is satisfied,

and wm = xf11 . . . xfrr for some f1, . . . , fr > 0. The identities (7.2a) can be used to reduce
the exponents f1, . . . , fr in wm appropriately until (IV) is satisfied. Since xi is non-simple
in w, it follows that occ(xi,w1 . . .wm−1) + fi = occ(xi,w) > 2, whence (V) is satisfied. If
occ(xi,w1 . . .wm−1) = 1 and fi = 3, then the identities (7.2a) can be used to reduce the
exponent fi to 1. Thus (VI) is satisfied. Finally, if occ(xi,w1 . . .wm−1) > 2 and fi ∈ {2, 3},
then the identities (7.2b) can be used to reduce the exponent fi to 0 or 1, so that (VII) is
satisfied.

Proof of Proposition 7.4. By assumption, V = X(7.1)Σ for some set Σ of identities. The
variety V is finitely based if Σ contains some identity w ≈ w′ that satisfies any of (i)–(iii) in
Lemma 7.3. Therefore it suffices to assume that every identity w ≈ w′ in Σ satisfies all of the
following:

(a) con(w) = con(w′) and sim(w) = sim(w′);
(b) occ(x,w) ≡ occ(x,w′) (mod 2) for all x ∈ X ;
(c) occ(x, y,w) ≡ occ(x, y,w′) (mod 2) for all x ∈ X and y ∈ sim(w) = sim(w′).

Since L2 ∈ V, it follows from Lemma 2.1(i) that any identity w ≈ w′ in Σ satisfies the property
that h(w) = h(w′); by Lemma 7.5, the letter h(w) = h(w′) can be assumed to be simple in w
and w′. Hence by Lemma 7.6, the words w and w′ can be chosen to be in canonical form.

Let w ≈ w′ be any identity from Σ. By (a), the words w and w′ share the same simple
letters. By (c), the order of appearance of these simple letters is the same in w and w′. Hence

w =

m∏
i=1

(yiwi) and w′ =

m∏
i=1

(yiw
′
i).

It follows from (a), (c), and (III) that
(d) wi = w′i for all i < m.

Now (IV) and (b) imply wm = xf11 . . . xfrr and w′m = x
f ′1
1 . . . x

f ′r
r for some fi, f

′
i ∈ {0, 1, 2, 3}

with fi ≡ f ′i (mod 2). Suppose fi < f ′i for some i. Then there are two cases: (fi, f
′
i) = (0, 2)

and (fi, f
′
i) = (1, 3). If (fi, f

′
i) = (0, 2), then

occ(xi,w1 . . .wm−1) > 2 by (VII) and occ(xi,w
′
1 . . .w

′
m−1) 6 1 by (V) and (VI).

If (fi, f
′
i) = (1, 3), then

occ(xi,w1 . . .wm−1) > 1 by (VI) and (VII) and occ(xi,w
′
1 . . .w

′
m−1) = 0 by (V).

Since w1 . . .wm−1 = w′1 . . .w
′
m−1 by (d), both cases are impossible. Therefore fi = f ′i for all i,

whence w = w′. Since the identity w ≈ w′ is arbitrary in Σ, every identity in Σ is trivial.
Consequently, the variety V coincides with X(7.1) and is finitely based.

7.3. Subvarieties of X(7.1) not containing L2

Lemma 7.7. Let V be any subvariety of X(7.1) that satisfies an identity w ≈ w′. Suppose
h(w) 6= h(w′) with either h(w) ∈ sim(w) or h(w′) ∈ sim(w′). Then V is finitely based.

Proof. If either con(w) 6= con(w′) or sim(w) 6= sim(w′), then the variety V is finitely based
by Lemma 7.3. Therefore assume con(w) = con(w′) and sim(w) = sim(w′). Let x = h(w)
and y = h(w′). By symmetry, it suffices to assume x ∈ sim(w) = sim(w′). Let ϕ denote the

substitution z 7→ y2 for all z ∈ X\{x}. Then the deductions wϕ
(7.2)
≈ xy2 and w′ϕ

(7.2)
≈ y2x

hold, so that V satisfies the identity xy2 ≈ y2x; any subvariety of X(7.1) that satisfies this
identity is finitely based [9, Theorem 7.2].
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Proposition 7.8. Let V be any subvariety of X(7.1) such that L2 /∈ V. Then V is finitely
based.

Proof. By assumption, V = X(7.1)Σ for some set Σ of identities. Let

Σ⊕ = {w ≈ w′ ∈ Σ | h(w) = h(w′)} and Σ	 = {w ≈ w′ ∈ Σ | h(w) 6= h(w′)},

so that Σ = Σ⊕ ∪ Σ	. By Lemma 2.1(i), the variety X(7.1)Σ⊕ contains L2 and so is finitely
based by Proposition 7.4. It remains to show that X(7.1)Σ	 is finitely based, so that the variety
V = X(7.1)Σ⊕ ∩X(7.1)Σ	 is also finitely based.

By Lemmas 7.3 and 7.7, the variety V is finitely based if some identity w ≈ w′ from Σ	
violates any of the following conditions:

(a) con(w) = con(w′) and sim(w) = sim(w′);
(b) h(w) is non-simple in w and h(w′) is non-simple in w′.

Hence it suffices to assume that any identity w ≈ w′ in Σ	 satisfies (a) and (b).
Let σ : w ≈ w′ be any identity from Σ	, so that h(w) = x 6= y = h(w′). Let ϕ : X → X+

denote the substitution

z 7→

{
x2 if z = x,

y2 otherwise.

Then the deductions wϕ
(7.2)
≈ x2y2 and w′ϕ

(7.2)
≈ y2x2 hold, so that the identities {(7.2), σ}

imply the identity
x2y2 ≈ y2x2. (7.4)

Thus X(7.1){σ} = X(7.1){(7.4), σ}. It follows from (a) and (b) that w = xhyt for some
h, t ∈ X ∗ such that x, y ∈ con(ht). Since

w
(7.2a)
≈ x3hy3t

(7.2c)
≈ x2y2xhyt

(7.4)
≈ y2x2xhyt

(7.2a)
≈ y2w,

the equality X(7.1){σ} = X(7.1){(7.4), σ̃} holds, where σ̃ is the identity y2w ≈ w′ that satisfies
the property h(y2w) = h(w′).

Since the identity σ is arbitrary in Σ	, the construction of σ̃ from σ in the preceding

paragraph can be repeated on every identity in Σ	 to obtain Σ̃	 = {σ̃ | σ ∈ Σ	}. It follows

that X(7.1)Σ	 = X(7.1){(7.4)} ∩ X(7.1)Σ̃	. By Lemma 2.1(i), the semigroup L2 satisfies

the identities in Σ̃	 and so belongs to X(7.1)Σ̃	. Therefore X(7.1)Σ̃	 is finitely based by
Proposition 7.4. Consequently, X(7.1)Σ	 is also finitely based.

8. On Condition 10

Let X(8.1) denote the variety defined by the identities

x3 ≈ x2, x2yx ≈ xyx, xyx2 ≈ xyx, (8.1a)

x2y2 ≈ y2x2, (8.1b)

x2yz2 ≈ xyz2x. (8.1c)

Then Condition 10 is equivalent to the following result.

Proposition 8.1. All subvarieties of X(8.1) are finitely based.

Some preliminary results are established in §§ 8.1 and 8.2. The proof of Proposition 8.1 is
then given in § 8.3.
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8.1. A canonical form

Let w be any non-simple word and let x1, . . . , xr be all its distinct non-simple letters listed in
alphabetical order. In this section, such a word is said to be in canonical form if

w = s0

m∏
i=1

(wisi) (8.2)

for some m > 1 such that all of the following are satisfied:
(I) the letters of s0, sm ∈ X ∗ and s1, . . . , sm−1 ∈ X+ are all simple in w;

(II) w1, . . . ,wm ∈ {xe11 . . . xerr | e1, . . . , er ∈ {0, 2}} with w1, . . . ,wm 6= ∅;
(III) con(w1) ⊆ . . . ⊆ con(wm).
Note that (II) and (III) imply:
(IV) wm = x2

1 . . . x
2
r.

Lemma 8.2. Let w be any non-simple word. Then there exists some word w in canonical
form such that the identities (8.1) imply the identity w ≈ w.

Proof. It suffices to convert w, using the identities (8.1), into a word in canonical form. Let
x1, . . . , xr be all the distinct non-simple letters of w in alphabetical order. Clearly w can be
written in the form (8.2) such that (I) is satisfied and w1, . . . ,wm ∈ {x1, . . . , xr}+. Suppose
x ∈ con(wi)\con(wi+1), say wi = axb for some a,b ∈ X ∗. Then since the letters x and
h = h(wi+1) are non-simple in w,

w = . . .wisi ·wi+1si+1 . . .
(8.1a)
≈ . . .ax3bsi · h2wi+1si+1 . . .

(8.1c)
≈ . . .axbsi · h2x2wi+1si+1 . . .

(8.1b)
≈ . . .wisi · x2h2wi+1si+1 . . .

(8.1a)
≈ . . .wisi · (xwi+1)si+1 . . . ,

that is, the identities (8.1) can be used to convert wi+1 into xwi+1. It is easily seen how this
procedure can be repeated until w is converted into a word of the form (8.2) with (I) and (III)
satisfied. Since the letters of each wi are non-simple in w, apply the identities (8.1a) to replace
each letter xj in wi by its square x2

j , apply the identity (8.1b) to alphabetically order these
squares in wi, and apply the identities (8.1a) to eliminate any repeated squares. The resulting
factor is of the form xe11 . . . xerr with e1, . . . , er ∈ {0, 2}. Therefore (II) is satisfied.

8.2. Some finitely based subvarieties of X(8.1)

Lemma 8.3. Suppose that V is any subvariety of X(8.1) that satisfies an identity w ≈ w′

with either con(w) 6= con(w′) or sim(w) 6= sim(w′). Then V is finitely based.

Proof. It follows from the assumption and Lemma 2.1(v) that N1
2 /∈ V. Then by Lemma 2.9,

the variety V satisfies the identity α : h2(xh2)3 ≈ h2xh2. Since

xyx
(8.1a)
≈ x2yx2 α

≈ x2(yx2)3
(8.1a)
≈ x2(y2x2)3

(8.1b)
≈ x8y6

(8.1a)
≈ x2y2,

the variety V satisfies the identity xyx ≈ x2y2; any variety that satisfies this identity is finitely
based [34].

Lemma 8.4. Suppose that V is any subvariety of X(8.1) that satisfies an identity w ≈ w′

with FSS(w) 6= FSS(w′). Then V is finitely based.
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Proof. If either con(w) 6= con(w′) or sim(w) 6= sim(w′), then the variety V is finitely based
by Lemma 8.3. Hence assume con(w) = con(w′) and sim(w) = sim(w′). By Lemma 2.10, the
variety V satisfies the identity (2.3) with n = 2. It follows that V satisfies the identities in
Condition 6 and so is finitely based.

Lemma 8.5. Suppose that V is any subvariety of X(8.1) that satisfies an identity w ≈ w′

with wsim 6= w′sim. Then V is finitely based.

Proof. If either con(w) 6= con(w′) or sim(w) 6= sim(w′), then the variety V is finitely based
by Lemma 8.3. Hence assume con(w) = con(w′) and sim(w) = sim(w′). Since wsim 6= w′sim
by assumption, there exist some distinct letters y, z ∈ sim(w) = sim(w′) such that w ∈
X ∗yX ∗zX ∗ and w′ ∈ X ∗zX ∗yX ∗. Let ϕ : X → X+ denote the substitution

t 7→

{
xtx if t ∈ {y, z},
x otherwise.

Then the deductions wϕ
(8.1a)
≈ xyxzx and w′ϕ

(8.1a)
≈ xzxyx hold so that V satisfies the identity

xyxzx ≈ xzxyx. Hence V satisfies the identities in Condition 11 and so is finitely based.

8.3. Proof of Proposition 8.1

Lemma 8.6. Let w and w′ be words and x and y be letters such that x ∈ con(w) = con(w′)
and y ∈ sim(w) = sim(w′). Suppose that the first occurrence of x precedes y in w, but y
precedes the first occurrence of x in w′. Then the identities {(8.1),w ≈ w′} imply the identity

h2yx2h2 ≈ x2h2yx2h2. (8.3)

Proof. By assumption, w = w1yw2 and w′ = w′1yw
′
2 for some wi,w

′
i ∈ (X\{y})∗ such that

x ∈ con(w1)\con(w′1). Let ϕ : X → X+ denote the substitution

t 7→


x2h2 if t = x,

yx2h2 if t = y,

h2 otherwise.

Then since the deductions h2(wϕ)x2h2
(8.1)
≈ x2h2yx2h2 and h2(w′ϕ)x2h2

(8.1)
≈ h2yx2h2 hold,

the identities {(8.1),w ≈ w′} imply the identity (8.3).

Let V be any proper subvariety of X(8.1). Then V = X(8.1)Σ for some nonempty set Σ
of nontrivial identities. By Lemmas 8.3–8.5, the variety V is finitely based if some identity
w ≈ w′ in Σ does not satisfy any of the following conditions:

(a) con(w) = con(w′) and sim(w) = sim(w′);
(b) FSS(w) = FSS(w′);
(c) wsim = w′sim.

Hence assume that (a)–(c) hold for every identity w ≈ w′ in Σ.
Let w ≈ w′ be any identity in Σ. By (a), the words w and w′ are either both simple or

both non-simple. If the words w and w′ are both simple, then by (c), the identity w ≈ w′ is
contradictorily trivial. Therefore the words w and w′ are both non-simple, say with non-simple
letters x1, . . . , xr. By Lemma 8.2, the words w and w′ can be chosen to be in canonical form.
It then follows from (a)–(c) that

w = s0

m∏
i=1

(wisi) and w′ = s0

m∏
i=1

(w′isi),
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where
(d) wm = x2

1 . . . x
2
r = w′m

by (IV). But since the identity w ≈ w′ is nontrivial, con(wj) 6= con(w′j) for some j < m, say
xi ∈ con(wj)\con(w′j). Then xi /∈ con(w′1 . . .w

′
j) by (III), so that xi ∈ con(w′j+1 . . .w

′
m). The

letter y = h(sj) ∈ sim(w) = sim(w′) is preceded in w by the first occurrence of xi while y
precedes the first occurrence of xi in w′. Therefore by Lemma 8.6,

(e) X(8.1){w ≈ w′} = X(8.1){w ≈ w′, (8.3)}.
Choose any letter x` ∈ con(w1). Then x` ∈

⋂m
i=1 con(wi) by (III). For any i < m, the factor wi

can be written in the form wi = ax2
`b, where a = xe11 . . . x

e`−1

`−1 and b = x
e`+1

`+1 . . . x
er
r for some

e1, . . . , e`−1, e`+1, . . . , er ∈ {0, 2}. Then by (d),

w = . . .wisi . . .wmsm
(8.1b)
≈ . . . (abx2

`)si . . . (x
2
1 . . . x

2
`−1x

2
`+1 . . . x

2
rx

2
`)sm

(8.3)
≈ . . . (abx2

rx
2
`)si . . . (x

2
1 . . . x

2
`−1x

2
`+1 . . . x

2
rx

2
`)sm

...

(8.3)
≈ . . . (abx2

1 . . . x
2
`−1x

2
`+1 . . . x

2
rx

2
`)si . . . (x

2
1 . . . x

2
`−1x

2
`+1 . . . x

2
rx

2
`)sm

(8.1b)
≈ . . . (x2+e1

1 . . . x
2+e`−1

`−1 x2
`x

2+e`+1

`+1 . . . x2+er
r )si . . . (x

2
1 . . . x

2
`−1x

2
`x

2
`+1 . . . x

2
r)sm

(8.1a)
≈ . . .wmsi . . .wmsm,

that is, wi is converted into wm. This argument can be repeated on wj for every j < m, so
that the identities {(8.1), (8.3)} imply the identity w ≈ s0

∏m
i=1(wmsi). Similarly, the identities

{(8.1), (8.3)} imply the identity w′ ≈ s0

∏m
i=1(w′msi). Therefore since

w
(8.1),(8.3)
≈ s0

m∏
i=1

(wmsi)
(d)
= s0

m∏
i=1

(w′msi)
(8.1),(8.3)
≈ w′,

the identities {(8.1), (8.3)} imply the identity w ≈ w′. It thus follows from (e) that the equality
X(8.1){w ≈ w′} = X(8.1){(8.3)} holds. But the identity w ≈ w′ is arbitrary in Σ. Therefore
X(8.1)Σ = X(8.1){(8.3)}. Consequently, V is finitely based.

9. On Condition 14

Let X(9.1) denote the variety defined by the identities

x4 ≈ x2, xy3x ≈ xyx, xyx3 ≈ xyx, (9.1a)

x2yx ≈ xyx2, xyxzx ≈ x2yzx, (9.1b)

xyxy ≈ xy2x. (9.1c)

Then Condition 14 is equivalent to the following result.

Proposition 9.1. All subvarieties of X(9.1) are finitely based.

It is shown in § 9.1 that X(9.1) = A0 ∨ L1
2 ∨ Z2. The proof of Proposition 9.1 is then given

in § 9.2.
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9.1. Identities satisfied by X(9.1)

Lemma 9.2. The identities (9.1) imply the identities

xHx2Kx ≈ xHKx, (9.2a)

xHy3Kx ≈ xHyKx, (9.2b)

xHyKxy ≈ xHyKyx, (9.2c)

xHyzyKx ≈ xHy2zKx. (9.2d)

Proof. It is easily seen that the identities (9.1) imply the identities (9.2a). Since

xHy3Kx
(9.2a)
≈ xHx2y3x2Kx

(9.1a)
≈ xHx2yx2Kx

(9.2a)
≈ xHyKx,

the identities (9.1) imply the identities (9.2b). Since

xHyKxy
(9.2a)
≈ xHyKy2xy

(9.2a)
≈ xHyKyx2yxy

(9.1c)
≈ xHyKyx2y2x

(9.2a)
≈ xHyKy3x

(9.2b)
≈ xHyKyx,

the identities (9.1) imply the identities (9.2c). Since

xHy2zKx
(9.2b)
≈ xHy(yz)3Kx

(9.2c)
≈ xHy2z3y2Kx

(9.1b)
≈ xHy3z3yKx

(9.2b)
≈ xHyzyKx,

the identities (9.1) imply the identities (9.2d).

In this section, a non-simple word w is said to be in canonical form if

w = xe00 x
e1
1 . . . xemm x0 (9.3)

for some distinct letters x0, . . . , xm with e0, . . . , em ∈ {1, 2}. Note that if m = 0, then the
word w in (9.3) is xe0+1

0 .

Lemma 9.3. Let w be any connected word. Then there exists some word w in canonical
form such that the identities (9.1) imply the identity w ≈ w.

Proof. By Lemma 9.2, it suffices to convert w, using the identities {(9.1), (9.2)}, into a word
in canonical form. Since w is connected, the letter x0 = h(w) occurs at least twice in w. There
are two cases.

Case 1: h(w) = t(w). Then w = x0ax0 for some a ∈ X ∗. The identities (9.1b) can be used
to group any x0 in a with the first x0 in w, resulting in a word of the form xe00 bx0, where
e0 > 1 and b ∈ (X\{x0})∗. The identities (9.2d) can be used to group any non-first occurrence

of any letter x in b with its first occurrence: x0cxdxex0

(9.2d)
≈ x0cx

2dex0. The resulting word
is of the form (9.3) with ei > 1. The identities {(9.2a), (9.2b)} can be used to reduce each ei
to a number in {1, 2}, resulting in a word in canonical form.

Case 2: h(w) 6= t(w). Then w = x0ax0yb for some a,b ∈ X ∗ and y ∈ X with x0 /∈ con(yb).
Since w is connected and its suffix yb does not contain the letter x0, the factor a is nonempty.
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If y ∈ con(a), then w = x0ax0yb
(9.2c)
≈ x0ayx0b. If y /∈ con(a), then the connectedness of w

implies that a and b share some common letter, whence

w
(9.2a)
≈ x0ax

3
0yb

(9.2d)
≈ x0ax

2
0yx0b

(9.2a)
≈ x0ayx0b.

In any case, the identities (9.2) can be used to interchange the last x0 in w with the letter y
that immediately follows it. This procedure can be repeated until the last x0 in w is the last

letter of the word. Hence w
(9.2)
≈ x0cx0 for some c ∈ X+. By Case 1, the identities {(9.1), (9.2)}

can be used to convert x0cx0 into a word in canonical form.

Proposition 9.4. The equality X(9.1) = A0 ∨ L1
2 ∨ Z2 holds.

Proof. By Lemma 2.5, the semigroup A0 × L1
2 × Z2 is idempotent-separable. Therefore by

Lemma 2.6(i), there exists some basis Σ for A0 ∨ L1
2 ∨ Z2 that consists of identities formed

by connected words. It is routinely verified, either directly or by Lemmas 2.1 and 2.4, that A0,
L1

2, and Z2 satisfy the identities (9.1). Hence the inclusion A0 ∨ L1
2 ∨ Z2 ⊆ X(9.1) holds.

To complete the proof, it remains to show that any identity w ≈ w′ in Σ is implied by the
identities (9.1).

By Lemma 9.3, there exist words w and w′ in canonical form such that the identities (9.1)
imply w ≈ w and w′ ≈ w′. Since A0 ∨ L1

2 ∨ Z2 satisfies the identity w ≈ w′, it follows from
Lemma 2.1 parts (iii) and (viii) that ini(w) = ini(w′) and occ(x,w) ≡ occ(x,w′) (mod 2) for
all x ∈ X . It is then easily shown that the words w and w′ are identical. Consequently, the
identities (9.1) imply the identity w ≈ w′.

9.2. Proof of Proposition 9.1

Let V be any proper subvariety of X(9.1). Then by Proposition 9.4, the variety V does not
contain one of the semigroups A0, L1

2, and Z2.

Case 1:A0 /∈ V. Then by Lemma 2.8, the variety V satisfies the identity α : (x2y2)3 ≈ x2y2.
Since

x2y2 α
≈ x2y2x2y2x2y2

(9.1b)
≈ xyx5y5

(9.1a)
≈ xyxy,

the variety V satisfies the identity xyxy ≈ x2y2. It is then routinely shown that V satisfies
the identities in Condition 15 and so is finitely based.

Case 2: L1
2 /∈ V. If x2, x2y2z2x2, and x2z2y2x2 are distinct elements in the V-free

semigroup FV over X , then they form a subsemigroup of FV isomorphic to L1
2, and this

implies the contradiction L1
2 ∈ V. Therefore these three elements of FV cannot be distinct,

whence V satisfies either x2 ≈ x2y2z2x2, x2 ≈ x2z2y2x2, or x2y2z2x2 ≈ x2z2y2x2; it is easily
seen that any one of the first two identities implies the third identity, so that V satisfies the
third identity. It follows that V satisfies the identity β : xy2z2x ≈ xz2y2x. Since

xyxzx
(9.2b)
≈ xy3xz3x

(9.2d)
≈ xy2xz2yzx

(9.1b)
≈ xy2z2xyzx

β
≈ xz2y2xyzx

(9.2d)
≈ xz3y3x2

(9.2b)
≈ xzyx2

(9.1b)
≈ xzxyx,

the variety V satisfies the identity xyxzx ≈ xzxyx. It is routinely verified that V satisfies the
identities in Condition 12 and so is finitely based.

Case 3: Z2 /∈ V. Then by Lemma 2.1(viii), the variety V satisfies the identity x3 ≈ x2. It
follows that V satisfies the identities in Condition 6 and so is finitely based.
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10. On Condition 20

Let X(10.1) denote the variety defined by the identities

xHx2 ≈ xHx, (10.1a)

x2yxz ≈ x2yz, (10.1b)

xHyKxy ≈ xHyKyx. (10.1c)

Then Condition 20 is equivalent to the following result.

Proposition 10.1. Any subvariety of X(10.1) that does not satisfy the identity

h2xyxy ≈ h2x2y2 (10.2)

is finitely based.

In this section, the following semigroup of order four is required:

P2 = 〈a, b | a2 = ab = a, b2a = b2〉.

Let P1
2 denote the semigroup variety generated by the monoid P 1

2 . It is shown in § 10.3 that
X(10.1) = P1

2 ∨ J. The proof of Proposition 10.1 is then given in § 10.4.

10.1. Some identities satisfied by subvarieties of X(10.1)

Lemma 10.2 [19, Corollary 6.6]. The variety P1
2 is defined by the identities (10.1) and

x2yx ≈ x2y. (10.3)

Lemma 10.3. The identity (10.2) is an exclusion identity for P 1
2 in X(10.1).

Proof. Let V be any subvariety of X(10.1) such that P2 /∈ V. Let
←−
P 2 denote the dual

semigroup of P2. It is routinely shown that A0, B2, and
←−
P 2 do not satisfy the identity (10.1b),

so that A0, B2,
←−
P 2 /∈ V. It follows from Volkov [48, Theorem 2.1] that V satisfies the identity

xyxy ≈ x2y2. (10.4)

The semigroup P2 does not satisfy the identity (10.4) because baba 6= b2a2. Therefore the
identity (10.4) is an exclusion identity for P2 in X(10.1).

Recall that ψ2 : X → X+ denotes the substitution z 7→ h2zh2 for all z ∈ X . By Lemma 2.7,
the identity (xyxy)ψ2 ≈ (x2y2)ψ2 is an exclusion identity for P 1

2 in X(10.1). Since

(xyxy)ψ2 = h2xh4yh4xh4yh2
(10.1c)
≈ h2xh4yh4xh6y

(10.1b)
≈ h2xyxy

and

(x2y2)ψ2 = h2xh4xh4yh4yh2
(10.1c)
≈ h2xh4xh4yh6y

(10.1b)
≈ h2x2y2,

the identity (10.2) is an exclusion identity for P 1
2 in X(10.1).

Lemma 10.4. Let V be any subvariety of X(10.1) such that N1
2 ∈ V and J /∈ V. Then V

satisfies the identity (10.3).
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Proof. Consider the elements a = x2y2, b = x2y, c = x2, and d = bc = x2yx2 in the V-free
semigroup FV. It follows from Lemma 2.1(v) that among these four elements, only b and d
are possibly equal in FV while any other pair of distinct elements are unequal in FV. Suppose
b 6= d in FV. Then {a, b, c, d} constitutes the following subsemigroup S of FV.

S a b c d

a a a a a

b a a d a

c a b c d

d a a d a

The quotient S/{a, d} is isomorphic to J , so that the contradiction J ∈ V is deduced. Thus
the elements b and d must be equal in FV, whence V satisfies the identity x2y ≈ x2yx2. It
follows that V satisfies the identity (10.3).

10.2. A canonical form

In this section, any word w with t = t(w) ∈ sim(w) is said to be in canonical form if

w =

( m∏
i=1

(xiwi)

)
t, (10.5)

where x1, . . . , xm ∈ X and w1, . . . ,wm ∈ X ∗ are such that:
(I) ini(w) = x1 . . . xmt;

(II) wi ∈ {xe11 . . . xeii | e1, . . . , ei ∈ {0, 1}};
(III) con(wi) ∩ con(wj) = ∅ whenever i 6= j.
It follows that
(IV) occ(x,w) 6 2 for any x ∈ X .

Lemma 10.5. Let w be any word with t = t(w) ∈ sim(w). Then there exists some word w
in canonical form with t = t(w) ∈ sim(w) such that the identities (10.1) imply the identity
w ≈ w.

Proof. It suffices to convert w, using the identities (10.1), into a word in canonical form.
Note that if w = axbxcxdt for some a,b, c,d ∈ X ∗, then

w
(10.1a)
≈

{
axbxcdt if c = ∅,

axbx2cxdt
(10.1b)
≈ axbx2cdt

(10.1a)
≈ axbxcdt if c 6= ∅.

Therefore any third or later occurrence of a letter in w can be removed by the identities (10.1).
Hence (IV) is satisfied.

Now the letter t is simple in w, so that ini(w) = x1 . . . xmt for some x1, . . . , xm ∈ X . It is
clear that w can be written in the form (10.5) with (I) satisfied and wi ∈ {x1, . . . , xi}∗ for
all i. It follows from (IV) that (III) is satisfied, and that within each wi, no letter occurs more
than once. Since the letters in each wi are non-first occurrences in w, the identities (10.1c)
can be used to order them according to their indices. Hence (II) is satisfied.

10.3. A basis for P1
2 ∨ J

Lemma 10.6. Let w ≈ w′ be any identity satisfied by N1
2 and let t ∈ X\con(ww′). Suppose

t(w) /∈ sim(w) and t(w′) /∈ sim(w′). Then X(10.1){w ≈ w′} = X(10.1){wt ≈ w′t}.
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Proof. Let σ1 and σ2 denote the identities w ≈ w′ and wt ≈ w′t, respectively. The inclusion
X(10.1){σ1} ⊆ X(10.1){σ2} is obvious. Let x = t(w) and y = t(w′). (Note that x and y need not

be distinct.) The assumptions x /∈ sim(w) and y /∈ sim(w′) imply the deductions w
(10.1a)
≈ wx

and w′
(10.1a)
≈ w′y. It follows from Lemma 2.1(v) that con(w) = con(w′) and sim(w) = sim(w′),

whence y is non-simple in w. Therefore w = aybyc for some a,b, c ∈ X ∗. If c = ∅, then

wx = aybyx
(10.1a)
≈ aybyyx = wyx.

If c 6= ∅, then

wx
(10.1a)
≈ ayby2cx

(10.1b)
≈ ayby2cyx

(10.1a)
≈ aybycyx = wyx.

Therefore the deduction wx
(10.1)
≈ wyx holds in any case. Now since

w
(10.1a)
≈ wx

(10.1)
≈ wyx

(10.1c)
≈ wxy

(10.1a)
≈ wy

σ2≈ w′y
(10.1a)
≈ w′,

the identities {(10.1), σ2} imply σ1. Hence the inclusion X(10.1){σ2} ⊆ X(10.1){σ1} holds.

Proposition 10.7. The equality X(10.1) = P1
2 ∨ J holds.

Proof. It is routinely verified that P 1
2 and J satisfy the identities (10.1), so that the inclusion

P1
2 ∨ J ⊆ X(10.1) holds. Hence P1

2 ∨ J = X(10.1)Σ for some set Σ of identities. Let w ≈ w′ be
any identity from Σ. Since the subsemigroups {1, ba, b2} and {1, b, b2} of P 1

2 are isomorphic
to L1

2 and N1
2 , respectively, it follows from Lemma 2.1 parts (iii) and (v) that

(a) ini(w) = ini(w′) and sim(w) = sim(w′).
By Lemma 2.2 and since J satisfies the identity w ≈ w′, one of the following holds:

(b) t(w) = t(w′) ∈ sim(w) = sim(w′);
(c) t(w) /∈ sim(w) and t(w′) /∈ sim(w′).

If (c) holds, then it follows from Lemma 10.6 that the identity w ≈ w′ in Σ can be replaced
by one that satisfies (b) without changing the definition of X(10.1)Σ. Therefore the identity
w ≈ w′ can be assumed to satisfy both (a) and (b). By Lemma 10.5, the words w and w′ can
be chosen to be in canonical form. It then follows from (a) and (b) that

w =

( m∏
i=1

(xiwi)

)
t and w′ =

( m∏
i=1

(xiw
′
i)

)
t,

where t = t(w) = t(w′). Let ` be the least integer such that con(w`) 6= con(w′`), say k 6 ` is
such that xk ∈ con(w`)\con(w′`). Then occ(xk,w) = 2 by (IV), and w is of the form

w = . . . xkwk . . . x`( . . . xk . . .︸ ︷︷ ︸
w`

) . . . .

It follows from (a) and (IV) that occ(xk,w
′) = 2. But since con(wi) = con(w′i) for all i < `,

the second xk in w′ occurs in w′r for some r > `, whence w′ is of the form

w′ = . . . xkw
′
k . . . x`w

′
` . . . xr( . . . xk . . .︸ ︷︷ ︸

w′r

) . . . .

Let ϕ : X → P 1
2 denote the substitution

z 7→


b if z = xk,

a if z = xr,

1 otherwise.
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Then wϕ = b2 and w′ϕ = ba, which is impossible. Therefore the integer ` does not exist,
whence con(wi) = con(w′i) for all i. By (II), the identity w ≈ w′ is trivial and so is satisfied
by X(10.1). Since w ≈ w′ is arbitrary in Σ, it follows that P1

2 ∨ J = X(10.1)Σ = X(10.1).

10.4. Proof of Proposition 10.1

Let S be any semigroup in X(10.1) that does not satisfy the identity (10.2). By Proposition 10.7,
the variety V generated by S is a subvariety of P1

2 ∨ J. Since S is finitely based if V = P1
2 ∨ J,

it suffices to assume V 6= P1
2 ∨ J, so that either P 1

2 /∈ V or J /∈ V. If P 1
2 /∈ V, then it follows

from Lemma 10.3 that S satisfies the identity (10.2), contradicting the assumption. Hence
P 1

2 ∈ V and J /∈ V. By Lemma 10.4, the variety V satisfies the identity (10.3). It then follows
from Lemma 10.2 that V = P1

2, whence V is finitely based.

Part III. Finite basis property for the sporadic cases

11. A1, B1, B3, D10

This section establishes the finite basis property of the following semigroups.

A1 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 1 1

3 1 1 1 1 1 3

4 1 1 1 3 1 4

5 5 5 5 5 5 5

6 1 2 3 4 5 6

B1 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 1 1

3 1 2 3 4 5 6

4 4 4 4 4 4 4

5 4 4 5 4 4 4

6 4 4 6 4 4 5

B3 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 1 2

3 1 1 1 1 1 2

4 1 1 1 2 1 4

5 5 5 5 5 5 5

6 1 2 3 4 5 6

D10 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 1 2

3 1 1 2 1 2 3

4 4 4 4 4 4 4

5 1 1 2 1 2 3

6 1 2 3 4 5 6

Proposition 11.1. The variety J ∨ L1
2 ∨N1

3 is defined by the identities

x3Hx ≈ x2Hx, (11.1a)

xyxz ≈ x2yz, (11.1b)

xHyKxy ≈ xHyKyx. (11.1c)

The proof of Proposition 11.1 is given in § 11.2.
Let S ∈ {A1,B1,B3,D10}. By Proposition 11.1, it is routinely verified that S ∈ J∨L1

2∨N1
3.

Conversely, the following are isomorphic to J , L1
2, and N1

3 :
• the subsemigroups {1, 2, 6}, {1, 5, 6}, and {1, 3, 4, 6} of A1;
• the subsemigroups {1, 2, 3}, {1, 3, 4}, and {3, 4, 5, 6} of B1;
• the divisor {1, 2, 3, 6}/{1, 2} and the subsemigroups {1, 5, 6} and {1, 2, 4, 6} of B3;
• the divisor {1, 2, 3, 5, 6}/{1, 2, 3} and the subsemigroups {1, 4, 6} and {1, 2, 3, 6} of D10.

Hence the variety generated by S contains J , L1
2, and N1

3 , and so coincides with J∨L1
2 ∨N1

3.
Consequently, S is finitely based by Proposition 11.1.

11.1. Compact and pseudo-compact words

A compact word is a word of the form xe11 . . . xemm , where x1, . . . , xm ∈ X are distinct and
e1, . . . , em ∈ {1, 2, 3}. A pseudo-compact word is a word of the form cxesx, where the following
are satisfied:

(I) c ∈ X ∗ is a compact word;
(II) x ∈ X with e ∈ {1, 2};
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(III) s ∈ X+ is a simple word;

(IV) c, x, and s are pairwise disjoint.
Note that when the very last letter is removed from a pseudo-compact word cxesx, then the
resulting word cxes is compact.

Lemma 11.2. Let w be any word. Then there exists some word w that is compact or pseudo-
compact such that the identities (11.1) imply the identity w ≈ w.

Proof. Generality is not lost by assuming ini(w) = x1 . . . xm. It suffices to convert w, using
the identities (11.1), into a word that is either compact or pseudo-compact. With the exception
of the very last letter of w, any non-first occurrence of a letter x in w can be gathered, using
the identity (11.1b), with the first occurrence of x in w. The resulting word w′ is of one of the
following forms:

(a) xe11 . . . xemm for some e1, . . . , em > 1;
(b) xe11 . . . xemm xk for some k < m and e1, . . . , em > 1.

If w′ is of the form (a), then the identity x4 ≈ x3 from (11.1a) can be used to convert it into
a compact word. Thus assume that w′ is of the form (b), that is,

w′ = c · xekk · x
ek+1

k+1 . . . x
em
m · xk

where c = xe11 . . . x
ek−1

k−1 . If ek+1 = . . . = em = 1, then it is clear that the identities (11.1a) can
be used to convert w′ into a pseudo-compact word. Hence assume that ` ∈ {k + 1, . . . ,m} is
the greatest such that e` > 2. Then

w′ = c · xekk · x
ek+1

k+1 . . . x
e`
` x`+1 . . . xm · xk

(11.1b)
≈ c · xekk · x

ek+1

k+1 . . . x
e`−1
` x`+1 . . . xm · x`xk

(11.1c)
≈ c · xekk · x

ek+1

k+1 . . . x
e`−1
` x`+1 . . . xm · xkx`

(11.1b)
≈ c · xek+1

k · xek+1

k+1 . . . x
e`−1
` x`+1 . . . xm · x`︸ ︷︷ ︸

w′′

,

and the identities (11.1a) can be used to convert w′′ into a pseudo-compact word.

11.2. Proof of Proposition 11.1

It is routinely checked that J , L1
2, and N1

3 satisfy the identities (11.1). Thus it remains to show
that any identity w ≈ w′ satisfied by J , L1

2, and N1
3 is deducible from the identities (11.1).

By Lemma 11.2, the words w and w′ can be chosen to be compact or pseudo-compact. Hence
the following holds by Lemma 2.1 parts (iii) and (vii):

(a) ini(w) = ini(w′);
(b) for each x ∈ X , either occ(x,w) = occ(x,w′) 6 2 or occ(x,w), occ(x,w′) > 3.

It is then easily shown that if w and w′ are both compact, then they are identical. Therefore
it suffices to assume that w is pseudo-compact, say

w = xe11 . . . xemm xey1 . . . ynx

for some distinct letters x1, . . . , xm, x, y1, . . . , yn with m > 0 and n > 1, and some exponents
e1, . . . , em ∈ {1, 2, 3} and e ∈ {1, 2}.

Suppose that w′ is compact, so that by (a),

w′ = x
e′1
1 . . . x

e′m
m xe

′
yf11 . . . yfnn
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for some e′1, . . . , e
′
m, e

′, f1, . . . , fn ∈ {1, 2, 3}. Then f1 = . . . = fn = 1 by (b). But now w ends
with the non-simple letter x while w′ ends with the simple letter yn, contradicting Lemma 2.2.
Therefore w′ must be pseudo-compact, so that by (a),

w′ = x
e′1
1 . . . x

e′m
m xe

′
yf11 . . . yfnn z

for some z ∈ {x1, . . . , xm, x, y1, . . . , yn}. Since occ(y1,w) = . . . = occ(yn,w) = 1, it follows
from (b) that f1 = . . . = fn = 1 and z /∈ {y1, . . . , yn}. Now x is non-simple in w. Therefore,
if z = xi for some i, then the definition of a pseudo-compact word forces the letter x to be
simple in w′, contradicting (b). Hence z = x is the only possibility. It is then easily shown
by (b) that the words w and w′ are identical.

12. A2, B7, B8

This section establishes the finite basis property of the following semigroups.

A2 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 1 1

3 1 1 1 1 2 3

4 4 4 4 4 4 4

5 1 1 1 1 2 3

6 1 2 3 4 5 6

B7 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 1 2

3 1 1 1 1 1 3

4 1 1 1 2 1 4

5 1 1 3 1 5 1

6 1 2 1 4 1 6

B8 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 1 2

3 1 1 1 1 1 3

4 1 1 1 2 1 4

5 1 1 3 1 5 3

6 1 2 1 4 1 6

12.1. Finite basis property of A2

Proposition 12.1. The variety generated by A2 is defined by the identities

x3y ≈ x2y, (12.1a)

xyxz ≈ x2yz, (12.1b)

x2Hy2Kx ≈ x2Hy2Ky. (12.1c)

Lemma 12.2. Suppose that w ≈ w′ is any identity satisfied by A2. Then:
(i) ini(w) = ini(w′);
(ii) sim(w) = sim(w′);

(iii) either |w|, |w′| > 3 or occ(x,w) = occ(x,w′) for any x ∈ X ;
(iv) t(w) ∈ sim(w) if and only if t(w′) ∈ sim(w′).

Proof. This follows from Lemmas 2.1 and 2.2 since the subsemigroups {1, 4, 6}, {1, 3, 6},
{1, 2, 5}, and {1, 2, 6} of A2 are isomorphic to L1

2, N1
2 , N3, and J , respectively.

In this subsection, a word w that contains at least two distinct letters is said to be in
canonical form if

w = xe11 . . . xemm y, (12.2)

where x1, . . . , xm, y ∈ X and e1, . . . , em ∈ {1, 2} satisfy the following:
(I) the letters x1, . . . , xm are distinct while y can be any letter;

(II) if y = xi and ei = 2 for some i > 2, then e1 = . . . = ei−1 = 1.

Lemma 12.3. Let w be any word that contains at least two distinct letters. Then there exists
some word w in canonical form such that the identities (12.1) imply the identity w ≈ w.
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Proof. It suffices to convert w, using the identities (12.1), into a word in canonical form.
Since w contains at least two distinct letters, w = w′y for some w′ ∈ X+ and y ∈ X . Then the
identities {(12.1a), (12.1b)} can be used to convert w into a word of the form (12.2) with (I)
satisfied. Suppose y = xi and ei = 2 for some i > 2. Then w = xe11 . . . x

ei−1

i−1 x
2
ix
ei+1

i+1 . . . x
em
m xi.

If e1 = . . . = ei−1 = 1, then w satisfies (II). Therefore suppose e` = 2 for some least integer
` ∈ {1, . . . , i− 1}. Then

w = x1 . . . x`−1x
2
`x
e`+1

`+1 . . . x
ei−1

i−1 x
2
ix
ei+1

i+1 . . . x
em
m xi

(12.1c)
≈ x1 . . . x`−1x

2
`x
e`+1

`+1 . . . x
ei−1

i−1 x
2
ix
ei+1

i+1 . . . x
em
m x`,

so that (II) is satisfied.

Proof of Proposition 12.1. It is routinely checked that A2 satisfies the identities (12.1).
Therefore it suffices to show that any identity w ≈ w′ satisfied by A2 is implied by the
identities (12.1). If either w or w′ involves only one letter, say con(w) = {x}, then it is
easily shown by Lemma 12.2 parts (i) and (iii) that the identity w ≈ w′ is implied by the
identity (12.1a). Hence assume that w and w′ each contains at least two distinct letters and so,
by Lemma 12.3, can be chosen to be in canonical form. Since ini(w) = ini(w′) by Lemma 12.2(i),

w = xe11 . . . xemm y and w′ = x
e′1
1 . . . x

e′m
m y′.

Case 1: y ∈ sim(w). Then y′ ∈ sim(w′) by Lemma 12.2(iv), and y = y′ by part (i) of the
same lemma. Therefore y, y′ /∈ {x1, . . . , xm}, whence ei = occ(xi,w) and e′i = occ(xi,w

′) for
all i. Now Lemma 12.2(ii) implies ei = e′i for all i. Hence the identity w ≈ w′ is trivial and is
implied by the identities (12.1).

Case 2: y /∈ sim(w). Then y′ /∈ sim(w′) by Lemma 12.2(iv). Seeking a contradiction,
suppose y 6= y′. By symmetry, it suffices to assume y = xi and y′ = xj with i < j. Then

w = xe11 . . . x
ei−1

i−1 · x
ei
i · x

ei+1

i+1 . . . x
ej−1

j−1 · x
ej
j · x

ej+1

j+1 . . . x
em
m · xi

and

w′ = x
e′1
1 . . . x

e′i−1

i−1 · x
e′i
i · x

e′i+1

i+1 . . . x
e′j−1

j−1 · x
e′j
j · x

e′j+1

j+1 . . . x
e′m
m · xj .

Since xi /∈ sim(w), it follows from Lemma 12.2(ii) that xi /∈ sim(w′). Therefore e′i = 2, whence
e′j = 1 by (II). Since xj /∈ sim(w′), it follows from Lemma 12.2(ii) that xj /∈ sim(w),
whence ej = 2. Thus

w = xe11 . . . x
ei−1

i−1 · x
ei
i · x

ei+1

i+1 . . . x
ej−1

j−1 · x
2
j · x

ej+1

j+1 . . . x
em
m · xi

and

w′ = x
e′1
1 . . . x

e′i−1

i−1 · x
2
i · x

e′i+1

i+1 . . . x
e′j−1

j−1 · xj · x
e′j+1

j+1 . . . x
e′m
m · xj .

Let ϕ : X → A2 denote the substitution

z 7→

{
5 if z = xj ,

6 otherwise.

Then wϕ ∈ {6}∗ · 52 · {6}+ = {1} and w′ϕ ∈ {6}∗ · 5 · {6}∗ · 5 = {2}, which is the required
contradiction.

Therefore y = y′ is the only possibility, whence y = y′ = xj for some j, so that

w = xe11 . . . x
ej−1

j−1 · x
ej
j · x

ej+1

j+1 . . . x
em
m · xj
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and

w′ = x
e′1
1 . . . x

e′j−1

j−1 · x
e′j
j · x

e′j+1

j+1 . . . x
e′m
m · xj .

It follows from Lemma 12.2(ii) that (e1, . . . , ej−1, ej+1, . . . , em) = (e′1, . . . , e
′
j−1, e

′
j+1, . . . , e

′
m).

If ej 6= e′j , say (ej , e
′
j) = (2, 1), then

wϕ ∈ {6}∗ · 52 · {6}∗ · 5 = {1} and w′ϕ ∈ {6}∗ · 5 · {6}∗ · 5 = {2},

which is impossible. Therefore ej = e′j , whence the identity w ≈ w′ is trivial and is implied
by the identities (12.1).

12.2. Finite basis property of B8

Proposition 12.4. The variety generated by B8 is defined by the identities

x3Hx ≈ x2Hx, (12.3a)

xHyzKx ≈ xHzyKx, (12.3b)

xHyKxy ≈ xHyKyx, xyHxKy ≈ yxHxKy. (12.3c)

Lemma 12.5. Let S ∈ {B7,B8}. Suppose that w ≈ w′ is any identity satisfied by S. Then
for any x ∈ X , either occ(x,w) = occ(x,w′) 6 2 or occ(x,w), occ(x,w′) > 3.

Proof. This follows from Lemma 2.1(vii) since the subsemigroup {1, 2, 4, 6} of S is isomorphic
to N1

3 .

For the remainder of this section, a non-simple word w is said to be in canonical form if

w = xe00 x
e1
1 . . . xemm y1 . . . ynx0,

where all of the following are satisfied:
(I) x0, x1, . . . , xm are distinct non-simple letters of w in alphabetical order;

(II) e0 ∈ {1, 2} and e1, . . . , em ∈ {2, 3};
(III) y1, . . . , yn are distinct simple letters of w in alphabetical order.
Note that if all letters of the word w are non-simple, then n = 0 and y1 . . . yn = ∅.

Lemma 12.6. Let w be any non-simple word with h(w) = t(w). Then there exists some
word w in canonical form such that the identities (12.3) imply the identity w ≈ w.

Proof. It suffices to convert w, using the identities (12.3), into a word in canonical form.
By assumption, w = xw′x for some w′ ∈ X ∗. Suppose that x, x1, . . . , xm are the non-simple
letters of w and y1, . . . , yn are the simple letters of w. Generality is not lost by assuming that
x1, . . . , xm are in alphabetical order and y1, . . . , yn are in alphabetical order. Since the letters in
the factor w′ of w are sandwiched between two occurrences of x, they can be rearranged by the
identities (12.3b) to produce the word xexe11 . . . xemm y1 . . . ynx, where e+1 = occ(x,w) > 2 and
ei = occ(xi,w) > 2. The identities (12.3a) can then be used to reduce the exponents, so that
e ∈ {1, 2} and e1, . . . , em ∈ {2, 3}. The resulting word is in canonical form if x alphabetically
precedes x1. If x does not alphabetically precede x1, then

xexe11 x
e2
2 . . . xemm y1 . . . ynx

(12.3b)
≈ xexe1−1

1 xe22 . . . xemm y1 . . . ynx1x

(12.3c)
≈ xe1−1

1 xexe22 . . . xemm y1 . . . yn xx1

(12.3b)
≈ xe1−1

1 xe+1xe22 . . . xemm y1 . . . ynx1,
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and the factors xe+1, xe22 , . . . , x
em
m in the latter word can be alphabetically ordered by the

identities (12.3b), resulting in a word in canonical form.

Lemma 12.7. Let w be any connected word. Then there exists some word w in canonical
form such that the identities (12.3) imply the identity w ≈ w.

Proof. It suffices to convert w, using the identities (12.3), into a word in canonical form.
Since w is connected, the letter x = h(w) occurs at least twice in w. Hence w = xuxv for
some u,v ∈ X ∗ such that x /∈ con(v). If v = ∅, then the result follows from Lemma 12.6.
Therefore assume v 6= ∅, whence w = xuxyv′ for some y ∈ X and v′ ∈ X ∗. There are two
cases.

Case 1: y /∈ con(u). Since w is connected, the factors xux and yv′ cannot be disjoint. It

follows that u and v′ share some common letter, whence w = xuxyv′
(12.3b)
≈ xuyxv′.

Case 2: y ∈ con(u). Then clearly w = xuxyv′
(12.3c)
≈ xuyxv′.

In any case, the identities (12.3) can be used to interchange the last x in w with the letter y
that immediately follows it. It is easily seen that the resulting word w′ = xuyxv′ is connected.
The same procedure can be repeated to move the last x in w′ to the right until it becomes the

last letter of the word. Hence w
(12.3)
≈ xuvx and the result now holds by Lemma 12.6.

Proof of Proposition 12.4. It is easily verified that B8 satisfies the identities (12.3) and
is idempotent-separable. Since the subsemigroup {1, 3, 5, 6} of B8 is isomorphic to A0, the
variety generated by B8 contains A0. It follows from Lemma 2.6(i) that B8 has a basis Σ that
consists of identities formed by connected words. Hence {(12.3)}∪Σ is also a basis for B8. By
Lemma 12.7, the words that form the identities in Σ can be chosen to be in canonical form.
Let w ≈ w′ be any identity from Σ. Then

w = xe00 x
e1
1 . . . xemm y1 . . . ynx0 and w′ = zf00 zf11 . . . zfpp t1 . . . tqz0

where e0, f0 ∈ {1, 2} and e1, . . . , em, f1, . . . , fp ∈ {2, 3}. By Lemma 12.5:
(a) w and w′ share the same simple letters, so that (y1, . . . , yn) = (t1, . . . , tq) by (III);
(b) w and w′ share the same non-simple letters, so that (x0, . . . , xm) = (z1, . . . , zp) by (I).

It then follows from (II) and Lemma 12.5 that ei = fi for all i, whence the identity w ≈ w′

is trivial. Since w ≈ w′ is arbitrary in Σ, every identity in Σ is trivial. Consequently, the
identities (12.3) form a basis for B8.

12.3. Finite basis property of B7

Proposition 12.8. The variety generated by B7 is defined by the identities (12.3) and

xHxyKy ≈ xHyxKy. (12.4)

Lemma 12.9. Let w be any product of pairwise disjoint connected words. Then there exists
some word w in canonical form such that the identities {(12.3), (12.4)} imply the identity
w ≈ w.

Proof. By assumption, w = w1 . . .wk for some connected words w1, . . . ,wk that are
pairwise disjoint. It suffices to convert w, using the identities {(12.3), (12.4)}, into a word
in canonical form. By Lemma 12.7, the identities (12.3) can be used to convert each wi into
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a word in canonical form. Therefore wi

(12.3)
≈ xiw

′
ixi for some xi ∈ X and w′i ∈ X ∗. Now

w
(12.3)
≈ x1w

′
1x1 · x2w

′
2x2 · x3w

′
3x3 . . . xk−1w

′
k−1xk−1 · xkw′kxk

(12.4)
≈ x1w

′
1x2 · x1w

′
2x3 · x2w

′
3x4 . . . xk−2w

′
k−1xk · xk−1w

′
kxk︸ ︷︷ ︸

w′

,

where the word w′ is connected. Hence by Lemma 12.7, the identities (12.3) can be used to
convert w′ into a word in canonical form.

Proof of Proposition 12.8. It is easily verified that the semigroup B7 satisfies the identities
{(12.3), (12.4)} and is idempotent-separable. Let V denote the variety generated by B7. Then
B0 ∈ V because the subsemigroup {1, 3, 5, 6} of B7 is isomorphic to B0. The semigroup A0

does not satisfy the identities (12.4) because aabb 6= abab in A0. Therefore A0 /∈ V, and it
follows from Lemma 2.6(ii) that B7 has a basis Σ that consists of identities formed by words
that are products of pairwise disjoint connected words. Hence {(12.3), (12.4)} ∪ Σ is also a
basis for B7. By Lemma 12.9, the words that form the identities in Σ can be chosen to be in
canonical form. Following the arguments in the proof of Proposition 12.4, every identity in Σ
is trivial. Consequently, the identities {(12.3), (12.4)} form a basis for B7.

13. A3, A5, A6, A8, A9, A10, G4, G5

This section establishes the finite basis property of the following semigroups.

A3 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 1 1

3 1 1 3 1 5 6

4 1 2 1 4 1 1

5 5 5 5 5 5 5

6 5 5 6 5 1 3

A5 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 1 1

3 1 1 3 3 3 3

4 1 1 4 4 4 4

5 1 2 3 4 5 6

6 1 2 4 3 6 5

A6 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 1 1

3 1 1 3 3 5 6

4 1 2 3 4 5 6

5 5 5 5 5 5 5

6 5 5 6 6 1 3

A8 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 1 1

3 1 2 3 3 3 3

4 1 2 3 4 5 6

5 1 2 5 5 5 5

6 1 2 5 6 3 4

A9 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 1 1

3 1 2 3 4 5 6

4 1 2 4 3 6 5

5 5 5 5 5 5 5

6 6 6 6 6 6 6

A10 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 1 1

3 1 2 3 4 5 6

4 4 4 4 4 4 4

5 4 4 4 4 4 4

6 4 5 6 1 2 3

G4 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 2 2 2 5 6

3 1 2 2 2 5 6

4 1 2 3 4 5 6

5 5 5 5 5 5 5

6 5 6 6 6 1 2

G5 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 2 2 4 4 6

3 1 2 3 4 5 6

4 6 4 4 2 2 1

5 6 4 4 2 2 1

6 6 6 6 6 6 6

Let O denote the variety generated by the semigroup O in Remark 6.6.

Proposition 13.1. The variety J ∨O is defined by the identities

xHx3 ≈ xHx, (13.1a)

xHx2y ≈ xHy, (13.1b)

xHyKxy ≈ xHyKyx. (13.1c)

The proof of Proposition 13.1 is given in § 13.3.
Let S ∈ {A3,A5,A6,A8,A9,A10,G4,G5}. By Proposition 13.1, it is routinely verified that

S ∈ J ∨O. Conversely, the following are isomorphic to J and O:
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• the subsemigroups {1, 2, 4} and {1, 3, 5, 6} of S′ ∈ {A3,A6};
• the subsemigroups {1, 2, 5} and {3, 4, 5, 6} of A5;
• the subsemigroups {1, 2, 3} and {3, 4, 5, 6} of S′′ ∈ {A8,A9};
• the subsemigroups {1, 2, 3} and {1, 3, 4, 6} of A10;
• the subsemigroups {2, 3, 4} and {1, 2, 5, 6} of G4;
• the divisor {2, 3, 4, 5}/{2, 4} and the subsemigroup {1, 2, 4, 6} of G5.

Hence the variety generated by S contains J and O, and so coincides with J∨O. Consequently,
S is finitely based by Proposition 13.1.

13.1. Identities satisfied by O

Lemma 13.2. Let w ≈ w′ be any identity satisfied by O. Then occ(x, y,w) ≡ occ(x, y,w′)
(mod 2) for any x, y ∈ X .

Proof. Seeking a contradiction, suppose occ(x, y,w) 6≡ occ(x, y,w′) (mod 2) for some letters
x, y ∈ X , say occ(x, y,w) = 2p and occ(x, y,w′) = 2q + 1 for some p, q > 0. Let ϕ : X → O
denote the substitution

z 7→


b if z = x,

a if z = y,

1 otherwise.

Then wϕ = b2p · a . . . = a and w′ϕ = b2q+1 · a . . . = ba give the required contradiction.

Lemma 13.3. Let w ≈ w′ be any identity satisfied by O and let t ∈ X\con(ww′). Suppose
t(w) /∈ sim(w) and t(w′) /∈ sim(w′). Then (J ∨O){w ≈ w′} = (J ∨O){wt ≈ w′t}.

Proof. Let σ1 and σ2 denote the identities w ≈ w′ and wt ≈ w′t, respectively. Then the
inclusion (J ∨O){σ1} ⊆ (J ∨O){σ2} is obvious. Let x = t(w) and y = t(w′). (Note that x
and y need not be distinct.) Since x /∈ sim(w) and y /∈ sim(w′) by assumption, the deductions

w
(13.1a)
≈ wx2 and w′

(13.1a)
≈ w′y2 hold. The subsemigroup {a, ba, 1} of O is isomorphic to L1

2,

so that ini(w) = ini(w′) by Lemma 2.1(iii). Therefore y ∈ con(w) and wx2
(13.1b)
≈ wy2x2. Since

w
(13.1a)
≈ wx2

(13.1b)
≈ wy2x2

(13.1c)
≈ wx2y2

(13.1a)
≈ wy2 σ2≈ w′y2

(13.1a)
≈ w′,

the identities {(13.1), σ2} imply σ1, so the inclusion (J ∨O){σ2} ⊆ (J ∨O){σ1} follows.

13.2. A canonical form

In this section, any word w with t = t(w) ∈ sim(w) is said to be in canonical form if

w =

( m∏
i=1

(xiwi)

)
t, (13.2)

where x1, . . . , xm ∈ X and w1, . . . ,wm ∈ X ∗ are such that:
(I) ini(w) = x1 . . . xmt;

(II) wi ∈ {xe11 . . . xeii | e1, . . . , ei ∈ {0, 1}}.

Lemma 13.4. Let w be any word with t = t(w) ∈ sim(w). Then there exists some word w
in canonical form with t = t(w) ∈ sim(w) such that the identities (13.1) imply the identity
w ≈ w.
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Proof. The letter t is simple in w, so that ini(w) = x1 . . . xmt for some x1, . . . , xm ∈ X . It
is clear that w can be written in the form (13.2) with (I) satisfied and wi ∈ {x1, . . . , xi}∗ for
all i. Since the letters in each wi are non-first occurrences in w, the identities (13.1c) can be
used to order them so that wi ∈ {xe11 . . . xeii | e1, . . . , ei > 0}. The identities {(13.1a), (13.1b)}
can then be used to reduce each exponent ei to a number in {0, 1}. Hence (II) is satisfied.

13.3. Proof of Proposition 13.1

Let X(13.1) denote the variety defined by the identities (13.1). It is routinely checked that
J,O ∈ X(13.1), so that J ∨O = X(13.1)Σ for some set Σ of identities. Let w ≈ w′ be any
identity in Σ. The subsemigroup {a, ba, 1} of O is isomorphic to L1

2, hence by Lemma 2.1(iii),
(a) ini(w) = ini(w′).

Since J satisfies the identity w ≈ w′, it follows from Lemma 2.2 that one of the following
holds:

(b) t(w) ∈ sim(w), t(w′) ∈ sim(w′), and t(w) = t(w′);
(c) t(w) /∈ sim(w) and t(w′) /∈ sim(w′).

If (c) holds, then Lemma 13.3 implies that the identity w ≈ w′ in Σ can be replaced by one
that satisfies (b) without changing the definition of X(13.1)Σ. Therefore the identity w ≈ w′

can be assumed to satisfy both (a) and (b). By Lemma 13.4, the words w and w′ can be
chosen to be in canonical form. It then follows from (a) and (b) that

w =

( m∏
i=1

(xiwi)

)
t and w′ =

( m∏
i=1

(xiw
′
i)

)
t.

Let ` be the least integer such that con(w`) 6= con(w′`), say xk ∈ con(w`)\con(w′`) for some
k 6 `. Then it follows from (II) that wi = w′i for all i < `. But now Lemma 13.2 is violated
since occ(xk, t,w) 6≡ occ(xk, t,w

′) (mod 2) if ` = m, and occ(xk, x`+1,w) 6≡ occ(xk, x`+1,w
′)

(mod 2) if ` < m. Therefore the integer ` does not exist, whence wi = w′i for all i. The identity
w ≈ w′ is thus trivial and is satisfied by X(13.1). Since w ≈ w′ is arbitrary in Σ, it follows
that X(13.1) = X(13.1)Σ = J ∨O.

14. A4, A7, B2, G3

This section establishes the finite basis property of the following semigroups.

A4 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 1 1

3 1 1 3 1 5 6

4 4 4 4 4 4 4

5 1 1 3 6 5 6

6 6 6 6 6 6 6

A7 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 1 1

3 1 2 3 1 5 6

4 4 4 4 4 4 4

5 1 2 3 6 5 6

6 6 6 6 6 6 6

B2 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 1 1

3 3 3 3 3 3 3

4 3 3 3 4 5 6

5 5 5 5 5 5 5

6 5 5 3 4 5 6

G3 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 2 1 2 5 6

3 3 3 3 3 3 3

4 1 2 1 2 5 6

5 1 2 6 2 5 6

6 6 6 6 6 6 6

14.1. Finite basis property of A7

Proposition 14.1. The variety generated by A7 is defined by the identities

x2y ≈ xy, (14.1a)

xyx2 ≈ xyx, (14.1b)

xHyKxy ≈ xHyKy, (14.1c)

xHyKyx ≈ xHyKx. (14.1d)
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Let w be any word such that ini(w) = x0 . . . xm with m > 1. In this section, such a word w
is said to be in α-canonical form if

w = x0

m∏
i=1

(xiwi), (14.2)

where the following are satisfied:
(I) wm ∈ {∅, x0, . . . , xm};

(II) wi ∈ {∅, x0, . . . , xi−1} for each i such that 1 6 i < m.

Lemma 14.2. Let w be any word that contains at least two distinct letters. Then there exists
some word w in α-canonical form such that the identities (14.1) imply the identity w ≈ w.

Proof. It suffices to convert w, using the identities (14.1), into a word in α-canonical
form. Since w contains at least two distinct letters, generality is not lost by assuming
ini(w) = x0 . . . xm with m > 1. Then w can be written in the form w =

∏m
i=0(xiwi) with

wi ∈ {x0, . . . , xi}∗. If w0 is nonempty, then w0 = x0 and the identity (14.1a) can be used to
eliminate w0 = x0 from w. Hence w is of the form (14.2).

Suppose wm 6= ∅. Then wm = z1 . . . zs for some z1, . . . , zs ∈ {x0, . . . , xm} with s > 1.

Hence w = (x0

∏m−1
i=1 (xiwi))xmz1 . . . zs. The letters z1, . . . , zs are non-first occurrences in w.

Therefore if s > 2, then the identities (14.1b)–(14.1d) can be used to eliminate z1, . . . , zs−1

from wm. Hence (I) is satisfied.
Suppose wi 6= ∅ for some i < m. Then wi = y1 . . . yr for some y1, . . . , yr ∈ {x0, . . . , xi} with

r > 1. Hence

w = pxi y1 . . . yr︸ ︷︷ ︸
wi

q

where p = x0

∏i−1
j=1(xjwj) and q =

∏m
j=i+1(xjwj). The letters y1, . . . , yr are non-first

occurrences in w. Therefore if r > 2, then the identities (14.1b)–(14.1d) can be used to

eliminate the letters y1, . . . , yr−1 from wi. Hence w
(14.1)
≈ pxiyrq. If yr = xi, then the

identity (14.1a) can be used to further eliminate yr from wi. Therefore wi is converted into a
word in {∅, x1, . . . , xi−1}, whence (II) is satisfied.

Lemma 14.3. Suppose that w ≈ w′ is any identity satisfied by A7. Then:
(i) ini(w) = ini(w′) and t(w) = t(w′);
(ii) t(w) ∈ sim(w) if and only if t(w′) ∈ sim(w′).

Proof. This follows from Lemmas 2.1 and 2.2 because the subsemigroups {1, 3, 6}, {3, 5},
and {1, 2, 5} of A7 are isomorphic to L1

2, R2, and J , respectively.

Proof of Proposition 14.1. It is routinely checked that A7 satisfies the identities (14.1).
Hence it suffices to show that any identity w ≈ w′ satisfied by A7 is implied by the
identities (14.1). If either w or w′ involves only one letter, say con(w) = {x}, then it is easily
shown by Lemma 14.3 that the identity w ≈ w′ is implied by the identity (14.1a). Therefore
assume that w and w′ each contains at least two distinct letters and so by Lemma 14.2, can
be chosen to be in α-canonical form. Since ini(w) = ini(w′) by Lemma 14.3(i), generality is
not lost by assuming

w = x0

m∏
i=1

(xiwi) and w′ = x0

m∏
i=1

(xiw
′
i) for some m > 1.
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Suppose wm 6= w′m. Then since t(w) = t(w′) by Lemma 14.3(i), it follows from (I) that

(wm,w
′
m) ∈ {(xm, ∅), (∅, xm)}, say (wm,w

′
m) = (xm, ∅). Hence w = (x0

∏m−1
i=1 (xiwi))x

2
m and

w′ = (x0

∏m−1
i=1 (xiw

′
i))xm. But now Lemma 14.3(ii) is violated because t(w) /∈ sim(w)

and t(w′) ∈ sim(w′). Therefore wm = w′m.
Suppose w` 6= w′` for some ` < m, so that w`,w

′
` ∈ {∅, x0, . . . , x`−1} by (II). Then there are

two cases.

Case 1: w` 6= ∅ 6= w′`. Then w` = xj and w′` = xk for some j, k ∈ {0, . . . , `−1} with j 6= k.
By symmetry, it suffices to assume 0 6 j < k < `. Then

w = px`xjq and w′ = p′x`xkq
′,

where p = x0

∏`−1
i=1(xiwi), q =

∏m
i=`+1(xiwi), p′ = x0

∏`−1
i=1(xiw

′
i), and q′ =

∏m
i=`+1(xiw

′
i).

Let ϕ : X → A7 denote the substitution

z 7→


5 if z = xj ,

4 if z = x`+1,

3 otherwise.

Then wϕ 6= w′ϕ because

wϕ = pϕ · x`ϕ · xjϕ · qϕ ∈ {3, 5}∗ · 3 · 5 · 4 . . . = {6}

and

w′ϕ = p′ϕ · x`ϕ · xkϕ · q′ϕ ∈ {3, 5}∗ · 3 · 3 · 4 . . . = {1}.

Case 2: w` = ∅ 6= w′` or w` 6= ∅ = w′`. Then by symmetry, it suffices to assume w` = ∅
and w′` = xj for some j ∈ {0, . . . , `− 1}. Hence

w = px`q and w′ = p′x`xjq
′,

where p, q, p′, and q′ are as defined in Case 1. Therefore wϕ 6= w′ϕ because

wϕ = pϕ · x`ϕ · qϕ ∈ {3, 5}∗ · 3 · 4 . . . = {1}

and

w′ϕ = p′ϕ · x`ϕ · xjϕ · q′ϕ ∈ {3, 5}∗ · 3 · 5 · 4 . . . = {6}.

Since both cases are impossible, the integer ` does not exist. Therefore the identity w ≈ w′

is trivial and so is implied by the identities (14.1).

14.2. Finite basis property of A4, B2, and G3

Proposition 14.4. The variety generated by any S ∈ {A4,B2,G3} is defined by the
identities

x2y ≈ xy, (14.3a)

xy2 ≈ xy, (14.3b)

xHyKxy ≈ xHyKy, (14.3c)

xHyKyx ≈ xHyKx. (14.3d)
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Let w be any word such that ini(w) = x0 . . . xm with m > 1. In this section, such a word w
is said to be in β-canonical form if

w = x0

m∏
i=1

(xiwi), (14.4)

where wi ∈ {∅, x1, . . . , xi−1} for all i.

Lemma 14.5. Let w be any word that contains at least two distinct letters. Then there
exists some word w in β-canonical form such that the identities (14.3) imply the identity
w ≈ w.

Proof. It suffices to convert w, using the identities (14.3), into a word in β-canonical form.
It is easily seen that the identities (14.3) imply the identities (14.1). Therefore by Lemma 14.2,
the identities (14.3) can be used to convert w into a word in α-canonical form, that is, a word
of the form (14.4) such that wm ∈ {∅, x0, . . . , xm} and wi ∈ {∅, x0, . . . , xi−1} for all i with
1 6 i < m. If wm = xm, then the identity (14.3b) can be used to eliminate wm = xm from w.
The resulting word is in β-canonical form.

Lemma 14.6. Let S ∈ {A4,B2,G3}. Suppose that w ≈ w′ is any identity satisfied by S.
Then ini(w) = ini(w′) and t(w) = t(w′).

Proof. The subsemigroups {3, 5} ⊂ A4, {4, 6} ⊂ B2, and {2, 5} ⊂ G3 are isomorphic to R2,
while the subsemigroups {1, 3, 6} ⊂ A4, {3, 4, 5} ⊂ B2, and {1, 2, 6} ⊂ G3 are isomorphic
to L1

2. Hence the result follows from Lemma 2.1 parts (ii) and (iii).

Proof of Proposition 14.4. Let S ∈ {A4,B2,G3}. It is routinely checked that S satisfies
the identities (14.3). Hence it suffices to show that any identity w ≈ w′ satisfied by S is
implied by the identities (14.3). If either w or w′ involves only one letter, say con(w) = {x},
then it is easily shown by Lemma 14.6 that the identity w ≈ w′ is implied by the
identity (14.3a). Therefore assume that w and w′ each contains at least two distinct letters
and so, by Lemma 14.5, can be chosen to be in β-canonical form. Since ini(w) = ini(w′) by
Lemma 14.6, generality is not lost by assuming

w = x0

m∏
i=1

(xiwi) and w′ = x0

m∏
i=1

(xiw
′
i) for some m > 1.

Since t(w) = t(w′) by Lemma 14.6 and wm,w
′
m ∈ {∅, x0, . . . , xm−1}, it follows that

wm = w′m. Suppose w` 6= w′` for some ` < m, so that w`,w
′
` ∈ {∅, x1, . . . , x`−1}. Then

there are two cases.

Case 1: w` 6= ∅ 6= w′`. Then w` = xj and w′` = xk for some j, k ∈ {0, . . . , `−1} with j 6= k.
By symmetry, it suffices to assume 0 6 j < k < `. Then

w = px`xjq and w′ = p′x`xkq
′

where p = x0

∏`−1
i=1(xiwi), q =

∏m
i=`+1(xiwi), p′ = x0

∏`−1
i=1(xiw

′
i), and q′ =

∏m
i=`+1(xiw

′
i).

Let ϕ1, ϕ2, and ϕ3 denote the following substitutions into A4, B2, and G3,
respectively:
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z 7→


5 if z = xj ,

4 if z = x`+1,

3 otherwise;

z 7→


6 if z = xj ,

1 if z = x`+1,

4 otherwise;

z 7→


5 if z = xj ,

3 if z = x`+1,

2 otherwise.

Then wϕ1 6= w′ϕ1, wϕ2 6= w′ϕ2, and wϕ3 6= w′ϕ3 because

wϕ1 = pϕ1 · x`ϕ1 · xjϕ1 · qϕ1 ∈ {3, 5}∗ · 3 · 5 · 4 . . . = {6}

and

w′ϕ1 = p′ϕ1 · x`ϕ1 · xkϕ1 · q′ϕ1 ∈ {3, 5}∗ · 3 · 3 · 4 . . . = {1};

wϕ2 = pϕ2 · x`ϕ2 · xjϕ2 · qϕ2 ∈ {4, 6}∗ · 4 · 6 · 1 . . . = {5}

and

w′ϕ2 = p′ϕ2 · x`ϕ2 · xkϕ2 · q′ϕ2 ∈ {4, 6}∗ · 4 · 4 · 1 . . . = {3};

wϕ3 = pϕ3 · x`ϕ3 · xjϕ3 · qϕ3 ∈ {2, 5}∗ · 2 · 5 · 3 . . . = {6}

and

w′ϕ3 = p′ϕ3 · x`ϕ3 · xkϕ3 · q′ϕ3 ∈ {2, 5}∗ · 2 · 2 · 3 . . . = {1}.

Case 2: w` = ∅ 6= w′` or w` 6= ∅ = w′`. Then by symmetry, it suffices to assume w` = ∅
and w′` = xj for some j ∈ {0, . . . , `− 1}. Hence

w = px`q and w′ = p′x`xjq
′,

where p, q, p′, and q′ are as defined in Case 1. It follows that

wϕ1 = pϕ1 · x`ϕ1 · qϕ1 ∈ {3, 5}∗ · 3 · 4 . . . = {1}

and

w′ϕ1 = p′ϕ1 · x`ϕ1 · xjϕ1 · q′ϕ1 ∈ {3, 5}∗ · 3 · 5 · 4 . . . = {6};

wϕ2 = pϕ2 · x`ϕ2 · qϕ2 ∈ {4, 6}∗ · 4 · 1 . . . = {3}

and

w′ϕ2 = p′ϕ2 · x`ϕ2 · xjϕ2 · q′ϕ2 ∈ {4, 6}∗ · 4 · 6 · 1 . . . = {5};

wϕ3 = pϕ3 · x`ϕ3 · qϕ3 ∈ {2, 5}∗ · 2 · 3 . . . = {1}

and

w′ϕ3 = p′ϕ3 · x`ϕ3 · xjϕ3 · q′ϕ3 ∈ {2, 5}∗ · 2 · 5 · 3 . . . = {6}.

Therefore wϕ1 6= w′ϕ1, wϕ2 6= w′ϕ2, and wϕ3 6= w′ϕ3.

Since both cases are impossible, the integer ` does not exist. Therefore the identity w ≈ w′

is trivial and so is implied by the identities (14.3).

https://doi.org/10.1112/S1461157014000412 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000412


finite basis problem for semigroups of order six 45

15. B4, B5, B6, B9, B10, E1

This section establishes the finite basis property of the following semigroups.

B4 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 1 2

3 1 1 1 1 1 3

4 1 1 1 2 1 4

5 1 1 2 1 1 1

6 1 2 1 4 5 6

B5 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 1 2

3 1 1 1 1 1 3

4 1 1 1 2 1 4

5 1 1 2 1 1 1

6 1 2 2 4 5 6

B6 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 1 2

3 1 1 1 1 1 3

4 1 1 1 2 1 4

5 1 1 2 1 1 2

6 1 2 2 4 5 6

B9 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 1 2

3 1 1 1 1 1 3

4 1 1 1 2 2 4

5 1 1 2 2 2 4

6 1 2 1 4 5 6

B10 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 1 2

3 1 1 1 1 1 3

4 1 1 1 2 2 4

5 1 1 2 2 2 4

6 1 2 2 4 5 6

E1 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 1 2

3 1 1 2 1 2 5

4 1 1 2 2 2 4

5 1 1 2 2 2 5

6 1 2 3 5 5 6

Proposition 15.1. The variety generated by any S ∈ {B4,B5,B6,B9,B10,E1} is defined
by the identities

x2HxKx ≈ xHxKx, xHx2Kx ≈ xHxKx, xHxKx2 ≈ xHxKx, (15.1a)

xHyKxTy ≈ yHxKxTy, xHyKxTy ≈ xHxKyTy, xHyKxTy ≈ xHyKyTx, (15.1b)

x2hyKy ≈ xhxyKy, x2HyKy ≈ xHyKxy, yHx2ky ≈ yHxkxy, (15.1c)

xHxky2 ≈ xHxyky, xHxKy2 ≈ xyHxKy, xhy2Kx ≈ xyhyKx, (15.1d)

hxhykTk ≈ hyhxkTk, kTkxhyh ≈ kTkyhxh, (15.1e)

hxhyh ≈ hyhxh. (15.1f)

The proof of Proposition 15.1 is given in § 15.4.

15.1. Identities satisfied by B4, B5, B6, B9, B10, and E1

For any word w, let conk(w) denote the set of letters that occur exactly k times in w:

conk(w) = {x ∈ X | occ(x,w) = k}.

Let con∞3 (w) =
⋃
k>3 conk(w). Note that con(w) = sim(w) ∪ con2(w) ∪ con∞3 (w) is a disjoint

union.

Lemma 15.2. Let S ∈ {B4,B5,B6,B9,B10,E1}. Suppose that w ≈ w′ is any identity
satisfied by S. Then:

(i) sim(w) = sim(w′), con2(w) = con2(w′), and con∞3 (w) = con∞3 (w′);
(ii) either (a) t(w) ∈ sim(w), t(w′) ∈ sim(w′), and t(w) = t(w′), or (b) t(w) /∈ sim(w) and

t(w′) /∈ sim(w′);
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(iii) either (a) h(w) ∈ sim(w), h(w′) ∈ sim(w′), and h(w) = h(w′), or (b) h(w) /∈ sim(w) and
h(w′) /∈ sim(w′);

(iv) FSS(w) = FSS(w′).

Proof. (i) The subsemigroup {1, 2, 4, 6} of S′ ∈ {B4,B5,B6,B9,B10} and the divisor
{1, 2, 3, 5, 6}/{3, 5} of E1 are isomorphic to N1

3 . Hence the result follows from Lemma 2.1(vii).
(ii) The subsemigroups {1, 5, 6} ⊂ B4 and {1, 5, 6} ⊂ B5 and the quotients B6/{1, 2, 3, 4},

B9/{1, 2, 3, 4}, B10/{1, 2, 3, 4}, and E1/{1, 2, 4, 5} are isomorphic to J . Therefore the result
follows from Lemma 2.2.

(iii) The subsemigroup {1, 3, 6} ⊂ B4 and the quotients B5/{1, 2, 4, 5}, B6/{1, 2, 4, 5},
B9/{1, 2, 4, 5}, B10/{1, 2, 4, 5}, and E1/{1, 2, 3, 5} are isomorphic to the dual semigroup of J .
Therefore the result follows from the dual result of Lemma 2.2.

(iv) The semigroup S does not satisfy the identity (2.3) with n = 3 because

63 · 5 · 63 · 3 · 63 6= 63 · 5 · 3 · 63 in S′ ∈ {B4,B5,B6,B9,B10}

and
63 · 3 · 63 · 4 · 63 6= 63 · 3 · 4 · 63 in E1.

Therefore FSS(w) = FSS(w′) by Lemma 2.10 and part (i).

15.2. α-canonical form

Let w be any word with con2(w) = {x1, . . . , xm} for some m > 1 and con∞3 (w) = ∅. Suppose
that the letters x1, . . . , xm are in alphabetical order. In this section, such a word w is said to
be in α-canonical form if

w = p

( r∏
i=1

(xisixiti)

)( m∏
i=r+1

x2
i

)
q

= p · x1s1x1t1 . . . xrsrxrtr · x2
r+1 . . . x

2
m · q,

where all of the following are satisfied:
(I) r ∈ {0, . . . ,m};

(II) the letters of p,q, tr ∈ X ∗ and s1, . . . , sr, t1, . . . , tr−1 ∈ X+ are simple in w;

(III) if r = m, then q = ∅.
Note the extreme cases:

w =

{
p · x2

1 . . . x
2
m · q if r = 0,

p · x1s1x1t1 . . . xmsmxmtm if r = m.

Lemma 15.3. Let w be any non-simple word such that con∞3 (w) = ∅. Then there exists
some word w in α-canonical form such that the identities (15.1) imply the identity w ≈ w.

Proof. It suffices to convert w, using the identities (15.1), into a word in α-canonical
form. Since w is non-simple, generality is not lost by assuming con2(w) = {x1, . . . , xm} with
x1, . . . , xm in alphabetical order. The identities (15.1b) can be used to interchange any two
occurrences of non-simple letters in w. In particular, the identities (15.1b) can be used to
arrange the non-simple letters of w so that they occur in alphabetical order, that is,

w
(15.1b)
≈ (. . . x1 . . . x1 . . .)(. . . x2 . . . x2 . . .) . . . (. . . xm . . . xm . . .)︸ ︷︷ ︸

w′

.
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Consider the factorization of w′ that displays all occurrences of xi and xi+1 individually:

w′ = axibxicxi+1dxi+1e

where a,b, c,d, e ∈ X ∗. There are two cases.

Case 1: b = ∅ 6= c, that is, the two occurrences of xi are adjacent but the second xi is
not adjacent with the first xi+1. Then the two occurrences of xi can be separated by the
identities (15.1c):

w′ = ax2
i cxi+1dxi+1e

(15.1c)
≈ axicxixi+1dxi+1e.

Case 2: c = ∅ 6= d, that is, the second xi is adjacent with the first xi+1 but the two
occurrences of xi+1 are not adjacent. Then the second xi and the first xi+1 can be separated
by the identities (15.1d):

w′ = axibxixi+1dxi+1e
(15.1d)
≈ axibxidx

2
i+1e.

It is easily seen how the procedures in Cases 1 and 2 can be repeated until w′ is converted
by the identities {(15.1c), (15.1d)} into a word in α-canonical form.

15.3. β-canonical form

Let w be any word with con2(w) = {x1, . . . , xm} for some m > 0 and con∞3 (w) = {y1, . . . , yn}
for some n > 1. Suppose that the letters x1, . . . , xm are in alphabetical order and the letters
y1, . . . , yn are in alphabetical order. In this section, such a word w is said to be in β-canonical
form if

w = px

r∏
i=1

(ysi) = px · ys1 . . .ysr,

where all of the following are satisfied:
(I) r > 1;

(II) the letters of p, sr ∈ X ∗ and s1, . . . , sr−1 ∈ X+ are simple in w;
(III) x = x2

1 . . . x
2
m;

(IV) y = y3
1 . . . y

3
n.

Note that x is empty if m = 0, but y is nonempty because con∞3 (w) 6= ∅.

Lemma 15.4. Let w be any non-simple word such that con∞3 (w) 6= ∅. Then there exists
some word w in β-canonical form such that the identities (15.1) imply the identity w ≈ w.

Proof. It suffices to convert w, using the identities (15.1), into a word in β-canonical form.
Since w is non-simple, generality is not lost by assuming con2(w) = {x1, . . . , xm} with
x1, . . . , xm in alphabetical order, and con∞3 (w) = {y1, . . . , yn} with y1, . . . , yn in alphabetical
order. Then w can be written in the form

w = pw1s1 . . .wrsr,

where (I) and (II) are satisfied and the letters of w1, . . . ,wr ∈ X+ are all non-simple in w.
Let k ∈ {1, . . . , n}. By assumption, yk ∈ con(wi) for some i. Suppose yk /∈ con(wi+1). Then

w = . . .

wi︷ ︸︸ ︷
aykb si ·wi+1si+1 . . . for some a,b ∈ {x1, . . . , xm, y1, . . . , yn}∗

(15.1a)
≈ . . .ay2

kbsi ·wi+1si+1 . . . since occ(yk,w) > 3

(15.1c)
≈ . . .aykbsi · ykwi+1si+1 . . . since h(wi+1) is non-simple in w

= . . .wisi · (ykwi+1)si+1 . . . ,
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that is, wi+1 is converted by the identities {(15.1a), (15.1c)} into ykwi+1. If yk /∈ con(wi−1),
then by a symmetrical argument, wi−1 can be converted by the identities {(15.1a), (15.1d)}
into wi−1yk. Since k is arbitrary in {1, . . . , n}, it is easily seen how this procedure can be
repeated until each wi is converted into a word that contains all the letters y1, . . . , yn. Now for
each i, the letters of wi are non-simple in w and so can be arranged by the identities (15.1b) in
any manner. Hence each wi can be converted by the identities (15.1b) into a word of the form
xiy

e1
1 . . . yenn with e1, . . . , en > 1 and xi ∈ {x1, . . . , xm}∗. Since occ(y1,w), . . . , occ(yn,w) > 3,

the identities (15.1a) can be used to replace each exponent ei by 3. Hence the identities (15.1)
can be used to convert w into the word

w′ = p · x1ys1 · x2ys2 . . .xrysr.

If the factor x2 of w′ is nonempty, then it can be moved to the left by the identities (15.1)
until it immediately follows the factor x1:

w′ = p · x1ys1 ·
x2︷ ︸︸ ︷

z1 . . . zp ys2 . . . for some z1, . . . , zp ∈ {x1, . . . , xm}
(15.1a)
≈ p · x1y

p
1ys1 · z1 . . . zpys2 . . . since y1 = h(y) and occ(y1,w

′) > 3

(15.1b)
≈ p · x1z1 . . . zpys1 · yp1ys2 . . . since y1, z1, . . . , zp are non-simple in w′

(15.1a)
≈ p · x1x2ys1 · ys2 . . . .

By the same argument, if the factor x3 is nonempty, then it can be moved to the left by the
identities (15.1) until it immediately follows the factor x1x2. Continuing in this manner, w′

can be converted by the identities (15.1) into the word

w′′ = p(x1x2 . . .xr) · ys1 · ys2 . . .ysr.

It is easily seen that when converting w into w′′, the number of occurrences of each xi remained
unchanged throughout, that is, occ(xi,x1x2 . . .xr) = occ(xi,w) = 2. Therefore if the letters
of the factor x1x2 . . .xr are alphabetically ordered by the identities (15.1b), then it becomes
x = x2

1 . . . x
2
m. The resulting word is in β-canonical form.

15.4. Proof of Proposition 15.1

Let S ∈ {B4,B5,B6,B9,B10,E1}. It is routinely checked that S satisfies the identities (15.1).
Hence it suffices to show that any identity w ≈ w′ satisfied by S is implied by the
identities (15.1). If either w or w′ is a simple word, then it follows from Lemma 15.2 parts (i)
and (iv) that the identity w ≈ w′ is trivial and so is vacuously implied by the identities (15.1).
Therefore assume that w and w′ are both non-simple words. By Lemma 15.2(i), it can further
be assumed that:

(a) con2(w) = con2(w′) = {x1, . . . , xm} where x1, . . . , xm are in alphabetical order;
(b) con∞3 (w) = con∞3 (w′) = {y1, . . . , yn} where y1, . . . , yn are in alphabetical order.

There are two cases.

Case 1: con∞3 (w) = con∞3 (w′) = ∅. Then by Lemma 15.3, the words w and w′ can be
chosen to be in α-canonical form, whence by (a),

w = p · x1s1x1t1 . . . xrsrxrtr · x2
r+1 . . . x

2
m · q

and
w′ = p′ · x1s

′
1x1t

′
1 . . . xr′s

′
r′xr′t

′
r′ · x2

r′+1 . . . x
2
m · q′.
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Therefore p = p′ and q = q′ by parts (ii)–(iv) of Lemma 15.2, and
(c) {s1, t1, . . . , sr, tr} = {s′1, t′1, . . . , s′r′ , t′r′}

by part (iv) of the same lemma, whence r = r′. Consequently,

w′ = p · x1s
′
1x1t

′
1 . . . xrs

′
rxrt

′
r · x2

r+1 . . . x
2
m · q.

It now follows from (c) that w′ can be converted by the identities (15.1e) into w.

Case 2: con∞3 (w) = con∞3 (w′) 6= ∅. Then by Lemma 15.4, the words w and w′ can be
chosen to be in β-canonical form, whence by (a) and (b),

w = px · ys1 . . .ysr−1 · ysr and w′ = p′x · ys′1 . . .ys′r′−1 · ys′r′

where x = x2
1 . . . x

2
m and y = y3

1 . . . y
3
n. Therefore p = p′ and sr = s′r′ by parts (ii)–(iv) of

Lemma 15.2, and
(d) {s1, . . . , sr−1} = {s′1, . . . , s′r′−1}

by part (iv) of the same lemma, whence r = r′. Consequently,

w′ = px · ys′1 . . .ys′r−1 · ysr.

It now follows from (d) that w′ can be converted by the identity (15.1f) into w.

16. C1, C2, C3, C4, D3, D5

This section establishes the finite basis property of the following semigroups.

C1 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 1 2

3 1 1 1 1 1 3

4 1 1 2 1 1 1

5 5 5 5 5 5 5

6 1 2 1 4 5 6

C2 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 1 2

3 1 1 1 1 1 3

4 1 1 2 1 1 1

5 5 5 5 5 5 5

6 1 2 2 4 5 6

C3 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 1 2

3 1 1 1 1 1 3

4 1 1 2 1 1 2

5 5 5 5 5 5 5

6 1 2 1 4 5 6

C4 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 1 2

3 1 1 1 1 1 3

4 1 1 2 1 1 2

5 5 5 5 5 5 5

6 1 2 2 4 5 6

D3 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 1 2

3 1 1 1 1 2 1

4 4 4 4 4 4 4

5 4 4 4 4 4 5

6 1 2 3 4 4 6

D5 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 1 2

3 1 1 1 1 2 2

4 4 4 4 4 4 4

5 4 4 4 4 4 5

6 1 2 3 4 4 6

Proposition 16.1. The variety generated by any S ∈ {C1,C2,C3,C4,D3,D5} is defined by
the identities

x3 ≈ x2, x2yx ≈ xyx, xyx2 ≈ xyx, (16.1a)

xyxz2 ≈ x2yz2, (16.1b)

x2Hy2 ≈ xHy2x, (16.1c)

xHyKxy ≈ xHyKyx. (16.1d)

The proof of Proposition 16.1 is given in § 16.3.

https://doi.org/10.1112/S1461157014000412 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000412


50 e. w. h. lee and w. t. zhang

16.1. Identities satisfied by C1, C2, C3, C4, D3, and D5

Lemma 16.2. Let S ∈ {C1,C2,C3,C4,D3,D5}. Suppose that w ≈ w′ is any identity satisfied
by S. Then:

(i) ini(w) = ini(w′);
(ii) con(w) = con(w′) and sim(w) = sim(w′);

(iii) t(w) ∈ sim(w) if and only if t(w′) ∈ sim(w′);
(iv) FSS(w) = FSS(w′).

Proof. (i) The subsemigroup {1, 5, 6} of S′ ∈ {C1,C2,C3,C4} and the subsemigroup {1, 4, 6}
of S′′ ∈ {D3,D5} are isomorphic to L1

2. Therefore the result follows from Lemma 2.1(iii).
(ii) This follows from Lemma 2.1(v) since the subsemigroup {1, 2, 6} of S is isomorphic

to N1
2 .

(iii) This follows from Lemma 2.2 since the subsemigroup {1, 4, 6} of S′ ∈ {C1,C2}, the
divisor {1, 2, 4, 6}/{1, 2} of S′′ ∈ {C3,C4}, the subsemigroup {1, 3, 6} of D3, and the divisor
{1, 2, 3, 6}/{1, 2} of D5 are isomorphic to J .

(iv) The semigroup S does not satisfy the identity (2.3) with n = 2 because

62 · 4 · 62 · 3 · 62 6= 62 · 4 · 3 · 62 in S′ ∈ {C1,C2,C3,C4}

and
62 · 3 · 62 · 5 · 62 6= 62 · 3 · 5 · 62 in S′′ ∈ {D3,D4}.

Therefore FSS(w) = FSS(w′) by part (ii) and Lemma 2.10.

16.2. A canonical form

Let w be any non-simple word and let x0 be the first non-simple letter of w. Then there exist
p ∈ X ∗ and q ∈ X+ such that

w = px0q, (16.2)

where the prefix p, if nonempty, consists of simple letters of w. Note that the suffix q is
nonempty since it contains all non-first occurrences of x0. In this section, such a non-simple
word w is said to be in canonical form if

w = px2
0

m∏
i=1

(xeii x
fi
0 ) = px2

0 · x
e1
1 x

f1
0 . . . xemm xfm0 , (16.3)

where all of the following are satisfied:
(I) the letters x0, x1, . . . , xm are all distinct;

(II) e1, . . . , em ∈ {1, 2};
(III) f1, . . . , fm ∈ {0, 2};
(IV) if fi = 2, then ei = ei+1 = 1.
Note that occ(xi,w) = ei for each i ∈ {1, . . . ,m}. Therefore
(V) for each i ∈ {1, . . . ,m}, the letter xi is simple in w if and only if ei = 1.

Lemma 16.3. Let w be any non-simple word. Then there exists some word w in canonical
form such that the identities (16.1) imply the identity w ≈ w.

Proof. It suffices to convert w in (16.2), using the identities (16.1), into a word in canonical
form. Suppose ini(x0q) = x0x1 . . . xm for some m > 0. Then w can be written in the form

w = pxr0

m∏
i=1

(xiwi) = pxr0 · x1w1 . . . xmwm,
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where r > 1 and wi ∈ {x0, . . . , xi}∗. Since the letter x0 is non-simple in w, the identities (16.1a)
can be used to replace the exponent r by 2. For each i, since the letters of wi are non-first
occurrences, the identities (16.1d) can be used to arrange them, within wi, in any order.
Specifically, any occurrence of xi in wi can be moved to the left and grouped with the xi in w
that immediately precedes wi. Hence

w
(16.1d)
≈ px2

0 · x
e1
1 w′1 . . . x

em
m w′m︸ ︷︷ ︸

w′

for some ei > 1 and w′i ∈ {x0, . . . , xi−1}∗.
Consider an arbitrary k ∈ {1, . . . ,m} such that w′k 6= ∅. Then w′k = y1 . . . yn for some

y1, . . . , yn ∈ {x0, . . . , xk−1}. Write

w′ = px2
0 · a · x

ek
k w′k · b

where a =
∏k−1
i=1 (xeii w′i) and b =

∏m
i=k+1(xeii w′i). Since yn is non-simple in w′,

w′
(16.1a)
≈ px2

0 · a · x
ek
k y1 . . . yn−1y

2
n · b

(16.1c)
≈ px0 · a · xekk y1 . . . yn−1y

2
nx0 · b

(16.1a)
≈ px2

0 · a · x
ek
k y1 . . . yn−1ynx

2
0 · b︸ ︷︷ ︸

w′′

.

If the letter yn in w′′ is x0, then it can be eliminated by the first identity from (16.1a). If the
letter yn in w′′ is not x0, then it is one of x1, . . . , xk−1 and hence can be gathered, using the
identity (16.1b), with one of the factors xe11 , . . . , x

ek−1

k−1 in a. In any case, the letter yn in w′′

is eliminated from w′k. Repeat the same argument to eliminate the letters yn−1, yn−2, . . . , y1

from w′k. Hence

w′′
(16.1)
≈ px2

0 · a · x
ek
k x

2
0 · b,

that is, the factor w′k of w is converted into x2
0. Since k ∈ {1, . . . ,m} is arbitrary, the same

argument can be repeated on any w′i that is nonempty. Therefore w can be converted by the
identities (16.1) into the word (16.3) with (I) and (III) satisfied and e1, . . . , em > 1. If ei > 3,
then the identities (16.1a) can be used to reduce ei to 2. Hence (II) is satisfied.

If ei = 2 and fi = 2, then

w = px2
0 . . . x

ei−1

i x
fi−1

0 · x2
ix

2
0 · x

ei+1

i+1 x
fi+1

0 . . .

(16.1c)
≈ px4

0 . . . x
ei−1

i x
fi−1

0 · x2
i · x

ei+1

i+1 x
fi+1

0 . . .

(16.1a)
≈ px2

0 . . . x
ei−1

i x
fi−1

0 · x2
i · x

ei+1

i+1 x
fi+1

0 . . . ,

so that fi is reduced to 0. Similarly, if ei+1 = 2 and fi = 2, then

w = px2
0 . . . x

ei−1

i x
fi−1

0 · xeii x
2
0 · x2

i+1x
fi+1

0 . . .

(16.1b)
≈ px4

0 . . . x
ei−1

i x
fi−1

0 · xeii · x
2
i+1x

fi+1

0 . . .

(16.1a)
≈ px2

0 . . . x
ei−1

i x
fi−1

0 · xeii · x
2
i+1x

fi+1

0 . . . ,

so that fi is reduced to 0. Consequently, (IV) is satisfied.
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16.3. Proof of Proposition 16.1

Let S ∈ {C1,C2,C3,C4,D3,D5}. It is routinely checked that S satisfies the identities (16.1).
Hence it suffices to show that any identity w ≈ w′ satisfied by S is implied by the
identities (16.1). Note that ini(w) = ini(w′) and sim(w) = sim(w′) by Lemma 16.2 parts (i)
and (ii). Therefore if either w or w′ is a simple word, then the identity w ≈ w′ is trivial and so
is vacuously implied by the identities (16.1). Hence assume that w and w′ are both non-simple
words and so, by Lemma 16.3, can be chosen to be in canonical form. Since ini(w) = ini(w′)
and sim(w) = sim(w′), it follows from (V) that

w = px2
0 · x

e1
1 x

f1
0 . . . xemm xfm0 and w′ = px2

0 · x
e1
1 x

f ′1
0 . . . xemm x

f ′m
0 .

Case 1: fm 6= f ′m, say (fm, f
′
m) = (2, 0). Then em = 1 by (IV), so that

w = px2
0 · x

e1
1 x

f1
0 . . . x

em−1

m−1 x
fm−1

0 · xmx2
0 and w′ = px2

0 · x
e1
1 x

f ′1
0 . . . x

em−1

m−1 x
f ′m−1

0 · xm.

But t(w) = x0 /∈ sim(w) and t(w′) = xm ∈ sim(w′) violate Lemma 16.2(iii).

Case 2: fi 6= f ′i for some i < m, say (fi, f
′
i) = (2, 0). Then ei = ei+1 = 1 by (IV), so that

w = px2
0 · x

e1
1 x

f1
0 . . . xix

2
0 · xi+1x

fi+1

0 . . . and w′ = px2
0 · x

e1
1 x

f ′1
0 . . . xi · xi+1x

f ′i+1

0 . . . .

But xixi+1 /∈ FSS(w) and xixi+1 ∈ FSS(w′) violate Lemma 16.2(iv).

Since both cases are impossible, fi = f ′i for all i. Therefore the identity w ≈ w′ is trivial
and so is implied by the identities (16.1).

17. C5, C6, C10, D1

This section establishes the finite basis property of the following semigroups.

C5 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 1 2

3 1 1 1 1 1 3

4 1 1 2 1 2 1

5 1 1 2 1 2 3

6 1 2 1 4 4 6

C6 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 1 2

3 1 1 1 1 1 3

4 1 1 2 1 2 2

5 1 1 2 1 2 3

6 1 2 2 4 4 6

C10 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 1 2

3 1 1 1 1 1 3

4 1 1 3 4 5 4

5 1 3 3 4 5 4

6 1 1 3 4 5 6

D1 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 1 2

3 1 1 1 1 1 3

4 1 1 3 4 5 5

5 1 3 3 4 5 5

6 1 3 3 4 5 6

17.1. Finite basis property of C5 and C6

Proposition 17.1. The variety generated by S ∈ {C5,C6} is defined by the identities

x2yx ≈ xyx, xyx2 ≈ xyx, (17.1a)

x2Hy2 ≈ y2Hx2, (17.1b)

x3Hy2 ≈ y2Hx3, (17.1c)

x3Hy3 ≈ y3Hx3, (17.1d)

x3yh2 ≈ x3yx3h2, (17.1e)

h2yx3 ≈ h2x3yx3, (17.1f)
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h2x2yk2 ≈ h2yx2k2, (17.1g)

hxhyh ≈ hyhxh, (17.1h)

h2xk2yt2 ≈ h2yk2xt2. (17.1i)

A non-simple letter x of a word w is said to be restricted if w = ax2b for some a,b ∈ X ∗
such that x /∈ con(ab); in this case, x2 is called a restricted square of w. A non-simple letter
that is not restricted is said to be unrestricted. For any word w, let res(w) denote the set of
restricted letters of w and let unres(w) denote the set of unrestricted letters of w. Note that
the disjoint union res(w) ∪ unres(w) coincides with the set of non-simple letters of w.

Lemma 17.2. Let S ∈ {C5,C6}. Suppose that w ≈ w′ is any identity satisfied by S. Then:
(i) con(w) = con(w′) and sim(w) = sim(w′);
(ii) either (a) t(w) ∈ sim(w), t(w′) ∈ sim(w′), and t(w) = t(w′), or (b) t(w) /∈ sim(w) and

t(w′) /∈ sim(w′);
(iii) either (a) h(w) ∈ sim(w), h(w′) ∈ sim(w′), and h(w) = h(w′), or (b) h(w) /∈ sim(w) and

h(w′) /∈ sim(w′);
(iv) res(w) = res(w′) and unres(w) = unres(w′);
(v) FSS(w) = FSS(w′).

Proof. (i) This follows from Lemma 2.1(v) since the subsemigroup {1, 2, 6} of S is isomorphic
to N1

2 .
(ii) This follows from Lemma 2.2 since the subsemigroup {1, 4, 6} of C5 and the divisor
{1, 2, 4, 6}/{1, 2} of C6 are isomorphic to J .

(iii) This follows from the dual result of Lemma 2.2 since the subsemigroup {1, 3, 6} of C5

and the divisor {1, 2, 3, 6}/{1, 2} of C6 are isomorphic to the dual semigroup of J .
(iv) By part (i), the set of non-simple letters of w coincides with the set of non-simple

letters of w′. Therefore it suffices to verify that res(w) = res(w′). Suppose x ∈ res(w). Then
w = ax2b for some a,b ∈ X ∗ such that x /∈ con(ab). Let ϕ : X → S denote the substitution

z 7→

{
5 if z = x,

6 otherwise.

Then wϕ = . . . 52 . . . = 2. By part (i), the letter x is non-simple in w′, so occ(x,w′) = k > 2.
If two occurrences of x in w′ sandwich some other letter, say w′ = cxdxe for some c, e ∈ X ∗
and d ∈ X+ such that x /∈ con(d), then w′ϕ = . . . 5 · 6 · 5 . . . = 1 is a contradiction. Therefore
all k occurrences of x form the factor xk in w′, whence w′ = fxkg for some f ,g ∈ X ∗ such
that x /∈ con(fg). If k > 3, then w′ϕ = . . . 5k . . . = 1 is a contradiction. It follows that
k = 2 and x ∈ res(w′). Consequently, the inclusion res(w) ⊆ res(w′) holds. The inclusion
res(w′) ⊆ res(w) holds by symmetry.

(v) The identity (2.3) with n = 3 is not satisfied by S since 63 · 4 · 63 · 3 · 63 6= 63 · 4 · 3 · 63.
Therefore FSS(w) = FSS(w′) by Lemma 2.10 and part (i).

Let w be any word with res(w) = {x1, . . . , xm} for some m > 1 and unres(w) = ∅. Suppose
that the letters x1, . . . , xm are in alphabetical order. In this subsection, such a word w is said
to be in α-canonical form if

w = p

( r∏
i=1

(x2
i si)

)( m∏
i=r+1

x2
i

)
q

= p · x2
1s1 . . . x

2
rsr · x2

r+1 . . . x
2
m · q,

where all of the following are satisfied:
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(I) r ∈ {0, . . . ,m};
(II) the letters of p,q ∈ X ∗ and s1, . . . , sr ∈ X+ are simple in w;

(III) if r = m, then q = ∅.
Note the extreme cases:

w =

{
p · x2

1 . . . x
2
m · q if r = 0,

p · x2
1s1 . . . x

2
msm if r = m.

Lemma 17.3. Let w be any non-simple word such that unres(w) = ∅. Then there exists
some word w in α-canonical form such that the identities (17.1) imply the identity w ≈ w.

Proof. It suffices to convert w, using the identities (17.1), into a word in α-canonical form.
Generality is not lost by assuming res(w) = {x1, . . . , xm} with x1, . . . , xm in alphabetical order.
Hence w is a product, in some order, of the restricted squares x2

1, . . . , x
2
m and some simple

letters. The identities (17.1b) can be used to arrange these restricted squares so that they
appear in alphabetical order, that is,

w
(17.1b)
≈ . . . x2

1 . . . x
2
2 . . . x

2
m . . .︸ ︷︷ ︸

w′

∈ X ∗x2
1X ∗x2

2X ∗ . . .X ∗x2
mX ∗.

If the squares x2
i and x2

i+1 are adjacent but the squares x2
i+1 and x2

i+2 are not adjacent, so
that w′ = ax2

ix
2
i+1bx

2
i+2c for some a, c ∈ X ∗ and b ∈ X+, then the squares x2

i and x2
i+1 can

be separated by the identity (17.1g):

w′ = ax2
ix

2
i+1bx

2
i+2c

(17.1g)
≈ ax2

ibx
2
i+1x

2
i+2c.

It is easily seen how this procedure can be repeated until w′ is converted by the identity (17.1g)
into a word in α-canonical form.

Let w be any word with res(w) = {x1, . . . , xm} for some m > 0 and unres(w) = {y1, . . . , yn}
for some n > 1. Suppose that the letters x1, . . . , xm are in alphabetical order and the letters
y1, . . . , yn are in alphabetical order. In this subsection, such a word w is said to be in β-
canonical form if

w = px

r∏
i=1

(ysi) = px · ys1 . . .ysr,

where all of the following are satisfied:
(I) r > 1;

(II) the letters of p, sr ∈ X ∗ and s1, . . . , sr−1 ∈ X+ are simple in w;
(III) x = x2

1 . . . x
2
m;

(IV) y = y3
1 . . . y

3
n.

Note that x is empty if m = 0, but y is nonempty because unres(w) 6= ∅.

Lemma 17.4. Let w be any non-simple word such that unres(w) 6= ∅. Then there exists
some word w in β-canonical form such that the identities (17.1) imply the identity w ≈ w.

Proof. It suffices to convert w, using the identities (17.1), into a word in β-canonical form.
Since w is non-simple, generality is not lost by assuming res(w) = {x1, . . . , xm} with x1, . . . , xm
in alphabetical order, and unres(w) = {y1, . . . , yn} with y1, . . . , yn in alphabetical order.
Then w can be written in the form

w = pw1s1 . . .wrsr,
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where (I) and (II) are satisfied and the letters of w1, . . . ,wr ∈ X+ are all non-simple in w.
The identities (17.1a) can be used to replace each unrestricted letter yi by y3

i . Hence it can
further be assumed that wi ∈ {x2

1, . . . , x
2
m, y

3
1 , . . . , y

3
n}+ for all i.

Let k ∈ {1, . . . , n}. By assumption, y3
k is a factor of some wi, so that wi = ay3

kb for some
a,b ∈ {x2

1, . . . , x
2
m, y

3
1 , . . . , y

3
n}∗. Suppose that y3

k is not a factor of wi+1. Let h = h(wi+1).
Then wi+1 begins with h2 or h3 depending on whether or not h is restricted. In any case,
wi+1 = h2w′i+1 for some w′i+1 ∈ X ∗. Hence

w = . . .

wi︷ ︸︸ ︷
ay3
kb si ·

wi+1︷ ︸︸ ︷
h2w′i+1 si+1 . . .

(17.1e)
≈ . . .ay3

kbsi · y3
kh

2w′i+1si+1 . . .

= . . .wisi · (y3
kwi+1)si+1 . . . ,

that is, wi+1 is converted by the identity (17.1e) into y3
kwi+1. If y3

k is not a factor of wi−1,
then by a symmetrical argument, wi−1 can be converted by the identity (17.1f) into wi−1y

3
k.

Since k is arbitrary in {1, . . . , n}, it is easily seen how this procedure can be repeated until
(a) every wi is converted into a word that contains all the factors y3

1 , . . . , y
3
n.

Now the letters x1, . . . , xm are restricted, so that each of the restricted squares x2
1, . . . , x

2
m

occurs precisely once in w as a factor of some wi. The identities {(17.1b), (17.1c), (17.1g)}
can thus be used to move the squares x2

1, . . . , x
2
m to the left until they are grouped with w1.

Therefore in view of (a):
(b) w1 is converted into a product involving x2

1, . . . , x
2
m, y

3
1 , . . . , y

3
n;

(c) each of w2, . . . ,wr is converted into a product involving only y3
1 , . . . , y

3
n.

It then easily follows from (b) and (c) that the identities (17.1a)–(17.1d) can be used to
convert w1 into xy, and every one of w2, . . . ,wr to y. Hence (III) and (IV) are satisfied, and
the resulting word is in β-canonical form.

Proof of Proposition 17.1. Let S ∈ {C5,C6}. It is routinely checked that S satisfies the
identities (17.1). Hence it suffices to show that any identity w ≈ w′ satisfied by S is implied
by the identities (17.1). If either w or w′ is a simple word, then it follows from Lemma 17.2
parts (i) and (v) that the identity w ≈ w′ is trivial and so is vacuously implied by (17.1).
Therefore assume that w and w′ are both non-simple words. By Lemma 17.2 parts (i) and (iv),
it can further be assumed that:

(a) res(w) = res(w′) = {x1, . . . , xm} where x1, . . . , xm are in alphabetical order;
(b) unres(w) = unres(w′) = {y1, . . . , yn} where y1, . . . , yn are in alphabetical order.

There are two cases.

Case 1: unres(w) = unres(w′) = ∅. Then by Lemma 17.3, the words w and w′ can be
chosen to be in α-canonical form, whence by (a),

w = p · x2
1s1 . . . x

2
rsr · x2

r+1 . . . x
2
m · q and w′ = p′ · x2

1s
′
1 . . . x

2
r′s
′
r′ · x2

r′+1 . . . x
2
m · q′.

Therefore p = p′ and q = q′ by parts (ii), (iii), and (v) of Lemma 17.2, and
(c) {s1, . . . , sr} = {s′1, . . . , s′r′}

by part (v) of the same lemma, whence r = r′. Thus w′ = p · x2
1s
′
1 . . . x

2
rs
′
r · x2

r+1 . . . x
2
m · q. It

now follows from (c) that w′ can be converted by the identity (17.1i) into w.

Case 2: unres(w) = unres(w′) 6= ∅. Then by Lemma 17.4, the words w and w′ can be
chosen to be in β-canonical form, whence by (a) and (b),

w = px · ys1 . . .ysr−1 · ysr and w′ = p′x · ys′1 . . .ys′r′−1 · ys′r′
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where x = x2
1 . . . x

2
m and y = y3

1 . . . y
3
n. Therefore p = p′ and sr = s′r′ by parts (ii), (iii),

and (v) of Lemma 17.2, and
(d) {s1, . . . , sr−1} = {s′1, . . . , s′r′−1}

by part (v) of the same lemma, whence r = r′. Thus w′ = px · ys′1 . . .ys′r−1 · ysr. It now
follows from (d) that w′ can be converted by the identity (17.1h) into w.

17.2. Finite basis property of C10 and D1

Proposition 17.5. The variety generated by S ∈ {C10,D1} is defined by the identities

x3 ≈ x2, x2yx ≈ xyx, xyx2 ≈ xyx, (17.2a)

x2y2z2 ≈ y2x2z2, (17.2b)

x2Hy2 ≈ yx2Hy, (17.2c)

xyHxKy ≈ yxHxKy. (17.2d)

For any word w, let FLS(w) denote the set of factors of w of length two that begin with the
last occurrence of some non-simple letter and end with a simple letter:

FLS(w) = {xy ∈ X 2 | w ∈ X ∗xy(X\{x})∗, x /∈ sim(w), y ∈ sim(w)}.

Lemma 17.6. Let S ∈ {C10,D1}. Suppose that w ≈ w′ is any identity satisfied by S. Then:
(i) t(w) = t(w′);
(ii) con(w) = con(w′) and sim(w) = sim(w′);
(iii) for any x ∈ con(w) = con(w′) and y ∈ sim(w) = sim(w′), the conditions x ≺w y and

x ≺w′ y are equivalent;
(iv) wsim = w′sim;
(v) FLS(w) = FLS(w′);

(vi) FSS(w) = FSS(w′).

Proof. The subsemigroup {4, 5} of S is isomorphic to R2, so part (i) holds by Lemma 2.1(ii).
Parts (ii)–(iv) hold by Lemma 2.3 because the subsemigroup {1, 3, 4, 6} of C10 and the divisor
{1, 3, 4, 5, 6}/{4, 5} of D1 are isomorphic to J1.

(v) Suppose FLS(w) 6= FLS(w′), say xy ∈ FLS(w)\FLS(w′). Then
(a) w = axyb for some a,b ∈ X ∗ such that x ∈ con(a)\con(b) and y /∈ con(ab).

By part (ii), the letter x is non-simple in both w and w′, while the letter y is simple in both w
and w′. Further, since x ≺w y, it follows from part (iii) that x ≺w′ y. Hence

(b) w′ = a′tyb′ for some t ∈ X and some a′,b′ ∈ X ∗ such that x ∈ con(a′)\con(tb′) and
y /∈ con(a′tb′).

Let ϕ1 and ϕ2 denote the following substitutions into C10 and D1, respectively:

z 7→


5 if z = x,

2 if z = y,

6 otherwise;

z 7→


4 if z = x,

2 if z = y,

6 otherwise.

Then aϕ1 ∈ {5, 6}+ ⊆ {4, 5, 6} and bϕ1 ∈ {6}∗ by (a), so that

wϕ1 = aϕ1 · 5 · 2 · bϕ1 = 3 and w′ϕ1 = . . . 6 · 2 . . . = 1,

and a′ϕ2 ∈ {4, 6}+ ⊆ {4, 5, 6} and b′ϕ2 ∈ {6}∗ by (b), so that

w′ϕ2 = a′ϕ2 · 6 · 2 · b′ϕ2 = 3 and wϕ2 = . . . 4 · 2 . . . = 1.

Both of these are impossible. Hence FLS(w) = FLS(w′).
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(vi) Suppose FSS(w) 6= FSS(w′), say xy ∈ FSS(w)\FSS(w′). Then it is easily seen from
part (ii) that xy ∈ FLS(xw)\FLS(xw′). It then follows from part (v) that S does not satisfy
the identity xw ≈ xw′, which is impossible.

Let w be any non-simple word with distinct non-simple letters x1, . . . , xr. In this subsection,
such a word is said to be in canonical form if

w =

m∏
i=1

(siwi), (17.3)

where all of the following are satisfied:
(I) the letters of s1 ∈ X ∗ and s2, . . . , sm ∈ X+ are simple in w;

(II) w1, . . . ,wm−1 ∈ X+ and wm ∈ X ∗ are such that

w1, . . . ,wm ∈ {y2
1 . . . y

2
` | y1, . . . , y` are distinct in {x1, . . . , xr} with ` > 0};

(III) con(w1) ⊇ . . . ⊇ con(wm).

Lemma 17.7. Let w be any non-simple word. Then there exists some word w in canonical
form such that the identities (17.2) imply the identity w ≈ w.

Proof. It suffices to convert w, using the identities (17.2), into a word in canonical form.
Clearly w can be written in the form (17.3) with (I) satisfied, w1, . . . ,wm−1 ∈ {x1, . . . , xr}+,
and wm ∈ {x1, . . . , xr}∗. If y ∈ con(wi+1)\con(wi), say wi+1 = ayb for some a,b ∈ X ∗, then
the identities (17.2) can be used to convert wi into ywi:

w = . . . siwi · si+1wi+1 . . .
(17.2a)
≈ . . . si(h(wi))

2wi · si+1ay
2b . . .

(17.2c)
≈ . . . siy(h(wi))

2wi · si+1ayb . . .
(17.2a)
≈ . . . si(ywi) · si+1wi+1 . . . .

Hence (III) is satisfied by applying the identities (17.2).

Choose any k ∈ {1, . . . ,m}. It is convenient to let p =
∏k−1
i=1 (siwi) and q =

∏m
i=k+1(siwi),

so that w = pskwkq. Suppose t = t(wk) and con(wk) = {y1, . . . , y`, t} ⊆ {x1, . . . , xr}. Let ϕ
denote the substitution x 7→ x2 for all x ∈ X . Since the letters of wk are non-simple in w,

w
(17.2a)
≈ psk(wkϕ)q

(17.2b)
≈ psky

2e1
1 . . . y2e`

` t2eq for some e1, . . . , e`, e > 1

(17.2a)
≈ psky

2
1 . . . y

2
` t

2q.

Hence wk satisfies (II).

Lemma 17.8. Let S ∈ {C10,D1}. Suppose that S satisfies an identity w ≈ w′, where

w =

m∏
i=1

(siwi) and w′ =

m∏
i=1

(siw
′
i)

are in canonical form. Then con(wi) = con(w′i) for all i.

Proof. First note that
⋃m
i=1 con(wi) =

⋃m
i=1 con(w′i) holds by Lemma 17.6(ii). Suppose

con(w1) 6= con(w′1), say x ∈ con(w1)\con(w′1). Since the letter x is non-simple in w by (II), it
is also non-simple in w′ by Lemma 17.6(ii). Hence by (II), there exists some i > 1 such that
x ∈ con(w′i). But then (III) implies x ∈ con(w′1), contradicting the assumption. Therefore
con(w1) = con(w′1).
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Now suppose con(wk) 6= con(w′k) for some k > 1, say x ∈ con(wk)\con(w′k). Then (III)
implies x ∈ con(w1 . . .wk) and x /∈ con(w′k . . .w

′
m), whence x 6≺w h(sk) and x ≺w′ h(sk). But

this violates Lemma 17.6(iii).

Lemma 17.9. Let S ∈ {C10,D1}. Suppose that S satisfies an identity w ≈ w′, where

w =

m∏
i=1

(siwi) and w′ =

m∏
i=1

(siw
′
i)

are in canonical form. Then the identities (17.2) imply the identity w ≈ w′.

Proof. It suffices to show that for any k ∈ {1, . . . ,m}, the identities (17.2) can be used to
convert the factor wk of w into w′k. For convenience, write

w = pskwkq and w′ = p′skw
′
kq
′

where p =
∏k−1
i=1 (siwi), q =

∏m
i=k+1(siwi), p′ =

∏k−1
i=1 (siw

′
i), and q′ =

∏m
i=k+1(siw

′
i). Then

Lemma 17.8 and the assumption of this lemma imply
(a) con(wk) = con(w′k) ⊆ {x1, . . . , xr},
(b) con(q) = con(q′),

and con(p) = con(p′). There are two cases.

Case 1: t(wk) = t(w′k) = t. By (a) and (II), there exist distinct y1, . . . , y` ∈ {x1, . . . , xr}
with ` > 0 such that wk = y2

1 . . . y
2
` t

2 and w′k = y2
1π . . . y

2
`πt

2, where π is some permutation on
{1, . . . , `}. Then

w = psky
2
1 . . . y

2
` t

2q
(17.2b)
≈ psky

2
1π . . . y

2
`πt

2q = pskw
′
kq.

Case 2: t(wk) = t 6= t′ = t(w′k). Since t(wm) = t(w) = t(w′) = t(w′m) by Lemma 17.6(i),
it follows that k < m and q 6= ∅. Recall that FLS(w) = FLS(w′) by Lemma 17.6(v). Hence if

(c) the last occurrence of t in wk is the last occurrence of t in w,
so that t h(sk+1) ∈ FLS(w), then t h(sk+1) ∈ FLS(w′) is a contradiction because the letter in w′

that immediately precedes the simple letter h(sk+1) is t′ = t(w′k). By symmetry, the same
contradiction is obtained if

(d) the last occurrence of t′ in w′k is the last occurrence of t′ in w′.
Therefore neither (c) nor (d) holds, whence t, t′ ∈ con(q) by (b). Now by (a) and (II), there
exist distinct letters y1, . . . , y`, z1, . . . , zs ∈ {x1, . . . , xr}, where `, s > 0, such that

wk = y2
1 . . . y

2
` (t′)2z2

1 . . . z
2
s t

2

and w′k is a product of y2
1 , . . . , y

2
` , z

2
1 , . . . , z

2
s , t

2, (t′)2 in some order ending with (t′)2. Then

w = psky
2
1 . . . y

2
` (t′)2z2

1 . . . z
2
s t

2q
(17.2b)
≈ psky

2
1 . . . y

2
` z

2
1 . . . z

2
s(t′)2t2q

(17.2d)
≈ psk y

2
1 . . . y

2
` z

2
1 . . . z

2
s t

2(t′)2︸ ︷︷ ︸
u

q because t, t′ ∈ con(q).

Since con(u) = con(w′k) and t(u) = t(w′k), the procedure in Case 1 can be repeated to give

pskuq
(17.2)
≈ pskw

′
kq.

Proof of Proposition 17.5. Let S ∈ {C10,D1}. It is routinely checked that S satisfies the
identities (17.2). Hence it suffices to show that any identity w ≈ w′ satisfied by S is implied
by the identities (17.2). If either w or w′ is a simple word, then it follows from Lemma 17.6
parts (ii) and (iv) that the identity w ≈ w′ is trivial and so is vacuously implied by (17.2).
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Therefore assume that w and w′ are both non-simple and so by Lemma 17.7, can be chosen
to be in canonical form. Hence

w =

m∏
i=1

(siwi) and w′ =

m′∏
i=1

(s′iw
′
i).

Since s1 . . . sm = wsim = w′sim = s′1 . . . s
′
m′ by Lemma 17.6(iv), it follows from Lemma 17.6(vi)

that m = m′ and si = s′i for all i, that is, w′ =
∏m
i=1(siw

′
i). By Lemma 17.9, the

identities (17.2) imply the identity w ≈ w′.

18. C7

This section establishes the finite basis property of the following semigroup.

C7 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 1 2

3 1 1 1 1 1 3

4 1 1 2 1 4 1

5 1 1 3 1 5 1

6 1 2 1 4 1 6

Proposition 18.1. The variety generated by C7 is defined by the identities

x3 ≈ x2, x2yx ≈ xyx, xyx2 ≈ xyx, (18.1a)

x2y2 ≈ y2x2, (18.1b)

hx2yh ≈ hyx2h, (18.1c)

hxhyh ≈ hyhxh, (18.1d)

xHyKxTy ≈ xHyKxTyx, (18.1e)

xHyKxTy ≈ yxHyKxTy. (18.1f)

The proof of Proposition 18.1 is given in § 18.3.

18.1. A canonical form

Lemma 18.2. Let w = s1w1s2 with s1, s2 ∈ X ∗ and w1 ∈ X+. Suppose that the letters of w1

are non-simple in w with con(w1) = {x1, . . . , xr}. Then for any permutation π on {1, . . . , r},
the identities (18.1) imply the identity

s1w1s2 ≈ s1x
2
1π . . . x

2
rπs2. (18.2)

Proof. Suppose w1 = y1 . . . ym where y1, . . . , ym ∈ {x1, . . . , xr}. Then since y1, . . . , ym are
non-simple letters in w,

s1w1s2

(18.1a)
≈ s1y

2
1 . . . y

2
ms2

(18.1b)
≈ s1x

2e1
1π . . . x2er

rπ s2 for some e1, . . . , er > 1

(18.1a)
≈ s1x

2
1π . . . x

2
rπs2.

Therefore the identities (18.1) imply the identity (18.2).

Corollary 18.3. Suppose that w and w′ are any words such that con(w) = con(w′) and
sim(w) = sim(w′) = ∅. Then the identities (18.1) imply the identity w ≈ w′.
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Lemma 18.4. Let w = s1w1s2w2s3 where the letters of s1, s3 ∈ X ∗ and s2 ∈ X+ are simple
in w and the letters of w1,w2 ∈ X+ are non-simple in w. Suppose con(w1) ∩ con(w2) 6= ∅.
Then the identities (18.1) imply the identity

s1w1s2w2s3 ≈ s1w1w2s2w1w2s3. (18.3)

Proof. Generality is not lost by assuming

con(w1) = {x1, . . . , xk, y1, . . . , ym} and con(w2) = {x1, . . . , xk, z1, . . . , zn},

where k > 1 and m,n > 0 with yi 6= zj for all i and j. For brevity, write y = y2
1 . . . y

2
m and

z = z2
1 . . . z

2
n. Then

s1w1s2w2s3

(18.2)
≈ s1 · x2

1 . . . x
2
ky · s2 · x2

1 . . . x
2
k−1x

2
kz · s3

(18.2)
≈ s1 · yx2

1 . . . x
2
ky

2 · s2 · zx2
1 . . . x

2
k−1x

2
kz

2 · s3

(18.1c)
≈ s1 · yx2

1 . . . x
2
k · s2 · zx2

1 . . . x
2
k−1y

2x2
kz

2 · s3

(18.1b)
≈ s1 · yx2

1 . . . x
2
k · s2 · zx2

1 . . . x
2
k−1y

2z2x2
k · s3

(18.1c)
≈ s1 · yx2

1 . . . x
2
kz

2 · s2 · zx2
1 . . . x

2
k−1y

2x2
k · s3

(18.2)
≈ s1 · x2

1 . . . x
2
kyz · s2 · x2

1 . . . x
2
kyz · s3

(18.2)
≈ s1w1w2s2w1w2s3.

Therefore the identities (18.1) imply the identity (18.3).

Let w be any non-simple word such that sim(w) 6= ∅ and h(w), t(w) /∈ sim(w), and let
x1, . . . , xr be the distinct non-simple letters of w listed in alphabetical order. In this section,
such a word w is said to be in canonical form if

w = w0

m∏
i=1

(siwi)

for some m > 1, where the following are satisfied:
(I) the letters of s1, . . . , sm ∈ X+ are simple in w;

(II) w0, . . . ,wm ∈ {x2
n1
. . . x2

nk
| 1 6 n1 < . . . < nk 6 r and k > 1};

(III) if i 6= j, then either wi = wj or con(wi) ∩ con(wj) = ∅;
(IV) if wi = wk and wj = w` where i < j < k < `, then wi = wj = wk = w`.

Lemma 18.5. Let w be any non-simple word such that sim(w) 6= ∅. Suppose that h(w) and
t(w) are non-simple letters of w. Then there exists some word w in canonical form such that
the identities (18.1) imply the identity w ≈ w.

Proof. Suppose that x1, . . . , xr are the distinct non-simple letters of w listed in alphabetical
order. By Lemmas 18.2 and 18.4, it suffices to convert w, using the identities (18.1)–(18.3),
into a word in canonical form. It is easily seen that w can be written as a word of the form
w = w0

∏m
i=1(siwi) with (I) satisfied and wi ∈ {x1, . . . , xr}+. The letters of wi are non-simple

in w, so that (II) is satisfied by applying the identity (18.2).
Suppose that the factors wi and wj , where i < j, do not satisfy (III). Then wi 6= wj and

con(wi) ∩ con(wj) 6= ∅. Generality is not lost by assuming con(wiwj) = {xn1
, . . . , xnk

} where
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1 6 n1 < . . . < nk 6 r. Since

w = . . . siwi . . . sjwj . . . (the prefix . . . si is empty if i = 0)

(18.3)
≈ . . . siwiwj . . . sjwiwj . . .

(18.2)
≈ . . . si(x

2
n1
. . . x2

nk
) . . . sj(x

2
n1
. . . x2

nk
) . . . ,

the factors wi and wj are converted by the identities {(18.2), (18.3)} into the same word
x2
n1
. . . x2

nk
. Hence (III) is satisfied.

Suppose that wi, wj , wk, and w`, where i < j < k < `, violate (IV). Then wi = wk = a
and wj = w` = b with a 6= b. Generality is not lost by assuming con(ab) = {xn1

, . . . , xnk
}

where 1 6 n1 < . . . < nk 6 r. Then

w = . . . siwi . . . sjwj . . . skwk . . . s`w` . . . (the prefix . . . si is empty if i = 0)

= . . . sia . . . sjb . . . ska . . . s`b . . .

(18.1e)
≈ . . . sia . . . sjb . . . ska . . . s`ba . . .

(18.1f)
≈ . . . siba . . . sjb . . . ska . . . s`ba . . .

(18.3)
≈ . . . sibab . . . sjbab . . . ska . . . s`ba . . . since con(ba) ∩ con(b) 6= ∅

(18.3)
≈ . . . sibab . . . sjbab . . . skaba . . . s`aba . . . since con(a) ∩ con(ba) 6= ∅

(18.2)
≈ . . . sic . . . sjc . . . skc . . . s`c . . . where c = x2

n1
. . . x2

nk
.

Hence the factors wi, wj , wk and w` are converted by the identities (18.1)–(18.3) into the
same word c, whence (IV) is no longer violated.

Lemma 18.6. Let w be any product of pairwise disjoint connected words with sim(w) 6= ∅.
Then there exists some connected word w = w0

∏m
i=1(siwi) in canonical form, with w0 = wm,

such that the identities (18.1) imply the identity w ≈ w.

Proof. By Lemmas 18.2 and 18.4, it suffices to convert w, using the identities (18.1)–(18.3),
into a connected word in canonical form. First suppose that w is a single connected word
with sim(w) 6= ∅. Then there exists a sequence h(w) = x1, x2, . . . , xm = t(w) of non-simple
letters of w occurring in an overlapping pattern such that the first xi+1 occurs between two
occurrences of xi and the last xi+1 occurs to the right of all occurrences of xi. This sequence
can be chosen to have minimal length among all such sequences, so that

w = x1 p1 x2 p2 x1 q1 x3 p3 x2 q2 x4 p4 x3 q3 . . . qm−1 xm

for some p1, . . . ,pm,q1, . . . ,qm−1 ∈ X ∗. (Note that the factor pi follows the first xi, the
factor qi follows the last xi, and at least one simple letter of w belongs to some pi or qi.)
Then

w
(18.1e)
≈ x1 p1 x2 p2 x1 q1 x3 p3 x2x1 q2 x4 p4 x3 q3 . . . qm−1 xm

(18.1e)
≈ x1 p1 x2 p2 x1 q1 x3 p3 x2x1 q2 x4 p4 x3x1 q3 . . . qm−1 xm

...

(18.1e)
≈ x1 p1 x2 p2 x1 q1 x3 p3 x2x1 q2 x4 p4 x3x1 q3 . . . qm−1 xmx1︸ ︷︷ ︸

w′

,
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where w′ is a word that satisfies sim(w′) 6= ∅ and h(w′) = t(w′). Repeat the proof of
Lemma 18.5 to convert w′, using the identities (18.1)–(18.3), into a word w = w0

∏m
i=1(siwi)

in canonical form. The letter x1 is easily seen to belong to both w0 and wm, so that w0 = wm

by (III). It follows that w is connected.
Now suppose that w is a product of pairwise disjoint connected words with sim(w) 6= ∅.

Then w = c1 . . . cn where c1, . . . , cn are pairwise disjoint connected words. For each i, since ci
is connected, the letters hi = h(ci) and ti = t(ci) are non-simple in ci. Therefore

w
(18.1a)
≈ h2

1c1t
2
1 · h2

2c2t
2
2 · h2

3c3t
2
3 . . . h

2
n−1cn−1t

2
n−1 · h2

ncnt
2
n

(18.1b)
≈ h2

1c1h
2
2 · t21c2h

2
3 · t22c3h

2
4 . . . t

2
n−2cn−1h

2
n · t2n−1cnt

2
n︸ ︷︷ ︸

w′′

,

that is, the word w is converted by the identities (18.1) into the connected word w′′ with
sim(w′′) 6= ∅. The procedure in the previous paragraph can then be repeated to convert w′′

into a word with the required properties.

18.2. Identities satisfied by C7

Lemma 18.7. Suppose that w ≈ w′ is any identity satisfied by C7. Then:
(i) con(w) = con(w′) and sim(w) = sim(w′);
(ii) FSS(w) = FSS(w′).

Proof. (i) This follows from Lemma 2.1(v) because the subsemigroup {1, 2, 6} of C7 is
isomorphic to N1

2 .
(ii) Since 62 · 4 · 62 · 3 · 62 6= 62 · 4 · 3 · 62 in C7, the identity (2.3) with n = 2 is not satisfied

by C7. Therefore FSS(w) = FSS(w′) by Lemma 2.10 and part (i).

For any word

w = w0

m∏
i=1

(siwi) (18.4)

in canonical form, it is convenient to call s1, . . . , sm the maximal simple factors of w, and call
w0, . . . ,wm the maximal non-simple factors of w. Recall from (III) that any two maximal
non-simple factors of w are either identical or disjoint.

For any distinct maximal non-simple factors a and b of the word w in (18.4), write a bw b
to indicate that within w, all occurrences of a are sandwiched between two occurrences of b.
Note that if a bw b, then (IV) implies that no occurrence of b is sandwiched between any two
occurrences of a.

Lemma 18.8. Suppose that w ≈ w′ is any identity satisfied by C7, where

w = w0

m∏
i=1

(siwi) and w′ = w′0

m′∏
i=1

(s′iw
′
i)

are in canonical form. Then:
(i) m = m′;
(ii) (s1, . . . , sm) = (s′1π, . . . , s

′
mπ) for some permutation π on {1, . . . ,m};

(iii) (w0, . . . ,wm) = (w′0τ , . . . ,w
′
mτ ) for some permutation τ on {0, . . . ,m};

(iv) siwj is a factor of w if and only if siwj is a factor of w′;
(v) wisj is a factor of w if and only if wisj is a factor of w′.
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Further, if the words w and w′ are connected, then
(vi) w0 = wm = w′0 = w′m.

Proof. Parts (i) and (ii) follow from Lemma 18.7.
Suppose that x2 and y2 are factors of different maximal non-simple factors of w. Generality

is not lost by assuming that x2 is a factor of a and y2 is a factor of b with b 6bw a. Let p
be the least integer such that wp = a and let q be the greatest integer such that wq = a.
If wi = b for some i with p < i < q, then it follows from (IV) that all occurrences of b
are sandwiched between wp = a and wq = a, whence the contradiction b bw a is deduced.
Therefore b /∈ {wp, . . . ,wq}, so that b ∈ {w0, . . . ,wp−1} ∪ {wq+1, . . . ,wm}, whence (p, q) 6=
(0,m). Let ϕ1 : X → C7 denote the substitution

z 7→


4 if z = h(sp),

3 if z = t(sq+1),

5 if z ∈ con(spwpsp+1wp+1 . . . sqwqsq+1) and z 6= h(sp), t(sq+1),

6 otherwise.

(Note that sp = ∅ if p = 0, and sq+1 = ∅ if q = m.) If p = 0 and q < m, then

wϕ1 =

(
w0

q∏
i=1

(siwi)

)
ϕ1 · sq+1ϕ1 ·

(
wq+1

m∏
i=q+2

(siwi)

)
ϕ1

= (5 . . . 5) · (5 . . . 5 · 3) · (6 . . . 6) = 3.

If 0 < p and q = m, then

wϕ1 =

(
w0

p−1∏
i=1

(siwi)

)
ϕ1 · spϕ1 ·

(
wp

m∏
i=p+1

(siwi)

)
ϕ1

= (6 . . . 6) · (4 · 5 . . . 5) · (5 . . . 5) = 4.

If 0 < p and q < m, then

wϕ1 =

(
w0

p−1∏
i=1

(siwi)

)
ϕ1 · spϕ1 ·

(
wp

q∏
i=p+1

(siwi)

)
ϕ1 · sq+1ϕ1 ·

(
wq+1

m∏
i=q+2

(siwi)

)
ϕ1

= (6 . . . 6) · (4 · 5 . . . 5) · (5 . . . 5) · (5 . . . 5 · 3) · (6 . . . 6) = 2.

Therefore wϕ1 6= 1. Now it follows from Lemma 18.7(i), (I), and (II) that x2 and y2 are
factors of w′. If x2 and y2 are factors of the same maximal non-simple factor of w′, say
w′k = . . . x2 . . . y2 . . . , then

w′ϕ1 ∈ . . . {5, 6}∗ · 52 · {5, 6}∗ · 62 · {5, 6}∗︸ ︷︷ ︸
w′kϕ1

. . . = {1}

is a contradiction. Therefore x2 and y2 are factors of different maximal non-simple factors
of w′. By symmetry, if x2 and y2 are factors of different maximal non-simple factors of w′,
then they are factors of different maximal non-simple factors of w. Consequently,

(a) x2 and y2 are factors of the same wi if and only if x2 and y2 are factors of the same w′j .

Let x2y2 be a factor of some wi. Then wi = . . . x2y2 . . . and x alphabetically precedes y
by (II). By (a), the words x2 and y2 are factors of some w′j . Suppose that x2y2 is not a

factor of w′j . Then w′j = . . . x2 · z2
1z

2
2 . . . z

2
k · y2 . . . for some letters z1, z2, . . . , zk such that
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x, z1, z2, . . . , zk, y are in alphabetical order. By (II), the letter z1 cannot belong to wi, so
that x2 and z2

1 are factors of different maximal non-simple factors of w. But this contradicts (a)
since x2 and z2

1 are factors of w′j . Therefore x2y2 is a factor of w′j . By symmetry, if x2y2 is a

factor of some w′j , then it is a factor of some wi. Consequently, x2y2 is a factor of some wi

if and only if x2y2 is a factor of some w′j . It then follows from Lemma 18.7(i), (I), and (II)
that w and w′ share the same set of maximal non-simple factors, that is,

(b)
⋃m
i=0{wi} =

⋃m
i=0{w′i}.

Let sia be a factor of w and sib be a factor of w′, where a,b ∈
⋃m
i=0{wi}. Suppose a 6= b.

Choose any letter z /∈ con(w) = con(w′) that alphabetically precedes all of x1, . . . , xr. Let ϕ2

denote the substitution t(si) 7→ t(si)z
2. Then wϕ2 = . . . z2a . . . and w′ϕ2 = . . . z2b . . . .

Following the proof of Lemma 18.6, the words wϕ2 and w′ϕ2 can be converted by the
identities (18.1) into words wϕ1 and w′ϕ2 in canonical form. Since the identities (18.1) are
satisfied by C7, the identity wϕ2 ≈ w′ϕ2 is also satisfied by C7. It is easily seen that wϕ2 is
obtained from w by replacing all occurrences of a with z2a, while w′ϕ2 is obtained from w′

by replacing all occurrences of b with z2b. It follows that wϕ2 and w′ϕ2 do not share the
same maximal non-simple factors, and this contradicts the result obtained in the previous
paragraph. Therefore a = b. Consequently, for any a ∈

⋃m
i=0{wi} =

⋃m
i=0{w′i},

(c) sia is a factor of w if and only if sia is a factor of w′.
By a symmetrical argument,

(d) asi is a factor of w if and only if asi is a factor of w′.
Parts (iii)–(v) now follow from (b)–(d).

Finally, suppose that w and w′ are connected. Then w0 = wm and w′0 = w′m by Lemma 18.6.
Suppose a = w0 = wm and b = w′0 = w′m with a 6= b. Then by picking any distinct letters
x, y, z /∈ con(w) = con(w′), the words w̃ = xywzx and w̃′ = xyw′zx are in canonical form
such that the identity w̃ ≈ w̃′ is satisfied by C7. Now y ∈ sim(w̃) = sim(w̃′) and ya is a factor
of w̃ that is not a factor of w̃′. But this is impossible by part (iv). Therefore a = b, so that
part (vi) holds.

Lemma 18.9. The semigroup C7 has a basis of the form {(18.1)} ∪ Σ, where Σ is some set
of identities formed by connected words in canonical form.

Proof. It is easily verified that C7 satisfies the identities (18.1) and is idempotent-separable.
Let V denote the variety generated by C7. Then B0 ∈ V because the subsemigroup {1, 3, 5, 6}
of C7 is isomorphic to B0. The semigroup A0 does not satisfy the identity (18.1b) because
a2b2 6= b2a2 in A0. Therefore A0 /∈ V, and it follows from Lemma 2.6(ii) that C7 has a basis Σ
that consists of identities formed by words that are products of pairwise disjoint connected
words. Hence {(18.1)} ∪ Σ is also a basis for C7.

Let w ≈ w′ be any identity in Σ. Then con(w) = con(w′) and sim(w) = sim(w′) by
Lemma 18.7(i). If sim(w) = sim(w′) = ∅, then by Corollary 18.3, the identity w ≈ w′ is implied
by the identities (18.1) and hence is redundant in the basis of C7. Therefore it can further be
assumed that sim(w) = sim(w′) 6= ∅. By Lemma 18.6, there exist connected words w and w′

in canonical form such that the identities (18.1) imply the identities w ≈ w and w′ ≈ w′.
Hence the sets {(18.1),w ≈ w′} and {(18.1),w ≈ w′} define the same variety.

Now since the identity w ≈ w′ is arbitrary in Σ, the construction of w ≈ w′ from w ≈ w′

in the preceding paragraph can be repeated on every other identity in Σ to obtain the set
Σ = {w ≈ w′ |w ≈ w′ ∈ Σ} with the property that {(18.1)} ∪ Σ is a basis for C7.

18.3. Proof of Proposition 18.1

By Lemma 18.9, the semigroup C7 has a basis of the form {(18.1)}∪Σ where Σ is some set of
identities formed by connected words in canonical form. Let w ≈ w′ be any identity from Σ.
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Then by Lemma 18.8 parts (i)–(iii),

w = w0

m∏
i=1

(siwi) and w′ = w′0

m∏
i=1

(s′iw
′
i)

where:
• (s1, . . . , sm) = (s′1π, . . . , s

′
mπ) for some permutation π on {1, . . . ,m};

• (w0, . . . ,wm) = (w′0τ , . . . ,w
′
mτ ) for some permutation τ on {0, . . . ,m}.

In the remainder of this proof, it is shown that the identities (18.1) can be used to convert w′

into w. It follows that the identity w ≈ w′ is implied by the identities (18.1). Consequently,
the identities (18.1) imply every identity in Σ and so constitute a basis for C7.

Since the words w and w′ are connected, w0 = w′0 by Lemma 18.8(vi). Suppose that ` > 1
is such that (s1w1, . . . , s`−1w`−1) = (s′1w

′
1, . . . , s

′
`−1w

′
`−1) and s`w` 6= s′`w

′
`. Then

w = has`w` . . . smwm and w′ = has′`w
′
` . . . s

′
mw′m (18.5)

where h = w0(
∏`−2
i=1(siwi))s`−1 = w′0(

∏`−2
i=1(s′iw

′
i))s
′
`−1 and a = w`−1 = w′`−1. (Note that if

` = 1, then h = ∅ and a = w0 = w′0.) If s` 6= s′`, then it is shown in Lemma 18.10 below that
the identities (18.1) can be used to convert w′ into a word w′ = has` . . . in canonical form.
Hence it can be assumed that s` = s′`. It then follows from Lemma 18.8(iv) that w` = w′`,
whence s`w` = s′`w

′
`. The argument in this paragraph can be repeated until w′ is converted

by the identities (18.1) into w.

Lemma 18.10. Suppose s` 6= s′` in (18.5). Then the identities (18.1) can be used to convert w′

in (18.5) into has` . . . in canonical form.

Proof. By assumption, as`w` 6= as′`w
′
` where as`w` is a factor of w and as′`w

′
` is a factor

of w′. Then it follows from Lemma 18.8 parts (iv) and (v) that:
• as′`w

′
` is a factor of w, say as′`w

′
` = wpsp+1wp+1 for some p > `;

• as`w` is a factor of w′, say as`w` = w′qs
′
q+1w

′
q+1 for some q > `.

Thus

w = ha · s`w` · s`+1w`+1 . . . sp

wp·sp+1wp+1︷ ︸︸ ︷
a · s′`w′` · sp+2wp+2 . . . smwm

and

w′ = ha · s′`w′` · s′`+1w
′
`+1 . . . s

′
q a · s`w`︸ ︷︷ ︸

w′q·s′q+1w
′
q+1

· s′q+2w
′
q+2 . . . s

′
mw′m.

Note that by (I),
(a) con(h) ∩ con(s`s`+1 . . . sp) = ∅.

Further, the maximal non-simple factors w′`,w
′
`+1, . . . ,w

′
q−1 of w′ are sandwiched between

w′`−1 = a and w′q = a. Therefore by (IV),
(b) {w′`,w′`+1, . . . ,w

′
q−1} ∩ {w′q+1,w

′
q+2, . . . ,w

′
m} is either {a} or empty.

Suppose that
(†) a is not equal to any of the factors w′q+1,w

′
q+2, . . . ,w

′
m of w′.

By Lemma 18.8(iv), the factor spa of w is a factor of w′. Hence by (a) and (†),
(c) sp is a factor of s′`w

′
` · s′`+1w

′
`+1 . . . s

′
qw
′
q.

By Lemma 18.8(v), the factor wp−1sp of w is a factor of w′. Hence (c) implies that
(d) wp−1 is a factor of a · s′`w′` · s′`+1w

′
`+1 . . . s

′
qw
′
q.

If wp−1 = a, then (†) implies that
(e) wp−1 is not equal to any of w′q+1,w

′
q+2, . . . ,w

′
m.
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If wp−1 6= a, then a = w′q and (d) imply wp−1 ∈ {w′`,w′`+1, . . . ,w
′
q−1}, which together

with (b), imply (e). Therefore (e) holds in any case. By Lemma 18.8(iv), the factor sp−1wp−1

of w is a factor of w′. Hence (d) and (e) imply that the factor sp−1 of w is a factor of
s′`w

′
` · s′`+1w

′
`+1 . . . s

′
qw
′
q.

The argument in the previous paragraph can be repeated to deduce that the factors
sp−2, sp−3, . . . , s`+1 of w are factors of s′`w

′
` · s′`+1w

′
`+1 . . . s

′
qw
′
q. It follows that s`w`s`+1

is not a factor of w′. However, s`w`s`+1 is a factor of w, whence Lemma 18.8 parts (iv)
and (v) are violated. Therefore the assumption (†) cannot hold, whence a = w′j for some
j ∈ {q + 1, q + 2, . . . ,m}. Consequently,

w′ = h(a · s′`w′` . . . s′q · a · s`w` . . . s
′
j · a)s′j+1w

′
j+1 . . . s

′
mw′m

(18.1d)
≈ h(a · s`w` . . . s

′
j · a · s′`w′` . . . s′q · a)s′j+1w

′
j+1 . . . s

′
mw′m,

where the latter word begins with has` and is in canonical form.

19. C8

This section establishes the finite basis property of the following semigroup.

C8 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 1 2

3 1 1 1 1 1 3

4 1 1 2 1 4 1

5 1 1 3 1 5 1

6 1 2 2 4 4 6

Proposition 19.1. The variety generated by C8 is defined by the identities

x3 ≈ x2, x2yx ≈ xyx, xyx2 ≈ xyx, (19.1a)

hxhyh ≈ hyhxh, (19.1b)

xHyKxTy ≈ xHxKxTy2x, (19.1c)

xHy2x ≈ y2xHy2x, xHy2xKx ≈ xHy2xKy2x, (19.1d)

xHyKxy ≈ xHyKyx, xHyKxy ≈ yHxKxy, (19.1e)

xHy2xKy ≈ xHy2xKx, yHxKy2x ≈ xHxKy2x, xHyKy2x ≈ xHxKy2x. (19.1f)

The proof of Proposition 19.1 is given in § 19.4.

19.1. Z-perfect words

For any nonempty set Z = {z1, . . . , zr} of letters where z1, . . . , zr are in alphabetical order,
define the perfect Z-square to be the word

Z� = (z1 . . . zr)
2.

More generally, a perfect square is a perfect Z-square for some nonempty set Z of letters.
Let w be any non-simple word and let Z be some nonempty set of non-simple letters of w.

Then w can be written in the form

w = a0

n∏
i=1

(ziai) = a0z1a1z2a2 . . . znan
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for some n > 1, where a0,an ∈ X ∗, a1, . . . ,an−1 ∈ X+, and z1, . . . , zn ∈ Z+ are such that
con(a0 . . .an)∩Z = ∅. In this case, the words z1, . . . , zn are called maximal Z-factors of w. If
z1 = . . . = zn = Z�, then w is said to be Z-perfect.

For any distinct non-simple letters x and y of a word w, write x ∼w y to indicate that any
one of the following conditions holds:
(C1) w ∈ X ∗xX ∗yxX ∗ or w ∈ X ∗yX ∗xyX ∗;
(C2) w ∈ X ∗xX ∗yX ∗xX ∗yX ∗ or w ∈ X ∗yX ∗xX ∗yX ∗xX ∗.
Note that x ∼w y if and only if y ∼w x.

Lemma 19.2. Let w be any non-simple word. Suppose that z1 and z2 are any distinct non-
simple letters of w such that z1 ∼w z2. Then there exists some {z1, z2}-perfect word w′ such
that the identities (19.1) imply the identity w ≈ w′.

Proof. By assumption,

w = a0

n∏
i=1

(ziai) = a0z1a1z2a2 . . . znan

for some n > 1, where a0,an ∈ X ∗, a1, . . . ,an−1 ∈ X+, and z1, . . . , zn ∈ {z1, z2}+ are such that
z1, z2 /∈ con(a0 . . .an). Generality is not lost by assuming that z1 alphabetically precedes z2,
so that {z1, z2}� = (z1z2)2. Then it suffices to convert w, using the identities (19.1), into the
{z1, z2}-perfect word

w′ = a0

n∏
i=1

(
(z1z2)2ai

)
.

There are two cases depending on whether (C1) or (C2) holds.

Case 1: (C1) holds. Then w ∈ X ∗zjX ∗zkzjX ∗ where {zj , zk} = {z1, z2}.
1.1. n = 1. Then

w = a0 bzjczkzjd︸ ︷︷ ︸
z1

a1

for some b, c,d ∈ {z1, z2}∗. Hence

w
(19.1a)
≈ a0bzjcz

2
kzjda1

(19.1f)
≈ a0z

|b|
j zjz

|c|
j z2

kzjz
|d|
j a1

(19.1a)
≈ a0zjz

2
kzja1

(19.1e)
≈ a0(z1z2)2a1 = w′.

1.2. n > 2. Then

w = a0

(`−1∏
i=1

(ziai)

)
bzkzjc︸ ︷︷ ︸

z`

a`

( n∏
i=`+1

(ziai)

)

for some b, c ∈ {z1, z2}∗ with a0(
∏`−1
i=1(ziai))b ∈ X ∗zjX ∗. Hence

w
(19.1a)
≈ a0

(`−1∏
i=1

(ziai)

)
bz2

kzjca`

( n∏
i=`+1

(ziai)

)
(19.1f)
≈ a0

(`−1∏
i=1

(z
|zi|
j ai)

)
z
|b|
j z2

kzjz
|c|
j a`

( n∏
i=`+1

(z
|zi|
j ai)

)
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(19.1d)
≈ a0

(`−1∏
i=1

(z2
kz
|zi|
j ai)

)
z
|b|
j z2

kzjz
|c|
j a`

( n∏
i=`+1

(z2
kz
|zi|
j ai)

)
(19.1e)
≈ a0

(`−1∏
i=1

(z2
kz
|zi|
j ai)

)
z2
kz
|b|+1+|c|
j a`

( n∏
i=`+1

(z2
kz
|zi|
j ai)

)
(19.1a)
≈ a0

(`−1∏
i=1

(z2
kz

2
jai)

)
z2
kz

2
ja`

( n∏
i=`+1

(z2
kz

2
jai)

)
(19.1e)
≈ a0

(`−1∏
i=1

((z1z2)2ai)

)
(z1z2)2a`

( n∏
i=`+1

((z1z2)2ai)

)
= w′.

Case 2: (C2) holds. Then w ∈ X ∗zjX ∗zkX ∗zjX ∗zkX ∗ where {zj , zk} = {z1, z2}. Hence

w = . . . zj . . . zk . . . zj . . . zk . . .
(19.1c)
≈ . . . zj . . . zj . . . zj . . . z

2
kzj . . .︸ ︷︷ ︸

u

,

where u belongs to X ∗zjX ∗zkzjX ∗. By Case 1, the word u can be converted by the
identities (19.1) into w′.

Let w be any non-simple word and let Z and Z ′ be some disjoint nonempty sets of non-
simple letters of w. Then ∼w can be generalized: for any perfect Z-square x and any perfect
Z ′-square y, write x ∼w y whenever one of the following generalized conditions holds:
(G1) w ∈ X ∗xX ∗yxX ∗ or w ∈ X ∗yX ∗xyX ∗;
(G2) w ∈ X ∗xX ∗yX ∗xX ∗yX ∗ or w ∈ X ∗yX ∗xX ∗yX ∗xX ∗.

19.2. A canonical form

Let w be any connected word and let x1, . . . , xt be the distinct non-simple letters of w listed
in alphabetical order. In this section, such a word w is said to be in canonical form if some
partition Z1, . . . ,Zr of {x1, . . . , xt} exists and

w = z0

n∏
i=1

(sizi) (19.2)

for some n > 0 such that the following are satisfied:
(I) the letters of s1, . . . , sn ∈ X ∗ are simple in w;

(II) the word w is Zi-perfect for each i ∈ {1, . . . , r} and z0, . . . , zn ∈ {Z�1 , . . . ,Z�r } (so that
con(z0 . . . zn) = {x1, . . . , xt});

(III) if zi 6= zj , then zi 6∼w zj ;
(IV) if zi = zj with i < j, then sj 6= ∅;
(V) z0 = zn.

Note that since Z1, . . . ,Zr form a partition of {x1, . . . , xt}, it follows from (II) that
(VI) for any i and j, either zi = zj or con(zi) ∩ con(zj) = ∅.
In view of (I) and (II), it is convenient to call the words s1, . . . , sn maximal simple factors
of w.

Lemma 19.3. Let w be any connected word. Then there exists some word w in canonical
form such that the identities (19.1) imply the identity w ≈ w.
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Proof. It suffices to convert w, using the identities (19.1), into a word in canonical form.
Let x1, . . . , xt be the distinct non-simple letters of w listed in alphabetical order. The proof is
trivial if t = 1. Therefore assume t > 2.

Since w is connected, there exist distinct non-simple letters h(w) = xr1 , xr2 , . . . , xr` = t(w)
from {x1, . . . , xt} occurring in w in an overlapping pattern such that the first xri+1

occurs
between two occurrences of xri and the last xri+1

occurs to the right of all occurrences of xri .
This sequence can be chosen to have minimal length among all such sequences, so that

w = xr1 p1 xr2 p2 xr1 q1 xr3 p3 xr2 q2 xr4 p4 xr3 q3 . . . q`−1 xr`

for some p1, . . . ,p`,q1, . . . ,q`−1 ∈ X ∗. (Note that the factor pi follows the first xri and the
factor qi follows the last xri .) Then xr1 ∼w xr2 ∼w . . . ∼w xr` by (G2). By Lemma 19.2, the
identities (19.1) can be used to convert w into some {xr1 , xr2}-perfect word w′. Note that w′ is
obtained by replacing all maximal {xr1 , xr2}-factors of w by the perfect square {xr1 , xr2}� =
(xr1xr2)2. It is clear that {xr1 , xr2}� ∼w′ xr3 . Therefore the proof of Lemma 19.2 can be
repeated to convert w′, using the identities (19.1), into some {xr1 , xr2 , xr3}-perfect word.
Continuing in this manner, w is converted by the identities (19.1) into an {xr1 , . . . , xr`}-
perfect word. This can be further repeated until w is converted by the identities (19.1) into a
Z1-perfect word, where Z1 is some subset of {x1, . . . , xt} that contains xr1 , . . . , xr` and

(a) Z�1 ∼w xi if and only if xi ∈ Z1.
Hence it can be assumed that

w = Z�1 w1Z�1 w2 . . .Z�1 wmZ�1 , (19.3)

where
(b) w1, . . . ,wm ∈ X+ are such that con(w1 . . .wm) ∩ Z1 = ∅.

If x ∈ con(wi) ∩ con(wj) for some distinct i and j, then Z�1 ∼w x by (G2), and this
contradicts (a) and (b). If t(wi) /∈ sim(w) for some i, then Z�1 ∼w t(wi) by (G1), and
this again contradicts (a) and (b). Therefore

(c) w1, . . . ,wm are pairwise disjoint and t(w1), . . . , t(wm) ∈ sim(w).
If xi ∼w xj for some xi, xj ∈ con(wk) (so that xi, xj /∈ Z1 by (c)), then by Lemma 19.2,

the identities (19.1) can be used to convert w into some {xi, xj}-perfect word. This can be
repeated until the word w in (19.3) is converted into a Z2-perfect word, where Z2 is some
subset of {x1, . . . , xt}\Z1 such that Z�2 ∼w xi if and only if xi ∈ Z2. (Note that by (c), all

perfect Z2-squares Z�2 are factors of some wk.) It is easily seen how this argument can be
repeated until a partition Z1, . . . ,Zr of {x1, . . . , xt} is obtained, and the word w in (19.3) is
converted by the identities (19.1) into a word w that is simultaneously Zi-perfect for all i with
Z�i 6∼w Z�j whenever i 6= j.

Consequently, w is of the form (19.2) with (I), (II), (III), and (V) satisfied. Suppose zi = zj
with i < j and sj = ∅, so that w = . . . sizi . . . sj−1zj−1 · zi . . . . If i < j − 1, then zi ∼w zj−1

by (G1), which contradicts (III). Therefore i = j − 1, whence

w = . . . sizi · zi . . .
(19.1a)
≈ . . . sizi . . . ,

that is, the factor zj is eliminated from w. Hence (IV) is satisfied.

Lemma 19.4. The semigroup C8 has a basis of the form {(19.1)} ∪ Σ, where Σ is some set
of identities formed by connected words in canonical form.

Proof. It is routinely verified that C8 satisfies the identities (19.1) and is idempotent-
separable. Since the subsemigroup {1, 4, 5, 6} of C8 is isomorphic to A0, the variety generated
by C8 contains A0. It follows from Lemma 2.6(i) that C8 has a basis Σ that consists of
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identities formed by connected words. Therefore the set {(19.1)} ∪Σ is also a basis for C8. By
Lemma 19.3, the words that form the identities in Σ can be chosen to be connected and in
canonical form.

19.3. Identities satisfied by C8

Let x and y be any distinct perfect squares of a word w in canonical form. Then write x bw y
to indicate that within w, all occurrences of x are sandwiched between two occurrences of y.
Note that if x bw y, then (III) implies that no occurrence of y is sandwiched between any
two occurrences of x.

A generalized version of the order ≺w introduced in § 2 is also required: write x ≺w y to
indicate that within w, each occurrence of x precedes the first occurrence of y.

Remark 19.5. Suppose that x and y are distinct perfect squares of a word w in canonical
form. Then x 6∼w y by (III), whence by (G1) and (G2), precisely one of the following holds:
(1 6∼) x ≺w y;
(2 6∼) y ≺w x;
(3 6∼) x bw y and xy is not a factor of w;
(4 6∼) y bw x and yx is not a factor of w.

For the remainder of this subsection, suppose that w ≈ w′ is any identity satisfied by the
semigroup C8, where the words

w = z0

n∏
i=1

(sizi) and w′ = z′0

n′∏
i=1

(s′iz
′
i)

are in canonical form. Let

Z =

n⋃
i=0

{zi}, S =

n⋃
i=1

{si}, Z′ =

n′⋃
i=0

{z′i} and S′ =

n′⋃
i=1

{s′i}.

Note that there are repetitions in z0, . . . , zn and in z′0, . . . , z
′
n′ , since z0 = zn and z′0 = z′n′

by (V). But by (I), the only repetition that can possibly occur in S and in S′ is when two or
more words equal the empty word.

Lemma 19.6. The equality S = S′ holds.

Proof. The subsemigroup {1, 2, 6} of C8 is isomorphic to N1
2 . Therefore con(w) = con(w′)

and sim(w) = sim(w′) by Lemma 2.1(v). Further, C8 does not satisfy the identity (2.3) with
n = 2 because 62 · 4 · 62 · 3 · 62 6= 62 · 4 · 3 · 62, so that FSS(w) = FSS(w′) by Lemma 2.10. The
present lemma thus follows.

Lemma 19.7. The equality Z = Z′ holds.

Proof. Since con(w) = con(w′) and sim(w) = sim(w′) by the proof of Lemma 19.6,
(a) con(z0 . . . zn) = con(z′0 . . . z

′
n′) and con(s1 . . . sn) = con(s′1 . . . s

′
n′).

Let x and y be any distinct letters of some perfect square z′ from Z′, say

z′ = (. . . x . . . y . . .)2.

It is shown in the remainder of this proof that the letters x and y belong to the same perfect
square in Z. Hence

(b) if x, y ∈ con(z′) for some z′ ∈ Z′, then x, y ∈ con(z) for some z ∈ Z.
The converse of (b) holds by symmetry. It then follows from (a), (II), and (VI) that Z = Z′.
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Suppose that x and y are letters from distinct perfect squares x,y ∈ Z, that is, x 6= y with
x = (. . . x . . .)2 and y = (. . . y . . .)2. Then x 6∼w y by (III) and con(x) ∩ con(y) = ∅ by (VI).
As observed in Remark 19.5, both (3 6∼) and (4 6∼) cannot simultaneously hold. By symmetry,
assume that (46∼) does not hold. Hence it follows from either (16∼), (2 6∼), or (36∼) that

(c) no occurrence of y in w is sandwiched between any two occurrences of x.
Let p be the least integer such that zp = x and let q be the greatest integer such that zq = x.
Then

w = z0

(p−1∏
i=1

(sizi)

)
sp︸ ︷︷ ︸

a

x

( q−1∏
i=p+1

(sizi)

)
sqx︸ ︷︷ ︸

b

( n∏
i=q+1

(sizi)

)
︸ ︷︷ ︸

c

.

By (V), either p = 0 or q = n implies z0 = zn = x, whence (c) is violated. It thus follows that
0 < p 6 q < n and a 6= ∅ 6= c. Now con(x) ∩ con(ac) = ∅ by the choice of p and q. Further,
since (III) implies x 6∼w h for all h ∈ Z\{x}, it follows from (I) and (G2) that

(d) con(b) ∩ con(ac) = ∅.
Since z0 = zn by (V), the sets {z0, . . . , zp−1} and {zq+1, . . . , zn} share some common

element. Let m ∈ {0, . . . , p− 1} be the greatest integer such that

zm ∈ {z0, . . . , zp−1} ∩ {zq+1, . . . , zn},

and let r ∈ {q + 1, . . . , n} be the least integer such that zm = zr. Then

w = z0

(m−1∏
i=1

(sizi)

)
smu

( p−1∏
i=m+1

(sizi)

)
sp︸ ︷︷ ︸

a

b

( r−1∏
i=q+1

(sizi)

)
︸ ︷︷ ︸

c′

sr u

( n∏
i=r+1

(sizi)

)
︸ ︷︷ ︸

c′′

where u = zm = zr and c = c′src
′′. Note that by (IV),

(e) sr 6= ∅.
Now the choice of m and r implies that:

(f) u /∈ {zm+1, . . . , zp−1} ∪ {zq+1, . . . , zr−1};
(g) {zm+1, . . . , zp−1} ∩ {zq+1, . . . , zr−1} = ∅.

If there exists some k ∈ {z0, . . . , zm−1} ∩ {zq+1, . . . , zr−1}, then k 6= u by (f) so that k ∼w u
by (G2). If there exists some k′ ∈ {zq+1, . . . , zr−1}∩{zr+1, . . . , zn}, then k′ 6= u by (f) so that
k′ ∼w u by (G2). But either of these contradicts (III). Thus k and k′ do not exist, whence

{z0, . . . , zm−1} ∩ {zq+1, . . . , zr−1} = {zq+1, . . . , zr−1} ∩ {zr+1, . . . , zn} = ∅.

It then follows from (I), (d), (f), and (g) that
(h) con(c′) ∩ con(absrc

′′) = ∅.
Let ϕ : X → C8 denote the substitution

z 7→


5 if z ∈ con(c′),

3 if z = h(sr),

6 otherwise.

Then by (d), (e), and (h),

wϕ =

{
(ab)ϕ · c′ϕ · srϕ · c′′ϕ if c′ 6= ∅
(ab)ϕ · srϕ · c′′ϕ if c′ = ∅

=

{
(6 . . . 6) · (5 . . . 5) · (3 · 6 . . . 6) · (6 . . . 6) if c′ 6= ∅
(6 . . . 6) · (3 · 6 . . . 6) · (6 . . . 6) if c′ = ∅

= 2.
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But z′ϕ ∈ ({5, 6}∗ · 6 · {5, 6}∗ · 5 · {5, 6}∗)2 = {1} implies the contradiction w′ϕ = 1. Therefore
the assumption that the letters x and y belong to the distinct perfect squares x,y ∈ Z does
not hold. Consequently, the letters x and y belong to the same perfect square in Z.

Corollary 19.8. Let ϕ be any endomorphism of X+. Suppose that the words wϕ and w′ϕ
are converted by the identities (19.1) into the words wϕ and w′ϕ in canonical form. Then the
set of perfect squares of wϕ is equal to the set of perfect squares of w′ϕ.

Proof. As observed in the proof of Lemma 19.4, the semigroup C8 satisfies the
identities (19.1). Then by assumption, C8 satisfies the identity wϕ ≈ w′ϕ. Hence the result
follows from Lemma 19.7.

Lemma 19.9. Suppose that z ∈ Z = Z′ and s ∈ S = S′ with s 6= ∅. Then sz is a factor of w
if and only if sz is a factor of w′.

Proof. Let sz be a factor of w. Suppose that sz is not a factor of w′. Then there exists some
z′ ∈ Z = Z′ with z′ 6= z such that sz′ is a factor of w′. Hence z 6∼w z′ and z 6∼w′ z′ by (III),
and con(z)∩ con(z′) = ∅ by (VI). Since sz = skzk for some k ∈ {1, . . . , n} and sz′ = s′k′z

′
k′ for

some k′ ∈ {1, . . . , n′},

w = z0

(k−1∏
i=1

(sizi)

)
sz

( n∏
i=k+1

(sizi)

)
and w′ = z′0

(k′−1∏
i=1

(s′iz
′
i)

)
sz′
( n′∏
i=k′+1

(s′iz
′
i)

)
.

Choose any letter x /∈ con(ww′) and let ϕ1 denote the substitution h(s) 7→ xz h(s). Then C8

satisfies the identity wϕ1 ≈ w′ϕ1. It is easily seen that the set of perfect squares of

wϕ1 = z0

(k−1∏
i=1

(sizi)

)
xzsz

( n∏
i=k+1

(sizi)

)

is equal to the set Z of perfect squares of w. Since (III) implies z 6∼w x for any x ∈ Z\{z}, it
is easily shown that z 6∼wϕ1

x for any x ∈ Z\{z}. Therefore the word wϕ1 = wϕ1 is already
in canonical form and so its set of perfect squares is equal to Z. Similarly, the set of perfect
squares of

w′ϕ1 = z′0

(k′−1∏
i=1

(s′iz
′
i)

)
xzsz′

( n′∏
i=k′+1

(s′iz
′
i)

)
is equal to the set Z of perfect squares of w′. Suppose z ∼w′ϕ1

y for some y ∈ Z\{z},
so that (III) is violated by w′ϕ1. Then the word w′ϕ1 is not in canonical form and so by
Lemma 19.3, can be converted by the identities (19.1) into some word w′ϕ1 in canonical form.
Since z ∼w′ϕ1

y, the conversion of w′ϕ1 into w′ϕ1 will result in the letters of z and y being
grouped into the same perfect square. It follows that the set Z of perfect squares of wϕ1 is not
equal to the set of perfect squares of w′ϕ1, whence Corollary 19.8 is contradicted. Therefore y
does not exist, so that z 6∼w′ϕ1

x for all x ∈ Z\{z}. Consequently, w′ϕ1 is in canonical form.
Now let ϕ2 denote the substitution t(s) 7→ t(s)z′. Then C8 satisfies wϕ1ϕ2 ≈ w′ϕ1ϕ2. Since

w′ϕ1ϕ2 = z′0

(k′−1∏
i=1

(s′iz
′
i)

)
xzsz′z′

( n′∏
i=k′+1

(s′iz
′
i)

)
(19.1a)
≈ w′ϕ1

where the word w′ϕ1 is in canonical form, the set of perfect squares of w′ϕ1ϕ2 = w′ϕ1 is
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equal to Z. On the other hand, the word

wϕ1ϕ2 = z0

(k−1∏
i=1

(sizi)

)
xzsz′z

( n∏
i=k+1

(sizi)

)

is not in canonical form because z ∼wϕ1ϕ2
z′ by (G1). Therefore when the word wϕ1ϕ2 is

converted by the identities (19.1) into the word wϕ1ϕ2 in canonical form, the letters of z and z′

are grouped into the same perfect square. It follows that the set of perfect squares of wϕ1ϕ2

is not equal to the set Z of perfect squares of w′ϕ1ϕ2, whence Corollary 19.8 is contradicted.
Consequently, the assumption that sz is not a factor of w′ does not hold.

Lemma 19.10. Suppose that z ∈ Z = Z′ and s ∈ S = S′ with s 6= ∅. Then zs is a factor of w
if and only if zs is a factor of w′.

Proof. Let zs be a factor of w. Suppose that zs is not a factor of w′. Then there exists
some z′ ∈ Z = Z′ with z′ 6= z such that z′s is a factor of w′. Hence z 6∼w z′ and z 6∼w′ z′

by (III), and con(z) ∩ con(z′) = ∅ by (VI). Now zs = zksk+1 for some k ∈ {0, . . . , n− 1} and
z′s = z′k′s

′
k′+1 for some k′ ∈ {0, . . . , n′ − 1}. Further, zk+1 = z′k′+1 by Lemma 19.9. Thus

w = z0

(k−1∏
i=1

(sizi)

)
sk · zs · x

( n∏
i=k+2

(sizi)

)

and

w′ = z′0

(k′−1∏
i=1

(s′iz
′
i)

)
s′k′ · z′s · x

( n′∏
i=k′+2

(s′iz
′
i)

)
,

where x = zk+1 = z′k′+1.
Suppose z ∈ {z′0, . . . , z′k′−1}. Let ϕ1 denote the substitution h(s) 7→ z h(s). Then C8 satisfies

the identity wϕ1 ≈ w′ϕ1. Since

wϕ1 = z0

(k−1∏
i=1

(sizi)

)
sk · zzs · x

( n∏
i=k+2

(sizi)

)
(19.1a)
≈ w,

where the word w is in canonical form, the set of perfect squares of wϕ1 = w is equal to Z.
On the other hand,

w′ϕ1 = z′0

(k′−1∏
i=1

(s′iz
′
i)

)
s′k′ · z′zs · x

( n′∏
i=k′+2

(s′iz
′
i)

)

and z ∈ {z′0, . . . , z′k′−1} imply z ∼w′ϕ1
z′ by (G1). Hence the word w′ϕ1 is not in canonical

form, and when it is converted by the identities (19.1) into the word w′ϕ1 in canonical form,
the letters of z and z′ are grouped into the same perfect square. It follows that the set of perfect
squares of w′ϕ1 is not equal to the set Z of perfect squares of wϕ1, whence Corollary 19.8 is
contradicted. Thus z /∈ {z′0, . . . , z′k′−1}. A symmetrical argument shows z′ /∈ {z0, . . . , zk−1}.

Suppose x = z′. Let ϕ2 denote the substitution t(s) 7→ t(s)z. Then

wϕ2 = z0

(k−1∏
i=1

(sizi)

)
sk · zsz · z′

( n∏
i=k+2

(sizi)

)
.
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It is clear that the set of perfect squares of wϕ2 is equal to Z. Further, z 6∼wϕ2
z′ because

z′ /∈ {z0, . . . , zk−1} and z 6∼w z′. It follows that the word wϕ2 = wϕ2 is in canonical form and
its set of perfect squares is equal to Z. On the other hand, the word

w′ϕ2 = z′0

(k′−1∏
i=1

(s′iz
′
i)

)
s′k′ · z′sz · z′

( n′∏
i=k′+2

(s′iz
′
i)

)
is not in canonical form because z ∼w′ϕ2

z′ by (G1). Therefore when the word w′ϕ2 is
converted by the identities (19.1) into the word w′ϕ2 in canonical form, the letters of z and z′

are grouped into the same perfect square. It follows that the set of perfect squares of w′ϕ2 is
not equal to the set Z of perfect squares of wϕ2, whence Corollary 19.8 is contradicted. Hence
x 6= z′. A symmetrical argument shows x 6= z.

Now the word z′ is a perfect square of w because z′ ∈ Z′ = Z. But since it was shown that
z′ /∈ {z0, . . . , zk−1} and z′ 6= x, each factor z′ of w is one of zk+2, . . . , zn. Let p ∈ {k+2, . . . , n}
be the least such that zp = z′ and let q ∈ {k + 2, . . . , n} be the greatest such that zq = z′.
Then

w = z0

(k−1∏
i=1

(sizi)

)
skzs︸ ︷︷ ︸

a

x

( p−1∏
i=k+2

(sizi)

)
sp︸ ︷︷ ︸

b

z′
( q−1∏
i=p+1

(sizi)

)
sqz
′

︸ ︷︷ ︸
c

( n∏
i=q+1

(sizi)

)
︸ ︷︷ ︸

d

where
(a) any perfect square z′ of w is a factor of c.

Further, it follows from (G2), (I), and (III) that
(b) con(c) ∩ con(abd) = ∅.
Suppose that the factors b and d share some common perfect square. Then there exists

the least r ∈ {q + 1, . . . , n} such that zr ∈ {x, zk+2, . . . , zp−1}, whence sr 6= ∅ by (IV). Since
{zq+1, . . . , zr−1} ∩ {x, zk+2, . . . , zp−1} = ∅ by the minimality of r, it follows from (I) that

(c) con(b) ∩ con(
∏r−1
i=q+1(sizi)) = ∅.

Further, since zr ∈ {x, zk+2, . . . , zp−1}, it follows from (G2), (I), and (III) that

(d) con(a) ∩ con(
∏r−1
i=q+1(sizi)) = con(

∏r−1
i=q+1(sizi)) ∩ con(

∏n
i=r+1(sizi)) = ∅.

Let ϕ3 : X → C8 denote the substitution

z 7→


5 if z ∈ con

(
c

r−1∏
i=q+1

(sizi)

)
,

3 if z = h(sr),

6 otherwise.

Then by (a)–(d),

wϕ3 = (ab)ϕ3 ·
(

c

r−1∏
i=q+1

(sizi)

)
ϕ3 · srϕ3 ·

(
zr

n∏
i=r+1

(sizi)

)
ϕ3

= (6 . . . 6) · (5 . . . 5) · (3 · 6 . . . 6) · (6 . . . 6) = 2.

But (z′s)ϕ3 = (5 . . . 5) · (6 . . . 6) = 1 so that w′ϕ3 = 1, which is impossible. Hence b and d do
not share any common perfect squares. It then follows from (I) that

(e) con(b) ∩ con(d) = ∅.
Now since z0 = zn by (V), the factors a and d share at least one common perfect square.

Let t ∈ {q+ 1, . . . , n} be the least such that zt ∈ {z0, . . . , zk−1, z}. Then st 6= ∅ by (IV). Since
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{zq+1, . . . , zt−1} ∩ {z0, . . . , zk−1, z} = ∅ by the minimality of t, it follows from (I) that

(f) con(a) ∩ con(
∏t−1
i=q+1(sizi)) = ∅.

Let ϕ4 : X → C8 denote the substitution

z 7→


5 if z ∈ con

(
c

t−1∏
i=q+1

(sizi)

)
,

3 if z = h(st),

6 otherwise.

Then by (a), (b), (e), and (f),

wϕ4 = (ab)ϕ4 ·
(

c

t−1∏
i=q+1

(sizi)

)
ϕ4 · stϕ4 ·

(
zt

n∏
i=t+1

(sizi)

)
ϕ4

= (6 . . . 6) · (5 . . . 5) · (3 · 6 . . . 6) · (6 . . . 6) = 2.

But (z′s)ϕ4 = (5 . . . 5) · (6 . . . 6) = 1 so that w′ϕ4 = 1, which is impossible. Consequently, the
assumption that zs is not a factor of w′ does not hold.

Lemma 19.11. Let x,y ∈ Z = Z′ with x 6= y. Then x bw y if and only if x bw′ y.

Proof. By symmetry, it suffices to show x bw y implies x bw′ y. Suppose x bw y. Then
all occurrences of x in w are sandwiched between two occurrences of y. Hence there exist p
and q with p 6 q such that zp = zq = x, and any occurrence of x in w is one of zp, . . . , zq.
Let k ∈ {0, . . . , p− 1} be the greatest such that zk = y and let r ∈ {q+ 1, . . . ,m} be the least
such that zr = y. Then

w =

a︷ ︸︸ ︷(
z0

k−1∏
i=1

(sizi)

)
sk y

b︷ ︸︸ ︷( p−1∏
i=k+1

(sizi)

)
sp x

c︷ ︸︸ ︷( q−1∏
i=p+1

(sizi)

)
sq x

·
( r−1∏
i=q+1

(sizi)

)
sr︸ ︷︷ ︸

d

y

n∏
i=r+1

(sizi)︸ ︷︷ ︸
e

with
(a) con(x) ∩ con(abde) = con(y) ∩ con(bcd) = ∅.

Further, sr 6= ∅ by (IV), and
(b) con(b) ∩ con(ace) = con(c) ∩ con(abde) = con(d) ∩ con(ace) = ∅

by (G2), (I), and (III). Suppose x 6bw′ y. Then by Remark 19.5, either (1 6∼), (2 6∼), or (46∼)
holds. But it is shown in the following that none of these is possible. Hence x bw′ y.

Case 1: y bw′ x. By Lemma 19.9, the factor sry of w is also a factor of w′. By the
assumption of this case, all occurrences of y in w′ are sandwiched between two occurrences
of x. Therefore the factor sry is also sandwiched between those two occurrences of x, whence
w′ = . . .x . . . sry . . .x . . . . Let ϕ1 : X → C8 denote the substitution

z 7→


5 if z ∈ con

(
cx

r−1∏
i=q+1

(sizi)

)
,

3 if z = h(sr),

6 otherwise.
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Then by (a) and (b),

wϕ1 = (ayb)ϕ1 ·
(

xcx

r−1∏
i=q+1

(sizi)

)
ϕ1 · srϕ1 · (ye)ϕ1

= (6 . . . 6) · (5 . . . 5) · (3 · 6 . . . 6) · (6 . . . 6) = 2.

It is routinely shown that {5, 6}∗ · 5 · {5, 6}∗ = {1, 4, 5} in C8. Therefore

w′ϕ1 = (. . .x . . . sry . . .x . . .)ϕ1

∈ {5, 6}∗ · (5 . . . 5) · {5, 6}∗ · (3 · 6 . . . 6) · (6 . . . 6) · {5, 6}∗ · (5 . . . 5) · {5, 6}∗

= {1, 4, 5} · 3 · {1, 4, 5} = {1},

whence the contradiction wϕ1 6= w′ϕ1 is obtained.

Case 2: y ≺w′ x. Then each occurrence of y in w′ precedes every occurrence of x. As
observed in Case 1, the factor sry of w is also a factor of w′. Hence

w′ϕ1 = (. . . sry . . .x . . .)ϕ1 ∈ {5, 6}∗ · (3 · 6 . . . 6) · (6 . . . 6) · {5, 6}∗ · (5 . . . 5) · {5, 6}∗

= {1, 4, 5, 6} · 3 · {1, 4, 5} = {1},

which implies the same contradiction as in Case 1.

Case 3: x ≺w′ y. Then each occurrence of x in w′ precedes every occurrence of y. Hence
there exist `′, m′, p′, and q′ with 0 6 `′ 6 m′ < p′ 6 q′ 6 n′ such that:
• z′`′ = z′m′ = x and any occurrence of x in w′ is one of z′`′ , . . . , z

′
m′ ;

• z′p′ = z′q′ = y and any occurrence of y in w′ is one of z′p′ , . . . , z
′
q′ .

Note that 0 < `′ and q′ < n′ because z′0 = z′n by (V). It follows that

w′ =

a′︷ ︸︸ ︷(
z′0

`′−1∏
i=1

(s′iz
′
i)

)
s′`′ x

b′︷ ︸︸ ︷( m′−1∏
i=`′+1

(s′iz
′
i)

)
s′m′ x

·
( p′−1∏
i=m′+1

(s′iz
′
i)

)
s′p′︸ ︷︷ ︸

c′

y

( q′−1∏
i=p′+1

(s′iz
′
i)

)
s′q′︸ ︷︷ ︸

d′

y

n′∏
i=q′+1

(s′iz
′
i)︸ ︷︷ ︸

e′

with
(c) con(x) ∩ con(a′c′d′e′) = con(y) ∩ con(a′b′c′e′) = ∅.

It follows from (G2), (I), and (III) that
(d) con(b′) ∩ con(a′c′d′e′) = con(d′) ∩ con(a′b′c′e′) = ∅.

There are two subcases.
3.1. con(c′) ∩ con(e′) = ∅. Since z′0 = z′n′ by (V), it follows that the sets {z′0, . . . , z′`′−1} and
{z′q′+1, . . . , z

′
n} are not disjoint. Let t′ ∈ {q′ + 1, . . . , n′} be the least such that

z′t′ ∈ {z′0, . . . , z′`′−1} ∩ {z′q′+1, . . . , z
′
n},

and let k′ ∈ {0, . . . , `′ − 1} be the greatest such that z′k′ = z′t′ . Then

w′ = a′xb′xc′yd′y

( t′−1∏
i=q′+1

(s′iz
′
i)

)
︸ ︷︷ ︸

e′1

s′t′z
′
t′

( n′∏
i=t′+1

(s′iz
′
i)

)
︸ ︷︷ ︸

e′2
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where z′k′ is a factor of a′. Note that
(e) s′t′ 6= ∅

by (IV), and that {z′q′+1, . . . , z
′
t′−1} ∩ {z′0, . . . , z′`′−1} = ∅ by (I) and the minimality of t′.

Hence
(f) con(e′1) ∩ con(a′s′t′z

′
t′) = ∅.

If con(e′1) ∩ con(e′2) 6= ∅ so that z′j ∈ {z′q′+1, . . . , z
′
t′−1} ∩ {z′t′+1, . . . , z

′
n′} for some j, then

z′j ∼w′ z′t′ by (G2) due to z′t′ ∈ {z′0, . . . , z′`′−1}, whence (III) is violated. Hence
(g) con(e′1) ∩ con(e′2) = ∅.

Let ϕ2 : X → C8 denote the substitution

z 7→


5 if z ∈ con(d′ye′1),

3 if z = h(s′t′),

6 otherwise.

Then wϕ2 = w′ϕ2 in C8. By (c)–(g) and the assumption of this subcase,

w′ϕ2 = (a′xb′xc′)ϕ2 · (yd′ye1)ϕ2 · s′t′ϕ2 · (z′t′e′2)ϕ2

= (6 . . . 6) · (5 . . . 5) · (3 · 6 . . . 6) · (6 . . . 6) = 2.

Therefore wϕ2 = 2. More specifically,

wϕ2 = aϕ2 · 5 · bϕ2 · 6 · cϕ2 · 6 · dϕ2 · 5 · eϕ2 = 2. (19.4)

By Lemma 19.6, the simple letter h(s′t′) of w′ is also a simple letter in w. Since z0 = zn by (V),
the letter h(s′t′) cannot be the first or last letter of w. Further, x and y are perfect squares
of w. Therefore wϕ2 does not begin or end with 3, and it is a product, in some order, of more
than one 5, more than one 6, and precisely one 3. Since 3 · 5 = 3 · 6 · 5 = 5 · 6 = 1 in C8, it is
routinely shown that the only way for wϕ2 to equal 2 is

wϕ2 = (6 . . . 6) · (5 . . . 5) · 3 · (6 . . . 6).

But this is impossible in view of (19.4).
3.2. con(c′) ∩ con(e′) 6= ∅. Then there exists the least r′ ∈ {q′ + 1, . . . , n′} such that

z′r′ ∈ {z′m′+1, . . . , z
′
p′−1} ∩ {z′q′+1, . . . , z

′
n},

and there exists the greatest h′ ∈ {z′m′+1, . . . , z
′
p′−1} such that z′h′ = z′r′ . Hence

w′ = a′xb′x

c′1︷ ︸︸ ︷( h′−1∏
i=m′+1

(s′iz
′
i)

)
s′h′ v

c′2︷ ︸︸ ︷( p′−1∏
i=h′+1

(s′iz
′
i)

)
s′p′+1 yd′y

·
( r′−1∏
i=q′+1

(s′iz
′
i)

)
︸ ︷︷ ︸

e′3

s′r′v

( n′∏
i=r′+1

(s′iz
′
i)

)
︸ ︷︷ ︸

e′4

where v = z′h′ = z′r′ . Note that (IV) implies
(h) s′r′ 6= ∅,

and (I) and the choice of h′ and r′ imply that
(i) c′2, e′3, and v are pairwise disjoint.
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If f is a perfect square that is shared by c′2 and either a′, b′, c′1, or e′4, then f 6= v by (i), so
that f ∼w′ v by (G2). If g is a perfect square that is shared by e′3 and either a′, b′, c′1, or e′4,
then g 6= v by (i), so that g ∼w′ v by (G2). But either of these contradicts (III). Therefore
both f and g do not exist, whence

(j) con(c′2) ∩ con(a′b′c′1e
′
4) = con(e′3) ∩ con(a′b′c′1e

′
4) = ∅.

Let ϕ3 : X → C8 denote the substitution

z 7→


5 if z ∈ con(d′ye′3),

3 if z = h(s′r′),

6 otherwise.

Then by (c), (d), (h), and (j),

w′ϕ3 = (a′xb′xc′)ϕ3 · (yd′ye′3)ϕ3 · s′r′ϕ3 · (ve′4)ϕ3

= (6 . . . 6) · (5 . . . 5) · (3 · 6 . . . 6) · (6 . . . 6) = 2.

But following the same argument as in Subcase 3.1, it is impossible for wϕ3 to equal 2.

19.4. Proof of Proposition 19.1

Remark 19.12. Let w be any word in canonical form that contains two or more distinct
perfect squares. By (V), the word w begins and ends with some perfect square z. Hence by (IV),

w = z

n∏
i=1

(pisiz) = zp1s1z . . .pnsnz

for some n > 1, where the following holds for each i:
(Re1) si is a nonempty maximal simple factor of w;
(Re2) pi is a product of some of the following: maximal simple factors of w and perfect squares

of w different from z;
(Re3) if pi is nonempty, then it ends with some perfect square of w.
Note that (I), (III), and (G2) imply that:
(Re4) z,p1, s1, . . . ,pn, sn are pairwise disjoint;
(Re5) if x is any perfect square of w different from z, then x bw z.

By Lemma 19.4, the semigroup C8 has a basis of the form {(19.1)} ∪ Σ, where Σ is some
set of identities formed by connected words in canonical form. Let w ≈ w′ be any identity
from Σ. By Lemmas 19.6 and 19.7, the set Z of perfect squares of w is equal to the set of
perfect squares of w′, and the set S of maximal simple factors of w is equal to the set of
maximal simple factors of w′. The remainder of this subsection is devoted to the verification
of the following statement for each k > 1:
(†k) if w ≈ w′ is any identity in Σ that involves at most k distinct perfect squares, then the

identities (19.1) imply the identity w ≈ w′.
Consequently, the identities (19.1) imply every identity in Σ and so form a basis for C8.

First consider the case when the identity w ≈ w′ from Σ involves k = 1 perfect square z.
Then w = z

∏n
i=1(siz) = zs1z . . . snz where Z = {z} and S = {s1, . . . , sn}. By Lemmas 19.9

and 19.10, there exists a permutation π on {1, . . . , n} such that w′ = zs1πz . . . snπz. It is then
easily seen that the identity (19.1b) implies the identity w ≈ w′. Hence statement (†1) holds.

Now suppose that statement (†k−1) holds for some k > 1 and that the identity w ≈ w′

from Σ contains k distinct perfect squares. By Remark 19.12, the word w is of the form

w = zp1s1zp2s2z . . .pnsnz
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where (Re1)–(Re5) are satisfied. By (V), the word w′ begins and ends with the same perfect
square; by Lemma 19.11 this perfect square must be z. Hence it follows from Lemma 19.9 and
Remark 19.12 that w′ = zp′1s1πzp′2s2πz . . .p′nsnπz for some permutation π on {1, . . . , n}. Since
the identity (19.1b) can be used to interchange any two factors p′isiπ and p′jsjπ, generality is
not lost by assuming that

w′ = zp′1s1zp′2s2z . . .p
′
nsnz

to begin with. By Lemmas 19.13 and 19.14 below, the identities (19.1) imply w ≈ w′.

Lemma 19.13. If n = 1, then the identities (19.1) imply the identity w ≈ w′.

Proof. Generality is not lost by writing

w = zpsz and w′ = zp′sz,

where z, p, p′, and s satisfy (Re1)–(Re4). It then follows that con(p) = con(p′) by Lemmas 19.6
and 19.7. If p = p′ = ∅, then the identity w ≈ w′ is trivial and so is clearly implied by the
identities (19.1). Therefore suppose that the factors p and p′ are nonempty. Note that p can be
written as a product p = arar−1 . . .a2a1 of pairwise disjoint words ar,ar−1, . . . ,a2,a1 ∈ X+

where each ai is either connected or a maximal simple factor of w. If ai is connected, then
since x 6∼w y for any distinct perfect squares x and y of w, it follows from (Re2) that ai
begins and ends with the same perfect square of w. The same applies to connected factors of
the word p′. Therefore in summary, the words p and p′ can be written as

p = arar−1 . . .a2a1 and p′ = a′r′a
′
r′−1 . . .a

′
2a
′
1

for some r, r′ > 1, where:
(a) ai is either a maximal simple factor of w or a word that begins and ends with the same

perfect square of w;
(b) a′i is either a maximal simple factor of w′ or a word that begins and ends with the same

perfect square of w′;
(c) ar, . . . ,a1 are pairwise disjoint and a′r′ , . . . ,a

′
1 are pairwise disjoint.

Note that (c) and (Re2) imply that
(d) ar, . . . ,a1, s, z are pairwise disjoint and a′r′ , . . . ,a

′
1, s, z are pairwise disjoint.

Further, since the word w is in canonical form,
(e) any two maximal simple factors of w must sandwich at least one perfect square of w.
First, it is shown that the identities (19.1) imply the identity a1 ≈ a′1. To achieve this goal,

observe that by (e), the word a1 is not a maximal simple factor of w since it is followed by the
maximal simple factor s. Therefore by (a), the word a1 begins and ends with the same perfect
square of w. Hence w is of the form

w = zar . . .a2 z1b1z1︸ ︷︷ ︸
a1

sz,

where z1 is some perfect square of w. By the same argument, the word a′1 also begins and
ends with the same perfect square of w′; by Lemma 19.10, this perfect square must equal z1.
Hence w′ is of the form

w′ = za′r′ . . .a
′
2 z1b

′
1z1︸ ︷︷ ︸

a′1

sz.

Suppose that y is a perfect square of w that is a factor of b1. If y = z1, then y is clearly a
factor of a′1. If y 6= z1, then y bw z1 by (d), so that y bw′ z1 by Lemma 19.11. Therefore in
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any case, y is a factor of a′1. By symmetry, any perfect square of w′ that is a factor of a′1 is
also a factor of a1. Hence

(f) a1 and a′1 share the same set of perfect squares.
Suppose that t is a maximal simple factor of w that is a factor of b1. Then t is immediately
preceded and followed by perfect squares of w that occur in a1 = z1b1z1. More specifically,
y1ty2 is a factor of a1 = z1b1z1 for some perfect squares y1 and y2. It follows from (f) and
Lemmas 19.9 and 19.10 that y1ty2 is a factor of a′1 = z1b

′
1z1, whence t is a factor of b′1. By

symmetry, any maximal simple factor of w′ that is a factor of b′1 is also a factor of b1. Hence
(g) b1 and b′1 share the same maximal simple factors.

It then follows from (f) and (g) that con(a1) = con(a′1). Let χ1 denote the substitution x 7→ z1

for all x /∈ con(a1) = con(a′1). Then the deductions wχ1

(19.1a)
≈ a1 and w′χ1

(19.1a)
≈ a′1 imply

that C8 satisfies the identity a1 ≈ a′1. The identity a1 ≈ a′1 involves less than k distinct perfect
squares. Therefore by (†k−1), the identities (19.1) imply the identity a1 ≈ a′1.

Next, it is shown that the identities (19.1) imply the identity a2 ≈ a′2. Based on (a), there
are two cases.

Case 1: a2 is a maximal simple factor of w. Then by Lemma 19.9, the factor a2z1 of w
is also a factor of w′. But since con(a1) = con(a′1), it follows from (d) that a2 is not a factor
of a′1. Therefore the only way for a2z1 to be a factor of w′ is when a2 = a′2. The identity
a2 ≈ a′2 is trivial and so is implied by the identities (19.1).

Case 2: a2 begins and ends with the same perfect square of w. Then w is of the form

w = zar . . .a3 z2b2z2︸ ︷︷ ︸
a2

a1sz,

where z2 is some perfect square of w. If a′2 is a maximal simple factor of w′, then the argument
in Case 1 shows a2 = a′2, which is impossible. Therefore by (b), the word a′2 begins and ends
with the same perfect square of w′, whence

w′ = za′r′ . . .a
′
3 z′2b

′
2z
′
2︸ ︷︷ ︸

a′2

a′1sz

for some perfect square z′2 of w′. Suppose z2 6= z′2. Since the set of perfect squares of w is
equal to the set of perfect squares of w′, the perfect square z2 of w is also a perfect square
of w′. If z2 is a factor of b′2, then z2 bw′ z′2, so that z2 bw z′2 by Lemma 19.11; but z2 bw z′2
implies that z′2 is a factor shared by both the prefix zar . . .a3 and suffix a1sz of w, and this
is impossible due to (d). Therefore

(h) z2 is not a factor of a′2, but is a factor of one of a′r′ , . . . ,a
′
3.

By symmetry,
(i) z′2 is not a factor of a2, but is a factor of one of ar, . . . ,a3.

Let ϕ : X → C8 denote the substitution

z 7→


5 if z ∈ con(a2a1),

3 if z = h(s),

6 otherwise.

Then

wϕ = (zar . . .a3)ϕ · (a2a1)ϕ · sϕ · zϕ = (6 . . . 6) · (5 . . . 5) · (3 · 6 . . . 6) · (6 . . . 6) = 2.
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But (d) and (i) imply z′2ϕ = 6, so that (h) implies

(za′r′ . . .a
′
3z
′
2)ϕ = zϕ · (a′r′ . . .a′3)ϕ · z′2ϕ = zϕ . . . z2ϕ . . . z

′
2ϕ

∈ 6 · {5, 6}∗ · 5 · {5, 6}∗ · 6 = {1}.

Hence the contradiction w′ϕ = 1 is obtained. Therefore the assumption z2 6= z′2 does not hold,
whence

w′ = za′r′ . . .a
′
3 z2b

′
2z2︸ ︷︷ ︸

a′2

a′1sz.

It can then be shown, by the arguments used in establishing (f) and (g), that con(a2) = con(a′2).
Let χ2 denote the substitution x 7→ z2 for all x /∈ con(a2) = con(a′2). Then the deductions

wχ2

(19.1a)
≈ a2 and w′χ2

(19.1a)
≈ a′2 imply that C8 satisfies the identity a2 ≈ a′2. The identity

a2 ≈ a′2 involves less than k distinct perfect squares. Therefore by (†k−1), the identities (19.1)
imply the identity a2 ≈ a′2.

In the two cases just considered, the identities (19.1) imply the identity a2 ≈ a′2. The
arguments in Cases 1 and 2 can be repeated to show that the identities (19.1) imply the
identity a3 ≈ a′3. This can be continued so that the identities (19.1) imply the identity ai ≈ a′i
for all i with r = r′. It is then easily seen that the identities (19.1) imply w ≈ w′.

Lemma 19.14. If n > 1, then the identities (19.1) imply the identity w ≈ w′.

Proof. Let ` be the least integer such that con(p`) 6= con(p′`). Then generality is not lost
by assuming that x ∈ con(p′`)\con(p`), so that x ∈ con(pr) for some r > `. Let ϕ : X → C8

denote the substitution

z 7→


5 if z ∈ con(pr),

3 if z = h(sr),

6 otherwise.

Then

wϕ =

(
z

r−1∏
i=1

(pisiz)

)
ϕ · prϕ · srϕ ·

(
z

r+1∏
i=1

(pisiz)

)
ϕ

= (6 . . . 6) · (5 . . . 5) · (3 · 6 . . . 6) · (6 . . . 6) = 2.

But x ∈ con(p′`) implies

(zp′`s`z)ϕ = zϕ . . . xϕ . . . zϕ ∈ 6 · {5, 6}∗ · 5 · {5, 6}∗ · 6 = {1}.

Hence the contradiction w′ϕ = 1 is obtained. Therefore the integer ` does not exist, whence
con(pi) = con(p′i) for all i ∈ {1, . . . , n}.

For each i ∈ {1, . . . , n}, let χi denote the substitution z 7→ z for all z /∈ con(pisi) = con(p′isi).

Then the deductions wχi
(19.1a)
≈ zpisiz and w′χi

(19.1a)
≈ zp′isiz imply that C8 satisfies the

identity zpisiz ≈ zp′isiz. By Lemma 19.13, the identities (19.1) imply zpisiz ≈ zp′isiz. It is
then easily seen that the identities (19.1) imply w ≈ w′.
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20. D2, D4, E4

This section establishes the finite basis property of the following semigroups.

D2 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 1 2

3 1 1 1 1 2 1

4 1 2 3 4 4 4

5 1 2 3 4 4 5

6 1 2 3 4 4 6

D4 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 1 2

3 1 1 1 1 2 2

4 1 2 3 4 4 4

5 1 2 3 4 4 5

6 1 2 3 4 4 6

E4 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 1 3

3 1 1 1 1 3 3

4 1 1 1 3 4 4

5 1 2 3 4 5 5

6 1 2 3 4 6 6

20.1. Finite basis property of D2 and D4

Proposition 20.1. The variety generated by S ∈ {D2,D4} is defined by the identities

x2Hx ≈ xHx, (20.1a)

x2y2 ≈ y2x2, (20.1b)

xHxyKy2 ≈ xHxKy2, (20.1c)

xHyKyTx ≈ yHyKyxTx, (20.1d)

yHxKyTx ≈ yHyKyxTx, (20.1e)

xHyKyTx ≈ yHxKyTx. (20.1f)

For any word w, let FSL(w) denote the set of factors of w of length two that begin with a
simple letter and end with the last occurrence of some non-simple letter:

FSL(w) = {xy ∈ X 2 | w ∈ X ∗xy(X\{y})∗, x ∈ sim(w), y /∈ sim(w)}.

Lemma 20.2. Let S ∈ {D2,D4}. Suppose that w ≈ w′ is any identity satisfied by S. Then:
(i) con(w) = con(w′) and sim(w) = sim(w′);
(ii) for any letters x ∈ con(w) = con(w′) and y ∈ sim(w) = sim(w′), the conditions x ≺w y

and x ≺w′ y are equivalent;
(iii) wsim = w′sim;
(iv) FSL(w) = FSL(w′);
(v) FSS(w) = FSS(w′).

Proof. The subsemigroup {1, 2, 4, 6} of S is isomorphic to J1, so that parts (i)–(iii) hold by
Lemma 2.3.

(iv) Seeking a contradiction, suppose FSL(w) 6= FSL(w′). By symmetry, it suffices to assume
that xy ∈ FSL(w)\FSL(w′). Then

(a) w = axyb for some a,b ∈ X ∗ such that x /∈ con(ab) and y ∈ con(a)\con(b).
By part (i),

(b) x is simple in both w and w′, while y is non-simple in both w and w′.
Since y 6≺w x, it follows from part (ii) that

(c) y 6≺w′ x.
Let ϕ : X → S denote the substitution

z 7→


3 if z = x,

5 if z = y,

6 otherwise.
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Then it follows from (a) that wϕ ∈ {5, 6}+ · 3 · 5 · {6}∗ = {2}. This leads to the required
contradiction, as shown in the following collectively exhaustive cases.

Case 1: xy is a factor of w′. Since xy /∈ FSL(w′), the y that immediately follows x is not
the last occurrence; this, together with (b), imply w′ = a′xyb′yc′ for some a′,b′, c′ ∈ X ∗ with
x /∈ con(a′b′c′). Therefore

w′ϕ ∈ {5, 6}∗ · 3 · 5 · {5, 6}∗ · 5 · {5, 6}∗ = {1}.

Case 2: xy is not a factor of w′. Then it follows from (c) that w′ = a′xhb′yc′ for some
a′,b′, c′ ∈ X ∗ and h ∈ X such that x /∈ con(a′b′c′) and x 6= h 6= y. Hence

w′ϕ ∈ {5, 6}∗ · 3 · 6 · {5, 6}∗ · 5 · {5, 6}∗ = {1}.

(v) Suppose FSS(w) 6= FSS(w′), say xy ∈ FSS(w)\FSS(w′). Then it is easily seen from part (i)
that xy ∈ FSL(yw)\FSL(yw′). It then follows from part (iv) that S does not satisfy the identity
yw ≈ yw′, which is impossible.

For any letter x ∈ X , define an x-block to be a non-simple word of the form

x =

( r∏
i=1

(xsi)

)
xe = xs1xs2 . . . xsrx

e, (20.2)

where s1, . . . , sr ∈ X+, e ∈ {1, 2}, and r > 0 satisfy the following:
(B1) the letters of s1, . . . , sr are all simple in x;
(B2) if r = 0, then e = 2.

Remark 20.3. (i) In any x-block, the letter x is the only non-simple letter.
(ii) If r = 0 in (20.2), then the prefix

∏r
i=1(xsi) of x is empty, so that x = x2 by (B2).

Let w be any non-simple word and let x be any non-simple letter of w with occ(x,w) = r > 2,
so that

w = w0xw1xw2 . . . xwr

for some w0, . . . ,wr ∈ X ∗ with x /∈ con(w0 . . .wr). Then the letter x is said to be linked in w
if con(w1 . . .wr−1) ⊆ sim(w). In other words, a non-simple letter x of w is linked if any other
non-simple letter of w is not sandwiched between any two occurrences of x. A non-simple word
is linked if each of its non-simple letters is linked.

Lemma 20.4. Let w be any non-simple word. Then there exists some linked word w such
that the identities (20.1) imply the identity w ≈ w.

Proof. It suffices to convert w, using the identities (20.1), into a linked word. Let x be the
last non-simple letter of w that is not linked. Then

w = pxq

for some p,q ∈ X ∗ such that x ∈ con(p)\con(q) and any non-simple letter of w that occurs
in q is linked. It follows that px and q are disjoint words. Since the letter x is not linked and
x ∈ con(p)\con(q), some other non-simple letter y of w occurring in p is sandwiched between
two occurrences of x, that is,

w = axbyc︸ ︷︷ ︸
p

xq (20.3)
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for some a,b, c ∈ X ∗ such that y ∈ con(ab)\con(cq). If y ∈ con(a), then a = a′ya′′ for some
a′,a′′ ∈ X ∗, so that

w = a′ya′′xbycxq
(20.1e)
≈ a′ya′′ybyxcxq = aybyxcxq.

If y ∈ con(b), then b = b′yb′′ for some b′,b′′ ∈ X ∗, so that

w = axb′yb′′ycxq
(20.1d)
≈ ayb′yb′′yxcxq = aybyxcxq.

Therefore in any case, the two occurrences of x appearing in (20.3) no longer sandwich y. This
argument can be repeated until a word of the form

w′ = p′xs1xs2 . . . xsmxq

is obtained, where p′, s1, . . . , sm ∈ X ∗ are such that con(s1 . . . sm) ⊆ sim(w′) and x /∈ con(p′).
In particular, the letter x is linked in w′.

The procedure in the previous paragraph can be repeated on p′ to convert w′ into a word
where all non-simple letters are linked.

In this subsection, a non-simple word w is said to be in canonical form if

w = px1 . . .xmq, (20.4)

where p,q ∈ X ∗, x1, . . . ,xm ∈ X+, and m > 1 satisfy the following:
(I) xi is an xi-block;

(II) the letters of p and q are simple in w;
(III) p,x1, . . . ,xm,q are pairwise disjoint;
(IV) if x2

i is a suffix of xi and xi+1 = x2
i+1, then xi alphabetically precedes xi+1.

Note that x1, . . . , xm are precisely all non-simple letters of the word w in (20.4).

Lemma 20.5. Let w be any non-simple word. Then there exists some word w in canonical
form such that the identities (20.1) imply the identity w ≈ w.

Proof. It suffices to convert w, using the identities (20.1), into a word in canonical form. By
Lemma 20.4, the word w can be assumed linked, say

w = px1t1x2t2 . . .xm−1tm−1xmq,

where the letters of p, t1, . . . , tm−1,q ∈ X ∗ are all simple in w, each xi is a linked word that
begins and ends with xi, and x1, . . . , xm are precisely the non-simple letters of w. It is clearly
seen that the identities (20.1a) can be used to convert each xi into an xi-block. If ti 6= ∅, then

w
(20.1a)
≈ px1t1 . . .xitix

2
i+1xi+1 . . . tm−1xmq

(20.1c)
≈ px1t1 . . .xixi+1tix

2
i+1xi+1 . . . tm−1xmq

(20.1a)
≈ px1t1 . . .xi xi+1tixi+1︸ ︷︷ ︸

x′i+1

. . . tm−1xmq

where x′i+1 is an xi+1-block. Therefore w can be converted into a word of the form (20.4) with
(I)–(III) satisfied.

It remains to convert w into a word that satisfies (IV). Suppose that x2
i is a suffix of xi and

xi+1 = x2
i+1, where xi+1 alphabetically precedes xi. Then xi = xis1xis2 . . . xisrx

2
i . In what
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follows, it is shown that the relabeling xi ↔ xi+1 can be performed on w, so that (IV) is
satisfied. If r = 0, then xi = x2

i so that

w = . . . x2
i︸︷︷︸

xi

·x2
i+1︸︷︷︸

xi+1

. . .
(20.1b)
≈ . . . x2

i+1 · x2
i . . . .

If r > 1, then

w = . . .

xi︷ ︸︸ ︷
xis1xis2 . . . xisrx

2
i ·

xi+1︷︸︸︷
x2
i+1 . . .

(20.1b)
≈ . . . xis1xis2 . . . xisr · x2

i+1x
2
i . . .

(20.1a)
≈ . . . xis1xis2 . . . xisr x

r
i+1 · x2

i+1x
2
i . . .

(20.1f)
≈ . . . xi+1s1xi+1s2 . . . xi+1sr x

r
i · x2

i+1x
2
i . . .

(20.1a)
≈ . . . xi+1s1xi+1s2 . . . xi+1sr x

2
i · x2

i+1x
2
i . . .

(20.1b)
≈ . . . xi+1s1xi+1s2 . . . xi+1sr x

2
i+1 · x2

ix
2
i . . .

(20.1a)
≈ . . . xi+1s1xi+1s2 . . . xi+1srx

2
i+1 · x2

i . . .

as required.

Lemma 20.6. Let S ∈ {D2,D4} and let

w = px1 . . .xmq and w′ = py1 . . .ymq

be any words in canonical form such that each xi is an xi-block and each yi is a yi-block
with {x1, . . . , xm} = {y1, . . . , ym}. Suppose that S satisfies the identity w ≈ w′. Then
(x1, . . . , xm) = (y1, . . . , ym).

Proof. By assumption, x1 ≺w . . . ≺w xm. Let i ∈ {1, . . . ,m − 1}. Then it suffices to show
xi ≺w′ xi+1.

Case 1: xi+1 contains some simple letter, say h, of w. Then
(a) xi+1 6≺w h

and xi ≺w h, so that xi ≺w′ h by Lemma 20.2(ii). If xi 6≺w′ xi+1, then xi+1 ≺w′ xi ≺w′ h;
this contradicts Lemma 20.2(ii) in view of (a). Hence xi ≺w′ xi+1.

Case 2: xi+1 does not contain any simple letter of w. Then xi+1 = x2
i+1 by (B2). Since xi

is an xi-block, it is of the form

xi = xis1xis2 . . . xisrx
e
i ,

where e ∈ {1, 2} and the letters of s1, . . . , sr ∈ X+ are all simple in w. There are two subcases.
2.1. e = 1. Then r > 1 by (B2). Let s = t(sr). Since s ≺w xi+1 and sxi ∈ FSL(w),
(b) xi+1 6≺w′ s

and sxi ∈ FSL(w′) by Lemma 20.2 parts (ii) and (iv). The letter s thus belongs to the xi-block
in w′. Suppose xi 6≺w′ xi+1, so that xi+1 ≺w′ xi. Then within w′, the xi+1-block occurs before
the xi-block, so that xi+1 ≺w′ s. In view of (b), this is impossible. Hence xi ≺w′ xi+1.

2.2. e = 2. Then (IV) implies that
(c) xi alphabetically precedes xi+1.
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Seeking a contradiction with (c), suppose xi 6≺w′ xi+1. Then xi+1 ≺w′ xi, whence there exist k
and ` with 1 6 k < ` 6 m such that yk is an xi+1-block (so that yk = xi+1) and y` is an
xi-block (so that y` = xi), that is,

w′ = py1 . . .ykyk+1 . . .y` . . .ymq.

Suppose that the factor yk+1 . . .y` of w′ contains some simple letter h. Then xi+1 = yk ≺w′ h
and

(d) xi = y` 6≺w′ h,
whence xi+1 ≺w h by Lemma 20.2(ii). The assumption xi ≺w xi+1 implies xi ≺w h. But then
Lemma 20.2(ii) implies xi ≺w′ h, which contradicts (d). Therefore the factor yk+1 . . .y` of w′

cannot contain any simple letter. Since each yi is a yi-block, it follows from (B2) that

(yk+1, . . . ,y`) = (y2
k+1, . . . , y

2
` ).

By (IV), the letters yk+1, . . . , y` are in alphabetical order. Specifically,
(e) yk+1 alphabetically precedes y` = xi.
Now since yk is an xi+1-block, it is of the form

yk = xi+1t1xi+1t2 . . . xi+1trx
f
i+1,

where f ∈ {1, 2} and the letters of t1, . . . , tr ∈ X+ are all simple in w′. Suppose f = 1. Then
r > 1 by (B2). Let t = t(tr). Since t ≺w′ y` = xi and txi+1 ∈ FSL(w′),

(f) xi 6≺w t
and txi+1 ∈ FSL(w) by Lemma 20.2 parts (ii) and (iv). Therefore the simple letter t of w occurs
in the xi+1-block xi+1, whence xi ≺w t. In view of (f), this is impossible. Hence f = 2. Now
by (IV), the letter xi+1 = yk alphabetically precedes yk+1. Therefore by (e), the letter xi+1

alphabetically precedes xi. This is the required contradiction with (c).

Proof of Proposition 20.1. Let S ∈ {D2,D4}. It is routinely checked that S satisfies the
identities (20.1). Hence it suffices to show that any identity w ≈ w′ satisfied by S is implied by
the identities (20.1). If either w or w′ is a simple word, then it follows from Lemma 20.2 parts (i)
and (iii) that the identity w ≈ w′ is trivial and so is vacuously implied by the identities (20.1).
Therefore assume that w and w′ are both non-simple words and so by Lemma 20.5, can be
chosen to be in canonical form. Since con(w) = con(w′) and sim(w) = sim(w′) by part (i) of
Lemma 20.2, it follows from parts (iii) and (v) of the same lemma that

w = px1 . . .xmq and w′ = py1 . . .ymq,

where each xi is an xi-block and each yi is a yi-block with {x1, . . . , xm} = {y1, . . . , ym}. It
then follows from Lemma 20.6 that each yi is an xi-block. Let

p, s1, . . . , sn,q (20.5)

be all the maximal factors of w, in order of appearance, that consist of simple letters, so
that wsim = ps1 . . . snq. By part (v) of Lemma 20.2, the maximal factors of w′, in order of
appearance, that consist of simple letters coincide with the words from (20.5); by part (iii)
of the same lemma, w′sim = ps1 . . . snq. Hence

w = p x1s1x1s2 . . . x1sjx
e
1︸ ︷︷ ︸

x1

x2 . . .xmq and w′ = p x1s1x1s2 . . . x1skx
f
1︸ ︷︷ ︸

y1

y2 . . .ymq.

Suppose j 6= k, say j < k. Then x1 6≺w′ h where h = h(sk). But sk is a factor of x2 . . .xm and
so x1 ≺w h, contradicting Lemma 20.2(ii). Hence j = k. Let t = t(sj) = t(sk). If e 6= f , say
(e, f) = (1, 2), then tx1 ∈ FSL(w) and tx1 /∈ FSL(w′), contradicting Lemma 20.2(iv). Therefore
e = f , whence x1 = y1. Similarly, it can be shown that xi = yi for each i > 1, so that w = w′.
Consequently, the identity w ≈ w′ is implied by the identities (20.1).
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20.2. Finite basis property of E4

Proposition 20.7. The variety generated by E4 is defined by the identities

xHxKx2 ≈ xHxKx, (20.6a)

xHxKx ≈ xKxHx, (20.6b)

xHx · Ky · Ty ≈ xHx · Ty · Ky, (20.6c)

x · Hy · Kx · Ty ≈ x · Kx · Hy · Ty, (20.6d)

x · HyKy · Tx ≈ x · Tx · HyKy, (20.6e)

xHx · K1yK2y · T1zT2z ≈ xHx · T1zT2z · K1yK2y. (20.6f)

For any word w, let FSN(w) denote the set of factors of w of length two that begin with a
simple letter and end with a non-simple letter:

FSN(w) = {xy ∈ X 2 | w ∈ X ∗xyX ∗, x ∈ sim(w), y /∈ sim(w)}.

Lemma 20.8. Suppose that w ≈ w′ is any identity satisfied by E4. Then:
(i) for each x ∈ X , either occ(x,w) = occ(x,w′) 6 2 or occ(x,w), occ(x,w′) > 3;
(ii) h(w) = h(w′);
(iii) FSN(w) = FSN(w′);
(iv) FSS(w) = FSS(w′).

Proof. (i) This follows from Lemma 2.1(vii) since the subsemigroup {1, 3, 4, 5} of E4 is
isomorphic to N1

3 .
(ii) This follows from Lemma 2.1(i) since the subsemigroup {5, 6} of E4 is isomorphic to L2.
(iii) Suppose FSN(w) 6= FSN(w′), say xy ∈ FSN(w)\FSN(w′). Then it follows from part (i)

that x is simple in w′ and y is non-simple in w′, whence xy is not a factor of w′. Let ϕ : X → E4

denote the substitution

z 7→


2 if z = x,

5 if z = y,

6 otherwise.

Then wϕ = . . . 2 · 5 . . . = 1 and w′ϕ ∈ {5, 6}∗ · 2 · 6 · {5, 6}∗ = {3}, which is impossible. Hence
FSN(w) = FSN(w′).

(iv) It follows from part (i) that con(w) = con(w′) and sim(w) = sim(w′). The identity (2.3)
with n = 3 is not satisfied by the semigroup E4 because 53 ·2 ·53 ·6 ·53 6= 53 ·2 ·6 ·53. Therefore
FSS(w) = FSS(w′) by Lemma 2.10.

For any letter x ∈ X , define an x-rigid block to be a non-simple word of the form

x = s1x s2x . . . sr−1x srx
e, (20.7)

where s1 ∈ X ∗, s2, . . . , sr ∈ X+, e ∈ {1, 2, 3}, and r > 1 satisfy the following:
(Ri1) the letters of s1, . . . , sr are all simple in x;
(Ri2) the letters h(s2), . . . , h(sr) are in strict alphabetical order;
(Ri3) if r = 1, then e ∈ {2, 3};
(Ri4) if r = 2, then e ∈ {1, 2};
(Ri5) if r > 3, then e = 1.
The x-rigid block in (20.7) is fully x-rigid if
(Ri6) s1 6= ∅ implies that the letters h(s1), . . . , h(sr) are in strict alphabetical order.
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Remark 20.9. (i) In any x-rigid block, the letter x is the only non-simple letter.
(ii) The x-rigid block in (20.7) is vacuously fully x-rigid if s1 = ∅.

Lemma 20.10. Let h and x be any non-simple words that end with non-simple letters.
Suppose that x is the only non-simple letter of x and that t(x) = x. Then:

(i) there exists an x-rigid block x̃ such that the identities (20.6) imply the identity x ≈ x̃;
(ii) there exists a fully x-rigid block x̃ such that the identities (20.6) imply the identity

hx ≈ hx̃.

Proof. (i) It suffices to convert x, using the identities (20.6), into an x-rigid block. By
assumption, x = s1x s2x . . . sk−1x skx for some s1, . . . , sk ∈ X ∗ with con(s1 . . . sk) = sim(x).
The identities (20.6b) can be used to arrange the factors s2x, . . . , skx in any order. In particular,
the factors from s2x, . . . , skx with empty si can be gathered to the right, resulting in a word
of the form (20.7) with (Ri1) satisfied and e > 1. Then the identities (20.6b) can be applied to
arrange the factors s2x, . . . , srx in (20.7) until (Ri2) is satisfied. Finally, the identities (20.6a)
can be applied until (Ri3)–(Ri5) are satisfied.

(ii) It suffices to convert the word hx, using the identities (20.6), into a word hx̃ where x̃ is
a fully x-rigid block. By assumption, h = ahbh for some a,b ∈ X ∗ and h ∈ X . By part (i), the
identities (20.6) can be used to convert x into an x-rigid block, say the one in (20.7). Hence

hx
(20.6)
≈ ahbh s1x s2x . . . sr−1x srx

e︸ ︷︷ ︸
x̃

where x̃ satisfies (Ri1)–(Ri5). If s1 6= ∅, then the identities {(20.6b), (20.6c)} can be applied
until (Ri6) is additionally satisfied.

Lemma 20.11. Let xi be any xi-rigid block, where i ∈ {1, 2, 3}. Then the identities (20.6f)
imply the identity x1x2x3 ≈ x1x3x2.

Proof. By assumption, xi = aixibixi for some ai,bi ∈ X ∗. Since

x1x2x3 = a1x1b1x1 · a2x2b2x2 · a3x3b3x3

(20.6f)
≈ a1x1b1x1 · a3x3b3x3 · a2x2b2x2 = x1x3x2,

the identities (20.6f) imply the identity x1x2x3 ≈ x1x3x2.

In this subsection, a non-simple word w is said to be in canonical form if

w = x1 . . .xmz, (20.8)

where x1, . . . ,xm ∈ X+ and z ∈ X ∗ are such that:
(I) x1 is an x1-rigid block;

(II) xi is a fully xi-rigid block for each i ∈ {2, . . . ,m};
(III) the letters x2, . . . , xm are in strict alphabetical order;
(IV) the letters of z are simple in w;
(V) x1, . . . ,xm, z are pairwise disjoint.

Lemma 20.12. Let w be any non-simple word. Then there exists some word w in canonical
form such that the identities (20.6) imply the identity w ≈ w.

Proof. It suffices to convert w, using the identities (20.6), into a word in canonical form.
Consider a factorization of w that displays all of its non-simple letters individually, that is,
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w = s1x1 s2x2 . . . skxk z where the letters x1, . . . , xk are non-simple in w and the letters in the
factors s1, . . . , sk, z ∈ X ∗ are simple in w. Each letter in the list x1, . . . , xk is non-simple in w
and thus appears at least twice in the list, whence k > 2.

Let r > 2 be such that x1 = x2 = . . . = xr−1 and x1 6= xr. Suppose that ` > r is the least
integer such that x1 = x`. Then

w =

(r−1∏
i=1

(six1)

)(`−1∏
i=r

(sixi)

)
︸ ︷︷ ︸

a

s`x1

( k∏
i=`+1

(sixi)

)
︸ ︷︷ ︸

b

z.

Note that the factor a is nonempty because xr ∈ con(a), and that t(a) = x`−1 6= x1 by the
minimality of `. Since the letter t(a) = x`−1 is non-simple in w, either occ(x`−1,a) > 2 or
x`−1 ∈ con(b). Hence

w =

(r−1∏
i=1

(six1)

)
· a · (s`x1) · b · z

(20.6d),(20.6e)
≈

(r−1∏
i=1

(six1)

)
· s`x1 · a · b · z

=

(r−1∏
i=1

(six1)

)
· s`x1 ·

(`−1∏
i=r

(sixi)

)( k∏
i=`+1

(sixi)

)
· z,

that is, the identities {(20.6d), (20.6e)} can be used to move the factor s`x1 to the left until it

immediately follows the prefix
∏r−1
i=1 (six1).

Now x1 /∈ {xr, . . . , x`−1} by the minimality of `. But if x1 ∈ {x`+1, . . . , xk}, say x1 = xj for
some least j ∈ {` + 1, . . . , k}, then the procedure in the previous paragraph can be repeated

to move the factor sjx1 in
∏k
i=`+1(sixi) to the left until it immediately follows the prefix

(
∏r−1
i=1 (six1))s`x1. It is easily seen how this can be repeated until w is converted into a word of

the form x1 . . .xmz with (IV) and (V) satisfied, and each xi is a word that contains precisely
one non-simple letter, say xi, with t(xi) = xi. Then it follows from Lemma 20.10 that (I)
and (II) are satisfied by applying the identities (20.6). By Lemma 20.11, the factors x2, . . . ,xm
can be arranged by the identities (20.6f) in any manner. Hence (III) is satisfied.

Proof of Proposition 20.7. It is routinely checked that E4 satisfies the identities (20.6). Hence
it suffices to show that any identity w ≈ w′ satisfied by E4 is implied by the identities (20.6).
If either w or w′ is a simple word, then it follows from Lemma 20.8 parts (i) and (iv) that
the identity w ≈ w′ is trivial and so is vacuously implied by (20.6). Therefore assume that w
and w′ are both non-simple words and so, by Lemma 20.12, can be chosen to be in canonical
form. Lemma 20.8(i) implies con(w) = con(w′) and sim(w) = sim(w′). Hence

w = x1 . . .xmz and w′ = x′1 . . .x
′
mz′,

where x1 is an x1-rigid block, xi is a fully xi-rigid block for each i ∈ {2, . . . ,m}, x′1 is an
x′1-rigid block, and x′i is a fully x′i-rigid block for each i ∈ {2, . . . ,m}.

By definition, x1 and x′1 are of the form

x1 = s1x1 s2x1 . . . sr−1x1 srx
e
1 and x′1 = s′1x

′
1 s′2x

′
1 . . . s

′
r′−1x

′
1 s′r′(x

′
1)e
′
.

Then Lemma 20.8 parts (ii)–(iv) imply s1x1 = s′1x
′
1, and parts (iii) and (iv) of the same lemma

imply {s2, . . . , sr} = {s′2, . . . , s′r′}. Since x1 and x′1 are x1-rigid blocks, it follows from (Ri2)
that (s2, . . . , sr) = (s′2, . . . , s

′
r′). It is then easily shown by (Ri3)–(Ri5) and Lemma 20.8(i) that

e = e′. Hence x1 = x′1. Now since w and w′ share the same set of non-simple letters, it follows
from (III) that xi = x′i for all i ∈ {2, . . . ,m}.
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Now consider any i ∈ {2, . . . ,m}. Then xi and x′i are of the form

xi = s1xi s2xi . . . sr−1xi srx
e
i and x′i = s′1xi s

′
2xi . . . s

′
r′−1xi s

′
r′x

e′

i .

Lemma 20.8 parts (iii) and (iv) imply {s1, . . . , sr} = {s′1, . . . , s′r′}. Since xi and x′i are fully
xi-rigid, it follows from (Ri2) and (Ri6) that (s1, . . . , sr) = (s′1, . . . , s

′
r′). It is then easily shown

by (Ri3)–(Ri5) and Lemma 20.8(i) that e = e′. Therefore xi = x′i. Since i ∈ {2, . . . ,m} is
arbitrary, x1 . . .xm = x′1 . . .x

′
m. Finally, z = z′ by Lemma 20.8(iv). Consequently, the identity

w ≈ w′ is trivial and is implied by the identities (20.6).

21. D6, D7, D8, D9, E2, E3

This section establishes the finite basis property of the following semigroups.

D6 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 1 2

3 1 1 1 1 4 1

4 4 4 4 4 4 4

5 5 5 5 5 5 5

6 1 2 3 4 1 6

D7 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 1 2

3 1 1 1 1 4 1

4 4 4 4 4 4 4

5 5 5 5 5 5 5

6 1 2 3 4 4 6

D8 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 1 2

3 1 1 1 1 4 2

4 4 4 4 4 4 4

5 5 5 5 5 5 5

6 1 2 3 4 1 6

D9 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 1 2

3 1 1 1 1 4 2

4 4 4 4 4 4 4

5 5 5 5 5 5 5

6 1 2 3 4 4 6

E2 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 1 2

3 3 3 3 3 3 3

4 3 3 3 3 1 3

5 5 5 5 5 5 5

6 1 2 3 4 1 6

E3 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 1 2

3 3 3 3 3 3 3

4 3 3 3 3 1 3

5 5 5 5 5 5 5

6 1 2 3 4 3 6

Proposition 21.1. The variety generated by any S ∈ {D6,D7,D8,D9,E2,E3} is defined by
the identities

xHx2 ≈ xHx, (21.1a)

xHxKy2x ≈ xHxKy2, (21.1b)

xHyKxTy ≈ xHyKyTx. (21.1c)

The proof of Proposition 21.1 is given in § 21.3.

21.1. Identities satisfied by D6, D7, D8, D9, E2, and E3

Lemma 21.2. The identities (21.1) imply the identity

xabhx ≈ xaxhxb (21.2)

for any a,b ∈ X+ such that con(b) ⊆ con(xa).

Proof. This is proved by induction on |b|. If |b| = 1, say b = y ∈ con(xa), then

xabhx = xayhx
(21.1a)
≈ xayhxx

(21.1c)
≈ xaxhxy = xaxhxb.
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Assume that the identities (21.1) imply the identity (21.2) whenever 1 6 |b| < n. If |b| = n,
say b = b′b′′ for some b′,b′′ ∈ X+ with |b′|+ |b′′| = n, then

xabhx = xab′b′′hx
(21.1)
≈ xab′xhxb′′

(21.1)
≈ xaxxhxb′b′′ (21.3)

(21.1a)
≈ xaxhxb′b′′ = xaxhxb,

where the two deductions in (21.3) hold by induction hypothesis.

For any word w, let F11(w) denote the set of factors of w of length two that consist of two
first occurrences in w:

F11(w) = {xy ∈ X 2 | w ∈ (X\{x, y})∗xyX ∗ and x 6= y}.

Lemma 21.3. Let S ∈ {D6,D7,D8,D9,E2,E3}. Suppose that w ≈ w′ is any identity satisfied
by S. Then:

(i) ini(w) = ini(w′);
(ii) sim(w) = sim(w′);
(iii) t(w) ∈ sim(w) if and only if t(w′) ∈ sim(w′);
(iv) F11(w) = F11(w

′).

Proof. (i) The subsemigroup {1, 4, 6} of S′ ∈ {D6,D7,D8,D9} and the subsemigroup {1, 3, 6}
of S′′ ∈ {E2,E3} are isomorphic to L1

2. Therefore the result holds by Lemma 2.1(iii).
(ii) This holds by Lemma 2.1(v) since the subsemigroup {1, 2, 6} of S is isomorphic to N1

2 .
(iii) This follows from Lemma 2.2 since the subsemigroup {1, 3, 6} of S′ ∈ {D6,D7}, the

subsemigroup {3, 4, 6} of S′′ ∈ {E2,E3}, and the divisor {1, 2, 3, 6}/{1, 2} of S′′′ ∈ {D8,D9}
are isomorphic to J .

(iv) Suppose F11(w) 6= F11(w
′), say with xy ∈ F11(w)\F11(w

′). Then w = axyb for some
a,b ∈ X ∗ such that x, y /∈ con(a). Since ini(w′) = ini(w) by part (i) and ini(w) = . . . xy . . . , it
follows that w′ = cxdye for some c, e ∈ X ∗ and d ∈ X+ such that x /∈ con(c) and y /∈ con(cd).
Let ϕ1 and ϕ2 denote the following substitutions into S′ ∈ {D6,D7,D8,D9} and S′′ ∈ {E2,E3},
respectively:

z 7→


3 if z = x,

5 if z = y,

6 otherwise;

z 7→


4 if z = x,

5 if z = y,

6 otherwise.

Then the following contradictions are obtained:

wϕ1 ∈ {6}∗ · 3 · 5 · bϕ1 = {4} and w′ϕ1 ∈ {6}∗ · 3 · {3, 6}+ · 5 · eϕ1 = {1};
wϕ2 ∈ {6}∗ · 4 · 5 · bϕ2 = {1} and w′ϕ2 ∈ {6}∗ · 4 · {4, 6}+ · 5 · eϕ2 = {3}.

Hence F11(w) = F11(w
′).

21.2. A canonical form

Any non-simple word w can be written in the form w = puq, where p,q ∈ X ∗ and u ∈ X+

are such that con(pq) ⊆ sim(w) and h(u), t(u) /∈ sim(w). Generality is not lost by assuming
ini(u) = x1 . . . xm for some m > 1, so that ini(w) = px1 . . . xmq. In this section, such a word w
is said to be in canonical form if

w = p

( m∏
i=1

(xixi)

)
q, (21.4)
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where all of the following are satisfied:
(I) x1, . . . ,xm−1 ∈ {∅, x1};

(II) xm = xe11 . . . xemm for some e1, . . . , em ∈ {0, 1} with (e1, . . . , em) 6= (0, . . . , 0);
(III) if (x1, . . . ,xm−1) 6= (∅, . . . , ∅) and (e2, . . . , em) 6= (0, . . . , 0), then e1 = 0.

Remark 21.4. Consider the word w in (21.4).
(i) If m = 1, then w = px1x1q = px2

1q by (II).
(ii) The assumption x1 = h(u) /∈ sim(w) implies

2 6 occ(x1,w) = 1 + |x1 . . .xm−1|+ e1.

Therefore if (x1, . . . ,xm−1) = (∅, . . . , ∅), then e1 = 1.

Lemma 21.5. Let w be any non-simple word. Then there exists some word w in canonical
form such that the identities (21.1) imply the identity w ≈ w.

Proof. By Lemma 21.2, it suffices to convert w, using the identities {(21.1), (21.2)}, into
a word in canonical form. As observed in the beginning of this subsection, the word w can
be written as w = puq where p,q ∈ X ∗ and u ∈ X+ are such that con(pq) ⊆ sim(w) and
h(u), t(u) /∈ sim(w). Let ini(u) = x1 . . . xm. Then u can be written as u =

∏m
i=1(xiwi), where

wi ∈ {x1, . . . , xi}∗ and wm 6= ∅. The letter t = t(wm) and any other letter in wm are clearly
non-simple in w. By assumption, the letter x1 = h(u) is also non-simple in w. Therefore

w
(21.1a)
≈ p

(m−1∏
i=1

(xiwi)

)
xmwmt

2q
(21.1b)
≈ p

(m−1∏
i=1

(xiwi)

)
xmwmt

2x1q

(21.1a)
≈ p

(m−1∏
i=1

(xiwi)

)
xmwmx1q

(21.1c)
≈ p

(m−1∏
i=1

(xiwi)

)
xm(x1wm)q.

Hence generality is not lost by assuming h(wm) = x1 to begin with, so that wm = x1w
′
m for

some w′m ∈ {x1, . . . , xm}∗.
If w1 6= ∅, then since w1 ∈ {x1}∗, the identity x3 ≈ x2 from (21.1a) can be used to reduce

the factor x1w1 of w to x1x1. In other words, the word w1 can be converted into x1 = x1.
Now suppose wk 6= ∅ for some k ∈ {2, . . . ,m− 1}. Since con(wk) ⊆ con((

∏k−1
i=1 (xiwi))xk) and

h(wm) = x1, it follows from Lemma 21.2 that

w = px1w1

(k−1∏
i=2

(xiwi)

)
xkwk

( m−1∏
i=k+1

(xiwi)

)
xm

wm︷ ︸︸ ︷
x1w

′
m q

(21.2)
≈ px1w1

(k−1∏
i=2

(xiwi)

)
xkx1

( m−1∏
i=k+1

(xiwi)

)
xmx1wkw

′
mq,

that is, the identities (21.2) can be used to simultaneously replace the factor wk by x1 = xi
and insert a copy of wk between the x1 and w′m in wm. It is easily seen how this can be
repeated until w is converted into the word

w = p

( m∏
i=1

(xixi)

)
xm x1w2 . . .wm−1w

′
m︸ ︷︷ ︸

w′′m

q

where xi ∈ {∅, x1}. Since the letters of w′′m are non-first occurrences in w, the identities (21.1c)
can be used to rearrange them into xm = xe11 . . . xemm , where e1, . . . , em > 0 are such that
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(e1, . . . , em) 6= (0, . . . , 0). The identities (21.1a) can then be applied to reduce any nonzero
exponent ei to 1. Hence (I) and (II) are satisfied. Since x1 is a letter of w′′m, it is also a letter
of xm. Therefore e1 = 1.

Suppose xk 6= ∅ for some k < m and e` 6= 0 for some ` > 1. Then xk = x1 and xm = x1ax`b,
where a =

∏`−1
i=2 x

ei
i and b =

∏m
i=`+1 x

ei
i . Since the letters of xm are non-first occurrences in w,

w = px1x1 . . . xkxk . . . xm

xm︷ ︸︸ ︷
x1ax`b q

(21.1a)
≈ px1x1 . . . xkxk . . . xmx1ax

2
`bq

(21.1c)
≈ px1x1 . . . xkxk . . . xmax2

`x1bq

(21.1b)
≈ px1x1 . . . xkxk . . . xmax2

`bq since xk = x1

(21.1a)
≈ px1x1 . . . xkxk . . . xmax`bq.

The first letter x1 of wm is thus eliminated, resulting in e1 = 0. Hence (III) is satisfied.

21.3. Proof of Proposition 21.1

Let S ∈ {D6,D7,D8,D9,E2,E3}. It is routinely checked that S satisfies the identities (21.1).
Hence it suffices to show that any identity w ≈ w′ satisfied by S is implied by the
identities (21.1). If either w or w′ is a simple word, then it follows from Lemma 21.3 parts (i)
and (ii) that the identity w ≈ w′ is trivial and so is vacuously implied by the identities (21.1).
Therefore assume that w and w′ are both non-simple words and so by Lemma 21.5, can be
chosen to be in canonical form. Hence

w = p

( m∏
i=1

(xixi)

)
q and w′ = p′

(m′∏
i=1

(x′ix
′
i)

)
q′.

Then by Lemma 21.3(i),
(a) px1 . . . xmq = ini(w) = ini(w′) = p′x′1 . . . x

′
m′q

′.
Since x1 /∈ sim(w) by assumption and sim(w) = sim(w′) by Lemma 21.3(ii), the letter x1

is non-simple in w′, so that x1 /∈ con(p′). By a symmetrical argument, x′1 /∈ sim(p). It then
follows from (a) that

(b) p = p′.
If either q or q′ is empty, then q = q′ = ∅ by Lemma 21.3(iii). Therefore suppose that q
and q′ are nonempty. Seeking a contradiction, suppose q 6= q′. Then by (a), either q is a
proper suffix of q′ or q′ is a proper suffix of q. By symmetry, it suffices to assume that q is
a proper suffix of q′. It then follows from (a) that xmq is a suffix of q′, whence xm ∈ sim(w′)
and xm h(q) ∈ F11(q

′). However, xm 6= ∅ by (II) so that xm h(q) /∈ F11(q), and this contradicts
Lemma 21.3(iv). Therefore

(c) q = q′.
It now follows from (a)–(c) that m = m′ and xi = x′i for all i. If xi 6= x′i for some i < m, say

xi = ∅ and x′i = x1, then xixi+1 ∈ F11(w)\F11(w
′), contradicting Lemma 21.3(iv). Therefore

xi = x′i for all i < m, whence

w = pzxm x
e1
1 x

e2
2 . . . xemm︸ ︷︷ ︸
xm

q and w′ = pzxm x
e′1
1 x

e′2
2 . . . x

e′m
m︸ ︷︷ ︸

x′m

q

with z =
∏m−1
i=1 (xixi). Now (I) and (II) imply occ(xi,w) = 1 + ei and occ(xi,w

′) = 1 + e′i for
each i > 1. Hence (e2, . . . , em) = (e′2, . . . , e

′
m) by Lemma 21.3(ii). In each of the following two
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cases, it is shown that e1 = e′1. Consequently, the identity w ≈ w′ is trivial and is implied by
the identities (21.1).

Case 1: (e2, . . . , em) = (0, . . . , 0). Then e1 = 1 = e′1 by (II).

Case 2: (e2, . . . , em) 6= (0, . . . , 0). If (x1, . . . ,xm−1) 6= (∅, . . . , ∅), then e1 = 0 = e′1 by (III).
If (x1, . . . ,xm−1) = (∅, . . . , ∅), then e1 = 1 = e′1 by Remark 21.4(ii).

22. E5, E6, E7

This section establishes the finite basis property of the following semigroups.

E5 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 1 3

3 1 1 1 1 3 3

4 1 2 3 4 4 4

5 1 2 3 4 5 5

6 1 2 3 4 6 6

E6 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 1 3

3 1 1 1 1 3 3

4 4 4 4 4 4 4

5 1 2 3 4 5 5

6 1 2 3 4 6 6

E7 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 1 3

3 3 3 3 3 3 3

4 1 2 3 4 5 1

5 1 2 3 4 5 3

6 6 6 6 6 6 6

22.1. Finite basis property of E5

Proposition 22.1. The variety generated by E5 is defined by the identities

x3 ≈ x2, x2yx ≈ xyx, xyx2 ≈ xyx, (22.1a)

h2xyx ≈ h2yx2, (22.1b)

h2x2y2 ≈ h2y2x2. (22.1c)

For any word w, let FSN(w) denote the set of factors of w of length two that begin with a
simple letter and end with a non-simple letter:

FSN(w) = {xy ∈ X 2 | w ∈ X ∗xyX ∗, x ∈ sim(w), y /∈ sim(w)}.

Lemma 22.2. Suppose that w ≈ w′ is any identity satisfied by E5. Then:
(i) h(w) = h(w′);
(ii) con(w) = con(w′) and sim(w) = sim(w′);

(iii) for any letters x ∈ con(w) = con(w′) and y ∈ sim(w) = sim(w′), the conditions x ≺w y
and x ≺w′ y are equivalent;

(iv) wsim = w′sim;
(v) FSN(w) = FSN(w′).

Proof. Parts (i)–(iv) follow from Lemmas 2.1(i) and 2.3 since the subsemigroups {5, 6} and
{1, 3, 4, 5} of E5 are isomorphic to L2 and J1, respectively.

(v) Suppose FSN(w) 6= FSN(w′), say xy ∈ FSN(w)\FSN(w′). Then x ∈ sim(w) = sim(w′) by
part (ii). Therefore w = axyb and w′ = a′xb′ for some a,b,a′,b′ ∈ X ∗ such that h(b′) 6= y
and x /∈ con(aba′b′). Let ϕ : X → E5 denote the substitution

z 7→


2 if z = x,

6 if z = y,

5 otherwise.
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Then 5 · aϕ = 5 · a′ϕ = b′ϕ · 5 = 5 and 6 · bϕ · 5 = 6, so that

5 ·wϕ · 5 = (5 · aϕ) · 2 · (6 · bϕ · 5) = 5 · 2 · 6 = 3

and

5 ·w′ϕ · 5 = (5 · a′ϕ) · 2 · (b′ϕ · 5) = 5 · 2 · 5 = 1,

which is impossible.

In this subsection, a non-simple word w is said to be in canonical form if

w =

m∏
i=1

(siwi), (22.2)

where all of the following are satisfied:
(I) the letters of s1 ∈ X ∗ and s2, . . . , sm ∈ X+ are simple in w;

(II) the letters of w1, . . . ,wm−1 ∈ X+ and wm ∈ X ∗ are non-simple in w;
(III) con(w1) ⊇ . . . ⊇ con(wm).

Lemma 22.3. Let w be any non-simple word. Then there exists some word w in canonical
form such that the identities (22.1) imply the identity w ≈ w.

Proof. It suffices to convert w, using the identities (22.1), into a word in canonical form. It
is easily seen that w can be written as a word of the form (22.2) with (I) and (II) satisfied. If
x ∈ con(wi+1)\con(wi), say wi+1 = axb for some a,b ∈ X ∗, then the identities (22.1) can be
used to convert wi into wix:

w = . . . siwi · si+1wi+1 . . .
(22.1a)
≈ . . . siwi(t(wi))

2 · si+1ax
2b . . .

(22.1b)
≈ . . . siwi(t(wi))

2x · si+1axb . . .
(22.1a)
≈ . . . si(wix) · si+1wi+1 . . . .

Hence (III) is satisfied by applying the identities (22.1).

Lemma 22.4. Suppose that E5 satisfies an identity w ≈ w′, where

w =

m∏
i=1

(siwi) and w′ =

m∏
i=1

(siw
′
i)

are in canonical form. Then con(wi) = con(w′i) for all i.

Proof. First note that
⋃m
i=1 con(wi) =

⋃m
i=1 con(w′i) holds by Lemma 22.2(ii). Suppose

con(w1) 6= con(w′1), say x ∈ con(w1)\con(w′1). Then by (II), the letter x is non-simple in w
and so by Lemma 22.2(ii), it is also non-simple in w′. By (II), there exists some i > 1 such
that x ∈ con(w′i). But then (III) implies x ∈ con(w′1), contradicting the assumption. Therefore
con(w1) = con(w′1).

Now suppose con(wk) 6= con(w′k) for some k > 1, say x ∈ con(wk)\con(w′k). Then (III)
implies x ∈ con(w1 . . .wk) and x /∈ con(w′k . . .w

′
m), whence x 6≺w h(sk) and x ≺w′ h(sk). But

this violates Lemma 22.2(iii).

Proof of Proposition 22.1. It is routinely checked that E5 satisfies the identities (22.1). Hence
it suffices to show that any identity w ≈ w′ satisfied by E5 is implied by the identities (22.1).
If either w or w′ is a simple word, then it follows from Lemma 22.2 that the identity w ≈ w′
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is trivial and so is vacuously implied by (22.1). Therefore assume that w and w′ are both
non-simple words and so by Lemma 22.3, can be chosen to be in canonical form. Hence

w =

m∏
i=1

(siwi) and w′ =

m′∏
i=1

(s′iw
′
i).

Since s1 . . . sm = wsim = w′sim = s′1 . . . s
′
m′ by Lemma 22.2 part (iv), it follows from parts (i)

and (v) of the same lemma that m = m′, si = s′i, and h(wi) = h(w′i) for all i. Therefore
w′ =

∏m
i=1(siw

′
i). Now Lemma 22.4 implies con(wi) = con(w′i) for all i. Hence it can be

assumed that hi = h(wi) = h(w′i) and con(wi) = con(w′i) = {hi, xi,1, . . . , xi,ri}. Let ϕ denote
the substitution x 7→ x2 for all x ∈ X . Then it follows from (II) that

w
(22.1a)
≈

m∏
i=1

(si(wiϕ))
(22.1c)
≈

m∏
i=1

(sih
ei,0
i x

ei,1
i,1 . . . x

ei,ri
i,ri

) for some ei,j ∈ {2, 4, 6, . . .}

(22.1a)
≈

m∏
i=1

(sih
2
ix

2
i,1 . . . x

2
i,ri).

Similarly, the deduction w′
(22.1)
≈

∏m
i=1(sih

2
ix

2
i,1 . . . x

2
i,ri

) also holds. Consequently, the identity
w ≈ w′ is implied by the identities (22.1).

22.2. Finite basis property of E6

Proposition 22.5. The variety generated by E6 is defined by the identities

x3 ≈ x2, x2yx ≈ xyx, xyx2 ≈ xyx, (22.3a)

xHy2x ≈ x2Hy2. (22.3b)

Lemma 22.6. Suppose that w ≈ w′ is any identity satisfied by E6. Then ini(w) = ini(w′)
and sim(w) = sim(w′).

Proof. This follows from Lemma 2.1 since the subsemigroups {1, 4, 5} and {1, 3, 5} of E6 are
isomorphic to L1

2 and N1
2 , respectively.

In this subsection, a word w with ini(w) = x1 . . . xm is said to be in canonical form if

w =

m∏
i=1

(xeii wi), (22.4)

where all of the following are satisfied:
(I) wi ∈ {∅, x1, . . . , xi−1};

(II) e1, . . . , em ∈ {1, 2};
(III) if xi /∈ sim(w), then wi = ∅;
(IV) if xi /∈ sim(w) and xi = wj for some j > i, then ei = 1.
Note that (IV) implies that the word w in (22.4) does not contain a factor of the form x2ax
where a ∈ X+.

Lemma 22.7. Let w be any word. Then there exists some word w in canonical form such
that the identities (22.3) imply the identity w ≈ w.
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Proof. It suffices to convert w, using the identities (22.3), into a word in canonical form.
Suppose that x and y are distinct non-simple letters of w such that w = axbyxc for some
a,b, c ∈ X ∗ with y ∈ con(abc). Then

w
(22.3a)
≈ axby2xc

(22.3b)
≈ ax2by2c

(22.3a)
≈ ax2byc,

that is, using the identities (22.3), any non-first occurrence of x in w that immediately follows
another non-simple letter can be gathered with the first x in w. It follows that w can be
converted into a word of the form (22.4) with (I) and (III) satisfied. Then (II) and (IV) are
satisfied by applying the identities (22.3a).

Lemma 22.8. Suppose that E6 satisfies an identity w ≈ w′, where

w =

m∏
i=1

(xeii wi) and w′ =
m∏
i=1

(x
e′i
i w′i)

are in canonical form. Then ei = e′i for all i.

Proof. Since occ(xm,w) = em and occ(xm,w
′) = e′m by (I), it follows from (II) and

Lemma 22.6 that em = e′m. Suppose ej 6= e′j for some j < m, say (ej , e
′
j) = (1, 2). Then

xj /∈ sim(w′), so that xj /∈ sim(w) by Lemma 22.6. The second xj in w coincides with wk for
some k > j, so that wk 6= ∅. Hence xk ∈ sim(w) by (III), and

w = ax
ej
j bxkwkc = axjbxkxjc

for some a,b, c ∈ X ∗ with xj /∈ con(ab) and xk /∈ con(abc). By Lemma 22.6, the letter xk is
also simple in w′. Since e′j = 2, it follows from (I) and (IV) that occ(xj ,w

′) = 2, whence

w′ = a′x
e′j
j b′xkc

′ = a′x2
jb
′xkc

′

for some a′,b′, c′ ∈ X ∗ with xj , xk /∈ con(a′b′c′). Let ϕ : X → E6 denote the substitution

z 7→


5 if z = xj ,

2 if z = xk,

6 otherwise.

Note that xj , xk /∈ con(aba′b′c′), so 6 · aϕ = 6 · a′ϕ = c′ϕ · 6 = 6 and 5 · bϕ = 52 · b′ϕ = 5.
Hence

6 ·wϕ · 6 = (6 · aϕ) · (5 · bϕ) · (2 · 5) · cϕ · 6 = 6 · 5 · 1 · cϕ · 6 = 1

and
6 ·w′ϕ · 6 = (6 · a′ϕ) · (52 · b′ϕ) · 2 · (c′ϕ · 6) = 6 · 5 · 2 · 6 = 3,

which is a contradiction. Consequently, j does not exist, so that ei = e′i for all i.

Proof of Proposition 22.5. It is routinely checked that E6 satisfies the identities (22.3). Hence
it suffices to show that any identity w ≈ w′ satisfied by E6 is implied by the identities (22.3).
By Lemma 22.7, the words w and w′ can be assumed to be in canonical form. Since ini(w) =
ini(w′) by Lemma 22.6, it follows from Lemma 22.8 that

w =

m∏
i=1

(xeii wi) and w′ =

m∏
i=1

(xeii w′i).
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Suppose that ` is the least integer such that w` 6= w′`. Then (w`,w
′
`) 6= (∅, ∅), say w` 6= ∅.

It follows from (I) that w` = xk for some k < `, whence x` ∈ sim(w) and e` = 1 by (III). Thus

w = pxe`` w`q = px`xkq

where p =
∏`−1
i=1(xeii wi) and q =

∏m
i=`+1(xeii wi), and

w′ = pxe`` w′`q
′ = px`w

′
`q
′

where q′ =
∏m
i=`+1(xeii w′i) and w′` ∈ {∅, x1, . . . , x`−1}\{xk}. Further, sim(w) = sim(w′) by

Lemma 22.6, so that x` /∈ con(pqw′`q
′). Let ϕ : X → E6 denote the substitution

z 7→


5 if z = xk,

2 if z = x`,

6 otherwise.

Then 6 ·wϕ · 6 = (6 · pϕ) · 2 · (5 · qϕ · 6) = 6 · 2 · 5 = 1. Note that if q′ 6= ∅, then h(q′) = x`+1

and x` /∈ con(q′), so that q′ϕ · 6 = 6. Therefore

6 ·w′ϕ · 6 =

{
(6 · pϕ) · 2 · 6 · (q′ϕ · 6) if w′` 6= ∅,
(6 · pϕ) · 2 · (q′ϕ · 6) if w′` = ∅,

= 6 · 2 · 6 = 3,

and the contradiction 6 ·wϕ · 6 6= 6 ·w′ϕ · 6 is established. Hence the integer ` does not exist.
Consequently, the identity w ≈ w′ is trivial and is implied by the identities (22.3).

22.3. Finite basis property of E7

Proposition 22.9. The variety generated by E7 is defined by the identities

xHx2 ≈ xHx, xHyKxy ≈ xHyKy, xHyKyx ≈ xHyKx. (22.5)

In this subsection, a word w with ini(w) = x1 . . . xm is said to be in canonical form if

w =

m∏
i=1

(xiwi), (22.6)

where wi ∈ {∅, x1, . . . , xi}.

Lemma 22.10. Let w be any word. Then there exists some word w in canonical form such
that the identities (22.5) imply the identity w ≈ w.

Proof. It suffices to convert w, using the identities (22.5), into a word in canonical form.
Suppose ini(w) = x1 . . . xm. Then w can be written in the form (22.6) with wi ∈ {x1, . . . , xi}∗.
Since any letter in wi is a non-first occurrence in w, the identities (22.5) can be used to
eliminate all except the last letter of wi. Therefore wi ∈ {∅, x1, . . . , xi}.

Proof of Proposition 22.9. It is routinely checked that E7 satisfies the identities (22.5). Hence
it suffices to show that any identity w ≈ w′ satisfied by E7 is implied by the identities (22.5).
By Lemma 22.10, the words w and w′ can be assumed to be in canonical form. Now the
subsemigroup {1, 3, 5} of E7 is isomorphic to L1

2, so that ini(w) = ini(w′) by Lemmas 2.1(iii).
Hence

w =

m∏
i=1

(xiwi) and w′ =

m∏
i=1

(xiw
′
i).

https://doi.org/10.1112/S1461157014000412 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000412


finite basis problem for semigroups of order six 99

Suppose that ` is the least integer such that w` 6= w′`. Then

w = px`w`q and w′ = px`w
′
`q
′

where p =
∏`−1
i=1(xiwi) =

∏`−1
i=1(xiw

′
i), q =

∏m
i=`+1(xiwi), and q′ =

∏m
i=`+1(xiw

′
i). By

symmetry, there are three cases.

Case 1: (w`,w
′
`) = (∅, x`). Let ϕ1 : X → E7 denote the substitution

z 7→


2 if z = x`,

6 if z = x`+1,

4 otherwise.

Then x`, x`+1 /∈ con(p), so that 4 · pϕ1 = 4. Hence

4 ·wϕ1 · 6 = (4 · pϕ1) · 2 · (qϕ1 · 6) = 4 · 2 · 6 = 3

and
4 ·w′ϕ1 · 6 = (4 · pϕ1) · 2 · 2 · (q′ϕ1 · 6) = 4 · 2 · 2 · 6 = 1.

Case 2: (w`,w
′
`) = (∅, xk) with k < `. Let ϕ2 : X → E7 denote the substitution

z 7→


5 if z = xk,

6 if z = x`+1,

4 otherwise.

Then x`+1 /∈ con(p), so that 4 · pϕ2 ∈ {4, 5}. Hence

4 ·wϕ2 · 6 = (4 · pϕ2) · 4 · (qϕ2 · 6) ∈ {4, 5} · 4 · 6 = {1}

and
4 ·w′ϕ2 · 6 = (4 · pϕ2) · 4 · 5 · (q′ϕ2 · 6) ∈ {4, 5} · 4 · 5 · 6 = {3}.

Case 3: (w`,w
′
`) = (xj , xk) with j < k 6 `. Then since x`+1 /∈ con(p), it follows that

(px`)ϕ2 ∈ {4, 5} · 4 = {4}. Hence

wϕ2 · 6 = (px`)ϕ2 · 4 · (qϕ2 · 6) = 4 · 4 · 6 = 1

and
w′ϕ2 · 6 = (px`)ϕ2 · 5 · (q′ϕ2 · 6) = 4 · 5 · 6 = 3.

Since all of the above cases are impossible, the integer ` does not exist. Consequently, the
identity w ≈ w′ is trivial and so is implied by the identities (22.5).

23. E8, E9, E10, F5

This section establishes the finite basis property of the following semigroups.

E8 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 1 3

3 3 3 3 3 3 3

4 1 2 3 4 5 1

5 1 2 3 5 4 1

6 6 6 6 6 6 6

E9 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 1 3

3 3 3 3 3 3 3

4 1 2 3 4 5 3

5 1 2 3 5 4 3

6 6 6 6 6 6 6

E10 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 2 2

3 1 1 1 1 3 3

4 4 4 4 4 4 4

5 1 1 3 1 5 6

6 1 3 3 1 5 6

F5 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 2 2

3 3 3 3 3 3 3

4 3 3 3 3 4 4

5 1 2 1 1 5 6

6 1 2 1 2 5 6
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23.1. Finite basis property of E8 and E9

Proposition 23.1. The variety generated by S ∈ {E8,E9} is defined by the identities

x2yx ≈ x3y3, (23.1a)

xHx3 ≈ xHx, (23.1b)

xHyx2 ≈ xHy3, (23.1c)

xHy3x ≈ xHyx, (23.1d)

xHyKxy ≈ xHyKyx, (23.1e)

yHxyKz2 ≈ yHx2Kz2xy. (23.1f)

Lemma 23.2. Let S ∈ {E8,E9}. Suppose that w ≈ w′ is any identity satisfied by S. Then
ini(w) = ini(w′) and occ(x,w) ≡ occ(x,w′) (mod 2) for all x ∈ X .

Proof. This follows from Lemma 2.1 since the subsemigroups {1, 3, 4} and {4, 5} of S are
isomorphic to L1

2 and Z2, respectively.

Lemma 23.3. Let S ∈ {E8,E9}. Then S does not satisfy the identity

x2y3z2 ≈ x2yz2. (23.2)

Proof. This holds because 42 · 23 · 62 = 1 6= 3 = 42 · 2 · 62 in S.

In this subsection, a non-simple word w with ini(w) = x0 . . . xm is said to be in canonical
form if

w = xe00 . . . xerr · x
f0
0 . . . x

fr−1

r−1 · xr+1 . . . xm (23.3)

for some r ∈ {0, . . . ,m} such that all of the following are satisfied:
(I) e0, . . . , er ∈ {1, 2, 3};

(II) f0, . . . , fr−1 ∈ {0, 1};
(III) if ei > 2 and i ∈ {0, . . . , r − 1}, then fi = 0;
(IV) if er = 1, then (f0, . . . , fr−1) 6= (0, . . . , 0);
(V) if r > 1 and (f0, . . . , fr−1) 6= (0, . . . , 0), then er 6 2.

Remark 23.4. (i) The word w in (23.3) satisfies occ(x,w) 6 3 for all x ∈ X .
(ii) If r = 0, then the word w in (23.3) is xe00 x1 . . . xm.

Lemma 23.5. Let w be any non-simple word. Then there exists some word w in canonical
form such that the identities (23.1) imply the identity w ≈ w.

Proof. It suffices to convert w, using the identities (23.1), into a word in canonical form.
Suppose ini(w) = x0 . . . xm. Then w can be written as a word of the form w =

∏m
i=0(xiwi)

with wi ∈ {x0, . . . , xi}∗. Let r be the largest integer for which wr 6= ∅, so that wj = ∅ for all
j > r. Then w = (

∏r
i=0(xiwi))(

∏m
i=r+1 xi). Since the letters of wi are non-first occurrences,

the identities (23.1e) can be used to arrange them, within wi, in any order. Hence it can be
assumed that

w = xe00 · x
e1
1 w′1 . . . x

er
r w′r · xr+1 . . . xm

where e0, . . . , er > 1 and w′i ∈ {x0, . . . , xi−1}∗. The assumption wr 6= ∅ implies that either
er > 2 or w′r 6= ∅. Therefore

w
(23.1b)
≈

{
xe00 · x

e1
1 w′1 . . . x

er−1

r−1 w′r−1 · xerr w′rx
2
r · xr+1 . . . xm if w′r = ∅,

xe00 · x
e1
1 w′1 . . . x

er−1

r−1 w′r−1 · xerr w′r(t(w
′
r))

2 · xr+1 . . . xm if w′r 6= ∅.
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In either case, there exists some z ∈ {x0, . . . , xr} such that

w
(23.1b)
≈ xe00 · x

e1
1 w′1 . . . x

er−1

r−1 w′r−1 · xerr w′rz
2 · xr+1 . . . xm.

Suppose w′k 6= ∅ for some k < r. Then w′k = y1y2 . . . yp for some yi ∈ {x0, . . . , xk−1}, whence

w = p · xekk y1y2 . . . yp · q · xerr w′r · xr+1 . . . xm

where p = xe00

∏k−1
i=1 (xeii w′i) and q =

∏r−1
i=k+1(xeii w′i). Since the prefix p contains the letters

y1, . . . , yp,

w
(23.1b)
≈ p · xekk y1y2 . . . yp · q · xerr w′rz

2 · xr+1 . . . xm
(23.1f)
≈ p · xek+1

k y2y3 . . . yp · q · xerr w′rz
2 · xky1 · xr+1 . . . xm

(23.1f)
≈ p · xek+2

k y3y4 . . . yp · q · xerr w′rz
2 · xky2 · xky1 · xr+1 . . . xm

...

(23.1f)
≈ p · xek+p

k · q · xerr w′rz
2 · xkyp · xkyp−1 . . . xky1 · xr+1 . . . xm

(23.1e)
≈ p · xek+p

k · q · xerr w′rz
2 · xpky1y2 . . . yp · xr+1 . . . xm

(23.1b)
≈ p · xek+p

k · q · xerr w′r · x
p
ky1y2 . . . yp · xr+1 . . . xm

= p · xek+|w′k|
k · q · xerr w′rx

|w′k|
k w′k · xr+1 . . . xm.

Hence the identities (23.1) can be used to move the factor w′k to the right until it immediately

precedes the letter xr+1 (while simultaneously introducing two copies of x
|w′k|
k to the word),

that is,

w = p · xekk w′k · q · xerr w′r · xr+1 . . . xm
(23.1)
≈ p · xek+|w′k|

k · q · xerr w′rx
|w′k|
k w′k · xr+1 . . . xm.

The above deduction holds vacuously if w′k = ∅. Since k < r is arbitrary, this deduction can
be repeated on every w′1, . . . ,w

′
r−1, resulting in

w
(23.1)
≈ xe00

(r−1∏
i=1

x
ei+|w′i|
i

)
xerr w′r

(r−1∏
i=1

(x
|w′i|
i w′i)

)
xr+1 . . . xm.

Since the letters in w′r(
∏r−1
i=1 (x

|w′i|
i w′i)) are non-first occurrences in w, the identities (23.1e)

can be used to order them. Hence w can be converted by the identities (23.1) into the word
in (23.3). As observed earlier, either er > 2 or w′r 6= ∅. Hence (IV) is satisfied. The identities
{(23.1b), (23.1c)} can be used to reduce the exponents fr−1, . . . , f0 to numbers in {0, 1}, so
that (II) is satisfied.

Suppose ei > 2 and fi = 1 for some i < r. Then

w = xe00 · a · x
ei
i x

ei+1

i+1 . . . x
er
r · x

f0
0 . . . x

fi−1

i−1 xi · b
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where a = xe11 . . . x
ei−1

i−1 and b = x
fi+1

i+1 . . . x
fr−1

r−1 · xr+1 . . . xm, whence

w
(23.1e)
≈ xe00 · a · (x

ei
i x

ei+1

i+1 . . . x
er
r xi) · x

f0
0 . . . x

fi−1

i−1 · b
(23.1a)
≈ xe00 · a · x

ei+1
i (x

ei+1

i+1 . . . x
er
r )3 · xf00 . . . x

fi−1

i−1 · b

= xe00 · a · x
ei+1
i x

ei+1

i+1 . . . x
er−1

r−1 x
er
r (x

ei+1

i+1 . . . x
er−1

r−1 x
er
r )2 · xf00 . . . x

fi−1

i−1 · b
(23.1e)
≈ xe00 · a · x

ei+1
i x

ei+1

i+1 . . . x
er−1

r−1 x
er
r x

2ei+1

i+1 . . . x
2er−1

r−1 x2er
r · xf00 . . . x

fi−1

i−1 · b
(23.1b)
≈ xe00 · a · x

ei+1
i x

ei+1

i+1 . . . x
er−1

r−1 x
er
r x

2
i+1 . . . x

2
r−1x

2
r · x

f0
0 . . . x

fi−1

i−1 · b
(23.1c)
≈ xe00 · a · x

ei+1
i x

ei+1

i+1 . . . x
er−1

r−1 x
er+2(r−i)
r xf00 . . . x

fi−1

i−1 · b
(23.1b)
≈ xe00 · a · x

ei+1
i x

ei+1

i+1 . . . x
er−1

r−1 x
er+2
r xf00 . . . x

fi−1

i−1 · b.

Therefore the identities (23.1) can be used to reduce the exponent fi from 1 to 0. Since i
is arbitrary, this argument can be repeated until (III) is satisfied. It is then easily shown
that (I) is satisfied by applying the identities (23.1b). Finally, (V) is satisfied by applying the
identities (23.1d).

Lemma 23.6. Let S ∈ {E8,E9}. Suppose that w ≈ w′ is any nontrivial identity satisfied
by S. Then the words w and w′ are both non-simple.

Proof. By Lemma 23.2, it can be assumed that ini(w) = ini(w′) = x0 . . . xm. Therefore if
the words w and w′ are both simple, then the identity w ≈ w′ is contradictorily trivial. Hence
it suffices to assume that w is non-simple. By Lemma 23.5, there exists a word w in canonical
form such that the identities (23.1) imply the identity w ≈ w. It is routinely checked that S
satisfies the identities (23.1), whence S satisfies w ≈ w′.

Suppose that the word w′ is simple. Then w′ = ini(w′) = x0 . . . xm. Let xi be any non-simple
letter in w. Since occ(xi,w) ≡ occ(xi,w

′) (mod 2) by Lemma 23.2, it follows from (I)–(III)
that occ(xi,w) = 3 and x3

i is a factor of w. Let ϕ denote the substitution xi 7→ x3
i . The

deduction wϕ
(23.1b)
≈ w is easily verified. Since

x0 . . . xm = w′
S
≈ w

(23.1b)
≈ wϕ

S
≈ w′ϕ = x0 . . . xi−1x

3
ixi+1 . . . xm,

the semigroup S satisfies the identity x0 . . . xm ≈ x0 . . . xi−1x
3
ixi+1 . . . xm. It is then easily

shown that S satisfies the identity (23.2), contradicting Lemma 23.3. Consequently, w′ cannot
be simple.

Lemma 23.7. Let S ∈ {E8,E9}. Suppose that S satisfies an identity w ≈ w′, where

w = xe00 . . . xerr · x
f0
0 . . . x

fr−1

r−1 · xr+1 . . . xm

and

w′ = x
e′0
0 . . . x

e′
r′
r′ · x

f ′0
0 . . . x

f ′
r′−1

r′−1 · xr′+1 . . . xm

are in canonical form. Then r = r′.

Proof. Seeking a contradiction, suppose r > r′. Then the letter xr occurs in the suffix
xr′+1 . . . xm of w′, so that occ(xr,w

′) = 1. Hence er = occ(xr,w) ∈ {1, 3} by Lemma 23.2
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and Remark 23.4(i). Let ϕ denote the following substitution into S:

z 7→


4 if z ∈ {x0, . . . , xr−1},
2 if z = xr,

6 if z ∈ {xr+1, . . . , xm}.

Then 4 ·w′ϕ · 6 = 4 · 2 · 6 = 3 and

4 ·wϕ · 6 = 4 · xerr ϕ · (x
f0
0 . . . x

fr−1

r−1 )ϕ · 6.

If er = 3, then 4 ·wϕ · 6 = 4 · 23 . . . 6 = 1. If er = 1, then (f0, . . . , fr−1) 6= (0, . . . , 0) by (IV),
so that 4 ·wϕ · 6 = 4 · 2 · 4 · 6 = 1. In either case, the contradiction 4 ·wϕ · 6 6= 4 ·w′ϕ · 6 is
obtained.

Lemma 23.8. Let S ∈ {E8,E9}. Suppose that S satisfies an identity w ≈ w′, where

w = xe00 . . . xerr · x
f0
0 . . . x

fr−1

r−1 · xr+1 . . . xm

and

w′ = x
e′0
0 . . . x

e′r
r · xf

′
0

0 . . . x
f ′r−1

r−1 · xr+1 . . . xm

are in canonical form. Then:
(i) (f0, . . . , fr−1) = (f ′0, . . . , f

′
r−1);

(ii) (e0, . . . , er) = (e′0, . . . , e
′
r).

Consequently, w = w′.

Proof. (i) Seeking a contradiction, suppose fi > f ′i for some i ∈ {0, . . . , r−1}. Then (fi, f
′
i) =

(1, 0) by (II), so that ei = 1 by (I) and (III). Since occ(xi,w) = ei + fi = 2, it follows from
Remark 23.4(i) and Lemma 23.2 that 2 = occ(xi,w

′) = e′i + f ′i = e′i. Let ϕ : X → S denote
the substitution

z 7→


4 if z ∈ {x0, . . . , xi−1},
2 if z = xi,

6 otherwise.

Then ei = 1 and e′i = 2 imply that

4 ·wϕ · 6 = 4 · (xe00 . . . x
ei−1

i−1 )ϕ · 2 · (xei+1

i+1 . . . x
er
r )ϕ . . . = 4 · 2 · 6 . . . = 3

and

4 ·w′ϕ · 6 = 4 · (xe
′
0

0 . . . x
e′i−1

i−1 )ϕ · 22 · (xe
′
i+1

i+1 . . . x
e′r
r )ϕ . . . = 4 · 1 · 6 . . . = 1,

whence the contradiction wϕ 6= w′ϕ is deduced.
(ii) Seeking a contradiction, suppose ei > e′i for some i ∈ {0, . . . , r}.

Case 1: er > e′r. Since occ(xr,w) = er and occ(xr,w
′) = e′r, it follows from (I) and

Lemma 23.2 that (er, e
′
r) = (3, 1). If both r > 1 and (f0, . . . , fr−1) 6= (0, . . . , 0) hold, then the

contradiction er 6 2 follows from (V). Therefore either r = 0 or (f0, . . . , fr−1) = (0, . . . , 0),
whence the identity w ≈ w′ is either

x3
0x1 . . . xm ≈ x0x1 . . . xm or x0 . . . xr−1x

3
rxr+1 . . . xm ≈ x0 . . . xm.

In both cases, S satisfies the identity (23.2), which is impossible by Lemma 23.3.
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Case 2: ei > e′i for some i < r. Since fi = f ′i by part (i) with occ(xi,w) = ei + fi and
occ(xi,w

′) = e′i + f ′i , it follows from (I) and Lemma 23.2 that (ei, e
′
i) = (3, 1). Let ϕ : X → S

denote the substitution given in part (i). Then

4 ·wϕ · 6 = 4 · (xe00 . . . x
ei−1

i−1 )ϕ · 23 · (xei+1

i+1 . . . x
er
r )ϕ . . . = 4 · 1 · 6 . . . = 1

and

4 ·w′ϕ · 6 = 4 · (xe
′
0

0 . . . x
e′i−1

i−1 )ϕ · 2 · (xe
′
i+1

i+1 . . . x
e′r
r )ϕ . . . = 4 · 2 · 6 . . . = 3,

which is impossible.

Proof of Proposition 23.1. Let S ∈ {E8,E9}. It is routinely checked that S satisfies the
identities (23.1). Hence it suffices to show that any nontrivial identity w ≈ w′ satisfied by S is
implied by the identities (23.1). By Lemma 23.6, the words w and w′ are non-simple. Therefore
by Lemma 23.5, there exist words w and w′ in canonical form such that the identities (23.1)
imply the identities w ≈ w and w′ ≈ w′. Since ini(w) = ini(w′) by Lemma 23.2,

w = xe00 . . . xerr · x
f0
0 . . . x

fr−1

r−1 · xr+1 . . . xm

and

w′ = x
e′0
0 . . . x

e′
r′
r′ · x

f ′0
0 . . . x

f ′
r′−1

r′−1 · xr′+1 . . . xm.

Then r = r′ by Lemma 23.7, and w = w′ by Lemma 23.8. Consequently, the identities (23.1)
imply the identity w ≈ w′.

23.2. Finite basis property of E10 and F5

Proposition 23.9. The variety generated by S ∈ {E10,F5} is defined by the identities

x3 ≈ x2, x2yx ≈ xyx, xyx2 ≈ xyx, (23.4a)

hx2ky2tz2 ≈ hy2tx2kz2. (23.4b)

Lemma 23.10. For all h,x,y, z ∈ X+ such that h(x), h(y), h(z) /∈ sim(hxyz), the
identities (23.4) imply the identity

hxyz ≈ hyxz. (23.5)

Proof. If x = h(x), y = h(y), and z = h(z) are non-simple letters of hxyz, then

hxyz
(23.4a)
≈ hx2xy2yz2z

(23.4b)
≈ hy2yx2xz2z

(23.4a)
≈ hyxz.

Hence the identities (23.4) imply the identity (23.5).

For any word w, let FNS(w) denote the set of factors of w of length two that begin with a
non-simple letter and end with a simple letter:

FNS(w) = {xy ∈ X 2 |w ∈ X ∗xyX ∗, x /∈ sim(w), y ∈ sim(w)}.

Lemma 23.11. Let S ∈ {E10,F5}. Suppose that w ≈ w′ is any identity satisfied by S. Then:
(i) con(w) = con(w′), sim(w) = sim(w′), h(w) = h(w′), and t(w) = t(w′);
(ii) FNS(w) = FNS(w′);

(iii) FSS(w) = FSS(w′).
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Proof. (i) This follows from Lemma 2.1 since the subsemigroups {1, 4}, {5, 6}, and {1, 3, 5}
of E10 are isomorphic to L2, R2, and N1

2 , respectively, while the subsemigroups {1, 3}, {5, 6},
and {1, 2, 5} of F5 are isomorphic to L2, R2, and N1

2 , respectively.
(ii) Suppose FNS(w) 6= FNS(w′), say xy ∈ FNS(w)\FNS(w′). Then it follows from part (i)

that x is non-simple in w′ and y is simple in w′, whence xy is not a factor of w′. Let ϕ1

and ϕ2 denote the following substitutions into E10 and F5, respectively:

z 7→


5 if z = x,

2 if z = y,

6 otherwise;

z 7→


5 if z = x,

4 if z = y,

6 otherwise.

Then the following contradictions are obtained:

wϕ1 ∈ {5, 6}∗ · 5 · 2 · {5, 6}∗ = {1} and w′ϕ1 ∈ {5, 6}∗ · 6 · 2 · {5, 6}∗ = {3};
wϕ2 ∈ {5, 6}∗ · 5 · 4 · {5, 6}∗ = {1} and w′ϕ2 ∈ {5, 6}∗ · 6 · 4 · {5, 6}∗ = {2}.

Hence FNS(w) = FNS(w′).
(iii) Suppose FSS(w) 6= FSS(w′), say xy ∈ FSS(w)\FSS(w′). Then x, y ∈ sim(w) = sim(w′)

by part (i) so that xy ∈ FNS(xw)\FNS(xw′). Therefore by part (ii), the semigroup S does not
satisfy the identity xw ≈ xw′, but this is impossible.

For any non-simple word w, define ~w = y2
1 . . . y

2
k where y1, . . . , yk are precisely all the distinct

non-simple letters of w listed in alphabetical order. In this subsection, a non-simple word w
is said to be in canonical form if it can be written as

w = w0 · ~w · x1w1 . . . xmwm, (23.6)

where w0, . . . ,wm ∈ X+ and x1, . . . , xm ∈ X satisfy the following:
(I) the letters of w0, . . . ,wm are precisely all simple letters of w;

(II) the letters x1, . . . , xm are non-simple in w;
(III) the letters x1, . . . , xm−1 are in alphabetical order.
Note that the letters x1, . . . , xm need not be distinct, but it follows from (I) that the words
x1w1, . . . , xmwm are distinct.

Lemma 23.12. Let w be any non-simple word such that h(w), t(w) ∈ sim(w). Then there
exists some word w in canonical form such that the identities (23.4) imply the identity w ≈ w.

Proof. By Lemma 23.10, it suffices to convert w, using the identities {(23.4), (23.5)}, into a
word in canonical form. Consider a factorization of w that displays all of its non-simple letters
individually, that is, w = w0x1w1 . . . xrwr where the letters x1, . . . , xr are non-simple in w
and the letters in the factors w0, . . . ,wr ∈ X ∗ are simple in w. The assumption h(w), t(w) ∈
sim(w) implies w0,wr 6= ∅. Further, each letter in the list x1, . . . , xr is non-simple in w and
thus appears at least twice in the list, whence r > 2.

Now the words x1w1, . . . , xrwr begin with non-simple letters of w. Therefore by applying
the identity (23.5) sufficiently many times, the factors

x1w1, . . . , xr−1wr−1 (23.7)

of w can be rearranged in any manner. In particular, the factors from (23.7) with nonempty wi

can be gathered to the right, resulting in a word of the form

w0

(∏
i∈I1

xi

)(∏
i∈I2

(xiwi)

)
xrwr
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for some I1 and I2 such that I1 ∪ I2 = {1, . . . , r − 1} and I1 ∩ I2 = ∅. Hence

w
(23.5)
≈ w0

(∏
i∈I1

xi

)(∏
i∈I2

(xiwi)

)
xrwr

(23.4a)
≈ w0

(∏
i∈I1

x2
i

)(∏
i∈I2

(x2
ixiwi)

)
x2
rxrwr

(23.5)
≈ w0

( r∏
i=1

x2
i

)(∏
i∈I2

(xiwi)

)
xrwr.

The identities {(23.4), (23.5)} can be used to convert the factor
∏r
i=1 x

2
i of the latter word

into ~w, resulting in a word of the form (23.6) with (I) and (II) satisfied. The identities (23.5)
can then be used to rearrange the factors xiwi in

∏
i∈I2(xiwi) until (III) is satisfied.

Let X(23.4) denote the variety defined by the identities (23.4).

Lemma 23.13. Suppose that w,w′ ∈ X+ and x, y ∈ X are such that con(w) = con(w′),
sim(w) = sim(w′), h = h(w) = h(w′), t = t(w) = t(w′), and x, y /∈ con(w) = con(w′). Then
X(23.4){w ≈ w′} = X(23.4){σ} where the identity

σ is


xw ≈ xw′ if h /∈ sim(w) = sim(w′) and t ∈ sim(w) = sim(w′),

wy ≈ w′y if h ∈ sim(w) = sim(w′) and t /∈ sim(w) = sim(w′),

xwy ≈ xw′y if h, t /∈ sim(w) = sim(w′).

Proof. It suffices to consider the case when h /∈ sim(w) and t ∈ sim(w) since the other two
cases can be established similarly. Let σ denote the identity xw ≈ xw′. Then the inclusion
X(23.4){w ≈ w′} ⊆ X(23.4){σ} holds trivially. Conversely, since the words w and w′ begin
with the non-simple letter h,

w
(23.4a)
≈ hw

σ
≈ hw′

(23.4a)
≈ w′.

Hence the inclusion X(23.4){σ} ⊆ X(23.4){w ≈ w′} holds.

Proof of Proposition 23.9. Let S ∈ {E10,F5}. It is routinely verified that S satisfies the
identities (23.4). Therefore there exists some set Σ of identities satisfied by S such that
{(23.4)} ∪ Σ is a basis for S. If w ≈ w′ is an identity in Σ such that either w or w′ is a
simple word, then it follows from Lemma 23.11(i) that the identity w ≈ w′ is trivial. Hence
generality is not lost by assuming that all identities in Σ are formed by non-simple words.

Let w ≈ w′ be any identity from Σ. By Lemma 23.11(i),
(a) con(w) = con(w′), sim(w) = sim(w′), h(w) = h(w′), and t(w) = t(w′).

By Lemma 23.13, the words forming the identities in Σ can be chosen to begin and end with
simple letters. Therefore by Lemma 23.12,

(b) the words forming the identities in Σ can be chosen to be in canonical form.
It then follows from (a) and (b) that w and w′ are of the form

w = w0 · ~w · x1w1 . . . xmwm and w′ = w′0 · ~w · y1w
′
1 . . . ynw′n,

where con(w0 . . .wm) = sim(w) = sim(w′) = con(w′0 . . .w
′
n), h(w0) = h(w′0), t(wm) = t(w′n),

and x1, . . . , xm, y1, . . . , yn ∈ con(~w). Then by Lemma 23.11:
(c) w0 = w′0;
(d) xmwm = ynw′n;
(e) {x1w1, . . . , xm−1wm−1} = {y1w

′
1, . . . , yn−1w

′
n−1}.

Therefore (x1w1, . . . , xm−1wm−1) = (y1w
′
1, . . . , yn−1w

′
n−1) by (c)–(e) and (III), whence the

identity w ≈ w′ is trivial. Since the identity w ≈ w′ is arbitrary in Σ, the identities (23.4)
constitute a basis for S.
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24. F1, F2

This section establishes the finite basis property of the following semigroups.

F1 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 2 2

3 1 1 1 1 3 3

4 4 4 4 4 4 4

5 1 1 3 4 5 6

6 1 3 3 4 5 6

F2 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 2 2

3 1 1 2 1 3 3

4 4 4 4 4 4 4

5 1 2 3 4 5 6

6 1 2 3 4 5 6

24.1. Finite basis property of F1

Proposition 24.1. The variety generated by F1 is defined by the identities

x3 ≈ x2, x2yx ≈ xyx, xyx2 ≈ xyx, (24.1a)

xyxz2 ≈ x2yz2. (24.1b)

Lemma 24.2. Suppose that w ≈ w′ is any identity satisfied by F1. Then ini(w) = ini(w′),
sim(w) = sim(w′), and t(w) = t(w′).

Proof. This follows from Lemma 2.1 since the subsemigroups {1, 4, 6}, {1, 3, 5}, and {5, 6}
of F1 are isomorphic to L1

2, N1
2 , and R2, respectively.

In this subsection, a word w with ini(w) = x1 . . . xm is said to be in canonical form if

w =

m∏
i=1

(xeii wi), (24.2)

where all of the following are satisfied:
(I) wi ∈ {∅, x1, . . . , xi−1};

(II) e1, . . . , em ∈ {1, 2};
(III) if xi /∈ sim(w), then wi−1 = ∅;
(IV) if xi /∈ sim(w) and xi = wj for some j > i, then ei = 1.
Note that (I) and (IV) imply that the word w in (24.2) does not contain a factor of the form
x2ax where a ∈ X ∗.

Lemma 24.3. Let w be any word. Then there exists some word w in canonical form such
that the identities (24.1) imply the identity w ≈ w.

Proof. It suffices to convert w, using the identities (24.1), into a word in canonical form.
Suppose that x and y are non-simple letters of w such that w = axbxyc for some a,b, c ∈ X ∗
with y ∈ con(abc). Then

w
(24.1a)
≈ axbxy2c

(24.1b)
≈ ax2by2c

(24.1a)
≈ ax2byc,

that is, using the identities (24.1), any non-first occurrence of x in w that immediately precedes
another non-simple letter can be gathered with the first x in w. It follows that w can be
converted into a word of the form (24.2) with (I) and (III) satisfied. Then (II) and (IV) are
satisfied by applying the identities (24.1a).
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Lemma 24.4. Suppose that F1 satisfies an identity w ≈ w′, where

w =

m∏
i=1

(xeii wi) and w′ =

m∏
i=1

(x
e′i
i w′i)

are words in canonical form. Then ei = e′i for all i.

Proof. Observe that occ(xm,w) = em and occ(xm,w
′) = e′m by (I) and that

(a) sim(w) = sim(w′)
by Lemma 24.2. Therefore em = e′m by (II). Seeking a contradiction, suppose er 6= e′r for some
r < m, say (er, e

′
r) = (1, 2). Then xr /∈ sim(w′), whence xr /∈ sim(w) by (a). Since w is in

canonical form, the second xr in w coincides with one of wr+1, . . . ,wm, say xr = w`. Then
xr 6= x` by (I), and the word w can be written as

w = pxrwrqx
e`
` xr︸︷︷︸

w`

u,

where p =
∏r−1
i=1 (xeii wi), q =

∏`−1
i=r+1(xeii wi), and u =

∏m
i=`+1(xeii wi) with

(b) xr /∈ con(pwrqx`).
As for the word w′, since e′r = 2, it can be written as

w′ = p′x2
rw
′
rq
′x
e′`
` w′`u

′,

where p′ =
∏r−1
i=1 (x

e′i
i w′i), q′ =

∏`−1
i=r+1(x

e′i
i w′i), and u′ =

∏m
i=`+1(x

e′i
i w′i) with xr /∈ con(p′)

and x` /∈ con(p′xrw
′
rq
′). In fact, it follows from (I) and (IV) that

(c) xr /∈ con(p′w′rq
′x`w

′
`u
′).

In particular, t(w′) 6= xr. Since t(w) = t(w′) by Lemma 24.2, it follows that u 6= ∅, whence
(d) h(u) = x`+1 ∈ sim(w)

by (III), and
(e) h(u′) = x`+1 ∈ sim(w′)

by (a). Let ϕ : X → F1 denote the substitution

z 7→


6 if z = xr,

2 if z = x`+1,

5 otherwise.

Then uϕ = 2 and u′ϕ = 2 by (d) and (e). Since xr, x`+1 /∈ con(pwrqx`) by (b) and (d), it
follows that 5 · pϕ = (wrqx

e`
` )ϕ = 5. Thus

5 ·wϕ = (5 · pϕ) · xrϕ · (wrqx
e`
` )ϕ · xrϕ · uϕ = 5 · 6 · 5 · 6 · 2 = 3.

Similarly, xr, x`+1 /∈ con(p′w′rq
′x`w

′
`) by (c) and (e), so 5 · p′ϕ = (w′rq

′x
e′`
` w′`)ϕ = 5. Hence

5 ·w′ϕ = (5 · p′ϕ) · x2
rϕ · (w′rq′x

e′`
` w′`)ϕ · u′ϕ = 5 · 6 · 5 · 2 = 1.

Consequently, the contradiction 5 ·wϕ 6= 5 ·w′ϕ is established.

Proof of Proposition 24.1. It is routinely checked that F1 satisfies the identities (24.1).
Hence it suffices to show that any identity w ≈ w′ satisfied by F1 is implied by the
identities (24.1). By Lemma 24.3, the words w and w′ can be assumed to be in canonical
form. By Lemmas 24.2 and 24.4,

w =

m∏
i=1

(xeii wi) and w′ =

m∏
i=1

(xeii w′i)
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with wm = w′m. Let ` < m be the least integer such that w` 6= w′`. Then the words w and w′

share the prefix p =
∏`−1
i=1(xeii wi) =

∏`−1
i=1(xeii w′i). Since (w`,w

′
`) 6= (∅, ∅), generality is not

lost by assuming w` 6= ∅. Then (I) implies w` = xk for some k ∈ {0, . . . , `− 1} and
(a) w′` ∈ {∅, x0, . . . , x`−1}\{xk},

whence

w = pxe`` xk︸︷︷︸
w`

x
e`+1

`+1 q and w′ = pxe`` w′`x
e`+1

`+1 q′,

where q = w`+1

∏m
i=`+2(xeii wi) and q′ = w′`+1

∏m
i=`+2(xeii w′i). The conditions w` 6= ∅

and (III) imply x`+1 ∈ sim(w); since sim(w) = sim(w′) by Lemma 24.2,
(b) x`+1 ∈ sim(w) = sim(w′) and e`+1 = 1.
Let ϕ : X → F1 denote the substitution

z 7→


6 if z = xk,

2 if z = x`+1,

5 otherwise.

Since x`+1 /∈ con(px`q) by (b), it follows that (pxe`` )ϕ = 5 and qϕ ∈ {∅, 5, 6}. Thus

wϕ = (pxe`` )ϕ · xkϕ · x`+1ϕ · qϕ = 5 · 6 · 2 · qϕ = 3.

On the other hand, w′`ϕ ∈ {∅, 5} by (a), so that

w′ϕ = (pxe`` )ϕ ·w′`ϕ · x`+1ϕ · q′ϕ = 5 ·w′`ϕ · 2 · q′ϕ = 1.

The contradiction wϕ 6= w′ϕ implies that the integer ` does not exist. Consequently, wi = w′i
for all i, whence the identity w ≈ w′ is trivial and is implied by the identities (24.1).

24.2. Finite basis property of F2

Proposition 24.5. The variety generated by F2 is defined by the identities

x4 ≈ x3, (24.3a)

x3yx ≈ x2yx, (24.3b)

xyxz ≈ x2yz. (24.3c)

In this subsection, a word w is said to be in canonical form if

w = xe11 . . . xemm y,

where all of the following are satisfied:
(I) e1, . . . , em ∈ {1, 2, 3};

(II) x1, . . . , xm ∈ X are distinct;
(III) either (a) y = ∅ or (b) y = x` for some ` < m with e` ∈ {1, 2}.

Lemma 24.6. Let w be any word. Then there exists some word w in canonical form such
that the identities (24.3) imply the identity w ≈ w.

Proof. It suffices to convert w, using the identities (24.3), into a word in canonical form.
This is easily achieved if |con(w)| = 1. Hence assume |con(w)| > 2. Then w = py for some
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p ∈ X+ with y = t(w). If a letter x occurs more than once in p, then the identity (24.3c) can
be used to gather any non-first x in p with the first x in p:

w = axbxc︸ ︷︷ ︸
p

y
(24.3c)
≈ ax2bcy.

Hence the identity (24.3c) can be used to convert w into a word of the form w′ = xe11 . . . xemm y
that satisfies (II). If y = xm, then w′ = xe11 . . . x

em−1

m−1 x
em+1
m and the identity (24.3a) can be

used to reduce the exponents e1, . . . , em−1, em + 1 in w′ to numbers in {1, 2, 3}, whence (I)
and (IIIa) are satisfied. If y = x` for some ` < m, then (I) and (IIIb) are satisfied by applying
the identities {(24.3a), (24.3b)}.

Proof of Proposition 24.5. It is routinely checked that F2 satisfies the identities (24.3).
Therefore it suffices to show that any identity w ≈ w′ satisfied by F2 is implied by the
identities (24.3). By Lemma 24.6, the words w and w′ can be assumed to be in canonical form.
Since the subsemigroups {1, 4, 6} and {5, 6} of F2 are isomorphic to L1

2 and R2, respectively, it

follows from Lemma 2.1 that w = xe11 . . . xemm y and w′ = x
e′1
1 . . . x

e′m
m y. Since the subsemigroup

{1, 2, 3, 5} of F2 is isomorphic to N1
3 , it follows from (I), (III), and Lemma 2.1(vii) that ei = e′i

for all i. Hence the identity w ≈ w′ is trivial and so is implied by the identities (24.3).

25. F3, F4

This section establishes the finite basis property of the following semigroups.

F3 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 2 2

3 1 2 3 1 1 1

4 4 4 4 4 4 4

5 1 1 1 4 5 6

6 4 4 4 1 6 5

F4 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 2 2

3 1 2 3 1 2 2

4 4 4 4 4 4 4

5 1 1 1 4 5 6

6 4 4 4 1 6 5

Let W denote the variety generated by
←−
J and O, where

←−
J is the dual semigroup of J and O

is the semigroup from Remark 6.6.

Lemma 25.1. The variety W is defined by the identities

xy3 ≈ xy, (25.1a)

x3y ≈ xyx2, (25.1b)

xyxy ≈ xy2x. (25.1c)

Proof. Let X(25.1) denote the variety defined by the identities (25.1). It is routinely checked

that
←−
J ,O ∈ X(25.1). Results from Edmunds et al. [9, § 6] (specifically, the proofs of Lemmas 6.3,

6.4, and 6.9–6.11) imply that any proper subvariety of X(25.1) must satisfy either x3y ≈ xy

or xyx ≈ x2y; it is routinely verified that these two identities are not satisfied by
←−
J and O,

respectively. Consequently, W = X(25.1).

A finite basis for the variety A0 ∨W is established in § 25.1. It is then routinely checked
that F4 ∈ A0 ∨W. But since the subsemigroups {1, 2, 3, 5}, {1, 2, 5}, and {1, 4, 5, 6} of F4
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are isomorphic to A0,
←−
J , and O, respectively, the semigroup F4 generates the variety A0∨W

and so is finitely based.
Similarly, a finite basis for the variety B0 ∨W is established in § 25.2, from which the

condition F3 ∈ B0 ∨W can be routinely checked. The subsemigroups {1, 2, 3, 5}, {1, 2, 5},
and {1, 4, 5, 6} of F3 are isomorphic to B0,

←−
J , and O, respectively, whence F3 generates the

variety B0 ∨W and is finitely based.

25.1. A basis for A0 ∨W

Proposition 25.2. The variety A0 ∨W is defined by the identities

xHx2Kx ≈ xHKx, (25.2a)

xHyKy2Tx ≈ xHyKTx, (25.2b)

xHyKx2Ty ≈ xHyKTyx2, (25.2c)

xHyKxy ≈ xHyKyx. (25.2d)

Lemma 25.3. Suppose that w is any connected word. Then there exists some word w̃ with
con(w) = con(w̃) and h(w) = h(w̃) = t(w̃) such that the identities (25.2) imply w ≈ w̃.

Proof. If h(w) = t(w), then the lemma holds vacuously with w̃ = w. Therefore assume
h(w) 6= t(w). Since w is connected, there exists a sequence h(w) = x1, x2, . . . , xm = t(w) of
non-simple letters of w occurring in an overlapping pattern such that the first xi+1 occurs
between two occurrences of xi and the last xi+1 occurs to the right of all occurrences of xi.
This sequence can be chosen to have minimal length among all such sequences, so that

w = x1 p1 x2 p2 x1 q1 x3 p3 x2 q2 x4 p4 x3 q3 . . . qm−1 xm

for some p1, . . . ,pm,q1, . . . ,qm−1 ∈ X ∗. (Note that pi follows the first xi while qi follows the
last xi.) Then

w = (x1 p1 x2 p2 x1) q1 x3 p3 x2 q2 x4 p4 x3 q3 . . . qm−1 xm
(25.2a)
≈ (x1 p1 x2 p2 x

3
1 q1 x3 p3 x2) q2 x4 p4 x3 q3 . . . qm−1 xm

(25.2c)
≈ (x1 p1 x2 p2 x1 q1 x3 p3 x2 x

2
1 q2 x4 p4 x3) q3 . . . qm−1 xm

(25.2c)
≈ x1 p1 x2 p2 x1 q1 x3 p3 x2 q2 x4 p4 x3 x

2
1 q3 . . . qm−1 xm

...

(25.2c)
≈ x1 p1 x2 p2 x1 q1 x3 p3 x2 q2 x4 p4 x3 q3 . . . qm−1 xm x

2
1︸ ︷︷ ︸

w̃

,

where the word w̃ satisfies the required properties.

Let X(25.2) denote the variety defined by the identities (25.2).

Lemma 25.4. Let w ≈ w′ be any identity satisfied by A0,
←−
J , and O. Then

X(25.2){w ≈ w′} = X(25.2){wi ≈ w′i | 1 6 i 6 m}

for some identities wi ≈ w′i such that h(wi) = t(wi) = h(w′i) = t(w′i).
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Proof. Since A0 satisfies w ≈ w′, it follows from Lee and Volkov [21, Proposition 3.2(i)]
that

w = s0

m∏
i=1

(wisi) and w′ = s0

m∏
i=1

(w′isi),

where:
(a) the letters of s0, sm ∈ X ∗ and s1, . . . , sm−1 ∈ X+ are simple in w and w′;
(b) w1, . . . ,wm,w

′
1, . . . ,w

′
m ∈ X+ are connected;

(c) s0,w1, s1, . . . ,wm, sm are pairwise disjoint;
(d) s0,w

′
1, s1, . . . ,w

′
m, sm are pairwise disjoint;

(e) con(wi) = con(w′i) and A0 satisfies wi ≈ w′i for all i.
It is easily seen that the inclusion X(25.2){wi ≈ w′i | 1 6 i 6 m} ⊆ X(25.2){w ≈ w′} holds.

Consider any i ∈ {1, . . . ,m}. The subsemigroup {a, ba, 1} of O is isomorphic to L1
2. Therefore

ini(wi) = ini(w′i) by Lemma 2.1(iii); in particular, h(wi) = h(w′i). Further, by Lemma 25.3, the
words wi and w′i can be chosen to satisfy h(wi) = t(wi) and h(w′i) = t(w′i). For convenience,
let hi = h(wi) = t(wi) = h(w′i) = t(w′i). Let ϕ denote the substitution x 7→ h2

i for all

x /∈ con(wi) = con(w′i). Then the deductions wϕ
(25.2a)
≈ wi and w′ϕ

(25.2a)
≈ w′i hold, so that

the identities {(25.2),w ≈ w′} imply wi ≈ w′i. Since i ∈ {1, . . . ,m} is arbitrary, the inclusion
X(25.2){w ≈ w′} ⊆ X(25.2){wi ≈ w′i | 1 6 i 6 m} holds.

Proof of Proposition 25.2. It is routinely checked that A0,
←−
J , and O satisfy the

identities (25.2). Hence A0 ∨W = X(25.2)Σ for some set Σ of identities. By Lemma 25.4,
each identity w ≈ w′ in Σ can be chosen to satisfy h(w) = t(w) = h(w′) = t(w′). Let

w ≈ w′ be any such identity with h = h(w) = t(w) = h(w′) = t(w′). Since
←−
J and O satisfy

the identity w ≈ w′, it follows from Lemma 25.1 and Birkhoff’s completeness theorem of
equational logic [3] that there exists a deduction sequence

w = z0 ⇒ z1 ⇒ · · · ⇒ zr = w′, (25.3)

where each deduction zi ⇒ zi+1 involves an identity from (25.1), that is, there exist ei, fi ∈ X ∗,
an identity ui ≈ vi from (25.1), and an endomorphism ϕi of X+ such that zi = ei(uiϕi)fi and
zi+1 = ei(viϕi)fi. In what follows, it is shown that each deduction zi ⇒ zi+1 in (25.3) can be
replaced by a deduction sequence that involves only identities from (25.2), whence the variety
X(25.2) satisfies the identity w ≈ w′. Since the identity w ≈ w′ is arbitrary in Σ, it follows
that X(25.2) = X(25.2)Σ = A0 ∨W.

Multiplying each word in (25.3) by h2 on both the left and the right results in

h2wh2 = h2z0h
2 ⇒ h2z1h

2 ⇒ · · · ⇒ h2zrh
2 = h2w′h2.

Since the identities h2wh2 ≈ w and h2w′h2 ≈ w′ are implied by the identities (25.2a) of
X(25.2), generality is not lost if every word in (25.3) is assumed to begin and end with the
letter h. Let i be any fixed number from {0, . . . , r − 1}.

Case 1: zi ⇒ zi+1 involves (25.1a). Then {zi, zi+1} = {eab3f , eabf} for some a,b ∈ X+

and e, f ∈ X ∗. Since

eab3f
(25.2a)
≈ h2eab3fh2

(25.2b)
≈ h2eabfh2

(25.2a)
≈ eabf ,

the deduction zi ⇒ zi+1 can be replaced by a deduction sequence that involves identities
from (25.2).
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Case 2: zi ⇒ zi+1 involves (25.1b). Then {zi, zi+1} = {ea3bf , eaba2f} for some a,b ∈ X+

and e, f ∈ X ∗. Since

ea3bf
(25.2a)
≈ h2ea3bfh2

(25.2b)
≈ h2eabfh2

(25.2b)
≈ h2eaba2fh2

(25.2a)
≈ eaba2f ,

the deduction zi ⇒ zi+1 can be replaced by a deduction sequence that involves identities
from (25.2).

Case 3: zi ⇒ zi+1 involves (25.1c). Since the identity (25.1c) belongs to (25.2d), the
deduction zi ⇒ zi+1 can be replaced by a deduction that involves an identity from (25.2).

25.2. A basis for B0 ∨W

Proposition 25.5. The variety B0 ∨W is defined by the identities

xHx2Kx ≈ xHKx, (25.4a)

xHyKy2Tx ≈ xHyKTx, (25.4b)

xHyKx2Ty ≈ xHyKTyx2, (25.4c)

xHyKxy ≈ xHyKyx, (25.4d)

x2y2x2y2 ≈ x2y2. (25.4e)

Lemma 25.6. Let w = w1 . . .wm where w1, . . . ,wm are pairwise disjoint connected words.
Then there exists some word w̃ with con(w) = con(w̃) and h(w) = h(w̃) = t(w̃) such that the
identities (25.4) imply the identity w ≈ w̃.

Proof. It suffices to verify the lemma for m = 2 since the general case can be obtained by
induction. Since the word w1 is connected, the letter t = t(w1) occurs at least twice in w1.
Hence w1 = atbt for some a,b ∈ X ∗. Similarly, the letter h = h(w2) occurs at least twice
in w2, so that w2 = hchd for some c,d ∈ X ∗. Then w1h

2t2w2 is a connected word such that

w1h
2t2w2

(25.4a)
≈ w1t

2h2t2h2w2

(25.4e)
≈ w1t

2h2w2

(25.4a)
≈ w1w2.

Since the identities (25.2) belong to (25.4), the proof of Lemma 25.3 can be repeated to convert
the connected word w1h

2t2w2, using the identities (25.4), into a word w̃ with con(w) = con(w̃)
and h(w) = h(w̃) = t(w̃).

Let X(25.4) denote the variety defined by the identities (25.4).

Lemma 25.7. Let w ≈ w′ be any identity satisfied by B0,
←−
J , and O. Then

X(25.4){w ≈ w′} = X(25.4){wi ≈ w′i | 1 6 i 6 m}

for some identities wi ≈ w′i such that h(wi) = t(wi) = h(w′i) = t(w′i).

Proof. Since B0 satisfies w ≈ w′, it follows from Lee and Volkov [21, Proposition 3.2(ii)]
that

w = s0

m∏
i=1

(wisi) and w′ = s0

m∏
i=1

(w′isi),
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where the following holds:
(a) the letters of s0, sm ∈ X ∗ and s1, . . . , sm−1 ∈ X+ are simple in w and w′;
(b) each w1, . . . ,wm,w

′
1, . . . ,w

′
m ∈ X+ is a product of pairwise disjoint connected words;

(c) s0,w1, s1, . . . ,wm, sm are pairwise disjoint;
(d) s0,w

′
1, s1, . . . ,w

′
m, sm are pairwise disjoint;

(e) con(wi) = con(w′i) and B0 satisfies wi ≈ w′i for all i.
By Lemma 25.6, each word in (b) can be replaced with a connected word. Since the
identities (25.2) belong to (25.4), the proof of Lemma 25.4 can be repeated to establish the
present lemma.

Proof of Proposition 25.5. It is routinely shown that B0,
←−
J , and O satisfy the identities

{(25.2), (25.4)}. Therefore B0 ∨W = X(25.4)Σ for some set Σ of identities. By Lemma 25.7,
each identity w ≈ w′ in Σ can be chosen to satisfy h(w) = t(w) = h(w′) = t(w′). Let
w ≈ w′ be any such identity with h = h(w) = t(w) = h(w′) = t(w′). Then the proof of
Proposition 25.2 can be repeated to show that the identity w ≈ w′ is deducible from the
identities (25.2). Since the identities (25.2) belong to (25.4), the identity w ≈ w′ is also
deducible from the identities (25.4). Consequently, the variety X(25.4) satisfies the identity
w ≈ w′. Since the identity w ≈ w′ is arbitrary in Σ, it follows that X(25.4) = X(25.4)Σ =
B0 ∨W.

26. F6, F7, F8

This section establishes the finite basis property of the following semigroups.

F6 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 2 2

3 3 3 3 3 3 3

4 4 4 4 4 4 4

5 1 1 1 4 5 6

6 1 1 4 4 5 6

F7 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 2 2

3 3 3 3 3 3 3

4 4 4 4 4 4 4

5 1 2 1 4 5 6

6 1 2 4 4 5 6

F8 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 2 2

3 3 3 3 3 3 3

4 4 4 4 4 4 4

5 3 3 3 4 5 6

6 4 4 3 4 5 6

26.1. Finite basis property of F7

Proposition 26.1. The variety generated by F7 is defined by the identities

x2Hx ≈ xHx, (26.1a)

xHx2 ≈ xHx, (26.1b)

xHyKxy ≈ x2HyKy, (26.1c)

xHyzyx ≈ xHy2zx. (26.1d)

In this section, a word w with ini(w) = x0 . . . xm is said to be in α-canonical form if

w = xe00

m∏
i=1

(xeii wi), (26.2)

where all of the following are satisfied:
(I) wi ∈ {∅, x0, . . . , xi−1};

(II) e0, . . . , em ∈ {1, 2};
(III) w does not contain a factor of the form x2ax where a ∈ X+.

https://doi.org/10.1112/S1461157014000412 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000412


finite basis problem for semigroups of order six 115

Note that (I) and (II) imply that the word w in (26.2) does not contain a factor of the form
xax2 where a ∈ X ∗.

Lemma 26.2. Let w be any word. Then there exists some word w in α-canonical form such
that the identities (26.1) imply the identity w ≈ w.

Proof. It suffices to convert w, using the identities (26.1), into a word in α-canonical form.
Suppose ini(w) = x0 . . . xm. Then w can be written as a word of the form w =

∏m
i=0(xiwi)

with wi ∈ {x0, . . . , xi}∗. Suppose |wr| > 2 for some r ∈ {0, . . . ,m}. Then wr = w′rxkx` for
some w′r ∈ X ∗ with con(w′rxkx`) ⊆ {x0, . . . , xr}. Hence

w = pxrwrq

where p =
∏r−1
i=0 (xiwi) and q =

∏m
i=r+1(xiwi). Since the letters xk and x` in wr are non-first

occurrences, the first xk and x` of w occur somewhere in the prefix pxr. If k = `, then

w = . . . x` . . .︸ ︷︷ ︸
pxr

w′rx
2
`︸ ︷︷ ︸

wr

q
(26.1b)
≈ . . . x` . . . w′rx` q.

If k < `, then

w = . . . xk . . . x` . . .︸ ︷︷ ︸
pxr

w′rxkx`︸ ︷︷ ︸
wr

q
(26.1c)
≈ . . . x2

k . . . x` . . . w′rx` q.

If ` < k, then

w = . . . x` . . . xk . . .︸ ︷︷ ︸
pxr

w′rxkx`︸ ︷︷ ︸
wr

q
(26.1d)
≈ . . . x` . . . x

2
k . . . w′rx` q.

In each of the three cases just considered, an identity from (26.1) has been used to convert the
factor wr = w′rxkx` of w into w′rx`, that is, the length of wr is reduced by one. This argument
can be repeated until the length of wr is reduced to one. Hence it is easily shown that w can be
converted by the identities (26.1) into the form (26.2) with (I) satisfied. The identities (26.1a)
can then be used to convert this word into one that satisfies (II) and (III).

Lemma 26.3. Suppose that w ≈ w′ is any identity satisfied by F7. Then ini(w) = ini(w′),
sim(w) = sim(w′), and t(w) = t(w′).

Proof. This follows from Lemma 2.1 since the subsemigroups {1, 4, 5}, {1, 2, 5}, and {5, 6}
of F7 are isomorphic to L1

2, N1
2 , and R2, respectively.

Lemma 26.4. Suppose that F7 satisfies an identity w ≈ w′, where

w = xe00

m∏
i=1

(xeii wi) and w′ = x
e′0
0

m∏
i=1

(x
e′i
i w′i)

are words in α-canonical form. Then ei = e′i for all i.

Proof. Seeking a contradiction, suppose er 6= e′r for some r, say (er, e
′
r) = (1, 2). Then the

letter xr is non-simple in w′. By Lemma 26.3, the letter xr is also non-simple in w. Since w
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is in α-canonical form, the second xr in w coincides with one of wr+1, . . . ,wm, say xr = w`.
Then xr 6= x` by (I), and the word w can be written as

w = pxrwrqx
e`
` xr︸︷︷︸

w`

u,

where p = xe00

∏r−1
i=1 (xeii wi), q =

∏`−1
i=r+1(xeii wi), and u =

∏m
i=`+1(xeii wi) with

(a) xr /∈ con(pwrqx`).
As for the word w′, since e′r = 2, it can be written as

w′ = p′x2
rw
′
rq
′x
e′`
` w′`u

′,

where p′ = x
e′0
0

∏r−1
i=1 (x

e′i
i w′i), q′ =

∏`−1
i=r+1(x

e′i
i w′i), and u′ =

∏m
i=`+1(x

e′i
i w′i) with xr /∈ con(p′)

and x` /∈ con(p′xrw
′
rq
′). In fact, it follows from (I) and (III) that

(b) xr /∈ con(p′w′rq
′x`w

′
`u
′).

In particular, t(w′) 6= xr. Since t(w) = t(w′) by Lemma 26.3, it follows that u 6= ∅, whence
(c) h(u) = x`+1 /∈ con(pxrwrqx`)

and ini(w) = . . . x`x`+1 . . . . Further, ini(w) = ini(w′) by Lemma 26.3, so that u′ 6= ∅ and
(d) h(u′) = x`+1 /∈ con(p′xrw

′
rq
′x`w

′
`).

Let ϕ : X → F7 denote the substitution

z 7→


6 if z = xr,

3 if z = x`+1,

5 otherwise.

Since xr, x`+1 /∈ con(pwrqx`) by (a) and (c), it follows that pϕ ∈ {∅, 5} and (wrqx
e`
` )ϕ = 5.

Thus

wϕ = pϕ · xrϕ · (wrqx
e`
` )ϕ · xrϕ · uϕ = pϕ · 6 · 5 · 6 · 3 . . . = 4.

Similarly, since xr, x`+1 /∈ con(p′w′rq
′x`w

′
`) by (b) and (d), it follows that p′ϕ ∈ {∅, 5} and

(w′rq
′x
e′`
` w′`)ϕ = 5. Hence

w′ϕ = p′ϕ · x2
rϕ · (w′rq′x

e′`
` w′`)ϕ · u′ϕ = p′ϕ · 6 · 5 · 3 . . . = 1.

Consequently, the contradiction wϕ 6= w′ϕ is established.

Proof of Proposition 26.1. It is routinely checked that F7 satisfies the identities (26.1).
Hence it suffices to show that any identity w ≈ w′ satisfied by F7 is implied by the
identities (26.1). By Lemma 26.2, the words w and w′ can be chosen to be in α-canonical
form. By Lemmas 26.3 and 26.4,

w = xe00

m∏
i=1

(xeii wi) and w′ = xe00

m∏
i=1

(xeii w′i)

with wm = w′m. Let ` < m be the least integer such that w` 6= w′`. Then it is convenient to
write

(a) p = xe00

∏`−1
i=1(xeii wi) = xe00

∏`−1
i=1(xeii w′i).

Since (w`,w
′
`) 6= (∅, ∅), generality is not lost by assuming w` 6= ∅. Then (I) implies w` = xk

for some k ∈ {0, . . . , `− 1} and
(b) w′` ∈ {∅, x0, . . . , x`−1}\{xk},
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whence
w = pxe`` xk︸︷︷︸

w`

x
e`+1

`+1 q and w′ = pxe`` w′`x
e`+1

`+1 q′,

where q = w`+1

∏m
i=`+2(xeii wi) and q′ = w′`+1

∏m
i=`+2(xeii w′i). Let ϕ : X → F7 denote the

substitution

z 7→


6 if z = xk,

3 if z = x`+1,

5 otherwise.

Since the prefix p contains the first xk of w and x`+1 /∈ con(px`) by (I) and (a), it follows
that (pxe`` )ϕ = 5. Hence

wϕ = (pxe`` )ϕ · xkϕ · x
e`+1

`+1 ϕ · qϕ = 5 · 6 · 3 · qϕ = 4.

On the other hand, w′`ϕ ∈ {∅, 5} by (b), so that

w′ϕ = (pxe`` )ϕ ·w′`ϕ · x
e`+1

`+1 ϕ · q
′ϕ = 5 ·w′`ϕ · 3 · q′ϕ = 1.

The contradiction wϕ 6= w′ϕ implies that the integer ` does not exist. Consequently, wi = w′i
for all i, whence the identity w ≈ w′ is trivial and so is implied by the identities (26.1).

26.2. Finite basis property of F6 and F8

The semigroup F iso
8 given by the following multiplication table is isomorphic to the

semigroup F8 via the relabeling 1↔ 3.

F iso
8 1 2 3 4 5 6

1 1 1 1 1 1 1

2 3 3 3 3 2 2

3 3 3 3 3 3 3

4 4 4 4 4 4 4

5 1 1 1 4 5 6

6 1 4 4 4 5 6

It turns out that arguments in the present subsection will become simpler if F iso
8 is considered

instead of F8.

Proposition 26.5. The variety generated by S ∈ {F6,F iso
8 } is defined by the identities

x2Hx ≈ xHx, (26.3a)

xHx2 ≈ xHx, (26.3b)

xHyKxy ≈ x2HyKy, (26.3c)

xHyzyx ≈ xHyzx, (26.3d)

xy2 ≈ xy. (26.3e)

In this section, a word w with ini(w) = x0 . . . xm is said to be in β-canonical form if

w = xe0

m∏
i=1

(xiwi),
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where all of the following are satisfied:
(I) wi ∈ {∅, x0, . . . , xi−1};

(II) e ∈ {1, 2};
(III) if wi = x0 for some i > 1, then e = 1.
It is easily shown that a word in β-canonical form is also in α-canonical form.

Lemma 26.6. Let w be any word. Then there exists some word w in β-canonical form such
that the identities (26.3) imply the identity w ≈ w.

Proof. It suffices to convert w, using the identities (26.3), into a word in β-canonical form.
Let ini(w) = x0 . . . xm. Note that the identities (26.3) imply the identities (26.1). Hence by
Lemma 26.2, the identities (26.3) can be used to convert w into a word in α-canonical form,
that is, a word of the form xe00

∏m
i=1(xeii wi) that satisfies (I). The identity (26.3e) can be used

to reduce the exponents e1, . . . , em to 1. It is easily seen that (II) and (III) are satisfied by
applying the identities (26.3a).

Lemma 26.7. Let S ∈ {F6,F iso
8 }. Suppose that w ≈ w′ is any identity satisfied by S. Then

ini(w) = ini(w′) and t(w) = t(w′).

Proof. This follows from Lemma 2.1 since the subsemigroups {1, 4, 5} and {5, 6} of S are
isomorphic to L1

2 and R2, respectively.

Lemma 26.8. Let S ∈ {F6,F iso
8 }. Suppose that S satisfies an identity w ≈ w′, where

w = xe0

m∏
i=1

(xiwi) and w′ = xe
′

0

m∏
i=1

(xiw
′
i)

are words in β-canonical form. Then e = e′.

Proof. Let u =
∏m
i=1(xiwi) and u′ =

∏m
i=1(xiw

′
i). Seeking a contradiction, suppose e 6= e′,

say (e, e′) = (1, 2). Then x0 /∈ con(u′) by (I) and (III). There are two cases to consider.

Case 1: x0 /∈ con(u). Let ϕ1 : X → S denote the substitution

z 7→

{
2 if z = x0,

5 otherwise.

Then wϕ1 = 2 · uϕ1 = 2 and w′ϕ1 = x2
0ϕ1 · u′ϕ1 ∈ {1, 3}, whence wϕ1 6= w′ϕ1 is impossible.

Case 2: x0 ∈ con(u). Then x0 is non-simple in w. Since the word w is in β-canonical form,
the second x0 in w coincides with one of w1, . . . ,wm, say x0 = w` for some least possible
` ∈ {1, . . . ,m}. Then x0 6= x` by (I), and w can be written as

w = x0px` x0︸︷︷︸
w`

q ,

where p =
∏`−1
i=1(xiwi) and q =

∏m
i=`+1(xiwi) with x` /∈ con(x0p) and

(a) x0 /∈ con(px`).
As for the word w′, since e′ = 2, it can be written as

w′ = x2
0p
′x`w

′
`q
′,
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where p′ =
∏`−1
i=1(xiw

′
i) and q′ =

∏m
i=`+1(xiw

′
i) with x` /∈ con(x0p

′). By (I) and (III),
(b) x0 /∈ con(p′x`w

′
`q
′).

In particular, t(w′) 6= x0. Since t(w) = t(w′) by Lemma 26.7, it follows that t(w) 6= x0.
Therefore q 6= ∅, whence

(c) h(q) = x`+1 /∈ con(x0px`)
and ini(w) = . . . x`x`+1 . . . . Further, ini(w) = ini(w′) by Lemma 26.7, and this implies q′ 6= ∅
and

(d) h(q′) = x`+1 /∈ con(x0p
′x`w

′
`).

Let ϕ2 : X → S denote the substitution

z 7→


6 if z = x0,

3 if z = x`+1,

5 otherwise.

Since x0, x`+1 /∈ con(px`) by (a) and (c), it follows that (px`)ϕ2 = 5. Hence

wϕ2 = x0ϕ2 · (px`)ϕ2 · x0ϕ2 · qϕ2 = 6 · 5 · 6 · 3 . . . = 4.

On the other hand, x0, x`+1 /∈ con(p′x`w
′
`) by (b) and (d), so that (p′x`w

′
`)ϕ2 = 5. Therefore

w′ϕ2 = x2
0ϕ2 · (p′x`w′`)ϕ2 · q′ϕ2 = 6 · 5 · 3 . . . = 1.

Consequently, the contradiction wϕ2 6= w′ϕ2 is deduced.

Proof of Proposition 26.5. Let S ∈ {F6,F iso
8 }. It is routinely checked that S satisfies the

identities (26.3). Hence it suffices to show that any identity w ≈ w′ satisfied by S is implied by
the identities (26.3). By Lemma 26.6, the words w and w′ can be assumed to be in β-canonical
form. By Lemmas 26.7 and 26.8,

w = xe0

m∏
i=1

(xiwi) and w′ = xe0

m∏
i=1

(xiw
′
i)

with wm = w′m. Let ` < m be the least integer such that w` 6= w′`. For convenience, write

(a) p = xe0
∏`−1
i=1(xiwi) = xe0

∏`−1
i=1(xiw

′
i).

Since (w`,w
′
`) 6= (∅, ∅), generality is not lost by assuming w` 6= ∅. Then (I) implies w` = xk

for some k ∈ {0, . . . , `− 1} and
(b) w′` ∈ {∅, x0, . . . , x`−1}\{xk},

whence
w = px` xk︸︷︷︸

w`

x`+1q and w′ = px`w
′
`x`+1q

′,

where q = w`+1

∏m
i=`+2(xiwi) and q′ = w′`+1

∏m
i=`+2(xiw

′
i). Let ϕ : X → S denote the

substitution

z 7→


6 if z = xk,

3 if z = x`+1,

5 otherwise.

Since p contains the first xk of w and x`+1 /∈ con(px`) by (I) and (a), it follows that (px`)ϕ = 5.
Hence

wϕ = (px`)ϕ · xkϕ · x`+1ϕ · qϕ = 5 · 6 · 3 · qϕ = 4.

On the other hand, w′`ϕ ∈ {∅, 5} by (b), so that

w′ϕ = (px`)ϕ ·w′`ϕ · x`+1ϕ · q′ϕ = 5 ·w′`ϕ · 3 · q′ϕ = 1.

The contradiction wϕ 6= w′ϕ implies that the integer ` does not exist. Consequently, wi = w′i
for all i, whence the identity w ≈ w′ is trivial and so is implied by the identities (26.3).
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27. F9, F10, G1, G2

This section establishes the finite basis property of the following semigroups.

F9 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 2 3

3 3 3 3 3 3 3

4 1 2 3 4 1 1

5 1 1 1 1 5 6

6 6 6 6 6 6 6

F10 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 2 3

3 3 3 3 3 3 3

4 1 2 3 4 2 3

5 1 1 1 1 5 6

6 6 6 6 6 6 6

G1 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 2 3

3 3 3 3 3 3 3

4 1 2 3 4 3 3

5 3 3 3 3 5 6

6 6 6 6 6 6 6

G2 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 2 2 3

3 3 3 3 3 3 3

4 1 2 3 4 5 6

5 1 2 3 4 5 6

6 6 6 6 6 6 6

27.1. Finite basis property of F10

Proposition 27.1. The variety generated by F10 is defined by the identities

xHx2 ≈ xHx, (27.1a)

xHyKxy ≈ xHyKyx, (27.1b)

xHyKyx ≈ xHyKx, (27.1c)

xHyKxTy ≈ xHyKxTx. (27.1d)

In this section, a word w with ini(w) = x1 . . . xm is said to be in α-canonical form if

w =

m∏
i=1

(xiwi),

where:
(I) wi ∈ {∅, x1, . . . , xi};

(II) w does not contain any factor of the form xjaxkbxjcxk where a,b, c ∈ X ∗ and j < k.

Lemma 27.2. Let w be any word. Then there exists some word w in α-canonical form such
that the identities (27.1) imply the identity w ≈ w.

Proof. It suffices to convert w, using the identities (27.1), into a word in α-canonical form.
Let ini(w) = x1 . . . xm, so that w =

∏m
i=1(xiwi) for some wi ∈ {x1, . . . , xi}∗. Suppose wi 6= ∅.

Then there exists a least integer ` such that x` ∈ con(wi), whence con(wi) ⊆ {x`, . . . , xi}.
Since the letters of wi are non-first occurrences in w, the identities (27.1b) can be used
to arrange them, within wi, in any order. In particular, the identities (27.1b) can be used to
move all occurrences of x` in wi to the right, so that

w = . . . x`w` . . . xiwi . . .
(27.1b)
≈ . . . x`w` . . . xiw

′
ix
e
` . . . ,

where e = occ(x`,wi) and w′i is obtained from wi by removing all occurrences of x`. Note
that con(w′i) ⊆ {x`+1, . . . , xi} and any letter in w′i is a non-first occurrence in w that is
sandwiched between two occurrences of x`. The identities (27.1c) can be used to remove the
letters of w′i one by one starting from the right, and the identities (27.1a) can be used to
reduce the exponent e to 1:

. . . x`w` . . . xiw
′
ix
e
` . . .

(27.1c)
≈ . . . x`w` . . . xix

e
` . . .

(27.1a)
≈ . . . x`w` . . . xix` . . . .
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Therefore the factor wi is converted into x`, whence (I) is satisfied. Since

w = . . . xjaxkbxjcxk . . .
(27.1d)
≈ . . . xjaxkbxjcxj . . . ,

the identities (27.1d) can be used to convert w into a word that satisfies (II).

Proof of Proposition 27.1. It is routinely checked that F10 satisfies the identities (27.1).
Hence it suffices to show that any identity w ≈ w′ satisfied by F10 is implied by the
identities (27.1). By Lemma 27.2, the words w and w′ can be assumed to be in α-canonical
form. Since the subsemigroup {1, 3, 4} of F10 is isomorphic to L1

2, it follows from Lemma 2.1(iii)
that

w =

m∏
i=1

(xiwi) and w′ =

m∏
i=1

(xiw
′
i).

Let ` be the least integer such that w` 6= w′`. Multiplying both sides of the identity w ≈ w′

on the right by x2
m+1 if necessary, generality is not lost by further assuming ` < m. Hence

w = px`w`x`+1q and w′ = px`w
′
`x`+1q

′,

where p =
∏`−1
i=1(xiwi), q = w`+1

∏m
i=`+2(xiwi), and q′ = w′`+1

∏m
i=`+2(xiw

′
i). By symmetry,

there are four cases to consider.

Case 1: (w`,w
′
`) = (x`, ∅). Then

w = px2
`x`+1q and w′ = px`x`+1q

′

with x`, x`+1 /∈ con(p). Let ϕ1 : X → F10 denote the substitution

z 7→


4 if z ∈ con(p),

2 if z = x`,

6 otherwise.

Then wϕ1 = pϕ1 · 22 · 6 · qϕ1 = 1 and w′ϕ1 = pϕ1 · 2 · 6 · q′ϕ1 = 3, whence the contradiction
wϕ1 6= w′ϕ1 is deduced.

Case 2: (w`,w
′
`) = (xi, ∅) for some i < `. Then

w = axib︸ ︷︷ ︸
p

x`xix`+1q and w′ = axib︸ ︷︷ ︸
p

x`x`+1q
′ for some a,b ∈ X ∗

such that xi /∈ con(a), x` /∈ con(axib), and x`+1 /∈ con(axibx`). Let ϕ2 : X → F10 denote the
substitution

z 7→


4 if z ∈ con(axib),

2 if z = x`,

6 otherwise.

Then wϕ2 = 4 · 2 · 4 · 6 · qϕ2 = 1 and w′ϕ2 = 4 · 2 · 6 · q′ϕ2 = 3, whence the contradiction
wϕ2 6= w′ϕ2 is deduced.
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Case 3: (w`,w
′
`) = (xi, x`) for some i < `. Then

w = cxid︸ ︷︷ ︸
p

x`xix`+1q and w′ = cxid︸ ︷︷ ︸
p

x2
`x`+1q

′ for some c,d ∈ X ∗

such that xi /∈ con(c), x` /∈ con(cxid), and x`+1 /∈ con(cxidx`). Let ϕ3 : X → F10 denote the
substitution

z 7→


4 if z ∈ con(cxid),

5 if z = x`,

6 otherwise.

Then wϕ3 = 4 · 5 · 4 · 6 · qϕ3 = 1 and w′ϕ3 = 4 · 52 · 6 · q′ϕ3 = 3, whence the contradiction
wϕ3 6= w′ϕ3 is deduced.

Case 4: (w`,w
′
`) = (xi, xj) for some i and j with i < j < `. Then

w = exifxjg︸ ︷︷ ︸
p

x`xix`+1q and w′ = exifxjg︸ ︷︷ ︸
p

x`xjx`+1q
′ for some e, f ,g ∈ X ∗

such that xi /∈ con(e), xj /∈ con(exif), x` /∈ con(exifxjg), and x`+1 /∈ con(exifxjgx`). If the
words exif and gx` share a common letter, then (II) is violated by the word w′. It follows
that con(exif) ∩ con(xjgx`) = ∅. Let ϕ4 : X → F10 denote the substitution

z 7→


4 if z ∈ con(exif),

5 if z ∈ con(xjgx`),

6 otherwise.

Then the contradiction wϕ4 6= w′ϕ4 is deduced because

wϕ4 = (exif)ϕ4 · (xjgx`)ϕ4 · xiϕ4 · x`+1ϕ4 · qϕ4 = 4 · 5 · 4 · 6 · qϕ4 = 1

and
w′ϕ4 = (exif)ϕ4 · (xjgx`xj)ϕ4 · x`+1ϕ4 · q′ϕ4 = 4 · 5 · 6 · q′ϕ4 = 3.

Since none of the four cases just considered is possible, the integer ` does not exist.
Consequently, wi = w′i for all i, whence the identity w ≈ w′ is trivial and so is implied
by the identities (27.1).

27.2. Finite basis property of F9 and G1

Proposition 27.3. The variety generated by S ∈ {F9,G1} is defined by the identities

xHx2 ≈ xHx, (27.2a)

xHyKxy ≈ xHyKyx, (27.2b)

xHyKyx ≈ xHyKx, (27.2c)

xHyKxTy ≈ xHyKxTx, (27.2d)

xHxyKy ≈ xHxyKx. (27.2e)

In this section, a word w with ini(w) = x1 . . . xm is said to be in β-canonical form if

w =

m∏
i=1

(xiwi),
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where all of the following are satisfied:
(I) wi ∈ {∅, x1, . . . , xi};

(II) w does not contain any factor of the form xjaxkbxjcxk where a,b, c ∈ X ∗ and j < k;
(III) w does not contain any factor of the form xjdxjxkexk where d, e ∈ X ∗ and j < k.
Observe that a word in β-canonical form is also in α-canonical form.

Lemma 27.4. Let w be any word. Then there exists some word w in β-canonical form such
that the identities (27.2) imply the identity w ≈ w.

Proof. It suffices to convert w, using the identities (27.2), into a word in β-canonical form.
Let ini(w) = x1 . . . xm. Then w can be written as w =

∏m
i=1(xiwi) where wi ∈ {x1, . . . , xi}∗.

Note that the identities (27.2) contain the identities (27.1). Hence by Lemma 27.2, the
identities (27.2) can be used to convert w into a word in α-canonical form, that is, a word
that satisfies (I) and (II). Since

w = . . . xjdxjxke1xke2xk . . . erxk . . .
(27.2e)
≈ . . . xjdxjxke1xje2xj . . . erxj . . . ,

the identities (27.2e) can then be used to convert w into a word that satisfies (III).

Proof of Proposition 27.3. Let S ∈ {F9,G1}. It is routinely checked that S satisfies the
identities (27.2). Hence it suffices to show that any identity w ≈ w′ satisfied by S is implied
by the identities (27.2). By Lemma 27.4, the words w and w′ can be assumed to be in β-
canonical form. Since the subsemigroup {1, 3, 4} of S is isomorphic to L1

2, it follows from
Lemma 2.1(iii) that

w =

m∏
i=1

(xiwi) and w′ =

m∏
i=1

(xiw
′
i).

Let ` be the least integer such that w` 6= w′`. Multiplying both sides of the identity w ≈ w′

on the right by x2
m+1 if necessary, generality is not lost by further assuming ` < m. Hence

w = px`w`x`+1q and w′ = px`w
′
`x`+1q

′,

where p =
∏`−1
i=1(xiwi), q = w`+1

∏m
i=`+2(xiwi), and q′ = w′`+1

∏m
i=`+2(xiw

′
i). By symmetry,

there are three cases to consider.

Case 1: (w`,w
′
`) = (xi, ∅) for some i 6 `. Then a contradiction is obtained by the same

arguments as in Cases 1 and 2 of the proof of Proposition 27.1.

Case 2: (w`,w
′
`) = (xi, x`) for some i < `. Then

w = cxid︸ ︷︷ ︸
p

x`xix`+1q and w′ = cxid︸ ︷︷ ︸
p

x2
`x`+1q

′ for some c,d ∈ X ∗

such that xi /∈ con(c), x` /∈ con(cxid), and x`+1 /∈ con(cxidx`). There are two subcases.
2.1. d 6= ∅. Then d = ut for some u ∈ X ∗ with t = t(d), whence

w = cxiut︸ ︷︷ ︸
p

x`xix`+1q and w′ = cxiut︸ ︷︷ ︸
p

x2
`x`+1q

′.

If t ∈ con(cxiu), then (III) is violated by the word w′. Hence t /∈ con(cxiu). Let ϕ1 : X → S
denote the substitution

z 7→


4 if z ∈ con(cxiu),

2 if z = t,

5 if z = x`,

6 otherwise.
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Then wϕ1 = 4 · 2 · 5 · 4 · 6 ·qϕ1 = 1 and w′ϕ1 = 4 · 2 · 52 · 6 ·q′ϕ1 = 3, whence the contradiction
wϕ1 6= w′ϕ1 is deduced.

2.2. d = ∅. Then

w = cxi︸︷︷︸
p

x`xix`+1q and w′ = cxi︸︷︷︸
p

x2
`x`+1q

′.

Let ϕ2 : X → S denote the substitution

z 7→


4 if z ∈ con(c),

2 if z = xi,

5 if z = x`,

6 otherwise.

Then wϕ2 = cϕ2 · 2 · 5 · 2 · 6 · qϕ2 = 1 and w′ϕ2 = cϕ2 · 2 · 52 · 6 · q′ϕ2 = 3, whence the
contradiction wϕ2 6= w′ϕ2 is deduced.

Case 3: (w`,w
′
`) = (xi, xj) for some i and j with i < j < `. Then

w = exifxjg︸ ︷︷ ︸
p

x`xix`+1q and w′ = exifxjg︸ ︷︷ ︸
p

x`xjx`+1q
′ for some e, f ,g ∈ X ∗

such that xi /∈ con(e), xj /∈ con(exif), x` /∈ con(exifxjg), and x`+1 /∈ con(exifxjgx`). If the
words exif and gx` share a common letter, then (II) is violated by the word w′. It follows
that con(exif) ∩ con(xjgx`) = ∅. There are two subcases.

3.1. f 6= ∅. Then f = vt for some v ∈ X ∗ with t = t(f), whence

w = exivtxjg︸ ︷︷ ︸
p

x`xix`+1q and w′ = exivtxjg︸ ︷︷ ︸
p

x`xjx`+1q
′.

If t ∈ con(exiv), then (III) is violated by w′. Hence the observation con(exif) ∩ con(xjgx`) = ∅
from above implies t /∈ con(exivxjgx`). Let ϕ3 : X → S denote the substitution

z 7→


4 if z ∈ con(exiv),

2 if z = t,

5 if z ∈ con(xjgx`),

6 otherwise.

Then the contradiction wϕ3 6= w′ϕ3 is deduced because

wϕ3 = (exiv)ϕ3 · tϕ3 · (xjgx`)ϕ3 · xiϕ3 · x`+1ϕ3 · qϕ3 = 4 · 2 · 5 · 4 · 6 · qϕ3 = 1

and
w′ϕ3 = (exiv)ϕ3 · tϕ3 · (xjgx`xj)ϕ3 · x`+1ϕ3 · q′ϕ3 = 4 · 2 · 5 · 6 · q′ϕ3 = 3.

3.2. f = ∅. Then

w = exixjg︸ ︷︷ ︸
p

x`xix`+1q and w′ = exixjg︸ ︷︷ ︸
p

x`xjx`+1q
′.

Let ϕ4 : X → S denote the substitution

z 7→


4 if z ∈ con(e),

2 if z = xi,

5 if z ∈ con(xjgx`),

6 otherwise.
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Then wϕ4 = eϕ4 · 2 · 5 · 2 · 6 · qϕ4 = 1 and w′ϕ4 = eϕ4 · 2 · 5 · 6 · q′ϕ4 = 3, whence the
contradiction wϕ4 6= w′ϕ4 is deduced.

Since none of the three cases just considered is possible, the integer ` does not exist.
Consequently, wi = w′i for all i, whence the identity w ≈ w′ is trivial and so is implied
by the identities (27.2).

27.3. Finite basis property of G2

Proposition 27.5. The variety generated by G2 is defined by the identities

xHx2 ≈ xHx, (27.3a)

xHxKxt ≈ xHxKt, (27.3b)

xHyKxyt ≈ xHyKyxt. (27.3c)

Lemma 27.6. Suppose that w ≈ w′ is any identity satisfied by G2. Then:
(i) ini(w) = ini(w′);
(ii) con(w) = con(w′) and sim(w) = sim(w′);
(iii) t(w) = t(w′);
(iv) t(w) ∈ sim(w) if and only if t(w′) ∈ sim(w′).

Further, if occ(x,w), occ(x,w′) 6 2 for all x ∈ X , then
(v) occ(y, z,w) = occ(y, z,w′) for all y, z ∈ X .

Proof. The subsemigroups {1, 3, 4}, {1, 2, 4}, and {4, 5} of G2 are isomorphic to L1
2, N1

2 ,
and R2, respectively. Therefore parts (i)–(iii) follow from Lemma 2.1, and part (iv) is a
consequence of parts (ii) and (iii).

(v) Suppose occ(x,w), occ(x,w′) 6 2 for all x ∈ X . Seeking a contradiction, suppose
occ(y, z,w) < occ(y, z,w′) for some y, z ∈ X . Let p = occ(y, z,w) and p′ = occ(y, z,w′). Then
0 6 p < p′ 6 2 so that (p, p′) ∈ {(0, 1), (0, 2), (1, 2)}. If p = 0, then ini(w) 6= ini(w′) by (ii),
whence (i) is violated. Therefore (p, p′) = (1, 2), so that

w = w1yw2zw3 and w′ = w′1yw
′
2yw

′
3zw

′
4

for some w1,w2,w3,w
′
1,w

′
2,w

′
3,w

′
4 ∈ X ∗ with y, z /∈ con(w1w2w

′
1w
′
2w
′
3). Let ϕ : X → G2

denote the substitution

x 7→


2 if x = y,

6 if x = z,

4 otherwise.

Then wϕ ∈ {4}∗ · 2 · {4}∗ · 6 ·w3ϕ = {3} and w′ϕ ∈ {4}∗ · 2 · {4}∗ · 2 · {4}∗ · 6 ·w′4ϕ = {1}, so
the contradiction wϕ 6= w′ϕ is deduced.

A word w with t(w) ∈ sim(w) is said to be simple-tailed. An identity w ≈ w′ is simple-tailed
if w and w′ are simple-tailed words.

Lemma 27.7. The variety generated by G2 is defined by the identities (27.3) and some set
of simple-tailed identities.

Proof. Let V denote the variety generated by G2. It is routinely checked that G2 satisfies
the identities (27.3), so that V is defined by (27.3) and some set Σ of identities. Suppose
that σ : w ≈ w′ is any identity from Σ that is not simple-tailed. Then Lemma 27.6 implies
t(w) = t(w′) = t and t /∈ sim(w) = sim(w′). Hence w = w1tw2t and w′ = w′1tw

′
2t for some
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w1,w2,w
′
1,w

′
2 ∈ X ∗. Choose any letter z /∈ con(w) = con(w′). Then the identity σ clearly

implies the simple-tailed identity σ̃ : wz ≈ w′z. Conversely, since

w
(27.3a)
≈ wt

σ̃
≈ w′t

(27.3a)
≈ w′,

the identities {(27.3), σ̃} imply the identity σ. It follows that if σ in Σ is replaced by the
simple-tailed identity σ̃, then the resulting set, together with (27.3), is still a basis for V.

The same argument can be repeated to replace any non-simple-tailed identity σ in Σ with a
simple-tailed identity σ̃. The resulting set Σ̃ consists of simple-tailed identities; these identities,
together with (27.3), constitute a basis for V.

In this subsection, a simple-tailed word w with ini(w) = x1 . . . xmt and t ∈ sim(w) is said
to be in canonical form if

w =

( m∏
i=1

(xiwi)

)
t, (27.4)

where:
(I) occ(xi,w) 6 2;

(II) wi ∈
{
xe11 . . . xeii

∣∣ e1, . . . , ei ∈ {0, 1}
}

;
(III) w1, . . . ,wm are pairwise disjoint.

Lemma 27.8. Let w be any simple-tailed word. Then there exists some simple-tailed word w
in canonical form such that the identities (27.3) imply the identity w ≈ w.

Proof. Let w be any simple-tailed word with ini(w) = x1 . . . xmt. Then it suffices to
convert w, using the identities (27.3), into a simple-tailed word in canonical form. It is easily
shown that w can be written in the form (27.4) with wi ∈ {x1, . . . , xi}∗ for all i. For each i,
since the letters of wi are non-first occurrences, the identities (27.3c) can be used to arrange
them within wi in any order, whence wi ∈ {xe11 . . . xeii | e1, . . . , ei > 0}. Any xj that is neither a
first nor a second occurrence can be eliminated by the identities (27.3b), so that (I) is satisfied.
It is then easily seen that (II) and (III) are also satisfied.

Proof of Proposition 27.5. By Lemma 27.7, the variety generated by G2 is defined by the
identities (27.3) and some set Σ of simple-tailed identities. By Lemma 27.8, the simple-tailed
words forming the identities in Σ can further be chosen to be in canonical form. Let w ≈ w′

be any such identity, so that by Lemma 27.6,

w =

( m∏
i=1

(xiwi)

)
t and w′ =

( m∏
i=1

(xiw
′
i)

)
t.

Suppose that ` is the least integer such that con(w`) 6= con(w′`). Then by (II), there exists
some k 6 ` such that xk belongs to either w` or w′` but not both, say xk ∈ con(w`)\con(w′`).
It follows from (II) and the minimality of ` that wi = w′i for all i < `. Hence

occ

(
xk,

`−1∏
i=1

(xiwi)

)
= occ

(
xk,

`−1∏
i=1

(xiw
′
i)

)
. (27.5)

There are two cases to consider.
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Case 1: ` < m. Then

occ(xk, x`+1,w) = occ

(
xk,

`−1∏
i=1

(xiwi)

)
+ occ(xk, x`w`)

and

occ(xk, x`+1,w
′) = occ

(
xk,

`−1∏
i=1

(xiw
′
i)

)
+ occ(xk, x`w

′
`).

But Lemma 27.6(v) and (27.5) imply occ(xk, x`w`) = occ(xk, x`w
′
`), and this is impossible

because xk ∈ con(w`)\con(w′`).

Case 2: ` = m. Then

occ(xk,w) = occ

(
xk,

m−1∏
i=1

(xiwi)

)
+ occ(xk, xmwm)

and

occ(xk,w
′) = occ

(
xk,

m−1∏
i=1

(xiw
′
i)

)
+ occ(xk, xmw′m).

But Lemma 27.6(ii), (I), and (27.5) imply occ(xk, xmwm) = occ(xk, xmw′m), and this is
impossible because xk ∈ con(wm)\con(w′m).

Neither of the two cases just considered is possible. Therefore the integer ` does not exist,
whence con(wi) = con(w′i) for all i. It follows from (II) that wi = w′i for all i. The identity
w ≈ w′ is thus trivial. Since the identity w ≈ w′ is arbitrary in Σ, every identity in Σ is
trivial. Consequently, the variety generated by G2 is defined by the identities (27.3).
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