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Abstract. We use Darwin’s theory (Darwin, 1880) to derive the main results on the orbital
and rotational evolution of a close-in companion (exoplanet or planetary satellite) due to tidal
friction. The given results do not depend on any assumption linking the tidal lags to the frequen-
cies of the corresponding tide harmonics (except that equal frequency harmonics are assumed
to span equal lags). Emphasis is given to the study of the synchronization of the planetary
rotation in the two possible final states for a non-zero eccentricity : (1) the super-synchronous
stationary rotation resulting from the vanishing of the average tidal torque; (2) the capture into
a 1:1 spin-orbit resonance (true synchronization), which is only possible if an additional torque
exists acting in opposition to the tidal torque. Results are given under the assumption that this
additional torque is produced by a non-tidal permanent equatorial asymmetry of the planet. The
indirect tidal effects and some non-tidal effects due to that asymmetry are considered. For sake
of comparison with other works, the results obtained when tidal lags are assumed proportional
to the corresponding tidal wave frequencies are also given.
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1. Introduction
It is well-known that tidal friction tends to synchronize the rotation period of a close-

in companion (exoplanet or planetary satellite) with the period of its orbital motion
around the primary. However, it is not always taken into account the fact that there are
two possible final states: (1) the super-synchronous stationary rotation resulting from the
vanishing of the average tidal torque (Goldreich, 1966); (2) the capture into a spin-orbit
resonance (generally the synchronous one) as a result of the vanishing of the average
sum of two torques, the tidal torque and an additional torque acting in opposition to
it. The selection of one or another of the two final states is determined by the orbit
eccentricity and by the existence or not of a permanent non-tidal equatorial asymmetry
of the close-in planet. In a ‘cold’ solid quasi-elastic body, the existence of one important
equatorial asymmetry is not superseded by the tidal deformations and the final state is
the capture into a spin-orbit resonance which may be 1:1, as in the case of the Moon, or
a different one, as in the case of Mercury (captured into a 3:2 spin-orbit resonance; see
Lemaitre et al., 2006). Otherwise, the tidal torque dominates and the final state is non-
synchronous, at least while the orbit is not circularized. This is expected to be the case
for hot Jupiters, since the giant planets in our Solar System do not show any measurable
equatorial asymmetry. In this case, one classical result is that the system tends to a final
state whose rotation speed is given by Ωstat = n(1 + κ e2) where n and e are the orbital
mean motion and eccentricity and κ is a positive constant whose actual value depends on
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the hypotheses done on the tidal phase lag. When it is assumed that each harmonic of the
tide has a phase lag proportional to its frequency, we obtain κ = 6 (see Eq. 2.4); when the
lag is assumed to be constant and frequency independent (MacDonald, 1964), the value
corresponding to the vanishing of the average torque is κ = 9.5 (Goldreich, 1966). If,
however, we just assume that equal frequencies give rise to equal lags, without assuming
any particular law relating lags to frequencies, the result is expressed in a different way:
ε0 = 12 e2ε2 where ε0 and ε2 are the phase lags of the tide harmonics whose frequencies
are 2Ω − 2n and 2Ω − n respectively (Ω is the planet’s angular velocity of rotation).

2. Planetary Rotation
To study the planet rotation, we have to consider the torque M resulting from the

misalignment of the tidal bulge created by the delayed response of the planet to the
tide raising forces and use the angular momentum conservation. Initially, it is enough
to consider only the interaction between the orbit and the tidally deformed planet: the
change L̇ of angular momentum in the orbit may be compensated by a change L̇rot in the
angular momentum acting on the planet in the opposite direction. Hence L̇rot = −M.
The study of this equation is simplified by the fact that the torque M is, in this case,
normal to the line of nodes (Mx = 0) thus allowing this equation to be decomposed
into two parts which may be studied separately. We remind that the rotational angular
momentum of the planet is given by Lrot � CΩk where C is the moment of inertia of
the planet with respect to the rotation axis and k is a unit vector along that axis. We
obtain CΩ̇ = −Mz and CΩJ̇ = −My , where My,Mz are the components of M and J̇
is a variation in the obliquity of the planet. Computing the tidal forces and torques and
averaging the torque over the orbital period, we obtain

< Ω̇ > = −3kdGM 2R5

2Ca6

[
ε0 − ξ(e2 , S2)

]
(2.1)
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Figure 1. Spherical coordinates and reference system
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where kd is the dynamical Love number, G the gravitation constant, M the mass of the
tide raising body (the star), R the mean radius of the planet, a the orbit semi-major axis
and ξ(e2 , S2) a function whose terms are proportional to e2 and S2 (S is the sine of the
obliquity) whose coefficients depend on the lags of the several harmonics in which the
tide is decomposed. (For details, see Ferraz-Mello et al., 2007). Near synchronization,

ξ(e2 , S2) = e2(5ε0 + 12ε2) + S2ε0 . (2.2)

If we assume that the planet has no other significant deformation besides the tidal one,
Eqn. (2.1) shows that, in the first approximation, the averaged acceleration < Ω̇ > is
proportional to |ε0 | with a sign contrary to Ω− n, indicating that the system will evolve
towards synchronization.

We say that the system reaches a state of stationary rotation when the average angular
acceleration (or the average tidal torque component 〈Mz 〉) vanishes. Solving the equation
< Ω̇ > = 0, we obtain, to the second order in e, S,

ε0 = 12e2ε2 . (2.3)

In Darwin’s theory, as well as in many theories inspired by it, the tidal lags ε0 and ε2
are assumed to be proportional to the frequencies of the corresponding tide harmonics
(2Ω − 2n and 2Ω − n, respectively). With this assumption, the above result becomes

Ωstat = n(1 + 6e2) (2.4)

(see eqn. 6.1), which means that, when e �= 0, the rotation stabilizes at a slightly super-
synchronous value.

The second equation resulting from the angular momentum conservation gives the
variation of the planet’s obliquity:

< J̇ > = −3kdSGM 2R5

2CΩa6 ε2 . (2.5)

The part of the equation corresponding to the vanishing of the torque along the nodal
line indicates that no precession of the nodes occurs due to tidal friction.

3. Spin-orbit synchronization
The spin-orbit synchronization condition is given by Ω = n or, if we assume the lags

proportional to the frequencies of the corresponding harmonics, ε0 = 0, in which case
eqns. (2.1) and (2.2) give

< Ω̇ > =
18kdGM 2R5

Ca6 e2ε2 , (3.1)

which cannot vanish if e �= 0. It is worth noting that S does not affect the above condition
(at least when terms of the fourth order in e, S are neglected).

3.1. Synchronous Asymmetric Planets
The previous conclusions were derived from the assumption that the planet has no other
significant deformation besides the tidal one. If, for instance, it has a permanent non-tidal
(solid-like) equatorial ellipticity, different results follow. Indeed, in such case, we have to
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add to the potential due to the tide, the non-tidal quadrupolar term associated with the
equatorial ellipticity:

U22 =
GmR2

r3 J22P22(cos θ) cos 2(ϕ − ϕ22) (3.2)

where m is the mass of the planet, r, θ, ϕ are the radius vector, co-latitude and longitude
of the star in the planetocentric frame (see Fig. 1) and P22 is an associated Legendre
function. J22 and ϕ22 are the two parameters characterizing the ellipticity of the equator
(see Beutler, 2005). If J22 is large enough, the torque due to U22 will be dominant and the
synchronization will end with capture into an exact 1:1 spin-orbit resonance (Goldreich,
1966). In this case, we have, instead of eqn. (2.3),

ε0 = 0, (3.3)

and the equations obtained in the previous section cannot be used since the torque
forcing the motion to be synchronous must also be considered. Since the tidal friction in
a synchronous companion moving in an eccentric orbit tends to accelerate its motion, the
body will rotate faster, but, being asymmetric, the advance with respect to the symmetric
configuration will create a torque in the contrary direction, which will compensate the
tidal torque. The equilibrium is obtained with the body displaced of an angle δ forward.
The average torque due to this displacement is

< (M22)z > =
6GMmR2J22 sin 2δ

a3

(
1 − 5

2
e2 − 1

2
S2). (3.4)

The condition < Ω̇ > = 0 allows the offset angle δ to be determined. At the order of
approximation adopted in this paper,

sin 2δ � 3MR3

mJ22a3 kdε2e
2 . (3.5)

This equation shows that when J22 is too small, the right-hand side is large and the
synchronization cannot be reached (δ becomes larger than the critical limit allowing
synchronization)†. Nevertheless, the concomitant process of circularization of the orbit
(see Sec. 5) will continue and, at some moment in the evolution, e will become enough
small to allow capture into a 1:1 spin-orbit resonance.

The torque due to U22 also contributes with a precession of the equatorial plane of the
synchronous companion. However, at the order of approximation adopted here, the only
effects do not depend on any misalignement δ �= 0 and are thus not of tidal origin. They
are due to the figure of the companion captured into a 1:1 spin-orbit resonance.

4. Work done by the tidal force and energy release
The work done by the tidal forces in a displacement ds is given by dW = F · ds, or

Ẇ = F · v where v is the velocity vector. In the case of close-in planets in stationary
rotation, the introduction of the condition given by eqn. (2.3) gives

< Ẇ > = −3nkdGM 2R5

2a6 (7e2 + S2)ε2 . (4.1)

It is worth emphasizing that this result does not depend on any hypothesis linking lags
to frequencies (the only assumptions are that equal frequencies lead to equal lags).

† When the tidal phase lag is assumed to be frequency independent (MacDonald theory), the
resulting critical value of J22 is proportional to e4 (Goldreich, 1966) instead of e2 .
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If the same calculations were done using ε0 = 0, instead of the condition given by eqn
(2.3), we would obtain for the work the value

−3nkdGM 2R5

2a6 (19e2 + S2)ε2 . (4.2)

However, the latest value is not the net work done because a synchronous rotation cannot
exist without additional forces acting in the system when e �= 0. As the additional forces
act in opposition to the tidal forces, the work done by them has a different sign. From
(3.2), we indeed obtain

< Ẇ22 > =
6GMmR2nJ22 sin 2δ

a3

(
1 − 5

2
e2 − 1

2
S2) � 18nkdGM 2R5

a6 e2ε2 , (4.3)

where the rightmost expression was obtained introducing the value of sin 2δ given by eqn.
(3.5).

When this term is added to the direct tidal work given by eqn. (4.2), the result becomes
equal to that given by eqn. (4.1). This is the same result found by several authors (Segatz
et al. 1988; Levrard, 2008; Wisdom, 2008) and may also be obtained from the results of
Peale and Cassen (1978) on energy dissipation due to tidal friction. In the comparisons,
the phase lag ε2 of the tide harmonic whose frequency is 2Ω−n, is related to the planet’s
quality factor through Q = 1/ε2 .

4.1. Energy Dissipation

The total energy variation of the system must be equal to zero. Besides the orbital energy,
whose variation is given above, we have the rotational energy of the deformed body and
the thermal energy dissipated in the body. This balance equation allows us to calculate
the energy dissipated in the planet due to the tides raised on it by the star.

The variation of the rotational energy is given by CΩΩ̇ and vanishes when Ω̇ = 0.
Therefore, in the studied cases, |Ẇ | may be roughly equal to the thermal energy released
inside the companion (they are equal when we neglect the change in the equilibrium
rotation speed due to the variation of the mean motion, which is of the order of (R/a)2 .)

5. Variation in the orbital elements
The variation of the mean motion, semi-major axis, eccentricity and obliquity can be

known from the variations of the energy and angular momentum (see Ferraz-Mello et al.,
2007) using classical two-body dynamics equations. For the mean-motion, we obtain

< ṅ > = −3n

2a
< ȧ > = − 3na

GMm
< Ẇ > (5.1)

or

< ṅ > =
9n2kdMR5

2ma5 (7e2 + S2)ε2 . (5.2)

We note that in some papers (e.g. Mardling and Lin, 2004), the term 19 e2 appears in
the equation giving < ṅ > instead of 7e2 . That result is only partial because it does not
take into account that a torque counteracting the tidal torque is necessary to allow the
synchronization to be achieved.
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For the eccentricity, we obtain

< ė > = −21nekdMR5

2ma5 ε2 . (5.3)

At the order considered here, the torque due to U22 does not contribute to the variation
of the eccentricity. Its only contribution is a motion of the node whose secular part is

<
˙̂

ON > =
3J22nR2

a2

(
1 − 2e2 − 1

4
S2) cos 2δ. (5.4)

However, this precession exists even when δ = 0 and, thus, it is not an effect due to the
tidal misalignment of U22 , but an effect due to the trapping of the planet into the 1:1
spin-orbit resonance.

The obliquity is the angle between the equator and the orbital plane and we have to
consider the possible variation of both planes. The torque of the forces acting on the
main body gives the variation of the orbital plane with respect to a fixed frame; its
reaction, acting on the companion gives the variation of the equatorial plane. If we call
I the angle fixing the orbital plane and J the angle fixing the equator (w.r.t. an inertial
plane), we obtain, for close-in synchronous or near-synchronous planets: < İ > / < J̇ >
∝ (R/a)2 � 1. This means that we may neglect the variation of the obliquity due to
the motion of the orbital plane when compared to the variation due to the motion of the
equator.

6. Linear theories with a constant time lag
For the sake of comparison with theories where the phase lags εi are assumed to be

proportional to the frequencies of the corresponding tide harmonics, with τ (time lag) as
the coefficient of proportionality, we give below the resulting equations.

For the parameters related to the rotation of the close-in companion we have

< Ω̇ > =
3nkdGM 2R5

Ca6

[(
1 +

27
2

e2 − 1
2

S2 )
−

(
1 +

15
2

e2 − 1
2

S2 )Ω
n

]
τ (6.1)

< J̇ > = − 3nkdGM 2R5

CΩa6 S(1 − 1
2

Ω
n

) τ. (6.2)

For the equations giving the variation of the orbital elements, we have

< ṅ > = − 3n

2a
< ȧ > =

9n3kdMR5

ma5

[(
1 + 23e2 )

−
(
1 +

27
2

e2 − 1
2

S2 )Ω
n

]
τ, (6.3)

< ė > = − 27n2ekdMR5

ma5

(
1 − 11

18
Ω
n

)
τ, (6.4)

These equations are the same given by Hut (1981) and several papers on tidal friction
on close-in exoplanets using Hut’s approach (e.g. Mardling and Lin, 2004; Dobbs-Dixon
et al., 2004). It is worth noting that the equations in the cited papers are expanded to a
much higher order in eccentricity and that the quality factor adopted there is related to
the time lag used here through Q = 1/nτ .

To obtain the equations corresponding to the free stationary rotation, it is enough to
replace Ω/n by (1 + 6e2).

https://doi.org/10.1017/S174392130801658X Published online by Cambridge University Press

https://doi.org/10.1017/S174392130801658X


Tidal friction in close-in planets 185

Sometimes, the condition Ω = n is introduced to obtain the equations corresponding
to the case of a planet locked in a 1:1 spin-orbit resonance. However, the results thus
obtained are inconsistent. For instance, eqn. (6.1) gives, in such case,

< Ω̇ > =
18nkdGM 2R5

Ca6 e2 τ, (6.5)

that is, a non-zero acceleration (when e �= 0) showing that the condition Ω = n cannot
subsist. The results, obtained with such condition are only partial and to become correct
need that the contributions coming from M22 (or from another forcing torque) be added
to the right-hand sides.

7. Conclusion
This communication presents some consequences of Darwin’s theory for bodily tides.

As expected, the main results formally coincide with the general results given by Kaula
(1964) and Hut (1981) to the order of approximation adopted here, when we do the
same hypotheses on the physics of the lagging done by them. Emphasis is given in the
paper to companions having reached one of the two possible end states of the planet
synchronization. If tides are the only source of perturbations in the system, the perfect
synchronization cannot be achieved while the orbit is not completely circularized. If a
remnant eccentricity exists, the final state is rather non-synchronous and the rotation
reaches a stationary state with a rotation velocity slightly larger than the orbital mean-
motion. In order to have a true synchronous rotation, it is necessary to provide the system
with a torque counteracting the tidal torque. This additional torque can, for instance, be
due to a permanent non-tidal solid-like equatorial asymmetry of the companion. Tides
drive the figure of the body to a small misalignment which creates a torque acting in
opposition to the tidal torque. At the order considered here, the results for the tidal
variations of the orbital elements are the same in the stationary (free) and synchronous
(forced) cases but, in the synchronous case, we have some additional non-tidal effects
coming from the figure of the body captured into a 1:1 spin-orbit resonance, which also
affects the evolution of the system and may be considered.
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