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1. Introduction. Many of the classical inequalities of analysis can be written in
the form P(x) a 0 for x e I or P(x) > 0 for x e / ' , where P(x) is a polynomial and / ' c /
are certain intervals on the real line. This gives rise to the question of where the zeros
of P(x) are located. For example, if / i s a polynomial with real zeros, then an inequality
of Laguerre [8, p. 171 f.] asserts that

for all x. A detailed study of the zeros of this particular P(x) has been made [5].
A more fundamental role in the study of inequalities is played by the trinomial

T(x):=mx" -nxm + n-m, n>m>0, (1.1)

and the corresponding inequality 7 ( J C ) > 0 for 0 < J C < 1 (see, e.g., [1, pp. 12-15] or [7,
pp. 39-42]). For example, upon replacing x by (xly)Vn (with, say, y >x) and m/n by A,
we obtain the weighted arithmetic-geometric mean inequality

kx + (l-k)y>xy~\ (1.2)

The zero distribution of T(x) in (1.1) does not seem to have been studied previously;
this will be done in Section 2.

If in (1.2) y is replaced by 1, we obtain the inequality

l-X + kx-xk>0, 0 < x < l , O<A<1. (1.3)

Next we replace x by e", to obtain the exponential polynomial P(u) := 1 — A + Ae" — e*".
We replace now eau by (1 + au/n)"; this is in accordance with the program of
"reductionism", as outlined in [15] (see also [16] and [17]). With the new variable
z = 1 + u/n we finally obtain the polynomial

pn(z):=Azn + l - A - ( A z + l -A) n . (1.4)

Note that pn{z) tends to the left side of (1.3) as n—><*>.
The main purpose of this paper is to show that the zeros of pn{z) depend on A in an

unexpected way:

THEOREM 1.1. If X is fixed and n is sufficiently large, then pn(z) has a zero inside the
unit circle if and only if A is not the reciprocal of a positive integer.

This result was announced in [11]; here we shall provide a proof and show that one
direction of Theorem 1.1 is true for all n. In particular, we shall show in Section 3 that
pn(z) has no zero inside the unit circle for any A, provided that n < sfx + 1. In Section 4 it
will be shown that pn(z) does have zeros inside the unit circle if A is not the reciprocal of a
positive integer and n is sufficiently large. The most difficult part is to show that pn(z) has
no zeros inside the unit circle if A is the reciprocal of a positive integer. This case will be
dealt with in Sections 5-8.
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2. Zeros of the trinomial T(x). In this section we study the distribution of zeros of
the trinomial T(x) in (1.1). We begin with a result on a more general class of trinomials.
In what follows, let U denote the unit circle.

THEOREM 2.1. Let a>b>0 be real numbers and n>m>0 be integers. Then the
number of zeros of

P(z) : = bz" - azm + a - b (2.1)

strictly inside U is m — gcd(m, n) if alb >nlm, and m if alb <n/m.

We prove this result later in this section. Let us remark that other results on similar
trinomials can be found, e.g., in [3], [13], or [14].

COROLLARY 2.2. If n>m>0 are two relatively prime integers, then the trinomial
T(x) in (1.1) has m — \ zeros strictly inside U, n — m — 1 zeros strictly outside U, and a
double zero at z = 1.

Proof. The first statement is immediate from Theorem 2.1, and the second statement
is obtained from the first one by considering the inverse polynomial

zT(l/z) = (n - m)zn - nz""" + n - (n - m). (2.2)

The third statement becomes clear by considering the first and second derivatives of T(z).

We note that the trinomials T(z) were recently considered in [10], for the special
case m = 1. Very exact bounds on the moduli and arguments of the zeros were given in
this case. Here we shall prove a weaker result for all m, 1 s m < n — 1. We also note that
applications to the theory of signal processing are indicated in [10], for m = 1.

PROPOSITION 2.3. For n > 3 the zeros of (z - l)~2T(z) lie in the following annuli:

(a) l + ( n - 2 ) - 1 « | z | < [ 2 ( n - l ) ] 1 / ( " - 1 ) for m = l;

(b) maxf(2/n)-1/m,l — V2«/m]<|z|
I n — m )

< minf [2(/i - m)]u(n~m\ 1 + - V2n/(n - m)\ for 2 < m < / i - 2 ;
I. m )

(c) [ 2 ( / i - l ) ] - I / ( ' I - 1 ) < | z | s l - ( / i - l ) - > for m = n-l.

Proof, (a) is quoted in [10]. (c) follows from (a) by considering the inverse
polynomial (2.2). To prove (b), we apply two different methods for finding zeros of
polynomials to T{z).

By Cauchy's theorem [9, Theorem 27.1], the maximum modulus of the zeros of T(z)
is at most equal to the positive zero of

fix) := mx" - nxm - (n - m).

Since f{x) is increasing for x > 1 and / ( I ) = 2m - In < 0, it suffices to find an JC0 > 1 such
that f(x0) > 0. Let us consider
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Then

/(*„) = xZ(mxrm -n)-n + m= x^(2m(n -m)-n)-n + m

> (2m(n — m) — n) — n + m = 2(m — \)n — 2m2 + m

> 2(m - l)(m + 1) - 2m2 + m > 0,

which proves half of the right-hand inequality in (b).
For the second half, we use Rouche's theorem [9, p.2]. Let z = (1 + 6)e" with 6 > 0

and t eU. Then since

|z" - 1| > (1 + 6)" - 1, |zm - 1| < (1 + 6)m + 1,

we have

|m(z" - 1)| > |/i(z" - 1)| (2.3)

when

/n(l + 6 ) " - / n > n ( l + 6)m + /i,

or

(1 + d)m{m(l + d)"-m -n}>n+m.

Using the estimate (1 + <5)* > 1 + kd for 6 > 0 and fc > 2, we find that this last inequality
holds when (1 + md){md — !}>(« + m)/(n — m), or equivalently

6 > d0 := (V2n/(n - m))/m.

Hence by Rouche's theorem with (2.3), T(z) has the same number of zeros inside the
circle \z\ - 1 + <50 as m{zn - 1), namely all n zeros. This proves the right inequality of (b).
We get the left inequality now by considering the inverse polynomial (2.2) and applying
the right inequality; here we use the fact that (1 + 60)~' s 1 - 60. The proof is now
complete.

The next proposition states that the zeros of T(z) are quite evenly distributed inside
the (generally narrow) annuli of Proposition 2.3.

PROPOSITION 2.4. The m — 1 "inner zeros" of T{z) lie in the neighbourhood of the
m-th roots of unity different from 1, and the n — m — l "outer zeros" lie in the
neighbourhood of the (n — m)th roots of unity different from 1. More explicitly: let m and
e > 0 be fixed. Then there is an N such that the inner zeros lie within distance e of the m-th
roots of unity for all n> N. If n — m and e>0 are fixed, then there is an M such that the
outer zeros lie within e of the (n — m)th roots of unity for all n> M.

Proof. For <5 > 0, consider

T6(z) := mz" - nzm + n{\ -6)-m.

If 6 > 0 is sufficiently small, then the m — 1 inner zeros of T(z) will still correspond to
inner zeros of T6(z). In addition, the double zero at z = 1 of T(z) will split into an inner
and an outer real zero of T6{z). Now we observe that

T6(z)/n^>-zm + 1-6 for | z | < l , as /!-»»;
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hence by the theorem of Hurwitz (see, e.g., [9, p. 4]) the m inner zeros tend to
(1 - d)llmEj, where the £,-,/ = 1,. . . ,m, are the m-th roots of unity. Since 8 can be
chosen arbitrarily small, this proves the first part of the proposition. For the second part,
we repeat this argument for the inverse polynomial z"T(l/z) in (2.2).

Now we proceed to the proof of Theorem 2.1. We need the following two lemmas.

LEMMA 2.5. If b>a>0 and p, q are all real, then

bzq-azp = b-a, z=e">

implies pd = qd = 0 (mod 2K).

Proof. The length of the line segment joining a point on \z\ = a to a point on \z\ = b
can equal b —a only if the two points have the same argument.

LEMMA 2.6. Let n>m>0 be integers. If

Az" + Bzm + C = O, with |B|>|/1| + |C|, (2.4)

then there are exactly m zeros of (2.4) strictly inside U.

Proof. This is an immediate consequence of Rouche's theorem.

Proof of Theorem 2.1. Let e > 0 and consider

PE(z) = bz"-azm+a-b-e.

By Lemma 2.6, for small positive e this has exactly m zeros strictly inside U, say

au. . . , ocm. As e-*0, some of these may tend to U. If

then by Lemma 2.5, nO = mO (mod2;r). Hence e'e is both an m-th and an n-th root of
unity, and therefore a d-th root of unity, where d=gcd(m,n). Conversely, if o)d = l,
then P{(o) = 0.

Now suppose that ar;--> OJ, where a>d = 1. Since

P'(z) = nbz"-l-amzm-\

the root o) has multiplicity one unless m/n = b/a, in which case it has multiplicity two.
Now set

j3 = r&), 0<r<oo ,

and

h(r):=Pe(fi) = br"-arm + a-b-e.

It is easy to see that h{r) has two positive zeros, while h'{r) has only one positive zero r'\
also,

r'>\ if alb>nlm, (2.5)

while

r'<\ if a/b<n/m. (2.6)
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In both these cases h(r) has a zero r(t between 0 and 1, and for r>r0 the function h(r)
remains negative until r > r(h where of course r' is independent of the value of e. Thus in
case (2.5) it is an inside zero that goes to U as e—>0, while in (2.6) it is an outside zero.
In the case of a double zero, it is clear that both an inside and an outside zero are coming
together. The case a/b = n/m is resolved by a continuity argument, and the result
follows.

3. Zeros of pn{z) for small n. We now turn to the study of the sequence of
polynomials

pn(z) := Az" + 1 - A - (Az + 1 - A)".

The following result shows that for small n (the size depending on A), the distribution of
zeros of pn(z) does not depend on the arithmetic nature of A.

THEOREM 3.1. // 0 < A < 1 is any fixed real number, then pn(z) has no zero inside U
for n <sfx + 1.

Proof. 1. Let A = l/q, where q > 1 is (in this section only) an arbitrary real number.
Then

q"pn(z) = q"-\zn + q-l)-(z + q- 1)".

Using first a binomial expansion for (z + q - 1)" and then the identity

z" - 1 - n(z - 1) = (z - lf[z"-2 + 2z"-3 + . . . + ( « - 1)], (3.1)

we obtain

q"pn{z) = [z" - 1 - n(z -

and therefore

= : P(z)q"-1 - Q(z). (3.2)

If we can show that

\P(ei9)\q"-l>\Q(ei8)\ for O < 0 < 2 J T , (3.3)

then by Rouche's theorem, (3.2) and hence pn(z) has the same number of zeros inside the
unit circle as does P(z); but by the Kakeya-Enestrom theorem [12, Problem III.22], this
number is zero. This proves the theorem, provided that we can show (3.3) for n s f^q + 1.

2. We begin by estimating |£>(e'e)|. Using

ln\ = n(n - 1) In - 2\ n(n - 1) In - 2\
\k) (n-l-k)(n-k)\ k I 2 \ k )

for k^n-2, and

\eie — 1| = (2 — 2 cos d)m = 2 sin ^ , (3.4)
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we obtain

that is,

(3.5)

3. To estimate |P(e'e)|, we first consider 0< 6 < n/n. With (3.1) and (3.4) we get

e'"e - 1 - n(eie -

1 / n-1 n-1 \ n6 0= ^ . 2/^/^x c o s ~ 0 + ' s m ^ 0 sin —- - n sin -2sin2(0/2) IV 2 2 / 2 22(0/2)

Since \z\ s: |Im z\ for all complex z, we have

\P(e'°)\ >
1 1 j l~2sin2(0/2)

We note that for 0 ^ nd/2 < ^/2 we have

n 1 n0
sin —— d sin —

«0
s , n y

2nd n6

while O<sin(0/2) < 0/2, so that with (3.6) we get

(3.6)

for O < 0 < (3.7)

4. In the case ;r/n < 0 < JT we rewrite

Let n be fixed and K be such that 2* < n but 2*+1 > n. Denote M:=2K; then

(3.8)

Now fix a A:, 1 ^ /c s /C; we note that with m := 2k we have

eiB +... + ei(M-1)&\ < |1 + ew eim6

M
e ' e - l
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Now

\n - (1 + eie + . . . + ei(n-l)e)\

>n - |1 + eie + + e'
(M-l

- \e
iMe\ - . . . - \ei(n~x)e\

. , M

m
e""e-\
eie-l

so that

and, with (3.4),

\P{e'e
2M { 6 1 md

i is i n - sin
2

s i n s i n
, . , 9 L 2 m 2

2

Using Taylor expansions, we find

me e i/e\3 i[me i/me\3 1
s i n

. 0 1 me e i/e\3 i[me i/me\3 1 / m 0
in___sin_s___y --[T--(T) +^(T

so that with sin(0/2) < 0/2 we get

First, let m >4 and

then

n
m

(3.9)

(3.10)

(3.11)

1 (mfl)2 1 n2 48
m2~ 80 ~ 16 80>59"

Furthermore, with (3.11) we get m9^7i/2, and with (3.8) and m > 4 we have
Mm > 4M > 2n; so (3.10) implies

\P(ew)\>-^n. (3.12)

This holds for each interval (3.11) with 4 < m < M , and thus for the interval
JT/2M < d < Jt/4. Since 2M>n and 2JT/59 < 2(n - l ) / ^ 2 for n > 2, (3.7) shows that (3.12)
holds for all 0 < 6 < w/4.
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5. For J T / 4 < 6 < n, we use (3.9) with m = 2 to get

2sin(0/2) 2sin(0/2)

2 sin (0/2) '

and therefore, with (3.8),

|P (e ' e ) |>^s in- for nlA<6<n. (3.13)
8 2

6. Consider now njA< 6<K. We see from (3.5) and (3.13) that (3.3) holds when

q — > 4 ( l + ) . (3.14)
n — 1 V q 1

It is easy to verify that the left-hand side of (3.14) grows faster in 0 than the right-hand
side for O s 0 < i , when q^An. Hence, if we set a :=sin(;r/8), then (3.14) holds for
JI/A < 0 < K when

If we denote d:= q/(n - l)a, then the right-hand side of (3.15) is less than
(4/a)exp(2/d), and (3.15) holds when d>(4/a2)exp(2/d). This is the case for d>26.58,
which in turn holds when q > 51(n — l)/5. This verifies (3.3) for jr/4 ̂  6 < n.

For 0 < d < ^/4 , we note that by (3.12) and (3.5), (3.3) holds when

n —

i - i

But this follows from (3.15) since 59/4^ <4/a. The proof is now complete since by
symmetry it suffices to consider 0 < 6 < n.

REMARK. From (3.2) we can easily obtain a weaker version of Theorem 3.1: for fixed
n,pn(z) has no zero inside U for all A sufficiently small.

Indeed, it is obvious from (3.2) that

qpn(z)(z-l)-2^z"'2 + 2z"-3 + .. .+ (n-l) as q^°=.

But the polynomial to the right has all zeros in the annulus 1 + l/(n - 2) < \z\ ̂  2, by the
Kakeya-Enestrom theorem [12, Problem III.23]. Hence by Hurwitz's theorem, for any r
with 1 < r < 1 + l/(n — 2) the zeros of pn(z) will lie outside a circle of radius r if q is
sufficiently large. See also the remark at the end of Section 5.

4. A not an integer reciprocal. In this section we establish the sufficiency part of
Theorem 1.1.

THEOREM 4.1. 7 / 0 < A < 1 is given and I/A is not an integer, then pn(z) has a zero
inside the unit circle if n is sufficiently large.
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The proof rests on a lemma which follows from a well-known result on exponential
polynomials.

LEMMA 4.2. If a> 1 and a is not an integer, then

h(s):=eoa-aes + a-l

has infinitely many zeros with negative real part.

Proof. First assume a = n/m, where n > m > 0 are two relatively prime integers. By
Theorem 2.1 the trinomial P(z) of (2.1) has m - 1 zeros strictly inside U (note that m > 1
since a is not an integer); let JCO = re'e be one of these. Then for any integer k,

exp{a(m log r — im0 + In im/:)} — a exp(/n log r + im 6 + IK im k) + a — 1 = 0;

this proves the lemma for rational a.
Now assume that a is irrational. Let

2a = [aQ,aua2,. . . ]

be the continued fraction expansion of 2a, and write

[ao,fl, , . . . ,am] = PJQm, gcd(Pm,Qm) = l.

From the elementary properties of continued fractions it follows that at least one of
Pm, Pm+\ is odd for m >0. Thus for infinitely many positive integers Q there is an odd P
such that

\2a-P/Q\<co/Q
2;

that is,

\a-(2k + l)/2Q\<cJ(2Q)2,

where c0 and cx are absolute constants. Now let

s : = sq = log L + {2k + l)m/a,

where

-La-aL + a-1 = 0 and 0 < L < l

(clearly such an L exists). Then

5 = log L + 2niQ + 0(1/Q)

and

h(s) = -La- aLexp{O(l/Q} + a-1^0 as Q-*°°.

Hence h(s) assumes arbitrarily small values in the fixed half plane Re(z) s log L < 0.
Thus, by a theorem on exponential polynomials (see, e.g., [2, p. 403, Theorem 12.6]),
h(s) has infinitely many zeros in this half plane.

Proof of Theorem 4.1. With s — ku and a = I/A we have by Lemma 4.2 that

Ae" + 1 - A - e*" = 0
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has infinitely many roots with Re(M)<0. Let uo be one of these. Then by Hurwitz's
theorem there is an infinite sequence uo(n)-*uo such that uo(n) is a root of

n I
Fix d > 0 such that nil + 6 < arg(u0) < 3^/2 - d. Then for n sufficiently large, all uo(n)
satisfy

!+<5<arg( M o (n) )<y-<5.

If

. = 1 | uo(n)

then \wn\ < 1 for n sufficiently large, and pn(z) = 0 is satisfied for z = wn. This completes
the proof.

5. A an integer reciprocal. We formulate the necessity part of Theorem 1.1 as a
separate theorem.

THEOREM 5.1. If X is the reciprocal of a positive integer greater than 2, then apart
from a double zero at z = 1 every zero of pn{z), for n s 475, has modulus greater than 1.

For q = I/A > 4 the lower bound of n = 475 can be improved; see the remark at the
end of this section.

We supplement Theorem 5.1 with the following result.

PROPOSITION 5.2. For A = 1/2, the zeros of pn{z){n > 2) all lie on the unit circle.

Proof. It is clear that for A = 1/2 we have

-2Z + 2 \2Z + 2) — Z Pn— Z Pn\

i.e., pn(z) is a self-inverse polynomial. Hence by a theorem of A. Cohn (see, e.g., [9, p.
206]) the zeros of pn(z) lie on U if and only if the zeros of the derivative all lie on or
inside U. But this is easy to establish.

Theorem 5.1 is a consequence of the following somewhat stronger result.

THEOREM 5.3. For A the reciprocal of an integer q^3, the image of U under pn(z),
for n > 475, intersects the nonpositive real axis L only at z = 0.

The principle of the argument and Theorem 5.3 now immediately imply that pn(z)
cannot have any zeros inside U.

To prove Theorem 5.3, we rewrite pn{e'e) as follows. Let

|Ae'e + l - A r , (5.1)

and

a = o(d) := n arg(Ae'e + 1 - A), (5.2)
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so that we can rewrite pn(e'e) as

pn(e
ie) = keina + 1 - A - p{6)e"*e\ (5.3)

First we note that whenever p(6) < 1 — 2A, the curve pn(e'e) is confined to the interior of
a circle of radius 1 — A centered at 1 — A; hence it does not intersect the negative real axis
in this case. We may therefore restrict our attention to the case

p ( 0 ) > l - 2 A . (5.4)

The main idea of proof now is to study the related curve

fpW(nke) = kein0 + l-k-p(9)e'"ke, 0<6><2;r, (5.5)

and to show that (5.5) approximates (5.3) quite well, under the condition (5.4). Introduce
the function of two variables

/p(0:=Ae"/A + l - A - p e " .

Let E = E(p) be, for a fixed p with 0 < p < 1, the curve z =fp(t) where t > 0. We shall
show the following results.

PROPOSITION 5.4. The point on the negative real axis L closest to E(p) is the origin.

PROPOSITION 5.5. For 0 < / < In we have

I/P(OI^(1-P)3 / 2 , (5-6)

where

f if <7 = 3 ,
= \ (l-2A)/4\/2 if 4<4<15,

[7/32V2 if q>l6.

PROPOSITION 5.6. For p(Q) as in (5.4) and for n > 16 we have

V X ( 1 ^ V ^ ( l - p{d)f'\ (5.7)

Now every point pn(e'6) is close to an/p(e)(nA0), and this in turn is on a curve/p(e)(/),
every point of which is at least a distance of

from L, by Propositions 5.4 and 5.5. Hence we know that pn(e'8) avoids L provided that
the right-hand side of (5.7) is less than the right-hand side of (5.6). But this is the case
when

11/19 \2 121/361

\C{\ - kfa) C\\ - kf

In particular, for q = 3 (i.e., A = 1/3), (5.8) holds for

121 x 9 x 27
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For 4 < q ^ 15 we need

and the case q > 16 requires

This completes the proof of Theorem 5.1, and actually a little more.

REMARK. We can use Theorem 3.1 and some additional arguments to further
improve the bounds on n in Theorem 5.1.

First we note, using (5.9), that Theorem 5.1 holds for all n > 16 provided that q > 24.
Now by Theorem 3.1, pn(z) has no zero inside U for n < 15 provided that q > 143, or for
n < 14 if q > 133, etc., down to n < 10 if q >92. This means that for q > 143, Theorem
5.1 holds for all n, while for 1 3 3 < ^ s l 4 2 the case n = 15 remains open, for
123<^< 132 the cases n = 14 and n = 15 remain open, etc. These gaps can be closed by
deriving explicit expressions for the coefficients of the polynomials pn(z)/(z -1)2 and
observing that they form decreasing sequences in the cases n = 15 and 95 < q < 142,
n = 14 and 83 :£<?:£ 132, etc. Lemma 2.3 now implies that the zeros of pn(z) different
from 1 lie outside U in the above cases. (Note that this may be considered as the
quantitative version of the remark at the end of Section 3.) We have now

PROPOSITION 5.7. Theorem 5.1 is true for all n > 2 when q = I/A > 95.

This bound of q = 95 could be further improved by using generalizations of the
Enestrom-Kakeya theorem (see [4]). We suspect that numerical methods could close the
remaining gaps.

6. Proof of Proposition 5.4. For A = l/q, where q s 3 is an integer, we shall study
the curve E = E(p) given by the function

/p(f) = Ae" / A + l -A-pe" , 0 < p < l . (6.1)

Since I/A is an integer, we need to consider fp(t) only for 0 < t < 2K. For p = \,fp{t) has a
zero at t = 0.

LEMMA 6.1. If p<l, the curve E does not intersect L.

Proof. Since /p(0) =fp(2x) = 1 - p > 0 and fp{n) > 1 - 2A + p > 0, we may assume
that sinf #0 . Decompose fp{t) into its real and imaginary parts. If the imaginary part
v = 0, then p = sin qt/q sin t and consequently

q Re(/p(0) = cos qt + q - 1 - sin tff — = (q - 1) - S i n ( ? ~ ) f> 0,
sin f sin f

by a well-known inequality that can be verified by induction on q. This proves the lemma.

To show that the origin is the point on L closest to the curve E, we shall study some
geometric properties of E. In fact, E is an epitrochoid (see, e.g., [18, p. 233]). If we
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rewrite

( ^ ) (6.2)

it becomes clear that E can be thought of as the trajectory of a particle on a circular orbit
of radius l/pq and frequency q — 1, superimposed on another circular orbit of radius p
and frequency 1. (6.2) also shows that E has q - 1 fold symmetry about its center.

LEMMA 6.2. Suppose that p < 1 and that (5.4) holds. Then
(a) E is confined to the annulus with center 1 — A, inner radius p — A and outer radius
p + k;
(b) E is symmetric about all straight lines through its center making angles kjz/(q - 1),
k = 0,1,. . . ,q — 2 with the real axis;
(c) the tangent vector to E has an argument that increases monotonically with t;
(d) the net change in argument of the tangent vector is 2jiq as t goes from 0 to In.

Proof, (a) This is clear from (6.1) if we note that A = XIq < 1/3 and p > 1 - 2A > 1/3,
by (5.4).

(b) Let

Then it is easy to verify that g(—t)=g(t). This proves the symmetry about the line in
question.

(c) We split fp(t) into its real, resp. imaginary components

R(t) := kcos qt-p cost+ 1-X, (6.3)

I(t): = A sin qt - p sin t. (6.4)

The tangent vector

f'p{t) = ie""-pieil (6.5)

has components

R'(t) = -sin qt + p sin t, (6.6)

/ ' (0 = cos qt - p cos t. (6.7)

If 6(t) is the argument of the tangent vector, then tan 9(t) has derivative

dt (sin tq — p sin t) (sin tq — p sin t)

the last inequality follows from 0 < p < l and q^3. This proves (c). (d) is clear from
(6.5) and the fact that p < 1.

Proof of Proposition 5.4. Because of the q -1 fold symmetry about the center
2 = 1-A of E, we need only consider 0<t^2n/(q — 1). From (6.3), (6.4), (6.6) and
(6.7) we see that at t0 = 0, E passes through z = 1 — p and has a vertical tangent there. As
/ increases, E then moves to the left in the first quadrant until it reaches a point tr with
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horizontal tangent, where 0 < tx <n/2q (by (6.7)). Then for some t2 with n/2q <t2<
(by (6.4)), E cuts the positive x-axis (positive because of Lemma 6.1) between z = 0 and
2 = 1 — p. This has to be a double point since E is symmetric about the real axis.
Furthermore, because of the q — 1 fold symmetry about the center of E, another double
point occurs on the ray R emanating from the center of E with argument n + 2n/(q — 1).
This will occur for some t3 with 2jt/(q — 1) — jz/q < t3 < 2n/(q — 1). Next, by Lemma
6.2(b) with k = 1 the tangent of E is parallel to R for some t4, 2n/(q - 1) - n/2q <t4<
2jz/(q — 1). Finally, E cuts R at a right angle for t5 = 2n/(q — 1). Now the same process
starts again, with the real axis replaced by R.

Hence we may consider E as consisting of a union E' of curve segments between
consecutive double points, and a union E" of loops that lie in the interior of the piecewise
differentiable curve £ ' .

Now we consider a "slice", namely the interior of the closed curve consisting of a
segment of E' between two consecutive double points, and the straight line segments
joining the center of E with these double points. Then E' together with its interior is the
union of all these q — 1 slices. By Lemma 6.2(d), the change in argument of the tangent
vector between t = t0 and t = t5 is 2nql{q - 1) and therefore between t = tx and t = t4 it is
2nql{q - 1) - 2(JI/2) = n + 2nj{q - 1); as a consequence, there can be no other double
point between t2 and t3. This, together with Lemma 6.2 (c), shows that each of the q — 1
slices is convex.

Next we note that because of symmetry, each point z0 on the nonpositive real axis L
has the same distance to the two slices lying just above and just below the real axis and
closest to the origin, and that the distance to any other slice is greater. Hence the distance
of z0 to all of E is the same as the distance to one of the two slices mentioned above.

Finally we use the fact that the distance between a closed convex region and a point
moving along a straight line is a unimodal function, i.e., it is nonincreasing up to a
certain point, and then it is nondecreasing. The proposition is proved if we apply this to
the slice and the real axis.

7. Proof of Proposition 5.5. First we note that because of fp(2n - t) =fp(t) we may
restrict our attention to 0<t<jr. Furthermore, we claim that |/p(0l cannot be minimal
for JT/2 < t ^ n. Indeed, consider

I/P(0I2 = A2 + p2 + (1 - A)2 - 2pA cos(<? - l)t + 2(1 - A)(A cos qt-p cos t) (7.1)

which follows from (6.3) and (6.4). With n/2 < ( < JT we get

The right-hand side of this is greater than or equal to |/p(0)|2 = (1 - p)2 if and only if
p > 2A. But this is true whenever A ^ 1/4 since we may assume 1 — 2A s p by (5.4). For
the remaining case A = 1/3 (i.e., q = 3) we note that for n/2<t^n,

A cos(q - l)t + (1 - A)cos t = § (cos21 + cos t) - A < -A,

so that in this case, by (7.1),

|/p(0|2 s 1 - 4A + 4A2 + p2 + 2pA.
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The right-hand side of this is greater than or equal to |/p(0)|2 = (1 - p)2 if and only if
p > 2A(1 - A)/(l + A) = 1/3, which holds because of p > 1 - 2A.

Hence we may restrict our attention to 0 < t < n/2. Now it is easy to see that
Proposition 5.5 is a consequence of the following result.

PROPOSITION 7.1. Let C := 5/4y/q, and

/,:0<f<CVl-p,

Then

where

D: =

f7/32V2 for telu

557(1 - A)(l - 2A)/2048 for tel2,

(l-2A)/4\/2 for t e /3

. (V5- l ) /6 \ /2 /or / e / 3 and (? = 3.

Proof. Differentiating (7.1) with respect to (, we find that |/p(0l2 ' s minimal (at least
for / > 0) when

which implies

Using the estimate

P = —
si

sin^r

— 1); + sin

A sin qt — p sin t = Ap[sin(g — l)f — (q — l)sin /].

(7.2)

(7.3)

sin n n JI

we get for te/3 and ^ > 3 that

|sin(<7 — \)t — (q — 1) sin t\ s(g - l ) s in ;
K

- 1
2{q-\)

where C = 1/2 for q > 4 and C = \/2 - 1 for g = 3. Hence with (6.4) and (7.3) we have

| / p (0 l>/(0>C'Ap. (7.4)

Using 1 - 2A < p twice, we get

C'Ap =

so that with (7.4) we have

p > - 2A),

C
for tel3. (7.5)
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Next we consider the interval (72). With (6.3) and (6.4) we find

R(t) sin t - /(f)cos t = sin t sin(o - l)r .
q I q~\ J

(7.6)

We denote the expression in brackets by h(i) and observe that h(t) is increasing for
0 < t £ n/2(q — 1). Hence for t in the interval (72) we have, using a Taylor expansion,

> sin(CVl - P) - -

Tio {(q -

1
-sw[(q-l)Cy/l=p]

Using the facts that (q - lflq(q - 2) < 4/3 for ^ > 3, and that (q - l)CVl - p ̂  JT/2, we
get

and by (7.6) we have

l-Pr2 for t

Finally, we consider the interval /t. Using (6.3) and a Taylor expansion, we find

R(t) > A(l - \{qtf) - p(l - |f2 + if4) + 1 - A

> 1 - p - i9f
2.

Now we use the restrictions t2 < C2(l — p) and 1 — 2A < p to get

and

Now Proposition 7.1 follows from (7.5), (7.7) and (7.8).

for (7.8)

8. Proof of Proposition 5.6. We begin with two lemmas. The first one shows,
among other things, that only for small arguments 6 in (5.3) does the condition (5.4)
hold. Lemma 8.2 then states that for these 6, the exponent inX8 in (5.5) is a good
approximation of io(6) in (5.3), and this leads to Proposition 5.6.
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LEMMA 8.1. Under condition (5.4) we have for 0 < 0 < it and n > 16,

0 2 < 4 - ( l + ~ ) , where d := (1 + A + 3A2)/(1 - A); (8.1)

p(0)<exp{-gA(l-A)rt02}. (8.2)
Proof. From (5.1) we get

)27" = 1 + 2A(1 - A)(cos 0 - 1 )

and therefore

pid)2"1 < 1 - CO2 (8.3)

with

C = C e :=A( l -A)( l -0 2 /12) . (8.4)

Using (5.4) and (8.3), we find

- log(l - 2A) == log p1'" < i log(l - C02) < - \CQ2. (8.5)
n

This implies

< - [2A + 2A2 + K2A)3(1 + 2A + (2A)2 + . . . ) ]
n

IX
= — [1 + A + |A2(1 - 2A)-1]

< —(1 + A + 3A2),
n

and with (8.4) we get

02(1 - 02/12) < Adln.

Since n > 16 this implies

02 < 6 - 6V1 - 4d/3n. (8.6)

It is easy to check that

. Id Id2

where we have used the fact that d<5 /2 for A<l /3 , and consequently d/n <5/32 for
n > 16. (8.1) now follows from (8.6).
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To verify (8.2), we note that with (8.5) and (8.4) we have

Now by (8.1), since d/n < 5/32,

02 Id/ 5d\ 1
T T ^ - - 1 + - - U - , (8.7)
12 3n\ in) 18

and this proves (8.2).

LEMMA 8.2. For 8 as in (8.1) and for n > 16 we have

6

Proof. With (5.2) we get

o A sin 0

Using Taylor expansions for sine and cosine, we get
- i

With (8.7) we easily see that

t an-<A0 + -A03,
« 6

and with the Taylor expansion for the arctangent we get

In the other direction, we find with (8.8) that

= A0(1 - i 02)[1 -
>A0(l-i02)(l-iA02)-1

<8"8>

- < A 0 + -A03. (8.9)
n 6
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Using (8.7) again, we find

t a n - > A 0 - 7 03(l-2A),
n 6

and with a Taylor expansion for the arctangent, we get

- > A0 - \ 03(1 - 2A) - \\kd - \ 03(1 - 2
no L 6

> A0 - - 03(1 - 2A + 2A2)
6

and this, together with (8.9), proves the lemma.

Proof of Proposition (5.6). With (5.3) and (5.5) we get

0
e" dt

'nke

and by Lemma 8.2,

(8.10)

From the first part of Lemma 8.1 and the bounds A(l - A) < 2/9, d s 5/2, and (for n > 16)
d/n < 5/32 we find that

J 3d\ 108
< 4 d 1 + — < — .

V 8/i/ 10

Now the Taylor expansion of the exponential and the second part of Lemma 8.1 yield

12> e x p { 12 A ( 1 _

Another application of the above estimates gives us

p-2/3_pl/3>iiA(1_

This implies

) ^ P )

this, with (8.10), proves the proposition if we note that (25/l l ) 3 / 2 /6< 11/19
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