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Higher Order Tangents to Analytic Varieties
along Curves. II

Rüdiger W. Braun, Reinhold Meise, and B. A. Taylor

Abstract. Let V be an analytic variety in some open set in Cn. For a real analytic curve γ with γ(0) = 0

and d ≥ 1, define Vt = t−d(V − γ(t)). It was shown in a previous paper that the currents of

integration over Vt converge to a limit current whose support Tγ,dV is an algebraic variety as t tends

to zero. Here, it is shown that the canonical defining function of the limit current is the suitably

normalized limit of the canonical defining functions of the Vt . As a corollary, it is shown that Tγ,dV

is either inhomogeneous or coincides with Tγ,δV for all δ in some neighborhood of d. As another

application it is shown that for surfaces only a finite number of curves lead to limit varieties that are

interesting for the investigation of Phragmén-Lindelöf conditions. Corresponding results for limit

varieties Tσ,δW of algebraic varieties W along real analytic curves tending to infinity are derived by a

reduction to the local case.

1 Introduction

This paper continues the study in [4, 6] of limits obtained by blowing up the part

of an analytic (resp. algebraic) variety that lies in an algebraic conoid with opening
proportional to td about an analytic curve γ with tangent vector ξ0 satisfying |ξ0| = 1.
Such a curve γ in Cn always admits a Puiseux series expansion. If we study local
analytic varietes at the origin, then for some natural number q and δ > 0, γ has an

expansion of the form

(1.1) γ(t) =

∞∑

j=q

ξ jt
j/q, 0 < t ≤ δ.

If we study algebraic varieties near infinity, then for some R > 0, γ has the form

γ(t) =

q∑

j=−∞

ξ jt
j/q, R ≤ t < ∞.

Such curves will be called simple curves. The results in the two cases are completely
analogous, so for ease of exposition, we will concentrate first on the case of local
analytic varieties at the origin which was studied in [4], in which case the parameter
d just mentioned satisfies d ≥ 1. The other case will be discussed in Section 5.

For V an analytic variety of pure dimension k ≥ 1 defined in a neighborhood of
the origin in Cn, the principal object studied in [4] was the family of varieties,

(1.2) Vγ,d,t := {w : γ(t) + tdw ∈ V}, d ≥ 1, 0 < t ≤ δ,
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and its limit, which is defined as follows. Considering the varieties Vγ,d,t as cur-
rents or holomorphic k-chains [Vγ,d,t ], there exists a limiting current or holomorphic

k-chain

(1.3) Tγ,d[V ] = lim
t→0+

[Vγ,d,t ].

The support of Tγ,d[V ] is denoted by Tγ,dV and is called the limit variety of the
family (Vγ,d,t )t . In fact, Tγ,dV is the limit of the sets Vγ,d,t as t tends to zero in the
convergence of closed sets in Cn, e.g., in the Hausdorff metric or in the sense of Meise,

Taylor, and Vogt [12, 4.3].

The concept of limit variety extends the notion of the tangent cone T0V to V at
0, which is the case γ(t) ≡ 0, d = 1. For d > 1, limit varieties were shown to
exist and to be algebraic varieties in Cn that are invariant with respect to all trans-
lations in the direction of the tangent vector to γ at 0 [4, Theorem 3.2, Lemma 3.6,

Proposition 4.1]. As was also pointed out there, the use of these varieties is crucial in
the classification of the analytic varieties whose plurisubharmonic functions satisfy
estimates in the spirit of the classical Phragmén-Lindelöf estimates for subharmonic
functions. References [5, 7] contain applications of this work.

Our previous work proved the existence of the limit currents by studying the lim-
iting behavior of the Whitney canonical defining functions of the varieties, and the
work of this paper continues this program. Our main convergence result showed that
the canonical defining functions of the varieties Vγ,d,t converge as t → 0 and that the

limit function contains enough information to characterize the limit current Tγ,d[V ].
However, we were unable to answer the following basic question (except for varieties
of codimension 1).

Is the canonical defining function of the limit current Tγ,d[V ] equal to the suit-
ably normalized limit of the canonical defining functions of the varieties Vγ,d,t ?

For the case d = 1, that is, the ordinary tangent cone at the origin, this is true
(see Chirka [8, 16.1, Proposition 2]. In this paper we will show that the answer to
this question is always “yes” (Theorem 3.1) and then derive consequences from it
(Corollary 3.3, Corollary 3.5, and Theorem 4.6) which are important for the charac-

terization of the algebraic surfaces in Cn satisfying the Phragmén–Lindelöf conditions
in [7].

As mentioned above, there are, in fact, two closely related limiting cases to be
treated: the local case of the previous discussion and its analogue for the limiting

behavior of algebraic varieties along analytic curves which go to infinity, treated in
[6]. There are obvious analogues of the theorems in the two cases, and even a natural
transformation that relates them, and we give the relationship in Section 5. In this
paper, we will first give proofs for the local case, which is somewhat easier to visualize.

The results for algebraic varieties studied near infinity are then deduced from the
local case by the transformation mentioned above.

Let us also mention here that we have made a careful distinction between the cur-
rent or holomorphic k-chain, Tγ,d[V ], and the algebraic variety Tγ,dV which is its
support. For our applications, it is important to keep track of the multiplicities of
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different branches in the limit variety which we do by viewing them and their limits
as currents (or equivalently, as holomorphic chains). We will assume that the orig-

inal analytic variety V is just a set and hence can be identified with its current of
integration [V ]. The same applies to the family of varieties (Vγ,d,t )t . However, the
limit current Tγ,d[V ] may have irreducible factors of multiplicity greater than one.

We conclude this introduction with some algebraic questions about limit varieties

which seem interesting but which we are unable to answer.

(i) Are there only finitely many limit varieties up to a suitable class of isomor-

phisms?
(ii) In terms of generators of the ideal of V ,

(a) how can one find generators for the ideals of Tγ,dV when the degree of
Tγ,dV is greater than 1?

(b) how can one find all the γ and critical values d j where Tγ,d j
V has the

degree greater than 1?

An algorithmic approach that might give some information about these questions is
part of the proof of Theorem 4.6.

2 Notation

In this section we recall the notation and some results from [4] which are needed
to state and prove the main result of this paper, Theorem 3.1, which answers the
question formulated in the introduction.

2.1 Varieties and Coordinates

Let V be an analytic variety in a neighborhood of the origin in Cn of pure dimension k

containing the origin. Then we denote by Vreg (resp. Vsing) the set of all regular (resp.
singular) points in V . From Chirka [8] we recall the following definitions.

Let L ⊂ Cn be an affine subspace of dimension n − k and z an isolated point of
V ∩ L. Then there is a neighborhood U of z such that the projection πL : U ∩ V →
πL(U ∩ L) ⊂ L⊥ along L is an analytic cover. Its sheet number in z is denoted

by µz(πL|V ). The minimum of the sheet numbers µz(πL|V ) when L ranges over all
(n − k)-dimensional affine subspaces for which z is an isolated point of V ∩ L is the
multiplicity µ(V, z) of V at z.

If W =
∑m

j=1 n j[V j] is a holomorphic k-chain, then µ(W, z) :=
∑m

j=1 n j µ(V j , z).
We call µ(W, z) the multiplicity of the holomorphic chain W in z.

If V is a purely k-dimensional algebraic subset or a holomorphic k-chain in Cn

with algebraic support and L ⊂ Cn is an affine (n − k)-dimensional subspace such
that V ∩ L is finite and such that the projective closures of V and of L do not have

points at infinity in common, then
∑

z∈V∩L µ(V, z) is the degree of V . It does not
depend on L.

Next we fix a projection π of rank k that is proper on V and transverse to V at the
origin. That is, we have a choice of coordinates z = (z ′ ′, z ′) ∈ Cn−k × Ck such that
π(z ′ ′, z ′) = z ′ and an open set 0 ∈ U ⊂ Ck such that π : V → U is proper with
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discrete fibers and, further, that for some K > 0

(2.1) |z| ≤ K|π(z)|, z ∈ V.

If B is the branch locus of π, then B and π(B) are analytic varieties of dimension at
most k − 1 and π : V \ B → U \ π(B) is a covering map. The number of points in a
fiber over z ′ ∈ U \ π(B) is m := µ(V, 0) because of (2.1), so we can write

π−1(z ′) = {(αi(z ′), z ′) : 1 ≤ i ≤ m},

where the αi(z ′) = αi(z ′; V ) are all distinct. We will also use the same notation for
z ′ ∈ U∩π(B) by repeating each αi(z ′) as many times as indicated by the multiplicity
µ(V, z), where z := (αi(z ′), z ′).

Following Whitney [14, Appendix V, Section 7], we introduce canonical defining
functions for analytic varieties. In doing so we use the dot product on Cν , defined by

〈u, w〉 :=
∑ν

j=1 u jw j .

2.2 Canonical Defining Functions

Let V be an analytic variety as in Section 2.1. Using the notation introduced in Sec-
tion 2.1, the canonical defining function for V is defined as

(2.2) P(z, ξ; V, π) =

m∏

i=1

〈z ′ ′ − αi(z ′), ξ〉 .

We will write P(z, ξ) = P(z, ξ; V ) = P(z, ξ; V, π) when the missing data are clear
from the context. A point z belongs to V if and only if P(z, ξ) = 0 for all ξ ∈ Cn−k.

Equivalently, one can expand P as a homogeneous polynomial in ξ,

P(z, ξ) =

∑

|β|=m

Pβ(z)ξβ ,

and then z ∈ V if and only if Pβ(z) = 0 for all |β| = m.

Note that P is a polynomial of degree m in z ′ ′ and a homogeneous polynomial of
degree m in ξ ∈ Cn−k. It is defined at first for z ′ ∈ U \ π(B) but extends, by the
Riemann removable singularity theorem, to be analytic on all of Cn−k × U × Cn−k.
With the convention made about counting the points αi(z ′) with multiplicity when

z ′ ∈ π(B), the formula (2.2) is still valid (see [4, (3.8)], and the discussion that
precedes it). The local multiplicity of V at a point (α, z ′) is equal to the number of
times the factor 〈z ′′ − α, ξ〉 appears as a factor in P(z, ξ) when the projection π is
transverse to V at the given point (otherwise, the multiplicity is smaller).

We will also need canonical defining functions for holomorphic k-chains. If W =∑p
j=1 n j[W j] is a holomorphic k-chain, i.e., the W j are the irreducible components

of SuppW in a sufficiently small neighborhood of the origin and n j ∈ N, then we
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choose a projection π : Cn−k × Ck as in Section 2.1, which satisfies the requirements
in Section 2.1 for each of the varieties W j , and we call

P(w, ξ; W, π) :=

p∏

j=1

P(w, ξ; W j, π)n j

the canonical defining function for W . It is a polynomial in w and ξ which has degree
ν =

∑p
j=1 n jµ(W j , 0).

For a simple curve γ as in (1.1) and d ≥ 1, define Vt = Vγ,d,t as in (1.2). Since

Vt is a translated and rescaled version of V , the projection mapping π is also proper
on Vt , and the defining function of Vt will also be a translated and scaled version
of the canonical function for V . That is, if we write γ(t) = (γ1(t), γ2(t)), where
γ2(t) = π(γ(t)), then

P(γ(t) + tdw, ξ) =

m∏

j=1

〈γ1(t) + tdw ′′ − α j(γ2(t) + tdw ′), ξ〉

= tmd

m∏

j=1

〈w ′′ − β j(w ′, t), ξ〉 = tmdP(w, ξ; Vt , π),

(2.3)

where

(2.4) β j(w ′, t) = β j(w ′, t, d) :=
α j(γ2(t) + tdw ′) − γ1(t)

td
, 1 ≤ j ≤ m.

Formula (2.3) gives the canonical functions for the varieties Vt with respect to the
projection π onto the z ′ coordinates up to the scale factor tmd.

In [4, Lemma 3.10], it was proved that the Vt converge by showing that after a
suitable normalization, the canonical defining functions of the varieties Vt converge

as t → 0. This requires a further condition on the projection, namely that it is trans-

verse (at infinity) to the variety Tγ,dV . This means that the subspace L = {(z ′ ′, 0) :
z ′ ′ ∈ Cn−k} meets any line in the cone of limiting directions (Tγ,dV )h (see Defini-
tion 3.4) of Tγ,dV at infinity only at the origin. (Otherwise, the canonical defining

function is not even defined.)

Now we come to the main theorem of [4]. We give a formulation that combines [4,
Theorem 3.2, Lemmas 3.1 and 3.10] and the remark following [4, Proposition 3.14].

Theorem 2.1 Let V be an analytic variety in Cn that is of pure dimension k and

contains the origin, let m := µ(V, 0), and let γ be a simple curve. Then for each d ≥ 1,

the limit in (1.3) exists. Assume, furthermore, that the projection π is transverse to V .

As in (2.1), fix ω0 ∈ R so that limt→0+ tmd−ω0 P(w, ξ; Vt , π) exists and does not vanish

identically, and set

Z = {w ∈ C
n : lim

t→0+
tmd−ω0 P(w, ξ; Vt , π) = 0 for all ξ ∈ C

n−k}.
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If π is transverse to Z, then

lim
t→0+

tmd−ω0 P(w, ξ; Vt , π) = P(w, ξ; Tγ,d[V ], π)Φ(w ′, ξ).

The canonical defining functions of Tγ,d[V ] and Φ are polynomials. Furthermore, the

functions w 7→ Φ(w ′, ξ), ξ ∈ Cn−k, have no common zeros. In particular Z = Tγ,dV .

Thus, the function Φ does not affect the common zeros of the right-hand side as
ξ varies over Cn−k. However, in [4] we were unable to determine if the function Φ

actually depends on w ′ or not. Also, we were unable to explicitly determine the nor-
malizing constant ω0. The improvement here, which we will show in Theorem 3.1, is
that Φ is independent of w ′, i.e., Φ is a homogenous polynomial of degree m− ν in ξ
where ν is the degree of Tγ,d[V ]. In order to derive formulas for Φ(ξ) and ω0(d), we

have to recall some more facts from [4].

2.3 Newton Polygon and Critical Values

For an analytic variety V of pure dimension k, defined in some neighborhood of
the origin in Cn, and for a simple curve γ as in (1.1), we call a projection π in Cn

distinguished for V and γ if it has rank k, is proper on V , transverse to V at the origin,
and transverse to Tγ,dV for each d ≥ 1. To prove the existence of such projections,

we denote by m the multiplicity of V at the origin and by q the number from (1.1)
which is associated with γ. Then

M1 := { j/b ∈ [1,∞[ : jq ∈ N, b ∈ N, b ≤ m}

is a discrete subset of R. Hence [1,∞[ \ M1 =
⋃

j∈N
I j , where the sets I j 6= ∅ are

open intervals in R satisfying I j ∩ Ik = ∅ for j 6= k. For each j ∈ N we choose
δ j ∈ I j and let M2 := {δ j : j ∈ N} and M0 := M1 ∪ M2. By Chirka [8, 38, Proof

of Corollary 2], we can choose a projection π in Cn of rank k which is proper on V

and is transverse to V at the origin and to Tγ,dV for each d ∈ M0. To show that π is
distinguished for V and γ, we need some more preparation.

First, we consider the following expansion of the canonical defining function for

V :

(2.5) F(w, t, ξ) := P(γ(t) + w, ξ) = P(γ(t) + w, ξ; V, π) =

∑

j,β,α

a j,β,αt jwβξα,

where the sum is the power series expansion of the holomorphic function F(w, sq, ξ)
in s = t1/q, w, ξ in a neighborhood of the origin. The support M of this series is
defined as

M := {( j, l) : q j ∈ N0, l ∈ N0, a j,β,α 6= 0 for some β with |β| = l and |α| = m}.

For θ ∈ R2 \ {0} and b ∈ R, define the closed half plane

Hθ,b := {x ∈ R
2 : 〈x, θ〉 ≥ b}.
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We call it admissible if θ ∈ [0,∞[2 and M ⊂ Hθ,b. The Newton polygon N is defined as
the intersection of all admissible half planes. Note that all vertices of N are elements

of M. In particular, if ( j, l) is a vertex of N , then l ∈ N0 and l ≤ m since (0, m) ∈ M,
and j ≥ m since z 7→ P(z, ξ) vanishes to order m at z = 0. Hence N has at most
m + 1 vertices and at most m edges between them (plus two unbounded edges), all
of which have slope s ≥ −1. The critical values of γ and V are defined as the rational

numbers in the sequence 1 = d1 < d2 < · · · < dp, that is, an enumeration of

{1} ∪
{
−1

s
: s is the slope of a bounded edge of N

}
.

From the definition, it is clear that p ≤ m + 1 and if p = m + 1, then there is no edge

with slope −1. It may seem that the definition of critical values might depend on the
choice of the canonical defining function, i.e., on the choice of the projection π, but
this is not the case as we will show in Remark 3.6 below.

For a given monomial t jwβξα in the expansion (2.5) and for d ≥ 1 we define its

d-degree by ω(d) = j + d|β| (the exponents of ξ are ignored because these terms all
have the same degree). Obviously, each monomial t jwβξα of d-degree ω is d-quasi-
homogeneous in the sense that t j(tdw)βξα

= tωwβξα. Collecting all terms in (2.5)
which for a given d ≥ 1 have the same d-degree, we can regroup the series as

(2.6) F(w, t, ξ) = Fω0
(w, t, ξ) +

∑

ω>ω0

Fω(w, t, ξ),

where Fω is the d-quasihomogeneous part of d-degree ω of the series and

(2.7) ω0 = ω0(d,V, π) = min{ω : Fω does not vanish identically}.

Now note that for t ∈ B(0, ǫ) \ ]−∞, 0] the quasihomogeneity property implies

Fω(tdw, t, ξ) = tωFω(w, 1, ξ),

so we have F(tdw, t, ξ) = tω0 Fω0
(w, 1, ξ) +

∑
ω>ω0

tωFω(w, 1, ξ). Next note that the

critical values d1 < d2 < · · · < dp all are in the set M1 defined above. Hence for
a given interval I j we can find 2 ≤ k < p with I j ⊂ ]dk, dk+1[ or I j ⊂ ]1, d2[
or I j ⊂ ]dp,∞[. In the first case let ( j1, l1) be the vertex of the Newton poly-
gon N which is the intersection of the two segments in N with slope −1/dk and

−1/dk+1. Then the definition of N implies that ω0(d) = j1 + dl1 and Fω0(d)(w, t, ξ) =∑
|β|=l1,|α|=m a j1,β,αt j1 wβξα for each d ∈ ]dk, dk+1[. In particular, we have Fω0(d) =

Fω0(δ j ) for each d ∈ I j . Hence we get from (2.3)

lim
t→0+

tmd−ω0(d)P(w, ξ; Vt , π) = lim
t→0+

t−ω0(d)P(γ(t) + tdw, ξ)

= Fω0(d)(w, 1, ξ) = Fω0(δ j )(w, 1, ξ), d ∈ I j .

Hence the set

Z(d) := {w ∈ C
n : lim

t→0+
tmd−ω0(d)P(w, ξ; Vt , π) = 0 for all ξ ∈ C

n−k}
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is constant for d ∈ I j . Since π is transverse to Tγ,δ j
V by its choice, it follows from

[4, Proposition 3.12], that

Tγ,δ j
V = {w ∈ C

n : Fω0(δ j )(w, 1, ξ) = 0 for all ξ ∈ C
n−k} = Z(δ j).

Hence π is transverse to Z(d) for each d ∈ I j . By Theorem 2.1, this implies Z(d) =

Tγ,dV . Hence π is transverse to Tγ,dV for each d ∈ I j . Since we can argue similarly
in the remaining two cases, it follows that π is distinguished for V and γ.

3 Main Theorem

In order to state our main theorem, we introduce the following notation. For V

and γ as in Section 2.3, assume that the projection π in Cn defined in Section 2.1 is
distinguished for V and γ and let (d j)1≤ j≤p denote the corresponding critical values.

Then for 1 ≤ j ≤ p, let I j denote the vertical parts of the nonzero points in the fiber
of π : Tγ,d j

V → Ck over w ′
= 0. That is,

(3.1) I j = {w ′′ ∈ C
n−k : (w ′ ′, 0) ∈ Tγ,d j

V, w ′ ′ 6= 0}.

And for each point of this set, let

(3.2) a( j, w ′′) = µ((w ′ ′, 0), Tγ,d j
[V ])

denote the local multiplicity of Tγ,d j
[V ] at this point. That is, the number of times

the factor associated to the point is repeated in the canonical defining function of
Tγ,d j

[V ]. Further let

(3.3) ν j =

∑

w ′ ′∈I j

µ
(

(w ′ ′, 0), Tγ,d j
[V ]

)

denote the sum of these multiplicities.

Theorem 3.1 Let V be an analytic variety of pure dimension k defined in a neighbor-

hood of the origin in Cn and let γ be a simple curve in Cn. Assume that 0 ∈ V , denote

by m the local multiplicity of V at zero, and assume that the projection π defined in 2.1
is distinguished for V and γ. Then for each d ≥ 1 the following assertions hold:

(i) The degree m(d) of the current Tγ,d[V ] is m(d) = m − ∑
d j<d ν j . In particular,

m(d) = m(d j+1) if d j < d < d j+1, 1 ≤ j < p, and Tγ,dV is empty for d > dp if

and only if m =
∑p

j=1 ν j .

(ii) ω0(d) = md −
∑

d j<d ν j(d − d j) = dm(d) +
∑

d j<d ν jd j .

(iii) The function Φ defined in Theorem 2.3 does not depend on w ′ and is given by

Φ(ξ) =

∏

d j<d

∏

w ′ ′∈I j

〈−w ′′, ξ〉a( j,w ′′).

Hence its degree is m − m(d) =
∑

d j<d ν j .
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Proof For d = 1, we have ω0 = m and Φ ≡ 1. Since deg T0[V ] = m by Chirka [8,
Proposition 1.16], there is nothing to prove. Hence fix d > 1, a neighborhood U of

zero, R > 0, and define Γ
′ by

(3.4) Γ
′ :=

⋃

0<t<R

π ◦ γ(t) + tdU .

We may assume that R is so small that the number of connected components of V ∩
π−1(Γ ′) remains the same when R is replaced by any smaller positive number. Now
fix z ′ ∈ U and set C := {γ2(t) + tdz ′ : 0 < t < ǫ}, where ǫ > 0 is suitably small.
Since V has multiplicity m at the origin, its inverse image V ∩ π−1(C) consists of m

curves

C j := {(α j (γ2(t) + tdz ′), γ2(t) + tdz ′) : 0 < t < ǫ}, 1 ≤ j ≤ m.

Set βd, j(z ′, t) := t−d(α j(γ2(t) + tdz ′)−γ1(t)). The maps βd, j(z ′, · ) are the ones that
are denoted by β j(z ′, · ) in (2.4) and appear in the product that defines the canonical

function P(z, ξ; Vγ,d,t , π). In particular, it is proved in [4, Lemma 3.7], that if m(d)
is the degree of the limit current Tγ,d[V ], then the βd, j(z ′, t) can be split into two
groups, one containing m(d) of them which remain bounded as t → 0 and the re-
maining m−m(d) of them that tend to infinity as t → 0. We assume the points have

been relabeled so that βd,1, . . . , βd,m(d) are the ones that admit a finite limit, while
for m(d) < j ≤ m one has |βd, j(z ′, t)| → ∞ as t → 0+. The convergence proof
was based on showing the existence of ω0 = ω0(d) such that when the basic equa-
tion (2.3) is multiplied by t−ω0 , the limit of the left-hand side of the equation exists

(uniformly for w in compact sets in Cn). This implies

tmd−ω0 P(z, ξ,Vt , π) =

(m(d)∏

j=1

〈z ′ ′ − βd, j(z ′, t), ξ〉
)

×
(

tmd−ω0

m∏

j=m(d)+1

〈z ′′ − βd, j(z ′, t), ξ〉
)

.

(3.5)

Then note that the first factor converges to the canonical defining function
P(z, ξ; Tγ,d[V ], π) as t → 0+. The limit of the second factor is an indeterminate
form which we will evaluate next.

To do so, fix a curve C j . Then there are a ∈ R and w ′ ′ ∈ Cn−k \ {0}, which a

priori depend on z ′, such that

(3.6) α j(γ2(t) + tdz ′) − γ1(t) = ta(w ′ ′ + o(1)) as t → 0+.

Note that βd, j(z ′, t) remains bounded as t → 0+ if and only if a ≥ d. Thus, a < d

if j > m(d). On the other hand, Tγ,a[V ] = limt→0+ t−a (V − γ(t)) so (3.6) implies
that (w ′ ′, 0) ∈ Tγ,aV . If we assume that Tγ,aV is homogeneous, then C(w ′′, 0) is in
ker π and in Tγ,aV = (Tγ,aV )h in contradiction to the fact that π is distinguished for
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V and γ. Now note that by [5, Proposition 4.3 (ii)], Tγ,δV is homogeneous or empty
whenever δ is not a critical value. Hence a is one of the critical values di with di < d

and w ′ ′ ∈ Ii . This shows that for each j with m(d) < j ≤ m there are i( j) with
di( j) < d and w ′ ′

j ∈ Ii( j) satisfying limt→0+ td−di( j)βd, j(z ′, t) = w ′ ′
j .

On the other hand, for each i with di < d and w ′′ ∈ Ii there are a(i, w ′′) many
branches. If we let γ̃(t) := γ(t)+td(0, z ′), then it follows from [5, Proposition 4.1 (i)],

that Teγ,di
[V ] = Tγ,di

[V ], since γ and γ̃ are equivalent modulo di . Construct β̃di , j as
in (2.4), but with γ replaced by γ̃. Then

β̃di , j(0, t) = t−di (α j(γ̃2(t)) − γ̃1(t)) = t−di (α j(γ(t) + tdz ′) − γ1(t))

= td−di βd, j(z ′, t).

By [5, Lemma 3.7], limt→0+(β̃di , j(0, t), c) = (w ′′, 0) for exactly a(i, w ′′) many indices
j. Since for these we have

lim
t→0+

td−di βd, j(z ′, t) = lim
t→0+

β̃di , j(0, t) = w ′′.

Therefore, the right-hand factor of (3.5) can be written as

tmd−ω0

m∏

j=m(d)+1

〈z ′ ′ − βd, j(z ′, t), ξ〉 = tmd−ω0

∏

d j<d

∏

w ′ ′∈Ii

〈z ′ ′ − tdi−dβ̃di , j(0, t), ξ〉

= tmd−ω0−b
∏

d j<d

∏

w ′ ′∈Ii

〈td−di z ′ ′ − β̃di , j(0, t), ξ〉,

for b :=
∑

di<d νi(d − di). Since the product converges to a function in z ′ and ξ
which is not identically zero, we must have md−ω0 =

∑
di<d νi(d−di) and the limit

function is equal to ∏

di<d

∏

w ′ ′∈Ii

〈−w ′′, ξ〉a(i,w ′′).

The remaining assertions about the degrees of the terms are now clear from this for-
mula.

To obtain some corollaries from Theorem 3.1 we apply the expansion (2.5) of the
function F(w, t, ξ) = P(γ(t) + w, ξ; V, π) which we have used already in Section 2.3.
From there we recall that for each d ≥ 1 and ω0 = ω0(d), defined in (2.7), we have

(3.7) lim
t→0

t−ω0 P(γ(t) + tdw, ξ; V, π) = lim
t→0

t−ω0 F(tdw, t, ξ) = Fω0
(w, 1, ξ),

where the convergence is uniform on compact subsets of Cn × Cn−k. From Theo-
rem 3.1 and (2.3) we therefore have the following formula.

Corollary 3.2 Fω0
(w, 1, ξ) = P(w, ξ; Tγ,d[V ])Φ(ξ).
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We already know from [4, Proposition 3.14] that Fω0
and P( · , · ; Tγ,d[V ]) both

describe Tγ,d[V ]. However, in general, they cannot coincide since the degree of Fω0

in ξ is m while the degree of P( · , · ; Tγ,d[V ]) in ξ is m(d). The role of Φ is to make
up for the difference.

The monomials in the function Fω0
are easily computed from the Newton diagram

of F(w, t, ξ) described in Section 2.3. Following the notation introduced there, we

have ω0 = ω0(d) = min{ j + dl : ( j, l) ∈ M} = min{ j + dl : ( j, l) ∈ N}, so
the equality in this equation occurs only at the extreme vertices of N where the line
of slope −1/d hits the vertex. Thus, unless d is the negative reciprocal of the slope
of an edge in the Newton polygon, there can be only one exponent l = |β| for the

w-terms in the monomials in Fω0
, so it must be homogeneous in w. However, when

d > 1 is a critical value, the edge will contain at least two vertices, so the polynomial
Fω0

(w, 1, ξ) is not homogeneous in w. Therefore, neither is the canonical defining
function of Tγ,d[V ], so this variety cannot be homogeneous.

Corollary 3.3 For d > 1 the following are equivalent:

(i) d is a critical value for V and γ;

(ii) Fω0
(w, 1, ξ) is inhomogeneous;

(iii) Tγ,dV is inhomogeneous.

From the considerations before Corollary 3.3, it is evident (a more detailed discus-

sion can be found in the proof of Lemma 4.7) that for each critical value di for γ and
V , the lowest degree homogeneous terms in w that appear in Fω0(di )(w, 1, ξ) are the
highest degree homogeneous terms in w that appear in Fω0(di+1)(w, 1, ξ). To formulate
this fact in terms of limit currents, we recall the following notation from [2, §2.4]. It

is analogous to the definition of the tangent current T0[V ] of an analytic variety V ,
which can be found in Chirka [8, §11.6]. Recall that the tangent current T0[V ] is
defined as T0[V ] = lim j→∞[ jV ] where [ jV ] denotes the current of integration over
the variety V , scaled by the factor j. If W =

∑m
j=1 n j[W j] is a holomorphic chain,

then its tangent current is defined as T0W =
∑m

j=1 n jT0[W j].

Definition 3.4 For an algebraic variety W in Cn of pure dimension k ≥ 1 we define

its cone of limiting directions at infinity Wh by

Wh := {r lim
j→∞

z j/|z j | : r ≥ 0, z j ∈ W, |z j | → ∞}.

It has been shown [2] that Wh is an algebraic variety. To formulate Corollary 3.5,
it is necessary to consider the cone of limiting directions in the sense of currents or
holomorphic chains. In this sense, the cone of limiting directions is defined as

[W ]h := lim
j→∞

[ 1

j
W

]
,

where convergence is in the sense of currents. The existence of the limit follows,
e.g., from the more general results in [6] (see Theorem 5.1 of the present paper). If
W =

∑m
j=1 n j[W j] is a holomorphic chain, then its cone of limiting directions is

defined by additivity, i.e., Wh =
∑m

j=1 n j[W j]h.
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Using this definition, we have the following corollary to Theorem 3.1.

Corollary 3.5 Let 1 = d1 < · · · < dp be the critical values for V and γ. If d j < d <
d j+1 for some j < p, then T0(Tγ,d j

[V ]) = Tγ,d[V ] = (Tγ,d j+1
[V ])h, and if d > dp and

0 ∈ Tγ,dp
V , then T0(Tγ,dp

[V ]) = Tγ,d[V ].

Remark 3.6 From Corollary 3.5 it follows immediately that for each analytic vari-
ety in Cn that is of pure dimension k ≥ 1 and contains the origin and for each simple
curve γ in Cn, the critical values 1 = d1 < d2 < · · · < dp for γ and V as they are

defined in Section 2.3 have the following property.

(3.8)
For di < d < di+1, 1 ≤ i < p, the variety Tγ,dV is homogeneous
while for d > dp, it is either homogeneous or empty.

Moreover, this set is minimal in this respect by Corollary 3.3. Since the limit varieties
Tγ,dV do not depend on any projection, it follows that the critical values do not

depend on the choice of the projection π in their definition in Section 2.3.

3.1 Geometric Interpretation of Critical Values

The critical values measure the rate at which branches of V can approach the curve
γ(t) as t → 0. This was already used in the proof of Theorem 3.1, equation (3.6),
which showed that the leading exponent a in the Puiseux series expansion is equal to
a critical value. The degree ν(d) of the limit current Tγ,d[V ] is a measure as t → 0

of how many zeros V has inside conoids of radius Ctd about γ(t). This is a nonin-
creasing, integer valued function of d which has jumps exactly at the critical values.
A critical value d = d j > 1 is one so that the multiplicity of V in conoids about γ(t)
of opening δtd−ǫ (δ small) is greater than the multiplicity of V in conoids of opening

Ktd+ε (K large).

4 Applications

We introduce the following notions to derive a further result from Theorem 3.1 which
was used in an essential way in [7] to characterize the algebraic surfaces on which the
analogue of the classical Phragmén–Lindelöf theorem holds.

Definition 4.1 Let V be an analytic variety in Cn which contains the origin. A
set (ζ j , d j)

l
j=1 in (Cn × Q)l is called a critical set for V of length l if the following

conditions are satisfied.

(i) ζ1 ∈ (T0V )sing, |ζ1| = 1, and d1 = 1.

(ii) For 1 ≤ i ≤ l define γi(t) :=
∑i

j=1 ζ jt
d j . Then for 1 ≤ i ≤ l − 1 we have

(a) di+1 is the smallest critical value for V and γi larger than di ,
(b) ζi+1 is a singular point of Tγi ,di+1

V and 〈ζi+1, ζ1〉 = 0.

If (ζ j , d j)
l
j=1 is a critical set for a given variety V , then there need not exist a critical

set of length l + 1 for which the first l components coincide with the given one. For
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example, no such critical set exists if there is no critical value for γl and V larger
than dl or, if it does, Tγl,dl+1

V has no singular points. However, there are also cases

where such extensions of arbitrary length exist, but where we do not want to consider
them, e.g., we refer to Example 5.17 below. To describe these cases, we introduce the
following definition.

Definition 4.2 Let V be an analytic variety in Cn which contains the origin, let γ be

a simple curve and let d be a critical value for γ and V . A singular point ζ of Tγ,dV is
said to be terminating for γ and d if there is a simple curve σ(t) = γ(t) + ζtd + o(td)
such that d is the largest critical value of σ and V . A point ζ1 ∈ (T0V )sing with
|ζ1| = 1 is called terminating if 0 is terminating for γ1(t) := tζ1 and d = 1.

Terminating singularities are closely associated to the curves in Vsing as the next
proposition shows.

Proposition 4.3 Let V be an analytic variety in Cn which is of pure dimension k ≥ 1
and which contains the origin. Let γ be a simple curve in Cn, let d ≥ 1 be a critical value

for γ and V , and let ζ ∈ Tγ,dV be a singular point for Tγ,dV . Then ζ is a terminating

singularity of Tγ,dV if and only if there is a singular curve σ(t) = γ(t) + ζtd + o(td) in

V such that for small t, the multiplicity of V along the curve σ(t) is constant and equal

to the multiplicity of Tγ,d[V ] at ζ .

Remark 4.4 If we recall that any two simple curves whose coefficients agree up to

and including order td give the same limit currents Tγ,d ′[V ] for d ′ ≤ d (see [4,
Proposition 4.1,(i)], then this proposition shows that we should have chosen σ for
the computation of the limit currents instead of γ. Note, however, that σ is likely
to have infinitely many nonzero Puiseux series coefficients while the critical curves

constructed by choosing successive critical values and singular points will be finite. In
the case of surfaces, where there are only finitely many singular curves, once γ(t) has
sufficiently high order contact with a singular curve, the successive critical extensions
of γ generate successive terms of the Puiseux series expansion of the singular curve.

Proof of Proposition 4.3 We can assume ζ = 0 for the proof, since changing γ(t)
to γ(t) + ζtd has this effect. If σ is any simple curve which satisfies σ(t) = γ(t) +

o(td), then we have Tγ,d[V ] = Tσ,d[V ] by [4, Proposition 4.1(i)], and hence µ :=
µ(Tγ,d[V ], 0) = µ(Tσ,d[V ], 0). From the series expansion of F(w, t, ξ) in (2.5) with
γ replaced by σ, the critical values are defined in terms of the support M of the pairs
( j, |β|) of nonzero terms in the power series and the Newton polygon derived from

it. Recall that for a given d with ω0 = ω0(d), the function Fω0
is the sum over all

the monomials in the edge, which may be a vertex, of the Newton polygon of slope
−1/d. To have no critical values for σ and V larger than d is therefore the same as
requiring that the expansion of Fω0

contains at least one monomial with a factor wβ

where |β| = µ and that µ is the lowest degree in w of any term that appears in the
power series expansion of F.

On the other hand, the function Fω0
is equal to the canonical defining function

of Tσ,d[V ] (Corollary 3.2) up to the factor Φ which does not change the multiplicity
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at any point. Therefore, the multiplicity of Tσ,d[V ] at 0 is equal to the degree of the
lowest degree homogeneous polynomial in w in the series expansion of Fω0

. This is

characterized by the fact that it is the least integer µ such that

max
|ξ|=1

|Fω0
(w, 1, ξ)| = O(|w|µ), |w| → 0.

Recalling that

t−ω0 F(tdw, t, ξ) =

∑

j,β,α

a j,β,αt j+d|β|−ω0 wβξα

= Fω0
(w, 1, ξ) +

∑

j+d|β|>ω0

a j,β,αt j+d|β|−ω0 wβξα,

(4.1)

we therefore see that d being the largest critical value of σ is the same as requiring the

O(|w|µ) bound everywhere along γ, i.e., for each small t > 0:

max
|ξ|=1

|t−ω0 F(tdw, t, ξ)| = O(|w|µ), |w| → 0.

Since t−ω0 P(σ(t) + tdw, ξ; V ) = t−ω0 F(tdw, t, ξ), this is equivalent to σ being a curve

along which the multiplicity of V is µ for all small t .

Definition 4.5 Let (ζ j , d j)
l
j=1 be a critical set for the variety V in Cn. It is called

a normal critical set for V if ζ1 is not terminating and, if for i = 2, . . . , l, ζi is not
terminating for γi−1 and di .

The main fact about normal critical sets is stated in the following theorem.

Theorem 4.6 Let V be an analytic surface defined in some neighborhood of the origin

satisfying 0 ∈ V . Then for each ζ1 ∈ T0V, |ζ1| = 1, the set

{C = (ζ j , d j)
l
j=1 : C is a normal critical set for V}

is finite.

For the proof of Theorem 4.6 we will need some preparation. We begin by provid-

ing more details about critical sets. Therefore, let C = (ζ j , d j)
l
j=1 be a normal critical

set for an analytic variety V in Cn of pure dimension k and define the curves γi by

(4.2) γi(t) = ζ1t + ζ2td2 + · · · + ζit
di , 1 ≤ i ≤ l.

Since the limit currents Tγi ,di
[V ], 1 ≤ i ≤ l, will play a crucial role in the analysis, we

introduce the following related quantities:

(4.3) mi = degree of Tγi ,di
[V ],

https://doi.org/10.4153/CJM-2008-002-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2008-002-7


Higher Order Tangents to Analytic Varieties along Curves. II 47

(4.4) µi := µ(Tγi ,di
[V ], 0) = multiplicity of Tγi ,di

[V ] at w = 0.

And recalling the expansion (2.5) with γ(t) replaced by γi(t), let

(4.5) ωi := ω0(di) = min{ j + di|β| : a j,β,α 6= 0},

which is the exponent that measures how fast the canonical defining function tends
to 0 along the curve γi(t) (2.6). Also let

(4.6) qi := least common denominator of {1, d2, . . . , di}.

Lemma 4.7 Let V be an analytic variety of pure dimension k ≥ 1 defined in some

neighborhood of the origin that contains the origin and has local multiplicity m at zero.

Let C = (ζ j , d j)
l
j=1 be a critical set for V . In the notation introduced above, the follow-

ing statements hold for 1 ≤ i ≤ l − 1:

(i) T0(Tγi ,di
[V ]) = (Tγi ,di+1

[V ])h = (Tγi+1,di+1
[V ])h;

(ii) m ≥ mi ≥ µi = mi+1;

(iii) ωi+1 − ωi = µi(di+1 − di);

(iv) if mi = µi , then Tγi ,di
V is homogeneous;

(v) ql ≤ (m!)2.

Proof The first equation of (i) is Corollary 3.5. The second equation follows from

the first one and Tγi ,di+1
[V ] = Tγi+1,di+1

[V ] + {ζi+1}, which is an immediate conse-
quence of the definition of limit varieties.

Assertion (ii) obviously follows from (i) and

mi ≤ deg(T0[V ]) = µ(T0[V ], 0) = m.

To prove (iii), assume without loss of generality that the coordinates in Cn are
chosen in such a way that the projection π : Cn−k × Ck → Ck, π(z ′ ′, z) := z ′ is
transverse to V at the origin and to all Tγl,dV for 1 ≤ d ≤ dl. This choice is possible,

since there are only finitely many varieties of this form by [4, Proposition 4.3]. Let
P(z, ξ,V ) = P(z, ξ; V, π) denote the canonical defining function for V . Then fix
1 ≤ i ≤ l − 1 and define γi by (4.2). Applying (2.5) with γi we get

(4.7) Fi(w, t, ξ) := P(γi(t) + w, ξ,V ) =

∑

j,β,α

a j,β,αt jwβξα.

By (2.6) we have for d ≥ 1 and ω0 = ω0(d)

(4.8) t−ω0 Fi(t
dw, t, ξ) = Fi,ω0

(w, 1, ξ) +
∑

ω>ω0

tω−ω0 Fi,ω(w, 1, ξ).

According to Corollary 3.2, the canonical defining function for Tγi ,d[V ] satisfies

(4.9) P(w, ξ; Tγi ,d[V ], π)Φd(ξ) = Fi,w0
(w, 1, ξ).
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By our choice of π, the degree mi(d) of Tγi ,d[V ] is equal to the degree of Fi,w0
(w, 1, ξ)

in w, while the local multiplicity µ(d) = µ(Tγi ,d[V ], 0) is equal to the degree of the

lowest order homogeneous term in w. That is, if we expand Fi,ω0
(w, 1, ξ) as a sum of

terms homogeneous of degree l in w and m in ξ, then

(4.10) Fi,ω0
(w, 1, ξ) =

m(d)∑

l=µ(d)

hl(w, ξ), hµ(d)(w, ξ) 6≡ 0, hm(d)(w, ξ) 6≡ 0.

To determine m(di) = mi and µ(di) = µi , we use the fact that C is a critical set
for V . Hence, by definition, di+1 is the smallest critical value for γi and V larger than

di . Therefore, there is an edge with slope −1/di+1 in the Newton polygon N of the
expansion for Fi . Let ( j0, µ) and ( j1, ν) be the vertices of this edge satisfying j0 < j1.
Then we have µ > ν and

j0 + di+1µ = ω0(di+1) = j1 + di+1ν.

We also have j0 + diµ = ω0(di) and consequently ω0(di+1) − ω0(di) = µ(di+1 − di).
This completes the proof of (iii).

To prove (iv), note that if mi = µi , then the degree of Fi,ω0
(w, 1, ξ) as a function

of w coincides with its vanishing order. Hence Fi,ω0
(w, 1, ξ) is homogeneous.

To prove (v), first note that Tγ1,d1
[V ] = T0[V ] − {ζ1} and hence

m1 = deg Tγ1,d1
[V ] = m.

Since C is a critical set for V , for each 1 ≤ i ≤ l − 1 the number di+1 is the smallest
critical value for V and γi which is larger than di . By Section 2.3, di+1 can be deter-
mined by the Newton polygon Ni of the expansion of P(γi(t) + w, ξ; V, π) according

to (2.5). In fact, Ni contains a segment with a priori unknown endpoints ( j0, µ)
and ( j1, ν) of slope −1/di+1, and Tγi ,di+1

[V ] can be computed by Corollary 3.2 and
formula (4.10) from Fi,ω0(di+1)(w, 1, ξ) =

∑µ
l=ν hl(w, ξ). By Corollary 3.5 we have

(Tγi ,di+1
[V ])h = T0(Tγi ,di

[V ]). This implies µ = µi by the definition of µi for i ≥ 2

and µ = m for i = 1. Hence we have

di+1 =
j1 − j0

µi − ν
.

By the definition of qi and γi there are b j ∈ N, 1 ≤ j ≤ i, such that γi(t) =∑i
j=1 ζ jt

b j/qi . Therefore, there exists c ∈ N such that j1 − j0 = c/qi . Since
0 ≤ νi+1 < µi , this implies qi+1 ≤ µiqi .

Next assume that for some i with 1 ≤ i < l we have mi = µi = µi+1. Then
it follows from (ii) that also µi+1 = mi+1. By (iv), this implies that Tγi ,di

[V ] and
Tγi+1,di+1

[V ] are homogeneous of degree µi = µi+1 = mi = mi+1. By Corollary 3.3,
Tγi ,di+1

[V ] is not homogeneous and by definition ζi+1 is a singular point of Tγi ,di+1
V .

By Corollary 3.5, we have (Tγi ,di+1
[V ])h = T0(Tγi ,di

[V ]) = Tγi ,di
[V ]. Since

(4.11) Tγi+1,di+1
[V ] = Tγi ,di+1

[V ] − {ζi+1},
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it follows that ζi+1 6= 0 and that

(Tγi ,di+1
[V ])h = (Tγi+1,di+1

[V ])h = Tγi+1,di+1
[V ]

and hence Tγi ,di
[V ] = Tγi+1,di+1

[V ]. Moreover, (4.11) implies that the term hµ−1 in
the expansion of Fi,ω0(di+1)(w, 1, ξ) above does not vanish. Since µ = µi , this shows
that there is a point ( j2, µi − 1) on the segment of Ni with slope −1/di+1. As before,

this implies the existence of c0 ∈ N such that

di+1 =
j2 − j0

µi − (µi − 1)
= j2 − j0 =

c0

qi

and consequently qi+1 = qi under the present hypothesis.

Now we are ready to prove (v). To do so let

m1 ≥ µ1 = m2 ≥ µ2 = m3 ≥ µ3 = · · ·
be the sequence of degrees and multiplicities associated to C according to (4.3) and

(4.4). As we have proved above, qi+1 = qi whenever mi = µi = mi+1 = µi+1 and
qi+1 ≤ µiqi otherwise. Now we define i1 := 1 and, assuming that i2, . . . , i j have
been defined, we let i j+1 = min{i : i > i j and µi < µi j

}. Finally we get i J satisfying
µi J

= µi J+1 = · · · = µl. For 1 ≤ j < J we have by the above estimates qi j +1 ≤ µi j
qi j

.

Since the sequence (µi)1≤i≤l is not increasing, this implies qi j +2 ≤ µ2
i j

qi j
. Moreover,

if i j+1 > i j + 2, then qi ≤ µ2
i j

qi j
for i j + 2 ≤ i ≤ i j+1. This implies

ql ≤ (µi J
)2qi J

≤ (µi J
)2(µi J−1

)2qi J−1
.

Since m ≥ µi1
> µi2

> · · · ≥ 1, it follows from this by induction that ql ≤ (m!)2.

For the next lemma we need to recall the definition of a subanalytic set from Bier-
stone and Milman [1]. For that purpose let M be a real analytic manifold. For an
open subset U of M, denote by O(U ) the ring of all real analytic functions and by

S(O(U )) the smallest family of subsets of U which is stable under finite intersections,
finite unions and complements and which contains all the sets {x ∈ U : f (x) > 0},
f ∈ O(U ). A subset X of M is called semianalytic, if each a ∈ M has a neighborhood
U such that X ∩ U ∈ S(O(U )), and X is called subanalytic, if each a ∈ M has a

neighborhood U such that there is a real analytic manifold N and a relatively com-
pact semianalytic subset A of M×N such that X∩U = π(A), where π : M×N → M

is the natural projection.

Lemma 4.8 Let F1(w, s), . . . , Fl(w, s) be finitely many holomorphic functions on an

open neighborhood of {(w, s) ∈ Cn+1 : |w| ≤ 1, |s| < 1} with Fi(0, 0) = 0 for i =

1, . . . , l. Set

A :=
{

(w, s) : |w| ≤ 1, s > 0,

l∑

i=1

|Fi(w, s)|2 = min
|z|≤1

l∑

i=1

|Fi(z, s)|2
}

.

Then A is a subanalytic set containing (0, 0), and there is an analytic curve w(s) such

that lims→0+(w(s), s) = (0, 0) and (w(s), s) ∈ A for all small positive s.
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Proof Define

g : {(w, s) ∈ C
n × ]0, 1[ : |w| ≤ 1} → R, g(w, s) :=

l∑

i=1

|Fi(w, s)|2,

and
h : ]0, 1[ → R, h(s) := min

|z|≤1
g(z, s)

and consider g as a real analytic function in 2n + 1 real variables. We show first that h

is a subanalytic function. To so so, write the graph of h as M1 ∩ M2, where

M1 :=
{

(s, t) ∈ R
2 : s > 0, g(w, s) = t for some |w| ≤ 1

}
,

M2 :=
{

(s, t) ∈ R
2 : s > 0, g(w, s) ≥ t for all |w| ≤ 1

}
.

Define the projection π : Cn × R2 → R2, (w, s, t) 7→ (s, t), and set

N1 :=
{

(w, s, t) ∈ C
n × R

2 : |w| ≤ 1, 0 < s < 1, g(w, s) = t},

N2 :=
{

(w, s, t) ∈ C
n × R

2 : |w| ≤ 1, 0 < s < 1, g(w, s) < t}.

Then M1 = π(N1) and M1 ∩M2 = M1 \π(N2). Hence M1 and then also M1 ∩M2 are

subanalytic; in the latter case, the Theorem of the Complement [1, Theorem 3.10]
is used. Hence we have shown that h is a subanalytic function. Since A = {(w, s) :
g(w, s) = h(s)}, it follows that A is subanalytic. Hence so is its closure by [1, §3]. It is
easy to see that (0, 0) ∈ A.

By the Uniformization Theorem [1, Theorem 0.1], there are a real analytic man-
ifold N and a proper real analytic map ϕ : N → A such that ϕ(N) = A. Fix an
arbitrary point p ∈ ϕ−1(0, 0), and let U be a connected open neighborhood of p

which is so small that we can think of it as a subset of some Rk. Let π denote the pro-

jection (w, s) 7→ s. Since π ◦ ϕ cannot vanish on all of U , there must be a real line L

through p such that π ◦ ϕ does not vanish identically on L ∩ U . If we compose ϕ
with a parametrization of L, we get a real analytic map α : ]−1, 1[ → A such that
α(0) = (0, 0) and π ◦ α(τ ) 6= 0 for at least one τ . Since π ◦ α is an analytic function

of one real variable, this implies the existence of ǫ > 0 such that π ◦ α(τ ) 6= 0 when-
ever 0 < τ < ǫ and such that π ◦ α is invertible on ]0, ǫ[. The map w from the claim
is given by the equation α((π ◦ α)−1(s)) = (w(s), s).

The spirit of the proof of Lemma 4.8 is the same as of the proof of Hörmander [11,
Theorem A.2.8]. We thank Pierre Milman for pointing out the relevance of the The-
orem of the Complement [1, 3.10].

Corollary 4.9 Let V be an analytic variety in Cn of pure dimension k that contains

the origin, let γ be a simple curve in Cn, d ≥ 1 rational, and 2 ≤ µ the multiplicity of

Tγ,d[V ] at w = 0. Suppose also that Tγ,dV ∩π−1{0}∩{|w ′ ′| ≤ 1} = {0}. Then there

exist constants c > 0, r0 > 0, M > 0 such that for 0 < t ≤ r0, either

(4.12) min
|w|≤1

max
|ξ|=1

∑

|β|<µ

|Dβ
wP(γ(t) + tdw, ξ; V )t| ≥ ctM
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or else there is a curve σ(t) = γ(t) + o(td) on which we have

(4.13) Dβ
wP(γ(t) + tdw, ξ; V )|w=t−d(σ(t)−γ(t)) ≡ 0, 0 < t < r0, |ξ| = 1, |β| < µ.

Proof Decompose P(z, ξ; V ) =
∑

|α|=m Pα(z)ξα and set

Ψ(w, t) =

∑

|α|=m

∑

|β|<µ

|Dβ
wPα(γ(t) + tdw)|2, r(t) = min

|w|≤1
Ψ(w, t).

Then the set of points (w, t) in a neighborhood of the origin where r(t) = Ψ(w, t)
is a subanalytic set which contains (0, 0). Since r(0) = 0, it contains points (wt , t)
with |wt | small for every 0 < t < δ. Hence by Lemma 4.8, there is an analytic curve

w = κ(t) such that r(t) = Ψ(κ(t), t) and κ(t) → 0 as t → 0+.
If r(t) ≡ 0, then σ(t) := γ(t) + tdκ(t) satisfies σ(t) = γ(t) + o(td) and σ is a curve

on which (4.13) holds. Otherwise r(t) is a positive analytic function with r(0) = 0.
If r(t) = c1t2M + · · · is the Puiseux series expansion of r(t), then c1 > 0, M > 0, and

r(t) > c1t2M/2 provided t is small and positive. Since the function on the left-hand
side of (4.12) is bounded above and below by a constant multiple of (Ψ(w, t))1/2, the
inequality (4.12) follows.

Lemma 4.10 Let V be an analytic surface in Cn which contains the origin and has

local multiplicity m at 0. Then for each normal critical set C = (ζ j , d j)
i−1
j=1 for V , there

exists p ∈ N0 such that for each normal critical set C = (ζ j , d j)
l
j=1 that extends C and

satisfies

(4.14) µ(Tγν ,dν
[V ], 0) = µ(Tγi−1,di−1

[V ], 0) for i ≤ ν ≤ l,

the estimate l − i ≤ p holds.

Proof Note first that the lemma holds trivially if there are no normal critical ex-
tensions of C . Otherwise fix an extension C as above with l ≥ i and define the

curves γk for 1 ≤ k ≤ l by formula (4.2). Then choose coordinates as in the proof
of Lemma 4.7(iii) such that the projection π : Cn−2 × C2 → C2, π(z ′ ′, z ′) = z ′ is
transverse to V at the origin and to Tγi ,dV for 1 ≤ d ≤ di , and let P(z, ξ,V ) :=

P(z, ξ; V, π) denote the canonical defining function for V . Since C is a normal crit-
ical set, ζi is a singular point of Tγi−1,di

[V ] which is not terminating for γi−1 and
di . Hence Proposition 4.3 implies that each simple curve σ which satisfies σ(t) =

γi(t) + o(tdi ) is not singular for V or the multiplicity of V along σ(t) is smaller than

µ(Tγi−1,di
[V ], ζi) = µ(Tγi ,di

[V ], 0) =: µ. Applying Corollary 4.9 with γ = γi and
d = di , this shows that the estimate (4.12) must hold under the present hypotheses.
Hence there are r0, c, M > 0 such that for 0 < t ≤ r0,

(4.15) min
|w|≤1

max
|ξ|=1

∑

|β|<µ

∣∣Dβ
wP(γi(t) + tdi w, ξ,V )

∣∣ ≥ ctM .

Now we use the notation that we introduced before Lemma 4.7 and let

Fk(w, t, ξ) := t−ωk P(γk(t) + tdk w, ξ,V ), 1 ≤ k ≤ l.
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For β ∈ Nn
0 , |β| < µ, the chain-rule gives

(4.16) Dβ
wP(γk(t) + tdk w, ξ,V ) = t |β|dk (Dβ

z P)(γk(t) + tdk w, ξ,V ),

and hence

(4.17) Dβ
wFk(w, t, ξ) = t−ωkt |β|dk (Dβ

z P)(γk(t) + tdk w, ξ,V ).

Since there is nothing to prove if l ≤ i + 1, we assume from now on that l > i + 1.
Then for |w̃| ≤ 1 and t > 0 small enough,

t−di (γl(t) − γi(t) + tdl w̃) =

l∑

ν=i+1

ζνtdν−di + tdl−di w̃

tends to zero as t tends to zero. Therefore, there exists 0 < δ0 ≤ δ such that for
0 < t ≤ δ0 we get from (4.15), (4.16), and (4.17) for w = t−di (γl(t) − γi(t) + tdl w̃):

ctM ≤ max
|ξ|=1

∑

|β|<µ

∣∣ t |β|di (Dβ
z P)(γi(t) + tdi w, ξ,V )

∣∣

= max
|ξ|=1

∑

|β|<µ

∣∣ t |β|di (Dβ
z P)(γl(t) + tdl w̃, ξ,V )

∣∣

= max
|ξ|=1

∑

|β|<µ

∣∣ t |β|(di−dl)+ωl D
β
ewFl(w̃, t, ξ)

∣∣ .

(4.18)

Now note that Fl( · , t, · ) is a polynomial in w̃ and ξ which converges to Fωl
( · , 1, · )

uniformly on compact sets as t tends to zero by [4, Lemma 3.7]. Since di − dl < 0,
this implies the existence of D > 0 such that the the right-hand side of (4.18) can be
estimated from above by Dt(di−dl)(µ−1)+ωl for 0 < t < δ0. From this we conclude

(4.19) M ≥ (di − dl)(µ − 1) + ωl.

By Lemma 4.7 and the hypothesis (4.14) we have

ωl − ωi =

l−1∑

ν=i

ων+1 − ων =

l−1∑

ν=i

µ(dν+1 − dν) = µ(dl − di).

Together with (4.19) this implies

(4.20) M ≥ ωi + dl − di = ωi +

l−1∑

ν=1

(dν+1 − dν).

Now note that by the definition of ql in (4.6), the positive number dν+1 − dν is an

integer multiple of 1/ql. From this, (4.20), and Lemma 4.7(v), we get

M ≥ ωi + (l − i)/ql ≥ ωi + (l − i)/(m!)2

and hence l− i ≤ (M −ωi)(m!)2 ≤ M(m!)2. This proves the statement of the lemma
with p = M(m!)2.
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Fulton [9, Problem 7.1] states that an arbitrary algebraic curve admits at most
a finite number of singularities. Here we present an effective version of this result,

which will be needed in the proof of Theorem 4.6. Even in the special case of a plane
curve, our estimates are far from optimal, as can be seen from [9, Ch. 5, Theorem 2].

Lemma 4.11 Let C ⊂ Cn be an algebraic curve of degree m. Then Csing consists of not

more than m2(m − 1) points.

Proof Choose a projection π such that the canonical defining function P(z, ξ; C, π)

exists. We may assume that π(z) = (z1, 0, . . . , 0). There are w1, w2 ∈ C and ξ0 ∈
Cn−1 such that Q(w1, w2) 6= 0 for Q(z1, z2) := P((z1, z2, 0, . . . , 0), ξ0; C, π). Set C ′

=

{(z1, z2) ∈ C2 : Q(z1, z2) = 0}. Note that by definition, Q is zero or a polynomial
of degree at most m. The first possibility is ruled out by Q(w1, w2) 6= 0, hence C ′ is

a plane algebraic curve of degree at most m. If w is a singular point of C , then two
branches of C meet at w. Hence the discrimininant of C ′ with respect to z2 vanishes
at w1. Since the degree of this discrimininant does not exceed m(m − 1), there are
not more than m(m − 1) possible values for w1. Since the degree of C is m, there are

at most m inverse images under π for each zero of the discrimininant.

Proof of Theorem 4.6 Obviously, it suffices to consider those ζ1 ∈ (T0V )sing with
|ζ1| = 1 which are not terminating. Fix such a point ζ1 and note that for any simple

curve γ and d > 1 the limit varieties Tγ,dV depend on one fewer variables and hence,
in suitable coordinates, they are of the form C × C where C is an algebraic curve.
By Lemma 4.11, each such curve C can have at most m2(m − 1) singular points. By

Lemma 4.10, there is ν1 ∈ N0, depending only on ζ1, such that each normal critical
set (ζ j , d j)

l
j=1 either has length l ≤ ν1 or satisfies µν1

+ 1 < µ1. There are at most

(m2(m − 1))ν1+1 such sets. If we apply Lemma 4.10 to each of these, we can find a

number ν2 ∈ N0 such that for each normal critical extension any of them either has
length l ≤ ν1 + ν2 + 1 or must satisfy µν1+ν2+1 < µν1+1. Continuing this argument by
induction the desired assertion follows, since m ≥ µ1.

5 Studying Algebraic Varieties at Infinity

In this section we indicate how the results of the preceding section carry over to

algebraic varieties at infinity.

5.1 Canonical Defining Functions for Algebraic Varieties

Let V be an algebraic variety in Cn which is of pure dimension k ≥ 1 and has de-
gree m. We choose coordinates in Cn that are excellent for V . This means that the
projection π : Cn−k × Ck → Ck, π(z ′ ′, z ′) := z ′, is proper when restricted to V and
satisfies for some C > 0 the estimate

(5.1) |z| ≤ C(1 + |z ′|), z ∈ V.

The existence of excellent coordinates is shown, e.g., [8, 7.4, Theorem 2]. Then the
branch locus B of π : V → Cn as well as π(B) are algebraic varieties of dimension at
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most k − 1 and π : V \ B → Ck \ π(B) is a covering map. For z ′ ∈ Ck \ π(B) there
are m points in the fiber over z ′. We write π−1(z ′) = {(αi(z ′), z ′) : 1 ≤ i ≤ m}
where the αi(z ′) are all distinct. We will also use the same notation for z ′ ∈ π(B)
by repeating each αi(z ′) as many times as indicated by the multiplicity µ(V, z) for
z = (αi(z ′), z ′). Using this notation, the canonical defining function for V is again
given by the formula in (2.2) namely:

P(z, ξ; V, π) :=

m∏

i=1

〈z ′ ′ − αi(z ′), ξ〉.

It is a polynomial in z and ξ of degree m in z and ξ separately.
If W is a holomorphic k-chain, i.e., W = n1[W1] + · · · + np[W p] where the W j

are the irreducible components of Supp W and degree W j = m j , then let ν :=∑p
j=1 n jm j and define P(w, ξ; W, π) :=

∏p
j=1 P(w, ξ; W j, π)n j . Then P(w, ξ; W, π)

is a polynomial of degree ν in ξ.

5.2 Limit Currents

For R > 0 and q ∈ N let γ : [R,∞[→ Cn be a curve that has the following convergent
expansion

(5.2) γ(t) =

q∑

j=−∞

ξ jt
j/q, R ≤ t < ∞.

If |ξq| = 1, then γ is called a simple curve. For an algebraic variety V in Cn of pure
dimension k ≥ 1, a simple curve γ, and d ≤ 1, we define the algebraic varieties

Vt = Vγ,d,t = {w ∈ C : γ(t) + tdw ∈ V}, t ∈ [R,∞[.

It was shown in [6] that there exists a limit current of V of order d along γ, i.e.,

(5.3) Tγ,d[V ] = lim
t→∞

[Vγ,d,t ].

Its support is denoted by Tγ,dV and is called the limit variety of V of order d along γ,
i.e., Tγ,dV = Supp Tγ,d[V ].

The existence of the limit current Tγ,d[V ] is proved in [6] using formula (2.3)
with an interpretation that suits the present frame. The following result was derived
in [6, Theorem 1, Formula (12), Lemma 4, Lemma 5, Proposition 3].

Theorem 5.1 Let V be an algebraic variety V of pure dimension k ≥ 1 and degree m

in Cn and let γ be a simple curve as in (5.2). Then for each d ≤ 1 the limit in (5.3)

exists. Furthermore, fix a projection π transverse to V as in (5.1), fix ω0 ∈ R such that

limt→∞ tmd−ω0 P(w, ξ; Vt , π) exists and does not vanish identically, and set

Z = {w ∈ C
n : lim

t→∞
tmd−ω0 P(w, ξ; Vt , π) = 0 for all ξ ∈ C

n−k}.
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If π is transverse to Z, then there is a polynomial Φ such that

lim
t→∞

tmd−ω0 P(w, ξ; Vt , π) = P(w, ξ; Tγ,d[V ], π)Φ(w ′, ξ).

The canonical defining function of Tγ,d[V ] is a polynomial. Furthermore, the functions

w ′ 7→ Φ(w ′, ξ), ξ ∈ Cn−k, have no common zeros. In particular, Z = Tγ,dV .

We were unable to determine in [6] whether the function Φ in Theorem 5.1 ac-
tually depends on w ′ or not. As in Section 3, it turns out that, in fact, Φ does not

depend on w ′. This result will be proved by reduction to the local case treated in
Section 3. The reduction will be accomplished with the help of the map Ψ of the
following lemma.

Lemma 5.2 Define

(5.4) Ψ : {z ∈ C
n : zn 6= 0} → {z ∈ C

n : zn 6= 0}, z 7→
( z1

z2
n

, . . . ,
zn−1

z2
n

,
1

zn

)
.

Then Ψ
2
= id and

(5.5) Ψ
(

tB((0, . . . , 0, 1), ǫ)
)
⊂ 1

t
B((0, . . . , 0, 1), 6ǫ)

whenever ǫ < 1/2.

Proof The proof of Ψ
2

= id is immediate. To prove the remaining part of the

assertion, fix z := (tu1, . . . , tun−1, t + tun) in tB((0, . . . , 0, 1), ǫ). Then

Ψ(z) =

( u1

t(1 + un)2
, . . . ,

un−1

t(1 + un)2
,

1

t + tun

)

=
1

t

( u1

(1 + un)2
, . . . ,

un−1

(1 + un)2
, 1 +

−un − u2
n

(1 + un)2

)
.

Note first that |(1 + un)−2| ≤ (1 − ǫ)−2 ≤ (1 + 2ǫ)2 since ǫ ≤ 1
2
. Hence

Ψ(z) = t−1((0, . . . , 0, 1) + v), where

|v| ≤ (1 + 2ǫ)2
(
|u| + |u2

n|
)
≤ (1 + 2ǫ)2(ǫ + ǫ2) = ǫ + 5ǫ2 + 8ǫ3 + 4ǫ4 ≤ 6ǫ

(here ǫ j ≤ 21− jǫ for j ≥ 1 is used).

We will use the following result from Mumford [13]. Its proof contains an ac-
knowledgement to Stolzenfels.

Theorem 5.3 (Mumford [13, Theorem 2.33]) Let X ⊂ Pn be an irreducible alge-

braic variety and let X0 6= ∅ be a Zariski-open set in X. Then the closure of X0 in the

classical topology is X.
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Proposition 5.4 Let V ⊂ Cn be algebraic. Then the euclidean closure of

Ψ(V \ (C
n−1 × {0}))

is algebraic. We denote it by Ψ∗(V ). If V 6⊂ Cn−1 × {0} is pure k-dimensional, then so

is Ψ∗(V ).

Proof Let I = { f ∈ C[z1, . . . , zn] : f |V = 0} be the ideal of V . Fix f ∈ I and let
m be the degree of f . Then fh, defined by fh(z) := z2m

n f (Ψ(z)), is a polynomial. We
define W := {w ∈ Cn : fh(w) = 0 for all f ∈ I}. It is clear that W is algebraic and

that
W \ (C

n−1 × {0}) = Ψ(V \ (C
n−1 × {0})).

Denote by W1, . . . ,WN the irreducible components of W . By Theorem 5.3, the eu-

clidean closure of Ψ(V \(Cn−1×{0})) is the union of those W j which have nonempty
intersection with Ψ(V \ (Cn−1 × {0})). In particular, it is algebraic.

To show the second part, recall first that the dimension is constant throughout
irreducible components. Fix w ∈ V with wn 6= 0. Near w, the sets Ψ∗(V ) and Ψ(V )

coincide. Since Ψ is biholomorphic, the proof is complete.

Lemma 5.5

(i) If V ⊂ Cn is algebraic, then Ψ
∗(Vh) ⊂ T0Ψ

∗(V ).

(ii) If no irreducible component of T0Ψ
∗(V ) is contained in Cn−1 × {0}, then even

Ψ
∗(Vh) = T0Ψ

∗(V ) is true. This hypothesis is satisfied if the coordinates are

excellent in the sense of (5.1).

Proof (i) Fix w ∈ Ψ
∗(Vh). We must first show that w ∈ T0Ψ

∗(V ). Choose a

sequence (v j) j∈N in Vh with v
j
n 6= 0 for all j and lim j→∞ Ψ(v j) = w. For each j

there are r j ≥ 0 and a sequence (v j,l)l∈N in V such that liml→∞|v j,l| = ∞ and

(5.6) r j lim
l→∞

v j,l

|v j,l| = v j , j ∈ N.

Hence

(5.7) r j lim
l→∞

Ψ(v j,l)

|Ψ(v j,l)| = r j lim
l→∞

(v
j,l
n )−2v j,l

|v j,l
n |−2|v j,l|

=
|v j

n|2

(v
j
n)2

v j .

Since v
j
n 6= 0, the restriction of equation (5.6) to its n-th coordinate implies the

existence of δ j > 0 such that |v j,l
n | ≥ δ j |v j,l| for all sufficiently large l. Hence

∣∣Ψ(v j,l)
∣∣ =

|v j,l|
|v j,l

n |2
≤ 1

δ2
j |v j,l| → 0 as l → ∞.

Thus equation (5.7) implies v j ∈ T0Ψ
∗(V ). Since T0Ψ

∗(V ) is closed, we get w ∈
T0Ψ

∗(V ).
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Assume now that no irreducible component of T0Ψ
∗(V ) is contained in Cn−1 ×

{0}. To show that T0Ψ
∗(V ) ⊂ Ψ

∗(Vh), it suffices to show that

T0Ψ
∗(V ) ∩ (C

n−1 × {0}) ⊂ Ψ(Vh).

To do so, fix w ∈ T0Ψ
∗(V ) with vn 6= 0. There are r ≥ 0 and a sequence (w j) j∈N in

Ψ
∗(V ) such that lim j→∞ w j

= 0 and

r lim
j→∞

w j

|w j | = w.

Since wn 6= 0, we may assume that w
j
n 6= 0 for all j. Hence w j

= Ψ(v j) for suitable

v j ∈ V . Note that |v j | = |w j |/|w j
n|2 → ∞ as j → ∞ since w j → 0 as j → ∞. Hence

r lim
j→∞

v j

|v j | = r lim
j→∞

(w
j
n)−2w j

|w j
n|−2|w j |

=
|wn|2
(wn)2

w.

Hence w ∈ Vh. Since wn 6= 0, it follows immediately from the definition of Ψ that
w ∈ Ψ(Vh).

To prove (ii), note that (5.1) is equivalent to the existence of C1,C2 > 0 such that
|z| ≤ C1|π(z)| whenever |z| > C2. Fix w ∈ Ψ(V ) with |w| < 1/C2 and wn 6= 0.

We will show that |w| ≤ C1|π(w)|. By continuity, this estimate implies the claim. Set
z = Ψ(w). Then |z| ≥ 1/|wn| > C2. Hence

|w| =
1

|zn|2
|z| ≤ C1

|zn|2
|π(z)| = |π(w)|.

Example 5.6 Consider V = {(z, z2) : z ∈ C}. Then

Ψ(V \ (C × {0})) = {(z−3, z−2) : z ∈ C}

and hence Ψ
∗(V ) = {(w3, w2) : w ∈ C}. In this case T0Ψ

∗(V ) = {0} × C, while

Ψ
∗(Vh) is empty.

5.3 Critical Values

For an algebraic variety V of pure dimension k ≥ 1 and degree m in Cn and a simple
curve γ as in (5.2), we call a projection π in Cn distinguished for V and γ if it has
rank k and is transverse to V and to Tγ,dV for each d ≤ 1. The existence of distin-
guished projections is shown similary as in Section 2.3. More precisely, let q ∈ N be

the number that is associated to γ according to (5.2) and let

M1 := { j/b ∈ ]−∞, 1] : q j ∈ Z, j ≤ q, b ∈ N, 1 ≤ b ≤ m}.

Then M1 is a discrete subset of ]−∞, 1] and we can choose a sequence (δ j) j∈N so that
in each component of ]−∞, 1]\M1 there is exactly one point of this sequence. Then
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we let M0 := M1 ∪ {δ j : j ∈ N}. By [8, §3.8, proof of Corollary 2], we can choose a
projection π in Cn of rank k which is transverse to V and to Tγ,dV for each d ∈ M0.

To show that π is distinguished for V and γ, we define

F(w, t, ξ) = P(γ(t) + w, ξ; V, π) =

∑

j,β,α

a j,β,αt jwβξα, w ∈ C
n, t ≥ R, ξ ∈ C

n−k,

and the support M of this expansion as well as its Newton polygon (see [6, proof of
Proposition 5]), similary as in Section2.3. For each d ≤ 1 we then expand F into a
series of d-quasihomogeneous polynomials (in w, t1/q, and ξ)

F(w, t, ξ) = Fω0
(w, t, ξ) +

∑

ω<ω0

Fω(w, t, ξ),

where Fω is either zero or d-quasihomogeneous of order ω and where Fω0
= Fω0(d) is

not the zero polynomial.
The critical values 1 = d1 > d2 > · · · > dp > −∞ for V and γ (with respect

to π) are defined as those d ≥ 1 for which Fω0(d)(w, 1, ξ) is inhomogeneous as a

polynomial in w and ξ. The proof of [6, Proposition 31] contains a constructive
method to determine the critical values from the Newton polygon of F. Just as in the
local case, it is not a priori obvious that critical values do not depend on the choice
of the projection π. However, that will become clear in Corollary 5.10. With these

preparations it follows as in Section 2.3 that π is distinguished for V and γ.

Definition 5.7 A simple curve γ in Cn, either at infinity or at the origin, is said to

be in standard parametrization if it has the form γ(t) = (γ1(t), . . . , γn−1(t), t) with

lim
t→∞

γ j(t)

t
= 0, 1 ≤ j < n.

Note that by [5, Lemma 2.5], every simple curve can be reparametrized so that it
is in standard parametrization.

Proposition 5.8 Let V ⊂ Cn be an algebraic variety of pure dimension k, assume

that the standard coordinates are excellent in the sense of (5.1), and set π(z ′ ′, z ′) = z ′

for z ′ ′ ∈ Cn−k and z ′ ∈ Ck. Then π is transverse to Ψ
∗(V ) at the origin, i.e., in-

equality (2.1) holds for Ψ
∗(V ). Fix d < 1 and a simple curve γ at infinity in standard

parametrization. Set σ := Ψ ◦ γ and consider the expansions

P(γ(t) + z, ξ; V, π) =

∑

ω≤ω0

Fω(z, t, ξ),

P(σ(s) + z, ξ; Ψ∗(V ), π) =

∑

ω≥ω1

Gω(z, s, ξ)

(5.8)

where Fω is d-quasihomogeneous and Gω is (2 − d)-quasihomogeneous of degree ω or

zero. We also assume Fω0
6≡ 0 and Gω1

6≡ 0. Then ω0 = 2m − ω1 and Fω0
(z, 1, ξ) =

Gω1
(z, 1, ξ) for all z and ξ.
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Proof The statement concerning transversality was shown in Lemma 5.5. To prove
(5.8), consider z ∈ Cn with zn 6= 0. Then z ∈ Ψ∗(V ) if and only if Ψ(z) ∈ V , i.e., if

there is i such that z−2
n z ′ ′ = αi(z−2

n z ′) for αi defined in (2.2). Hence

P(z, ξ; Ψ∗(V )) =

m∏

i=1

〈z ′′ − z2
nαi(z−2

n z ′), ξ〉.

Since P(Ψ(z), ξ; V ) =
∏m

i=1〈z−2
n z ′ ′ − αi(z−2

n z ′), ξ〉, this implies P(Ψ(z), ξ; V ) =

z−2m
n P(z, ξ; Ψ∗(V )). Replacing z by Ψ(z) we arrive at

P(z, ξ; V ) = z2m
n P(Ψ(z), ξ; Ψ∗(V )).

By continuity, this equation holds for all z ∈ Cn. The remainder of the proof of (5.8)

consists of calculations which are strictly analogous to the ones in the proof of
[6, Proposition 9(d)].

Corollary 5.9 Let V ⊂ Cn be an algebraic variety of pure dimension k ≥ 1, and

assume that the standard coordinates are excellent in the sense of (5.1). Let γ be a

simple curve at infinity with limit vector (0, . . . , 0, 1) and set σ := Ψ ◦ γ. Then

Tγ,d[V ] = Tσ,2−d[Ψ∗(V )]

for all d < 1.

Proof Similary as in [5, Lemma 2.5], it follows that γ can be reparametrized so that
it is in standard parametrization. By [6, Proposition 4], Tγ,d[V ] is not affected by
reparametrizations. By [4, Proposition 4.1], also Tσ,2−d[Ψ∗(V )] is not affected by
reparametrizations. Hence we may assume that γ is already in standard parametriza-

tion. Since π is distinguished for V and γ, it follows from [6, Proposition 1] that
Fω0(d) determines Tγ,d[V ] for each d ≤ 1. By Proposition 5.8, π is transverse to

Z(2 − d) := {z ∈ C
n : Gω1(2−d)(z, 1, ξ) = 0for all ξ ∈ C

n−k}

for each d ≤ −1. By Theorem 2.1, this implies that π is transverse to Tσ,2−dΨ
∗(V )

for each d ≤ 1. Since π is transverse to Ψ
∗(V ) at the origin, this shows that π is also

distinguished for Ψ
∗(V ) and σ. Since Fω0(d) = Gω1(2−d), the result now follows from

Corollary 3.2.

Corollary 5.10 Let V be an algebraic variety of pure dimension k ≥ 1 and let γ be a

simple curve at infinity with limit vector (0, . . . , 0, 1). Denote by 1 = δ1 > δ2 > · · · >
δq the critical values for V and γ. Set σ := Ψ◦γ and denote by 1 = d1 < d2 < · · · < dp

the critical values for Ψ
∗(V ) and σ. Then p = q and d j = 2 − δ j for j = 1, . . . , q.

In particular, critical values do not depend on the choice of the distinguished projec-

tion π.
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To state the main theorem of the present section, analogous definitions to (3.1)
and (3.3) are needed. For a simple curve γ as in (5.2) let 1 = d1 > d2 > · · · > dp

denote the critical values for V and γ. Then set for 1 ≤ j ≤ p

I j := {w ′′ ∈ C
n−k : (w ′ ′, 0) ∈ Tγ,d j

V, w ′′ 6= 0}

and

(5.9) ν j :=
∑

(w ′ ′,0)∈I j

µ((w ′ ′, 0), Tγ,d j
[V ]).

(For the definition of the multiplicities µ((w ′ ′, 0),W ), see Section2.1).

Theorem 5.11 Let V be an algebraic variety in Cn that is of pure dimension k ≥ 1
and of degree m, let γ be a simple curve, and let π be a projection which is distinguished

for V and γ. Then for each d ≤ 1 we have the following.

(i) The degree m(d) of the current Tγ,d[V ] is m − ∑
d j>d ν j . In particular, m(d) =

m(d j+1) if d j+1 < d < d j , 1 ≤ j < p, and Tγ,dV is empty for d < dp if and only

if m =
∑p

j=1 ν j .

(ii) ω0(d) = md −
∑

d j>d ν j(d − d j) = dm(d) +
∑

d j>d ν jd j .

(iii) The function Φ defined in Theorem 5.1 does not depend on w ′ and is given by

Φ(ξ) =

∏

d j>d

∏

(w ′ ′,0)∈I j

〈−w ′′, ξ〉a( j,w ′′).

Hence its degree is m − m(d) =
∑

d j>d ν j .

(iv) For Φ as in part (iii) we have Fω0
(w, 1, ξ) = P(w, ξ; Tγ,d[V ], π) · Φ(ξ).

(v) If d < 1 is a critical value for γ and V , then Tγ,dV is inhomogeneous.

Proof The part of the claim that pertains to d = 1 is clear. Hence we may assume
d < 1. Then Tγ,dV is nonvoid only when the limit vector of γ is in Vh as has been

shown [6, Proposition 4(iv)]. So we may assume that γ is in standard parametrization
with respect to excellent coordinates. Set σ = Ψ◦γ. The present result will be proved
by applying Theorem 3.1 to Ψ

∗(V ) and σ.
Statement (i) follows immediately, since the numbers ν j for V and γ defined

in (5.9) coincide with the numbers ν j for Ψ
∗(V ) and σ defined in (3.3). State-

ment (ii) follows in the same way, since in Proposition 5.8 it is shown that ω0 =

2m − ω1 if ω0 and ω1 are as in that proposition.
To see (iii), denote the polynomial Φ of Theorem 5.1 for a moment by Φ

∞. Then

Proposition 5.8 and Theorems 2.1 and 3.1 imply

P(w, ξ; Tγ,d[V ])Φ∞(w ′, ξ) = Fω0
(w, 1, ξ) = Gω1

(w, 1, ξ)

= P(w, ξ; Tσ,2−d[Ψ∗(V )])Φ(ξ),

for all w = (w ′′, w ′) ∈ Cn and ξ ∈ Cn−k. Now let Q(w ′, ξ) be an irreducible
component of Φ

∞(w ′, ξ). By Theorem 5.1, there is no w ′ such that Q(w ′, ξ) = 0
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for all ξ. Hence Q cannot be a factor of P(w, ξ; Tσ,2−d[Ψ∗(V )]) since the latter is a
canonical defining function. So Q must be a factor of Φ, which implies that it does

not depend on w ′.
(iv) is now clear, and (v) is already known from Corollaries 5.9 and 5.10.

Corollary 5.12 For V and γ as in Theorem 5.11, let 1 = d1 > d2 > · · · > dp be the

critical values for γ and V . If d j+1 < d < d j for some j < p, then

T0(Tγ,d j
[V ]) = Tγ,d[V ] = (Tγ,d j+1

[V ])h,

and if d < dp and Tγ,dp
V 6= ∅, then T0(Tγ,dp

[V ]) = Tγ,d[V ].

Definition 5.13 The notions of critical set, terminating singularity, and normal criti-

cal set have natural analogues in the present situation. The definitions are the same as
the ones in Section 4, except that inequalities are reversed and T0V is replaced by Vh.

If γ is a simple curve at infinity in standard parametrization with respect to ex-
cellent coordinates, and ρ(t) := γ(t) + ζtd + o(td) as t → ∞, then σ := Ψ ◦ ρ
satisfies ρ(s) = Ψ ◦ σ(s) + ζs2−d + o(s2−d) as s → 0. Hence the method used to prove
Theorem 5.11 can be used to derive the next two results from Proposition 4.3 and

Theorem 4.6.

Proposition 5.14 Let V be an algebraic variety in Cn which is of pure dimension

k ≥ 1. Let γ be a simple curve at infinity, let d ≤ 1 be a critical value for γ and V , and

let ζ ∈ Tγ,dV be a singular point. Then ζ is a terminating singularity of Tγ,dV if and

only if there is a singular curve ρ(t) = γ(t) + ζtd + o(td) in V such that, for large t, the

multiplicity of V along the curve ρ is constant and equal to the multiplicity of Tγ,d[V ]
at ζ .

Theorem 5.15 Let V be an algebraic surface in Cn. Then for each ζ1 ∈ Vh with

|ζ1| = 1, the set {C = (ζ j , d j)
l
j=1 : C is a normal critical set for V} is finite.

Example 5.16 Let P ∈ R [x, y, z] be defined as P(x, y, z) := (y − x)(y2 − z − 1).
and let V := {ζ ∈ C3 : P(ζ) = 0}. Then define the sequence (ak)k∈N0

by the Taylor
series expansion of the function (1 + s)1/2 at the origin, i.e., (1 + s)1/2

=
∑∞

k=0 aksk.
Next define the sequences (ζ j) j∈N and (d j) j∈N by

ζ1 := (0, 0, 1), d1 := 1, ζ j := (a j−2, a j−2, 0), d j :=
3 − 2( j − 1)

2
, j ≥ 2.

We claim that for each l ∈ N the set Cl := (ζ j , d j)
l
j=1 is critical for V .

To prove our claim by induction, note that Vh = {(x, y, z) ∈ C3 : (y−x)y2
= 0}.

This shows that ζ1 = (0, 0, 1) is in (Vh)sing ∩ S2. Hence C1 is a critical set for V .

Assume next that for some l ≥ 1, the set Cl = (ζ j , d j)
l
j=1 is critical. Then define

σ1(t) := 0, σl(t) :=

l−2∑

j=0

a j

t j
, and γl(t) :=

l∑

j=1

ζ jt
d j = (

√
tσl(t),

√
tσl(t), t).
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Then

P(γl(t) + (x, y, z)) = (y − x)
(

(y +
√

tσl(t))2 − t(1 +
1

t
) − z

)

= (y − x)
(

y2 + 2y
√

tσl(t) + tσl(t)2 − t
(

σl(t) +

∞∑

j=l−1

a j

t j

) 2

− z
)

= (y − x)

(
y2 + 2y

√
t

l−2∑

j=0

a j

t j
− 2t

( l−2∑

j=0

a j

t j

)( ∞∑

j=l−1

a j

t j

)

− t
( ∞∑

j=l−1

a j

t j

) 2

− z

)
.

Using this expansion, we can compute the Newton diagram. By results from [6] it
follows that the largest critical value for γl and V which is smaller than dl is d, where
d is determined by the fact that 2y

√
t and −2tal−1/t l−1 have the same d-degree,

namely 2 − l. This implies d = 3/2 − l and hence dl+1 = 3/2 − l = (3 − 2l)/2.

Moreover, we get

Tγ1,d2
V = {(x, y, z) ∈ C

3 : (y − x)(y2 − 1) = 0},

Tγl ,dl+1
V = {(x, y, z) ∈ C

3 : (y − x)(y − al−1) = 0} for l ≥ 2.

Thus ζl+1 := (al−1, al−1, 0) is a singular point of Tγl,dl+1
V which satisfies 〈ζl+1, ζ1〉= 0.

Hence our claim is proved by induction.

Note that the curve σ : [0,∞[→ C3, σ(t) = (
√

t + 1,
√

t + 1, t) satisfies tr(σ) ⊂
Vsing. Therefore, the curves (γ j) j∈N are just partial sums of the Puiseux series expan-
sion of the curve σ.

Example 5.17 Let Q ∈ R[x, y, z] be defined as Q(x, y, z) := (y − x)(y2 − z3 − z4)

and let V := {ζ ∈ C3 : Q(ζ) = 0}. Using the sequence (ak)k∈N0
from the previous

example, we define the sequences (ξ j) j∈N in C3 and (δ j) j∈N in Q by

ξ1 := (0, 0, 1), δ1 := 1, ξ j := (a j−2, a j−2, 0), δ j :=
2( j − 1) + 1

2
, j ≥ 2.

Then for each l ∈ N, the set Cl := (ξ j , δ j)
l
j=1 is critical for V . This follows easily from

the previous example by [6, Proposition 9].
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