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Summary

Methods of identification of quantitative trait loci (QTL) using a half-sib design are generally

based on least-squares or maximum likelihood approaches. These methods differ in the genetical

model considered and in the information used. Despite these differences, the power of the two

methods in a daughter design is very similar. Using an analogy with a one-way analysis of

variance, we propose an equation connecting the two test-statistics (F ratio for regression and

likelihood ratio test in the case of the maximum likelihood). The robustness of this relationship is

tested by simulation for different single QTL models. In general, the correspondence between the

two statistics is good under both the null hypothesis and the alternative hypothesis of a single

QTL segregating. Practical implications are discussed with particular emphasis on the theoretical

distribution of the likelihood ratio test.

1. Introduction

A powerful approach to the detection of quantitative

trait loci (QTL) is based on crosses between inbred

lines differing significantly for the trait of interest. In

many cases, this kind of design is impossible to

implement for economic, biological or ethical reasons

and alternative designs have to be considered. One of

these alternatives is the study of half-sib families

where individuals have one parent in common.

Methodologies for QTL identification in half-sib

family design were recently developed (e.g. Weller et

al., 1990; Knott et al., 1996). This approach is based

on the phenotypic differences between the half-sib

progeny that inherit one allele from the sire and those

that inherit the other allele (Neimann-Sørensen &

Robertson, 1961). Despite the fact that they are based

on models more complex than those used in an inbred

line approach, half-sib methods allow the use of the

extant breeding structure of some livestock or plant

populations. Most genetical analyses used to identify

QTL are based on least-squares (LS) or maximum
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likelihood (ML) approaches. LS – or regression –

methods are simpler and easier to implement. ML

methods are more versatile but computationally

demanding. In both approaches, significance

thresholds might be inferred from theoretical distri-

butions, simulations or permutation procedures.

Theoretical approaches require a perfect knowledge

of the distributions of the different components of the

model. In a LS approach, the statistic is a ratio of

mean squares (F ratio). In a ML approach, the

statistic is a function of a ratio of maximum likelihoods

called the likelihood ratio test (LRT).

The relationship between the two test-statistics is

dependent on the structure of the population being

analysed. In line crosses, F ratio and LRT are

equivalent if the errors are independent and normally

distributed at a marker (e.g. Haley & Knott, 1992;

Doerge, 1995) :

LRT¯ n log
e 01­0df1

df21F1 , (1)

with F being the standard F ratio for testing the model

with df1 and df2 degrees of freedom.

In half-sib designs, the relationship between the F

ratio and LRT is less straightforward. In the regression

approach, phenotypic values are regressed on the
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putative genotype in an across-family analysis. In the

ML case, a multiple-parameter likelihood equation is

used. The number of parameters considered is

dependent on the type of likelihood considered (e.g.

Elsen et al., 1997). In practice, approximate likelihoods

may be used to replace full likelihoods that are

computationally not feasible. In this study, we will use

the approximation proposed by Knott et al. (1996)

(see Section 2).

In a ML approach the usual assumption is that,

when the null hypothesis is true, the LRT follows a χ#

distribution with degrees of freedom equal to the

number of parameters tested (Wilks, 1938; Knott et

al., 1996). For QTL identification in a half-sib design,

when testing for the effect of a biallelic QTL and the

proportion of sires that are heterozygous at the QTL,

the expected number of degrees of freedom is 2. In a

previous comparison of ML and LS methods for QTL

detection in half-sib designs, both approaches gave

very similar results in terms of power (Knott et al.,

1996). Nevertheless, such a concordance does not

imply a common underlying mechanism in the

calculation of the two test-statistics.

Both approaches (LS and ML) are based on the

same data: individual phenotypic values and marker

genotypes. Nevertheless they differ in the assumptions

made and the way this information is processed. In a

regression approach, the number of alleles at the QTL

locus is not defined. Conversely, in the ML approach,

the QTL is assumed to be biallelic. Sires can be

homozygous or heterozygous at the QTL locus. This

information is processed differently according to the

methods. In LS, the QTL effect is fitted within each

family and can vary across the different families. In

consequence, the QTL effect of homozygous sites is

expected to be null. In ML, two parameters are

estimated: the QTL effect, which is assumed to be

identical in magnitude across all the families ; and the

expected proportion of heterozygous sires.

More generally, the regression is considered as a

simple and robust approach and the ML as a more

versatile and comprehensive procedure. ML and LS

are expected to perform similarly when the interval

between adjacent marker is small – say less than

30 cM (e.g. Knott et al., 1996). For larger intervals,

ML is expected to perform better because it utilizes

information both from linkage and from the dis-

tribution of the data. An extreme case is that of a

single marker. Using LS, it is impossible to estimate

both a QTL effect and location, since they are

completely confounded, whereas for ML it is

theoretically possible both to map the QTL relative to

the single marker and to estimate the absolute value of

its location. A priori, it is impossible to decide which

method will perform better and whether their re-

spective test-statistics are perfectly correlated. The

aim of this study was to investigate the relationship

between the statistical tests in the half-sib design for

an approximate ML method and a linear regression

method, in the presence and absence of a QTL.

2. Methods

(i) Design

All our simulations are based on a daughter design

(Weller et al., 1990). Each sire is mated to the same

number of dams and the trait is measured on a single

offspring per mating (a daughter, if we refer to a dairy

cattle situation). The number of sires ranges from 5 to

100. In our simulations, the number of daughters per

sire is always equal to 200.

On a chromosome, a single marker and a single

QTL share the same location. To mimic a fully

informative situation, the number of alleles at the

marker is equal to 16, occurring with equal frequency,

and the dam allele is specifically coded to be always

identifiable. For the QTL locus, the number of alleles

is equal to 2 with equal frequency (0±5). As assumed

by Weller et al. (1990), the polygenic heritability

(excluding the QTL effect) is constant and equal to

0±2. The gene effect (GE) is given according to Weller’s

definition as α}SD where α is half the difference

between the mean trait values for the two alternative

homozygotes at the QTL and SD is the within-QTL

genotype standard deviation for the quantitative trait.

Conversion to the Falconer and Mackay’s substitution

effect (a) could be achieved using the following

equation:

a#¯
GE#

2pqGE#­1
, (2)

where a is Falconer & Mackay’s (1996) substitution

effect, and p and q are the frequencies of alleles A
"
and

A
#

of the QTL.

Using this equation and assuming that p¯ 0±5,

values of 0±1, 0±2 and 0±3 of Weller’s gene effect are

respectively equal to 0±0998, 0±1980 and 0±2935 in

terms of Falconer and Mackay’s substitution effect.

Note that for a granddaughter design, the

parameterization of the effect (GE) implies that the

effect is a function of the polygenic heritability,

because the within-grandsire within-QTL variation

among sons depends on the heritability of the trait.

This may lead to the paradoxical conclusion that the

power of mapping a QTL in a granddaughter design

is lower when the heritability of the background

polygenes is higher (Weller et al., 1990).

(ii) Simulation process

The simulation process was based on an algorithm

developed for the first workshop on QTL mapping

applied to livestock (Bovenhuis et al., 1997).
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Each QTL has two alleles that are assigned at

random to the sire haplotypes depending on their

frequency. For each daughter, the QTL allele inherited

from the sire is determined by a binomial distribution

draw between the two sire haplotypes. The QTL allele

inherited from the dam is drawn from a binomial

distribution. Daughter phenotypes are simulated as

detailed below.

Sire breeding value is equal to

A
S
¯A

QTLS

­A
infS

, (3)

where A
QTLS

is the sum of the effects of QTL alleles

allocated to the sire ; and A
infS

is the contribution of

other chromosomes to the trait and is randomly

simulated by a normal distribution assuming the

infinitesimal model N(0,[h#σ#
P
]).

Daughter phenotype is equal to

P
daughter

¯A
QTLsire

­A
QTLdam

­"

#
A

infS

­I­E, (4)

where A
QTLsire

is the effect of the QTL allele inherited

by the daughter from the sire ; A
QTLdam

is the effect of

the QTL allele inherited by the daughter from the

dam; I is the remaining polygenic effect simulated by

a normal distribution N(0,[0±75h#σ#
P
]) – this term in-

cludes dam infinitesimal effects ; and E is the en-

vironmental noise simulated by a normal distribution

N(0,[(1®h#)σ#
P
]).

Reduction of the genetic variance due to negative

gametic disequilibrium among loci (Bulmer, 1971)

was not taken into consideration.

(iii) Methods of analysis

Two methods of analysis were used: least-squares

(LS) and maximum likelihood using a simplex

maximization routine (ML). Principles of LS and ML

approaches applied to a half-sib design were ex-

tensively presented in Knott et al. (1996). The LS

analysis is based on a regression of the value of the

trait on the probabilities of inheriting a given gamete

from the sire. The across-family regression is nested

within sires to take into account both the difference in

the linkage phase between the QTL alleles and the sire

gamete and the fact that some of the sires may be

homozygous at the QTL.

The ML approach is based on the approximate

model proposed by Knott et al. (1996). Simplifications

from the full maximum likelihood models are based

on the following assumptions: (a) the effect of the

QTL is relatively small so the within-marker dis-

tribution is not influenced significantly ; (b) two QTL

alleles are segregating; (c) between-family genetic

variance heterogeneity due to dam contributions is

ignored within sire within marker. Each half-sib

record is adjusted for the mean of the HS group to

take into account the between-family genetic variation.

Under these assumptions, the ML at each position is

entirely defined by three parameters : the proportion

of sires homozygous at the QTL (h), the substitution

effect of the QTL (a) and the within-marker within

sire residual variance (σ#
w
). The likelihood equation is

(Knott et al., 1996) :

L¯ 0
s

i="

(h 0
nj

j="

1

o2πσ#
w

exp 0®z#
ij

2σ#
w

1
­

(1®h)

2
0
ni

j="

1

o2πσ#
w

9mij
exp 0®(z

ij
®a}2)#

2σ#
w

1
­(1®m

ij
) exp 0®(z

ij
­a}2)#

2σ#
w

1:
­

(1®h)

2
0
ni

j="

1

o2πσ#
w

9mij
exp 0®(z

ij
­a}2)#

2σ#
w

1
­(1®m

ij
) exp 0®(z

ij
®a}2)#

2σ#
w

1:* , (5)

where z
ij

is the record for the jth half-sib offspring of

the ith sire adjusted to remove the between-sire effect ;

m
ij

is the conditional probability that offspring j

inherits gamete 1 from sire i at the position being

considered; and n
i
is the number of offspring of sire i.

The simplex method used as a maximization routine

in ML is based on a two-step approach. (1) Different

values of the percentage of heterozygous sires at the

QTL loci were tested using a one-dimensional grid

search. The principle of the grid search is straight-

forward: the likelihood function was evaluated at

different points evenly spaced along the total range of

variation of the parameter. For the proportion of

heterozygous sires, the range spans from 0 to 1. The

number of runs of the simplex algorithm within this

range is dependent on the chosen increment. The

smaller the increment, the more computationally

demanding is the method but the more precise is the

ML estimation. For each of these grid points, the ML

was estimated using the simplex method (Nelder &

Mead, 1965) in a two-dimensional space (gene effect

and residual variance). (2) From the grid point with

the highest likelihood value, the simplex algorithm

was repeated in a three-dimensional space (percentage

of heterozygous sires, gene effect and residual vari-

ance) to refine the ML location. All the estimates

presented are based on analyses with a grid search

increment of 0±01.

(iv) Significance thresholds

Significant thresholds are a critical and sometimes

controversial aspect of QTL mapping. Two factors

have to be taken into account: (1) the chosen level of
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Table 1. Significance thresholds determined either from an F distribution with degrees of freedom (s, s(n®2))

where s is the number of sires and n is the number of daughters (Theoretical ) or from distributions of test

statistics for 10000 simulations with no QTL effect (Empirical )

Significance level : 0±05 Significance level : 0±01

LS ML LS ML

No. of sires Theoretical Empirical Empirical Theoretical Empirical Empirical

5 2±22 2±28 2±69 3±04 3±15 5±74
10 1±84 1±87 2±92 2±33 2±41 6±04
20 1±57 1±59 3±09 1±88 1±91 6±19

ML theoretical (for all the designs)

χ#
(")

3±84 6±63
χ#

(#)
5±99 9±21

LS, least-squares ; ML, maximum likelihood.

significance and (2) the scope of the threshold

(comparison-wise, chromosome-wise or genome-

wise). In terms of methodologies, thresholds can be

determined either from a theoretical framework

assuming a given distribution of parameters or from

empirical methods as simulation or permutation

procedures. In the specific case of half-sib designs and

considering QTL and marker at the same location,

theoretical thresholds can be used in a LS framework.

However, due to the approximate nature of the

likelihood model used in a half-sib context, the

conditions required for the asymptotic results are not

met. In consequence, no theoretical threshold can be

applied in conjunction with the ML approach.

For LS, the statistic is the ratio of the between-

marker alleles within-sire mean square to the residual

mean square. For a single location, the test-statistic

distribution for the LS approach is assumed to follow

an F distribution with degrees of freedom proportional

to the number of sires heterozygous at the marker,

because in that case a simple marker contrast is fitted

for each sire family. Theoretical F ratio thresholds

were determined from an F distribution with degrees

of freedom (s, s(n®2)), where s is the number of sires

and n the number of daughters. For ML, the statistic

is a likelihood ratio test, i.e.®2 log (ML
reduced

}ML
QTL

)

where ML
QTL

is the ML fitting a QTL and ML
reduced

is the ML when the QTL is omitted. Empirical F ratio

thresholds and ML thresholds were determined by

simulation (10000 replicates) (Table 1). Simulations

were achieved by generating datasets using the process

described in (3) and (4) with QTL effects equal to zero.

Each simulated dataset was analysed using both LS

and ML methods. The test-statistics were ranked to

determine the significance thresholds. Difference be-

tween power estimations are considered as different if

higher than 1±96ou(1®u) (1}n
"
­1}n

#
), where u is the

proportion of runs above the significance threshold

pooled across methods; and n
"
and n

#
are the number

of runs for each method.

As power is calculated in parallel on the same

simulated data, the results of both methods of analysis

(LS and ML) are positively correlated and this test is

conservative.

(v) Simulation of chromosome-wide QTL scans

In the last part of this paper, we will discuss the

application of our results to chromosome scans under

H1 hypothesis (a single QTL segregating). Four

situations differing by the QTL effect and the

informativeness of the design are simulated. The

daughter design comprises 10 sires and 100 daughters

per sire. A single QTL is positioned at 35 cM on a

100 cM chromosome segment. The total heritability is

equal to 25% and the simulated QTL effect is either

small (explaining 2% of the phenotypic variance,

i.e. 8% of the additive genetic variance) or large

(explaining 10% of the phenotypic variance). In the

highly informative design, 11 markers are evenly

spaced (interval 10 cM) on a 100 cM chromosome

segment and 16 alleles are segregating per marker.

The allele inherited from the dams is always identified.

In the poorly informative design, only 6 biallelic

markers are evenly spaced on a 100 cM segment and

there is no specific coding for the dam allele. For these

chromosome scans, a grid search increment of 0±25

was used for the proportion of heterozygous sires for

the grid search in the ML optimization (see Section 2).

3. Results

(i) Power calculations

We use Monte Carlo simulations (1000 replicates per

design) to recalculate the power in some of the
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Table 2. Power in % (1000 replicates)

Significance thresholds used:

No. of
Least squares Maximum likelihood

siresa GEb Wellerc Empirical Theoretical Empirical χ#
(")

χ#
(#)

Significance level 5%
5 0±1 11 10 12 11 7 3

0±2 37 37 39 37 27 17
0±3 68 69 71 68 60 46

10 0±1 15 15 17 15 10 5
0±2 54 56 58 55 48 33
0±3 88 87 87 86 83 74

20 0±1 20 20 21 20 14 6
0±2 76 78 78 77 71 57
0±3 99 98 98 98 97 95

Significance level 1%
5 0±1 3 3 4 3 2 1

0±2 18 17 19 18 13 8
0±3 50 49 51 47 42 32

10 0±1 5 6 6 5 5 1

0±2 31 33 37 33 30 18
0±3 76 75 77 74 72 61

20 0±1 7 6 7 5 4 2
0±2 56 59 62 56 53 35
0±3 95 96 96 95 94 89

a In all cases, the number of daughters was equal to 200.
b Gene effect following Weller et al. (1990).
c Weller refers to the power estimate obtained from deterministic simulation by
Weller et al. (1990). Confidence interval (95%) spans from 1% (for extreme values
close to 1% and 99%) to 3% (for median values around 50%).

daughter designs analysed by Weller et al. (1990).

Both regression and ML approaches were used. The

results of power calculations are given in Table 2. At

the 5% significance level, the difference between the

power predicted (using the approximation given by

Weller et al., 1990) and Monte Carlo simulation never

exceeds 4 percentage points. Power estimates obtained

from ML analyses are closer to Weller’s estimate than

LS-based estimates, but the difference is small. At the

1% significance level, the difference can reach 6 points

and the empirical regression performs slightly better

than the ML. However, precise assessment of power

at the 1% significance level would require a higher

number of simulations.

Comparison of the power calculation based on both

LS with a theoretically determined threshold (as-

suming degrees of freedom equal to (s, s(n®2)) and

LS with an empirically determined threshold – based

on simulations without any QTL effect – showed a

good concordance (less than 4 points of difference).

Using theoretical thresholds, the estimated power is

slightly higher. This difference in power can be

explained by the fact that, in these simulations, 6±25%

( "

"'
) of sires are expected to be uninformative at the

marker level as we simulated a 16 allele marker rather

than making all sires heterozygous. The degrees of

freedom of the theoretical model should be modified

in consequence.

Generally, the LRT is assumed to follow a χ#

distribution with degrees of freedom (d.f.) equal to the

difference between the number of parameters in the

full and reduced models. If this hypothesis is correct,

a theoretical χ# distribution with 2 d.f. should be

appropriate, with 1 d.f. for the effect and 1 for the

proportion of heterozygous sires. In practice, if we

compare power calculations based on a theoretical χ#

distribution and on an empirical distribution there is

a strong discrepancy and the use of χ# thresholds

induces an underestimation of the power even if a χ#

with 1 d.f. rather than 2 d.f. is used.

All the differences in power between the empirical

LS approach and the empirical ML approach are non-

significant.

(ii) Properties of the ML test-statistic distribution

The discrepancy between the observed power based

on a significance threshold obtained empirically and

from a χ# distribution is, in part, due to the particular

distribution of the ML test-statistics under the null

hypothesis. As already pointed out by Le Roy & Elsen

(1995), the distribution is bimodal : a peak at zero and
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Fig. 1. Distribution of the test-statistics for a 10 sire
daughter design under the null hypothesis (no QTL effect)
(10000 simulations considering a single position).
(a) Least-squares (LS) method. (b) Maximum likelihood
(ML) method.

the rest following a χ# distribution (Fig. 1). A

theoretical explanation is that, analogous to a random

one-way ANOVA model where half the variance

estimates are expected to be negative, the ML estimate

is at the boundary of the permissible parameter space

in half the cases and a zero LRT is obtained (e.g.

Stram & Lee, 1994).

(iii) Relationship between LS and ML test-statistics

(a) Theoretical approach

The relationship between F and LRT can be predicted

by drawing a parallel between the LS and ML

approaches of a nested variancemodel used to estimate

between- and within-level variances. This comparison

is based on simplifying assumptions and will be tested

using simulated data.

Consider a general one-way model :

MST¯
(a®1)MSB­a(b®1)MSW

(ab®1)
, (6)

where MST is the total mean square, MSB is the

between-level mean square, MSW is the within-level

mean square, and (a®1) and a(b®1) are the degrees

of freedom of the between- and within-mean squares

respectively. The likelihood equation for the full

model is then

®2 log (L) rσ#
b
σ#

w
¯

(a®1)MSB

(bσ#
b
­σ#

w
)

­
a(b®1)MSW

σ#
w

­(a®1) log (bσ#
b
­σ#

w
)

­a(b®1) log (σ#
w
), (7)

where σ#
b

is the variance between levels and σ#
w

is the

variance within levels. And the likelihood equation

for the reduced model is

®2 log (L) rσ#
w
¯

(ab®1)MST

σ#
w

­(ab®1) log (σ#
w
). (8)

For MSB!MSW, the maximum likelihoods for the

full and reduced models are equivalent, because the

estimate of the between-level variance (σ#
b
) in the full

model is zero. For MSB"MSW, it can be shown

that the LRT is equal to

LRT¯ (ab®1) log 9a(b®1)

(ab®1)
­

(a®1)

(ab®1)

MSB

MSW:
®(a®1) log 0MSB

MSW1 . (9)

As F¯MSB}MSW,

LRT¯ (ab®1) log 9a(b®1)

(ab®1)
­

(a®1)

(ab®1)
F:

®(a®1) log (F ). (10)

Equation (10) immediately implies that the relation-

ship is valid only if F"1 and that if F¯1, LRT¯ 0

for a one-way ANOVA model.

To apply this general equation to our daughter

design, we modify the number of degrees of freedom

according to the following equivalences between a

one-way analysis of variance (a®1, a(b®1)) and the

QTL model (s, s(n®2)) :

1

2
3

4

s¯ a®1

s(n®2)¯ a(b®1)
(11)

and (10) becomes:

LRT¯ (s(n®1)) log 9n®2

n®1
­

F

n®1:®s log (F ). (12)

(b) Empirical approach under H1

As predicted by (12) the relationship between test-

statistics obtained by LS and ML is clearly divided in

two parts : (a) when the F ratio is equal to or smaller

than 1, the LRT is equal to 0; (b) when the F ratio is

higher than 1, F ratio and LRT are both positive and

correlated according to a non-linear pattern. From
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Table 3. Proportion of runs where the F ratio is

below 1 and proportion of runs where likelihood ratio

test (LRT ) is equal to 0 for different daughter

designs when no QTL was simulated (null

hypothesis) : 1000 replicates per design

No. of siresa F ratio!1 LRT¯ 0

5 56±3 56±3
10 55±5 54±7
20 56±2 56±1
40 54±9 54±4

100 54±0 54±0

a In all cases, the number of daughters was equal to 200.

Fig. 2, it appears that the lower limit of this non-linear

relationship is sharply defined, but the upper limit is

less precise.

To confirm the relationship between F ratios smaller

or equal to 1 and LRT equal to 0 in part (a) of the

distribution, we ran 10¬1000 simulations for a 10 sire

design. The correlation is very high, the number of

divergent results ranging from 5 to 16 out of 1000.

When a divergent result was observed, the F ratio was

smaller than 1 when the LRT was positive in 94% of

the cases. In the remaining 6% the LRT was equal to

0 when the F ratio was higher than 1. This relationship

is confirmed across a wide range of designs (Table 3).

(c) Comparison of theoretical and empirical

approaches under H0

From the comparison of LRT predicted from the

observed F using (12) and LRT obtained from ML

simulations on the same dataset, it appears there is a

high correlation between the two approaches (Fig. 2).

The distribution of the simulated values along the

theoretical curve is not symmetric. When there is a

divergence, the value of LRT is always higher than the

predicted value.

Studying the estimated parameters of the likelihood

models after completion of the maximization process,

we noted that the highest differences between the LRT

and F ratio were observed when the estimated

proportion of heterozygous sires differed markedly

from 1. In the majority of simulations, the estimated

proportion of heterozygous sires was close to 1 and in

this case the predicted and observed LRT are very

similar. In the other simulations, the estimated

proportion of heterozygous sires was lower (in general,

between 0 and 0±3) and the bias between the observed

and predicted values was more important. To confirm

this observation, we plotted the deviation from the

theoretical model as a function of the test-statistic

value and the estimated proportion of heterozygous

sires. As expected, the highest deviations are observed

when the test-statistics are higher (Fig. 3).
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Fig. 2. The relationship between the F ratio and
likelihood ratio test (LRT) observed with simulated data.
The continuous line gives the predicted LRT calculated
by transformation of the F ratio using equation (12).
Scales of x-axes differ. (a) Ten sire design. (b) One
hundred sire design.

(d ) Empirical approach under H1

To test the robustness of the LRT prediction from an

observed F, we compared the observed and predicted

(using equation 12) LRT in four chromosome scan

situations that differ by the simulated QTL effect and

the informativeness of the design (see Section 2). In

general, the concordance between the predicted and

observed LRT is good, in both poorly and highly

informative designs (Fig. 4). Generally the ML gives

a slightly higher test-statistic value than the LS

(predicted LRT), but ML significance thresholds

obtained by simulation are also higher and power is

very similar, and none of the power differences is

significant (Table 4). When the quality of the design or

the QTL effect increases, the difference decreases.

4. Discussion

To our knowledge, this study is the first analytical

approach of the relationship between the F ratio and

LRT in the context of QTL mapping in a half-sib

design. The results not only confirm the similarity of

the methods in terms of power and parameter
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Fig. 3. Deviation of the observed LRT from the theoretical value as a function of the observed LRT and the proportion
of heterozygous sires in a 100 sire design. Simulated data have been divided in three equal parts of 150 observations
according to the proportion of heterozygous sires (open circles, 0±00–0±26; crosses, 0±26–0±97; filled circles, 0±98–1±00).
Distribution of residuals (predicted LRT®observed LRT) according to the proportion of heterozygous sires
(a : 0±00–0±26; b : 0±26–0±97; c : 0±98–1±00).

estimates, but provide a theoretical framework that

aids in understanding this correspondence.

What are the implications of these observations?

First, as demonstrated in the first part of the paper,

assuming that the LRT follows a central χ# with 2 (or

even 1) degrees of freedom under the null hypothesis

will lead to a statistical test that is too conservative.

Hence, power to detect a QTL will be considerably

reduced. Asymptotically, a better distribution is a

mixture of two χ# distributions of degrees of freedom

0 and 1, respectively. In this case, the significance

thresholds are obtained by considering a χ#
(")

and

doubling the probability levels. For example, the 5%

significance threshold is equal to a χ#
(")

and P¯ 0±1,

i.e. 2±70, and the 1% significance threshold is equal to

a χ#
(")

and P¯ 0±02, i.e. 5±1. These values are close to

our empirical observations (see Table 1). For com-

putationally demanding methods such as ML, it is

tempting to take a significance threshold from

standard statistical tables. But because there is not a

complete agreement, our results reconfirm that an

empirical method for setting significance thresholds,

either by simulation or by permutation, is to be

preferred.

Second, it is very tempting to extend our conclusions

to practical applications, but this may not be

appropriate. Despite the robustness of the proposed

prediction across a wide range of designs, we have to

keep in mind that the use of a one-way variance model

as a bridge between LS and ML is based on a series of

simplifying assumptions. In some situations, such as

unbalanced designs, we cannot rule out the possibility

that the discrepancy between methods might increase.

Moreover, such an extension is often irrelevant. In

most of the practical applications, the choice of the

method of analysis is more dependent on the

characteristics of the designs and objectives of the

study than on theoretical or statistical considerations.

Regression is generally used in simple situations when

the emphasis is on the location of the QTL. ML is

usually considered in more complex designs, and

when more parameters are estimated.

Nevertheless, as there is a quasi one-to-one cor-

respondence between F ratios smaller than 1 and LRT

equal to 0 under the null hypothesis, we can take

advantage of this property in the calculation of the

significance thresholds using a very simple algorithm:

(1) simulate data with a QTL effect equal to 0;

(2) calculate F ratio using a LS approach;

(3) if F%1, LRT¯ 0;

(4) if F"1, calculate LRT using a ML approach.

The implementation of this algorithm provides a gain

in computing time of 43, 40 and 58% in significance
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Fig. 4. Observed (continuous line) and predicted (dotted line) LRT curves. Predicted LRT is calculated by
transformation of the F ratio using (12). Horizontal lines indicate 5% significance thresholds. Arrow indicates the
simulated location of QTL. Scales of y-axes differ. (a) Small QTL, poor design; (b) small QTL, informative design;
(c) large QTL, poor design; (d ) large QTL, informative design.

Table 4. Estimates of QTL location and power in chromosome scans

(200 simulations). Significance thresholds were determined by simulation

(800 replicates)

Mean locationa and
standard error Power (5%)

QTL effect Design LS ML LS ML

Small Poorb 46±5³4±1 44±0³3±8 30±0 30±5
Informativec 38±3³3±0 39±1³3±1 55±0 52±0

Large Poorb 33±0³2±6 31±7³2±4 95±0 95±5
Informativec 34±8³2±5 34±9³2±5 100 100

a Simulated QTL location: 35±0.
b Marker positions : 0, 20, 40, 60, 80, 100. Two alleles per marker – dam alleles
unidentified.
c Marker positions : 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100. Sixteen alleles per
marker – dam alleles identified.

threshold calculations in a single-position model for 5,

10 and 20 sires respectively. The significance thresholds

are not modified in any of the cases as most of the

rejected values are in the bottom part of the

distribution far from the tail which is relevant for the

significance threshold calculations. The algorithm was

also applied to significance threshold calculation in

chromosome scans. For both poor and informative

designs, the gain in computing time was 51%. In one

case with the poor design the outcome of one run –

out of 800 – was modified by the implementation of

the algorithm and, in consequence, the overall

significance threshold was slightly modified (5±98 vs

6±11). In consequence, the type I error (5±1%) was

slightly higher than the nominal level (5±0%). As

computing facilities are always a limiting factor for
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calculation of significance thresholds by bootstrap or

simulation, this simplification could be used to allow

an increase in the number of runs or the use of a more

precise maximization algorithm.

We have demonstrated that a simple relationship

between F and LRT exists when testing for a QTL in

a balanced half-sib design. This relationship provides

a theoretical framework to understand the similarities

between the two approaches, especially in terms of

power. Moreover it is demonstrated that, at a single

location, the asymptotic distribution of LRT is a

mixture of half χ#
(!)

and half χ#
(")

. Use of these

properties in the algorithm used to calculate the

significance thresholds allows for quicker simulations

and, computing facilities being limited, leads to more

accurate significance thresholds.
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