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Abstract

We provide a number of explicit examples of small volume hyperbolic 3-manifolds and 3-orbifolds
with various geometric properties. These include a sequence of orbifolds with torsion of order
q interpolating between the smallest volume cusped orbifold (q = 6) and the smallest volume
limit orbifold (q -*• oo), hyperbolic 3-manifolds with automorphism groups with large orders in
relation to volume and in arithmetic progression, and the smallest volume hyperbolic manifolds
with totally geodesic surfaces. In each case we provide a presentation for the associated Kleinian
group and exhibit a fundamental domain and an integral formula for the co-volume. We discuss
other interesting properties of these groups.

1991 Mathematics subject classification (Amer. Math. Soc): 20 H 10, 30 F 40, 57 N 10.

0. Introduction

An orbifold is a space locally modelled on M" modulo a finite group action.
The canonical example is the orbit space of a group acting by homeomorphisms
discontinuously on a manifold. In this paper we will basically be concerned
with orientable hyperbolic 3-orbifolds of finite volume. These are the orbit
spaces Q of discrete groups of orientation-preserving isometries of hyperbolic
3-space H3. Thus Q = H3/ F where F is a co-finite volume discrete subgroup
of Isom+(H3) = PSL(2, C). Discrete subgroups of Isom+(H3), which are not
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150 Marston D. E. Conder and Gaven J. Martin [2]

virtually abelian, are called Kleinian groups ; see [3, 17, 21] for the basic
definitions and properties of these groups. We say an orbifold Q is cusped
if it is noncompact and of finite volume. The singular set of Q is the set of
non-manifold points, that is, the projection to the orbit space of the set of fixed
points of elements of F\{identity}. The degree of a point in the singular set is
the order of branching about that point.

A fundamental invariant of a hyperbolic 3-orbifold is its volume. The celeb-
rated Mostow rigidity theorem [20] says that volume is a topological invariant.
Isomorphic co-finite volume Kleinian groups have isometric orbit spaces. In
two dimensions the signature formula (the Riemann-Hurwitz formula) gives
complete information on the possible volumes of hyperbolic 2-orbifolds (the
orbit spaces of Fuchsian groups). The situation is very different for hyperbolic
3-orbifolds: here there is no such formula, nor even a version of the Chern-
Gauss-Bonnet formula in the manifold case (apart from Borel's formula in the
general arithmetic case). From the work of Thurston and J0rgensen [21], we
know that the set of volumes is well-ordered. In particular there is an orbifold
of minimal volume, an orbifold of smallest volume which is the limit of other
orbifold volumes, a smallest volume cusped orbifold, a smallest volume orbifold
with singular set of degree p, and so forth. Some of these have been identified:
for instance, the smallest volume cusped orbifold [18], smallest arithmetic or-
bifold [5], smallest limit orbifold [1] and smallest orbifold with singular set of
degree 6 [8]. See also [14] for the smallest volume hyperbolic manifold with
totally geodesic boundary (we shall use this knowledge later). Note however
that the smallest volume orbifold has not yet been identified, although lower
bounds for this volume are known, see [19, 9] for example. The latter estimates
are off by at most one order of magnitude.

In this paper we provide a number of interesting examples of small volume
hyperbolic 3-orbifolds. For instance we provide an infinite family of co-finite
volume discrete groups {F°6(q) : q > 6}, whose orbit spaces are orbifolds
which interpolate naturally between the smallest volume cusped orbifold and
the smallest volume limit orbifold. Each group Ti_6(q) has an elliptic element
of order q. In [9] we conjecture these groups to be of minimal co-volume with
respect to this property, and provide lower bounds for the volume of all such
examples. It follows from the results here that this conjecture is asymptotically
correct; see Section 3. We give presentations and co-volumes of these groups
and show them to be 3-generator groups. It is surely the case that r°6(7) is
the smallest co-volume Kleinian group with a Fuchsian subgroup. Also we
show that the torsion free subgroup of smallest index in the group F°6(12) is
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actually the smallest co-volume Kleinian group whose orbit space contains a
totally geodesically embedded surface (this follows from [14]).

We also present a naturally related sequence of examples (based on a different
sequence of discrete groups) of hyperbolic 3-manifolds N3(q) whose volume
growth is approximately \2q and whose automorphism groups have order 24q
forq sufficiently large. (In fact the orders form an arithmetic progression). These
manifolds contain totally geodesic surfaces (Accola-Maclachlan curves) and
provide small volume examples of hyperbolic manifolds with various geometric
properties.

Other of our examples are also interesting. We give two infinite families of
discrete co-finite volume Kleinian groups, [r°6(q) : q > 6} and {F°4(<?) : q >
4}, each containing a single conjugacy class of elliptic element of order p and
with the same (finite) limit volume; no two of the groups are isomorphic, yet
the families have the same geometric limits. One understands of course that
these orbifolds are obtained by Dehn surgeries on the limit orbifold; however
our approach is completely explicit. Basically we show geometrically how one
can open up the cusps of various cusped tetrahedral orbifolds using a truncating
procedure, by slicing off an infinite volume piece with a triangle group. This
produces orbifolds of successively larger volume with a finite volume limit. We
carry out this procedure for all the nine singly-cusped tetrahedral orbifolds. We
hope to return to the others (the fourteen with two or more cusps) in a sequel.

We would like to thank S. Kojima for helpful conversations which led to
some of the ideas here, and T. Marshall for reading and correcting an earlier
version.

1. The basic construction

There are a number of basic models for hyperbolic geometry. In what follows
we shall use two models: the upper half space

with the metric ds — \dx\/x3 of constant curvature — 1, and the unit ball

B3 = {(*,, x2, x3) : x\ + x\ + x\ < 1}\ + x\ < 1}

with the metric ds — 2\dx\l(\ — |x|2), also of constant curvature —1. In
either model we denote hyperbolic distance by p(x, y). The usual stereographic
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FIGURE 1. A hyperbolic tetrahedron.

projection provides an isometry between these spaces and we shall use them
more or less interchangably; see [3] for details. In the first case R = 3H3 and
in the second case S2 = 3B3, is called the sphere at infinity and denoted Soo-

Let T be a hyperbolic tetrahedron, that is a convex hyperbolic polyhedron
with four faces (sides) A, B, C and D and vertices a, b, c and d each opposite to
a face, as illustrated in Figure 1.

Let aa,..., ,ad denote the reflections in the faces A , . . . , D respectively and
let T(T) denote the group of hyperbolic isometries generated by reflections in
the faces of T, that is

F(T) = (aa,ab,ac,ad).

Define r°(T) to be the index two normal subgroup preserving orientation. It is
quite easy to see that r°(T) is generated by the products {aaab, aaoc, oaod\. As
yet, we have not supposed that the group F(T) is discrete. Notice however that
the groups F(T) and F°(T) are simultaneously discrete or nondiscrete.

Associated to each tetrahedron whose dihedral angles are integral divisors of
n there is a Coxeter diagram, a graph constructed as follows: there are four ver-
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tices, each corresponding to a face of T, and an edge connecting two vertices in-
dicates that the dihedral angle between the two faces is n/ (number of edges + 2).
See Figure 2 for example.

O

ozzzo

o

FIGURE 2. Coxeter Diagram.

Note that if there is no edge joining two vertices, then the dihedral angle is n/2.
Up to the obvious symmetry induced by relabelling, each hyperbolic tetrahedron
determines a unique Coxeter diagram, and conversely each Coxeter diagram de-
termines at most one hyperbolic tetrahedron. (Naturally some diagrams cannot
be realised, although it is not too difficult to see what the restrictions may be;
however this will not concern us here).

Suppose now, as illustrated in Figure 1, that a is an ideal vertex of T (that is,
a G Soo). Then necessarily the sum of the dihedral angles ZBC+ZBD+ZCD is
it. Let Fa = {ob,oc,od). Using the upper half-space model H3 of hyperbolic
geometry and normalising so that a = oo, one easily sees that Ta acts as a group
of Euclidean isometries on any plane parallel to 9H3, and thus FJSoo is conjug-
ate to a group of Euclidean isometries of the plane generated by reflections in
the sides of a triangle. There is a complete classification of such discrete groups
(as elementary Kleinian groups); see [3, 17]. They are simply Z2 extensions
of the classical (2,3,6), (2,4,4) and (3,3,3) Euclidean triangle groups. In partic-
ular, the dihedral angles are of the form {n/2, n/3, n/6), (TT/2, n/4, n/A) or
(7r/3,7r/3,7r/3).

As is well known, there is a complete classification of those hyperbolic
tetrahedra T with the property that the group F(T) is discrete: see [15, 22,
7]. A good place to find this list is [19; pp 201-203]. There are nine closed
examples (no ideal vertices) and 23 with at least one ideal vertex. Here we will
be concerned with those groups with a single ideal vertex. There are exactly
nine such groups and we list them below in order of increasing volume.
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Coxeter Diagram Volume Cusp Type

1. o — o — o = o Vl RJ 0.042289 A(2,3,6)

2. o — o = o = o y2^ 0.076330 A(2,4,4)

3. °—°x V3 « 0.084578 A(3, 3, 3)

4. o = o — o = o V^^O.105723 A(2, 3,6)

o

5. °~"°^' V5^ 0.152661 A(2,4,4)
o

6 o = o — o = o V6« 0.171502 A(2,3,6)

7. o = o Vj^ 0.211446 A(3,3,3)

o—o
8. I l l V&K 0.305332 A(2,4,4)

9 o ^ c V9 « 0.507471 A(3, 3, 3)

We now show how each cusped tetrahedron is the limit of a natural one-
parameter family of hyperbolic prisms (five-sided hyperbolically convex poly-
hedra). Let T be one of the hyperbolic tetrahedra above. Again use the upper
half-space model of hyperbolic geometry and normalise so the cusp is at 00.
Choose a pair of faces with dihedral angle n/r and let Te, 0 < 9 < n/r, be
that convex hyperbolic polygon obtained by continuously decreasing the angle
n/r to 9, while fixing all the other dihedral angles. This is how to construct TV
Choose an infinite edge for which the dihedral angle is to remain constant. The
faces meeting this edge will remain hyperplanes of M3 perpendicular to R2 and
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the bounded face of T lies on a sphere again perpendicular to E2. A face of Te

will lie on this same sphere £ and so two of the dihedral angles on this face will
remain constant as illustrated in Figure 3. We have only to determine the third
face. Since we are decreasing the dihedral angle and since initially the angle
sum at the ideal vertex was n, the third face must lie on a sphere perpendicular
to R2. Thus there are three free parameters corresponding to the centre of this
sphere (in M2) and its radius.

In the illustration below we are varying the dihedral angle along ac. The
dihedral angles along be and bd remain fixed (as the face bed is constrained to
lie on the same sphere).

FIGURE 3. Opening the cusp of a hyperbolic tetrahedron

We have three things to arrange; namely the two dihedral angles ad and be
should remain constant and the dihedral angle ac must become 9. Let L denote
the set of points z € E2 which are the center of some sphere whose intersection
with £ and the hyperplane n containing bd have the same dihedral angles as T.
Then L is a simple unbounded curve in WL2 passing through E n n . To see this
we may normalise so £ and n are hyperplanes, then, since there is one such
point z, it is clear by scaling that L is a line. Here it is important that the sum
of the dihedral angles at the vertex d exceeds n. Undoing the normalisation,
the line becomes a curve which we know in our initial situation passes through
oo! (Here, as we undo the normalisation the spheres are mapped to spheres with
the same angle intersection properties, however their Euclidean centers are not
necessarily preserved.) One could also do this using the inversive product [3]
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and solving some complicated equations. Now as we vary the centre of the
sphere along this line we see that as z ->• oo (in the correct direction) the
dihedral angle of intersection with the remaining face (our angle 9) tends to n/r
(the initial angle). As z moves along this curve towards a point of intersection of
E and FI the dihedral angle decreases to a point of tangency, with dihedral angle
0, and thereafter the sphere does not meet the hyperplane. Actually, in all but
the case with Coxeter diagram 8, two of the dihedral angles on the face opposite
the ideal vertex are n/2, making the process somewhat easier to visualise.

Using the ball model of hyperbolic geometry and extending the polyhedron
in the obvious fashion, one can see that opening the cusp in this manner amounts
to moving the ideal vertex beyond the sphere at infinity and changing one of the
dihedral angles. The sum of the angles at one of the finite vertices is decreasing
and this vertex can be thought of as moving toward the sphere at infinity.

FIGURE 4

In this way we can see that there is a \n /p, n/q, #)-triangle' subtended at
infinity. We want to show that we can truncate this polygon by a hyperbolic
hyperplane which is perpendicular to each of the three unbounded faces. To see
this it is easiest to use the half-space model.

Let 6 be the face of Te which corresponds to the finite face of T, that is, the
face opposite the ideal vertex of T. In all but Case 8 listed above, two of the
dihedral angles at which 6 meets the remaining faces of Te are n/2 (since, by
construction, they are the same as those of T). Let v be the vertex where the two
dihedral angles of n/2 meet. Move T# around by an isometry so that the two
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unbounded faces (other than 8) which meet at v are hyperplanes of K3, and let
v' be the point of R2 = 3H3 which is the intersection of these two hyperplanes.
Then 8 is a portion of the surface of a sphere S centered at v'. Let £ be the
remaining unbounded face. Then the dihedral angle between 8 and £ is at most
n/3 (because in no case are all the dihedral angles n/2). Increasing the radius
of S we see that eventually the dihedral angle tends to n, while initially it is less
than or equal to n/3. Thus, at some intermediate value it is n/2.

For Case 8, we need a slightly different argument. Two of the dihedral angles
at which 8 meets the unbounded faces are n/3 and the other is n/2. It is
relatively clear how to construct the truncation, and we leave this to the reader.

After truncating Te in this manner, we are left with a hyperbolic prism.
Possibly some of the vertices b, c, d are ideal or are even 'beyond the sphere at
infinity'. In the finite volume case, they will all be finite or ideal.

FIGURE 5. Truncating Tfl.

We label the additional three vertices of this polyhedron by x, y and z, as il-
lustrated. We will now consider the group generated by reflections in this prism.
As the process of opening up a cusp of a hyperbolic tetrahedron can be done
in (possibly) three different ways for each distinct tetrahedron, we introduce
some notation to clarify the group we are considering. For / = 1, 2 , . . . , 8, and
p € {2, 3,4, 6}, and 0 < 0 < n/p, let r,iP(0) be the group of hyperbolic
isometries generated in the prism obtained by opening up the cusp of the tetra-
hedron with the ith Coxeter diagram (as listed above) along the edge going out
to the cusp with dihedral angle n/p by an angle 9.
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FIGURE 6. A hyperbolic prism

Notice that there is possible ambiguity, arising from the fact that there may
be two edges with the same dihedral angle running out to the ideal vertex. This
does not occur in Cases 5 and 8, by symmetry. In Cases 2, 3, 7 and 9 there is a
distinction to be made, and there are two possibilities (again by symmetry). In
each case however, one of the stabilisers of a finite vertex is the dihedral group
(2,2,3) or (2,2,4), corresponding to the edge that meets the vertex at which
two of the dihedral angles are 7r/2 (the other vertices having A4, S4 or A5 as
stabilisers). In these cases we will indicate using a prime (') when we mean
decrease the angle along the edge whose end stabilizer is not dihedral, as for
instance r2,4(#) and T'2 A{9) are distinct. The former opened along the edge ab
and the latter along ad, when the Coxeter diagram is labelled lexicographically.
Also note that Ti<p{n/ p) — r(T,). The edges that end in dihedral stabilisers
will provide infinite families of finite co-volume discrete groups.

We continue to denote the reflections in the faces A, B, C and D from T
by oa,..., od. The reflection in the additional face which was obtained by
truncation is oe. We now have the following.

THEOREM 1.1. The group Tip{9) is discrete if and only if 0 = n/qfor some
q > p. In this case the subgroup A'(i, p,q) = {<Jb,crc,ad) is a Z2 extension of
a hyperbolic triangle group A(/, p, q). If T, has a cusp of signature (p, s, t),
then A(i, p,q) is the (q,s, t)-triangle group. Moreover the group Tip(n/q)
has cofinite volume if and only if(i,p,q) is one of the following triples :
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(i) (/, 6, q) for i — 1, 4, 6 and q > 6
(ii) (/, 3, 9) /or / = 3, 7, 9 and 9 > 3

(iii) (2, 4, 9) for q>A
(iv) (5,2, 9) forq>3
(v) (1,2,9) or (2,2,9) for2<q<6
(vi) (1,3,9) or (3,3,9)' /or 3 < 9 < 6

(vii) (5, 4, 9) or (2, 4, 9)' /or 4 < 9 < 6
(viii) (4, 2, 9) for 2 < 9 < 4

(ix) (4, 3, 9) or (7, 3, 9)' /or 9 = 3,4
(x) (6, 2, 9) or (8, 2, 9) /or 9 = 2, 3

(xi) (6,3,3), (9,3,3)' or (8,4,4).
(//ere the prime denotes T[ p(n/q).)

PROOF. It easily follows from the Poincare polyhedral theorem, see [17;
Theorem Hl l ] , that if 9 — n/q then the group is discrete. As the face E
bounded by x, y and z is perpendicular to the sides B,C and D, the group
generated by ob, oc, od is (conjugate to) a group of reflections in a hyperbolic
triangle. This group is discrete if and only if 9 = n/q. (Notice that initially
the sum of angles of this triangle is n, but as soon as 9 exceeds p the sum of
angles is less than n.) One finds that the sum of the dihedral angles at each of
the vertices of the prism is at least n only in the case of the indicated triples.

Since all the cusps are of the form (2, 3, 6), (2, 4, 4) or (3, 3, 3), we see that
the triangle groups occuring above are the infinite families

(2,3,p), p>l, (2,4,p), p > 5 , (3, 3, p), p > 4, (4,4, p), p > 3,

together with the groups (2, 5,6), (2,6,6), (3,4,6), (3,5,6), (3,6,6).

Henceforth we shall write TitP{q) for Tip{Tc/q).

2. Presentations

The Poincare" theorem also provides us with a presentation for each of these
groups. We give a complete list of the presentations in an appendix, and give
here only a presentation for the groups rlp(q), p = 2,3,6 and 9 > 7. As
our primary interest is in the orientation-preserving subgroup, we also give a
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presentation for all the orientation-preserving subgroups of index 2. We indicate
the families of groups obtained by opening up a particular tetrahedron by giving
the Coxeter diagram of the tetrahedron.

rU6(q) = (a,b, c, d, e: a2= b2= c2 = d2 = e2= (eb)2 = (ec)2 = (ed)2 = 1
(ab)3 = (ac)2= (ad)2= (bcf = (bd)2= (cd)q = 1)

Vh3(q) = (a, b, c,d,e:a2=b2=c2=d2=e2= (eb)2= (ec)2 = (ed)2= 1
(ab)3 = (ac)2= (ad)2= (be)" = (bd)2= (cd)6= 1)

TuC?) = (a, b, c, d, e: a2 = b2 = c2 = d2 = e2 = (eb)2 = (ec)2 = (ed)2 = 1
(abf= (ac)2= (ad)2= (bc)3= (bd)q = (cd)6= 1)

For the orientation-preserving subgroups, we have simplified the presentation
a little. We subsequently will show that for all but a few exceptions, the groups
r°p(q) are actually 3-generator groups. We start out by letting x = ab, y = be,
z = cd, w = de. Clearly these four elements generate the index 2 subgroup
consisting of those words of even length and thus we obtain the presentations
listed below:

I o — o—o=o

r°6(<7) = (x, y, z, w: (yzw)2=(zw)2=w2=x3=(xy)2=(xyz)2=y3=(yz)2=z<i=l)
r°'3(<7) = (x, y, z, w: (yzw)2=(zw)2=w2=x3=(xy)2=(xyz)2=y<i=(yz)2=z6=l)
r°'2(<7) = {x, y, z, w: (yzw)2=(zw)2=w2=x3=(xy)2=(xyz)2=y3=(yz)i=z6=l)

2. o — o=o^o

T°2{q) = (x,y,z,w: (yzw)2= (zw)2= w2=x3= (xy)2= (xyz)2= / = (yz)q=z4= 1)
r°4(<?) = (x,y,z,w: (yzw)2= (zw)2= w2=x3= (xy)2= (xyz)2=yA= (yz)2=z<i= I)
r°'4(<7) = (x, y, z, w: (yzw)2=:(zw)2=w2=x3=(xy)2=(xyz)2=yi=(yz)2=z4=l)

3.

^ (x, y, z, w: (yzw)2=(zw)2=w2=x3=(xy)2=(xyz)2=y3=(yz)3=zi=l)
^ix, y,z, w: (yzw)2=(zw)2=w2=x3=(xy)2=(xyz)2=yi=(yz)3=z3=\)
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4.

r°6(<?) = (x,y,z,w: (yzw)2= (zw)2= w2=x4= (xy)2= (xyz)2= y3= (yz)2=zi= 1)
r°3(<7) = (x,y,z,w: (yzw)2= (zw)2= w2=x4= (xy)2= (xyz)2=y«= (yz)2=z6= 1)
r°2(q) = (x, y, z, w: (yzw)2=(zw)2=w2=x4=(xy)2=(xyz)2=y3=(yz)i=z6= 1}

5.

Y°A{q) = (x, y, z, w: (yzw)2=(zw)2=w2=x3=(xy)2=(xyz)2=y"=(yz)4=z2=l)
r°2(q) = (x, y, z,w:(yzw)2=(zw)2=w2=x3=(xy)2=(xyz)2=y4=(yz)4=z«=l}

r^6(^) = (x, y, z,w:(yzw)2=(zw)2=w2=x5=(xy)2=(xyz)2=y3=(yz)2=zi=l)
V^iq) = (x, y, z, w: (yzw)2=(zw)2=w2=x5=(xy)2=(xyz)2=y«=(yz)2=z6=l)
F°2(q) = (x, y,z,w:(yzw)2=(zw)2=w2=x5=(xy)2=(xyz)2=y3=(yz)i=z6=l)

1.

r°3(q) = {x, y, z,w:(yzw)2={zw)2=w2=x*=(xy)2=(xyz)2=y3={yz)3=zq= 1)
r°'3(q) S (x, y, z, w: (yzw)2=(zw)2=w2=x4=(xy)2=(xyz)2=y<>=(yz)3=z3=l)

r$A(q) = (x, y, z, w: (yzw)2=(zw)2=w2=x3=(xy)2=(xyz)3=y*=(yz)2=z<>=l)
rl2(q) = (x, y, z, w: (yzw)2=(zw)2=w2=x3=(xy)2=(xyz)3=y4=(yz)i=z4= 1}

9 o ^

r°3(q) = (x,y,z,w: (yzw)2= (zw)2= w2=x5= (xy)2= (xyz)2=y3= (yz)3=z'<= 1)
T^(^r) = (x, y,z,w: (yzw)2= {zw)2= w2=x5= (xy)2= (xyz)2=y"= (yz)3=z3= 1)

LEMMA 2.1. If a, ft, y, S are group elements satisfying the relations

a2 = fl2 = y2 = 82 = (aft)2 = (fty? = (yS)2 = (Sa)k = 1,

where k is odd, then (aft, fty, yS, 8a) is a 2-generator group, generated for
example by ya and ftS.
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PROOF. Let x = 0a, y - 08 and u = 0y. Then a0 = x"1 = x, yS - uy
and 8a — y~lx = (xy)~l and the given relations imply x2 — u2 — (uy)2 =
(xy)k = 1. Note also that y0 = ux. Next [ux, y] = (ux)~ly~xuxy —
x~lu~ly~luxy = xuy~]uxy — xyxy (since uy~xu = y), and therefore y~]x —

*1 = [ux, yf-^2. As also u = {ux)x~\ it follows that

(x,y,u) = (ux,y)

and therefore (a/3, f$y, y8, 8a) — {ya,

COROLLARY 2.2. The groups r°p(q) are ^-generator groups for i = 1, 2, 3,
5, 6, 8 and 9 and all relevant p and q.

PROOF. It suffices to show the reflection groups Ti<p{q) are 4-generator
groups. For this consider the presentations given in the appendix and take
(a, 0, y, 8) — (b, e, c, a). The relations of Lemma 2.1 are satisfied with k = 3
for F,,p(q), i - 1, 2, 3, 5 and 8, and with k = 5 for Tt p{q), i = 6 and 9, and the
result follows from the lemma.

Here is a reduced presentation for the group V°6(q).

PROPOSITION 2.3. The group T°6(q) has a complete presentation given by

r°6(<7) ^ (a, b,c: a2 = b2 = c? = (be)2 = (C-lacac-x)2

= (ac-lacac~1)2 = (c^acac^b)3 = 1).

In particular the subgroup {b, c) is the dihedral group Dp of order 2p, and thus
T°6(q) is a factor group of the group Dp * Z2.

PROOF. The presentation can be deduced form the lemma and elimination of
redundant relations. The subgroup (b, c) is a discrete Kleinian group generated
by two elements of order two and is therefore a dihedral group of order 2p. The
remainder of the theorem follows immediately.

Lemma 2.1 also shows r°3(^) is also 3-generator when k = q is odd by
taking (a, 0, y, 8) = (b, d, a, c) in the proof above.

On the other hand if q is even, then the Abelianisation of (ab, be, cd, de) in
the group T°3(q) is Z2 x Z2 x Z2 x Z2 which is obviously not a 3-generator
group and hence neither is F°3(q) for any even q. In the remaining three cases
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r4,2(<7), r7i3(<7) and F^ 3(q), whenever q is divisible by 3 each of these groups
has F7 3(3) as a factor group, with generators a,b,c,d,e satisfying the relations
a1 = b2 = c2 = d2 = e2 = (eb)2 = (ec)2 = (ed)2 = (ab)4 = (ac)2 = (ad)2 =
(be)3 — (bd)3 = (cd)3 = 1. Letting x = eb, y — ea, u = ec and v = ed, the
orientation-preserving subgroup of F73(3) is

G = (x, y,u,v : x2 = u2 = v2 — (xy)4 = (uy)2 = (vy)2

= (xu)3 = (xv)3 = (uv)3 = 1).

The commutator subgroup of this group is G' generated by xu,xv, y2 and
xyxy~\ and the factor group is G/G' = Z2 x Z2. Also G'/G" = Z 3 x Z j x Z
(generated by the images of xu, xv and y2). In particular, if the relations

y6 = [xu, xv] = [xu, y2] — [xu, xyxy l] = [xv, y2]

— [xv,xyxy~l] = [y2,xyxy~{] = 1

are adjoined to those of G, the quotient is a group of order 108, being a split
extension of the group (xu, xv, y2) = Z3 x Z3 x Z3 by (u, y3) = Z2 x Z2, with
every element of (u, y3) being either centralised or inverted under conjugation
by each element of (u, y3). This factor group cannot be generated by 3 elements
however as all elements have order 1, 2, 3 or 6, but the cube of every element
of order 6 is the same as v3, so any two elements generate a subgroup of order
at most 18.

When q is not divisible by 3, let x — eb, y = ea,u = ec and v — ed. The
relations for r 7 3 (^) imply

x2 = M2 = v2 = (xy)4 = (uy)2 = (vy)2 = (xu)3 = (xv)3 = (uv)q = 1.

This time uvu — uxvxvxu — (uxv)x(uxv)~l and vuv = vxuxuxv =
(uxv)~lx(uxv), so that (x,uxv) contains uvu and vuv and therefore also
(uv)3 — (uvu)(vuv). But now uv e {(uv)3) < (x, uxv) and thus (x, uxv)
contains v = (vuv)(uv)~l and also u, thus showing (x, y, u, v) = {x, y, uxv).
Similarly in the case of rv3(<7), we can show xu e ((JCH)3) < (x, uxv)
and thus (x, v, u, v) = (x, y, uxv); while in the case of TA2(q), we find
xv € ((xv)3) < {u, v, xy) and thus (x, y, u, v) = (u, v, xy). It follows that the
groups r°3(<7), r'°3(q) and r°2(q) are all 3-generator groups (when q is not
divisible by 3). We record this as
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THEOREM 2.4. The groups T°2(q), F? 3(q) andT'7°3(q) are 3-generator groups
if and only ifq^O mod 3. The group F° 3 (q) is a 3 -generator group if and only
if q is odd.

3. Volumes

An important feature of the construction we have given is that the families
of groups F,,p(q) have fundamental domains which are part of a one-parameter
family of polyhedra corresponding to Tip{9), and parametrised by the angle
0 < 9 < it I p. According to a result of C. Hodgson [12], the element of volume
along this family is
(3.1) dVol = - \ Id9

Here / is the length of the edge at which the dihedral angle 9 occurs. (Actually
here we do not need the full strength of the result of [12]. All we require can be
derived from Coxeter's results [6]; see for instance [16]. The result however is
still nontrivial.)

We now need to derive / as a function of 9 for each of the families of groups
above.

Let us consider the specific and illustrative case rlp(9), p G {2, 3, 6}. We
subsequently present the results in all cases.

First take the infinite family Fi 6(#). Here we vary the angle along the
edge ab. Using the same labelling as in Figure 6, we consider the hyperbolic
quadrilateral (x, b,d, z). We see that all the angles are right angles except for
l(z, b, d) which is equal to n/3. The length / is determined by the length u, and
u in turn is determined as the length of a side of a hyperbolic triangle for which
we have all the angles. Using hyperbolic trigonometric formulae, see [3], we
have
(3.2) sinh(«) sinh(/) = COS(TT/3) = 1/2.

Considering the hyperbolic triangle (x, y, z) we have also

(3.3) cosh(w) sin(0) = cos(7r/3) = 1/2.

From (3.2) and (3.3) we deduce

(3.4) cosh(«) sin(#) — sinh(w) sinh(/),

and so it follows that

(3.5) sinh2(/) = I
esc2(9) — 4
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7t/3A- r l
a

JI/3

n/6

JI/3

FIGURE 7

Next take the family I \ 3 (#) . Here we consider the quadrilateral {y, z,d,c).
Again all but one of the the dihedral angles are n/2. We find the missing
angle a using some spherical trigonometry: using the ball model of hyperbolic
geometry, move the vertex c back to the origin by an isometry and take a small
round ball centered at c. Consider the spherical triangle on the boundary of this
ball; it has angles given by the dihedral angles of the faces of the prism at the
vertex c. One of these angles is n/2, another is n/3, and the third is 9. The
angle a that we seek is the angle subtended between the vertices of the spherical
triangle that have angles n/3 and 0. From the laws of spherical geometry

(3.6) cos(7r/2) = - cos(7r/3) COS(0) + sin(7r/3) sin(0) cos(a),
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and so

(3.7) cos(a) =
•>/3sin(0)"

From hyperbolic trigonometry, we deduce

sinh2(w) sin2 (a)
(3.8) cosh (/) = —

sinh2(«) + cos2(a)

Equation (3.8) simplifies to

(3.9) sinh(/) = cot(a) coth(w).

Next, consideration of the hyperbolic triangle (x, y, z) this time yields

<1 im ur ^ COS

(3.10) cosh(M) = — 2 sin(6>)

Then (3.9) and (3.10) together yield

(3.11) sinh2(/) =
(4sin2(6>)- l)(4-sec2(6»))'

An entirely analogous procedure yields the result for the groups rit2(0). In
these cases one obtains

(3.12) sinh (/) =
- I)(4cos2(6>)

To summarise the situation, here then is a table of the relationship between /
and 9 for all eight infinite families. In an appendix the formulas for the finite
families of finite co-volume groups are all given.
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Eight Infinite Families

r,,6(0) : sinh2(/) =

F5 3(#) : sinh2(/) =

r4i6(0) : sinh2(O =

r7,3(0) : sinh2(/) =

r6,6(0) : sinh2(/) =

r9,3(0) : sinh2(/) =

r2,4(0) : sinh2(O =

rSi2(0) : sinh2(O =

CSC2(#) -

sin:

2(cos(26>)

CSC2(#) -

cos(26>) •+

V5 +
2(csc2(6>)

V5 + 3

4

\9)
+ cos(0))

4

0)
• cos(6>)

3

- 4 )

sin2(6»)

4 cos(20) + cos(0)

1

2(cot2(6>)

1

4cot(0)(cot(0)

As mentioned earlier, we can now make a volume calculation. We have in
each case a formula of the form

(3.13) sinh2(/) = F{9).

The change in volume from angle 90 to 9 is given by

(3.14) AV = — / idO.

Together (3.13) and (3.14) yield the following formula for the co-volumes of
the discrete orientation preserving groups;

(3.15) co-Vol(r?) = 2V,, + / arcsinh(yf C61)) dG?) = 2V,, + /

where V, is the initial volume of the tetrahedron, #, is the initial dihedral angle
on the cusp and 9 is the new angle at truncation. The factor of 2 reflects the
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index. Thus we have the following formulas for the co-volume of the infinite
families of discrete cocompact groups:

Co-volumes of the infinite families.

co-Vol(r°6(?)) = 2V, + 2 ^ arcsinh ( ) ) d6,
Jn/q \VCSC2(6>) - 4 /

co-Vol(r° (?)) = 2V4 + 2 / arcsinh , )d0, q> 7.
Jit/q yVCSC2(^)-4y

co-Vol(r6
o

i6te)) = 2V6 + 2 f arcsinh | ^ \' " ^=== \ dO,
JK/Q

co-Vol(r5
o
3(<?)) = 2V5 + 2 / arcsinh ' V ;

q > 4.
/"r/3 / sinC#) \

co-Vol(r° (<?)) = 2V7 + 2 / arcsinh v ' )d0, q > 4.
73 A VVcos(20) + cos(0)7

co-Vol(r°
9i3v,,, _ . , . - , i v 4 cos(20) + cos(0)

<? > 4.

co-Vol(r°4(^)) = 2V2 + 2 / arcsinh ( ^ ; ; _ = ) d0, ^ > 5.
- 1

rn / i \
co-Vol(r5°2(<?)) = 2V5 + 2 / arcsinh I — = ^ = = ^ = ^ 1 d9,

The convergence of each of these integrals (for the stated values of q) is
an easy matter to establish. Below is a table of the first few volumes and the
asymptotic volume in each case, accurate to the first four decimal places.
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Table of volumes

= 7

= 4

10 11 12

169

oo

0.17712 0.21442 0.2365 0.25106 0.26130 0.26883 0.30532
0.32593 0.37579 0.40589 0.42597 0.44017 0.45065 0.50191
0.46651 0.52188 0.55565 0.57828 0.59435 0.6062 0.66465

oo

0.42884 0.50121 0.53766 0.55797 0.57076 0.57936 0.61064
0.75158 0.85195 0.90131 0.92969 0.94763 0.95972 1.00383
1.3727 1.4855 1.5414 1.5737 1.5941 1.6079 1.6582

5 6 7 8 9 10 oo

0.33192 0.39232 0.42435 0.44382 0.45667 0.46563 0.50191

3 4 5 6 7 8 oo

0.64848 0.75149 0.79509 0.81789 0.83136 0.84000 0.86767

It is not too difficult to find out in each case above what the limiting poly-
hedron happens to be. It has five faces and five vertices, one of which is ideal.
Normalising so the ideal vertex is oo € 3H3, the four unbounded faces form an
infinite rectangular prism. Labeling the four finite vertices as in Figure 8, we
give a table of the dihedral angles at each edge of this limit polyhedron.

FIGURE 8. The degenerating prism
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Dihedral angles
Group ab be cd da

r°6(oo) n/3 n/3 n/2 n/2
r°6(oo) n/3 n/A n/2 n/2
r6°'6(OO) 7T/3 7T/5 7T/2 7r/2
r°3(oo) n/3 n/3 TT/3 7r/2
r°3(OO) 7T/3 7T/3 7T/4 7r/2
r°3(oo) n/3 n/3 n/5 n/2
T°4(oo) n/A TT/3 ^r/2 TT/2
r°2(oo) n/3 JC/4 n/3 n/2

The degenerate prisms for F°4(oo) and F° 6(oo) are the same and these groups
have the same geometric limit. The following lemma is easy.

LEMMA 3.1. For allO <6 < n/6,

1 2
(3.16)

2cot2(6»)-2 csc2(6»)-4'

Thus in the formulas for the co-volumes, the integrand for that of T°4(q)
is strictly less than the integrand for that of r°6(<7). Notice that as q ->• oo,
these two values have the same limit and that initially, according to our table,
r°4(q) > r°6(q). Thus, from elementary calculus we deduce the following
theorem.

THEOREM 3.2. For each q>l,

co-Vol(r4,6(<7)) < co-Vol(r2,4(<7)).

Thus we have a geometric proof of the following.

THEOREM 3.3. The two sequences of groups T2^{q) and T^6{q) have the
same geometric and algebraic limit as q -y oo. No two of these groups are
isomorphic. All groups are factor groups of the limit group T ̂ 6{oo) = r2>4(oo).

PROOF. It is clear that T2,A{P) = r 4 6(q) implies p = q. Since these groups
are both are of finite co-volume, since co-volume is an algebraic invariant in
such instances, the result follows from Theorem 3.2.
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The isomorphism between F°4(oo) and F°6(oo) is easily found by interchan-
ging the generators a and c and also the generators d and e in the presentations
we have given. On the other hand, it is not so easy to obtain an algebraic proof
that F°4(q) and F°6(q) are not isomorphic. One way to do this is by using the
Reidemeister-Schreier process to show that the second factors in the derived
series of the two groups are finite and infinite respectively.

The next important thing to observe is that the limit prism in the case of the
r°6(<7) groups is actually made up of two copies of the tetrahedron with Coxeter
diagram o — 0 ^ 0 = 0 . The limit volume is the number

0.30542 . . . = 4 x V o l ( o — 0 = 0 = 0 )

which is the smallest orbifold volume limit, see [2]. Hence F16(oo) is the
smallest volume orbifold which is a limit of other volumes. Also F1>6(6) is the
smallest volume cusped orbifold, see [18]. Thus the family of groups Pi 6(q)
give a natural sequence of volumes between these two extremes.

Also, for each q > 6, let V(q) be the smallest volume orbifold with a com-
ponent of the singular set having degree q. The sequence {V(q)} is presumably
strictly increasing. From [8], V(6) — co-Vol(F°6(6)). Also V(q) has an upper
bound which is at least co-Vol(F°6(oo)), and evidently this is the correct upper
bound. More facts concerning [V(<?)}, and lower bounds in particular, can be
found in [9]. We are content to record the above in the following theorem.

THEOREM 3.4. Let V(q) denote the smallest volume amongst all orientable
hyperbolic orbifolds with a component of the singular set having degree q. Then

V(6) = co-Vol(F°6(6)) and \V(q) - co-Vol(ri,6(?))| -* 0 as q -* oo.

We have conjectured in [9] that V(q) = co-Vol(Flj6(^)).

4. Symmetries and subgroups

Various subgroups of the groups we have discussed above exhibit interesting
features. It is quite surprising that in most instances there are torsion-free
subgroups of relatively low index, indeed close to the minimal index of a torsion-
free subgroup of the triangle subgroup of each group. In order to establish the
existence of torsion free subgroups of a given index the following lemma is
useful (and is well known and holds in somewhat more generality):
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LEMMA 4.1. Let V be a discrete group generated by reflections in a 3-
dimensional hyperbolic polyhedron Q.. Then every element of finite order in
F is conjugate to an edge relation in the presentation ofT.

PROOF. Let y e r be an element of finite order and let A be the axis of
fixed points of y. As Q is a fundamental domain, A (1 int(fi) = </>. As A is
uncountable and as the vertices and edges of £2 are locally finite (in H3) some
translate of £1 contains a subarc of A in its boundary. It is not difficult to see
that such an arc cannot lie in a face of any translate of £1, and the result follows.

The following lemma is clear and shows us that the stabilizer of the hyperplane
n we used to truncate the deformed hyperbolic tetrahedron to produce the
groups Ffp (q) is actually nonorientable, when restricted to this hyperplane. This
happens because although each element of Y° Aq) is orientable, the stabilizer
of Fl is generated by three elements of order two whose axes form a hyperbolic
triangle in Fl. The group these elements generate is orientable as a subgroup
of isometries of H3, but when restricted to FI the rotation of order two about an
axis is the same as a reflection across this axis.

LEMMA 4.2. Let n be the hyperplane used to truncate the tetrahedron to
produce the group T° (q). Then the stabilizer of FI in Ff (q) restricted to
n , Stabro ( (? )(n)|n, is a nonorientable hyperbolic triangle reflection group.

The point of this lemma is that in any torsion-free subgroup H of Tfp(q),
giving us an oriented hyperbolic 3-manifold A/3, we shall find a totally geodesic
surface F2 corresponding to the intersection H n A, where A is a group gen-
erated by reflections in a hyperbolic triangle. Because the restriction to the
invariant hyperplane is not orientation preserving however, the surface may not
be orientable. In every instance we have investigated, in the orbit space of a
smallest index torsion free subgroup, F is nonorientable but M admits a double
cover for which the lift of F is oriented (and of course totally geodesic).

We now want to look at the torsion-free subgroups. First consider the fi-
nite index torsion-free subgroups of r°6(q), as these groups have smallest
co-volume. Let A denote the (2, 3, q) triangle subgroup and A* the extended
triangle subgroup of Lemma 4.2. As A < F the index of such a subgroup is
bounded below by the index of a torsion free subgroup of a (2, 3, p) triangle
group. For the group F°6(7) and the (2, 3, 7) triangle group, this number is 84.
Surprisingly there is a torsion-free subgroup of index 84. This subgroup is not
normal and is not even normalised by the generator of order 7. Similarly there
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is a torsion-free subgroup of index 48 in F°6(8) (the same as for A(2, 3, 8));
but the obvious conjecture fails for the group F°6(9) whose smallest torsion
free subgroup has index 72 (as compared with 36 for A(2, 3, 9)). Notice that a
torsion-free subgroup F237 of index 84 in r°6(q) covers an oriented hyperbolic
3-manifold M(2X1) = H3/ r237 with a volume of 84 x 0.17712... « 14.88.. . .
This manifold has a nonoriented totally geodesic surface whose double cover
has genus two, corresponding to the index 84 subgroup of the Z2-extension of
the (2,3,7) triangle goup A*. Also M(2J3I7) has a double cover for which the lift
of the totally geodesic surface is oriented. Using F°6(8) we are provided with
an oriented hyperbolic 3-manifold M238 of volume 48 x 0.21442... «a 10.29...
again with a nonorientable totally geodesic surface and admitting a double cover.

But it is the group F°6(12) that provides some of the most interesting ex-
amples.

THEOREM 4.3. Let F = F°6(12). Then there are torsion free subgroups Fo

and Pi ofT with the following properties.

Fi<F 0 , | F : r o | = 24, | r : T,| =48 and |T0 : T,| = 2.

Let Mo = H3/ Fo and Mx = H3/ IY Then Mo is a smallest volume hyperbolic
3-manifold with a totally geodesic closed surface (it is nonorientable), and
Vol(M0) s» 3.2260, where Mi double covers Mo and is a smallest volume
hyperbolic 3-manifold with a separating totally geodesic closed surface, and
Vol(M,)« 6.4519.

Let Ho (respectively Hi) be the core of Fo (respectively F J in F. Then
the factor group T/Ho is isomorphic to PSL(2, 23) and F/H\ is isomorphic to
PSL(2, 23) x Z2.

PROOF. (Sketch) The construction of the torsion-free subgroups is similar
to that of Theorem 4.4 below and so we leave the matter there. Notice that
F contains the (2,3,12) triangle group, so that any finite index torsion-free
subgroup must contain a surface group. The formula for the volumes of Mo and
M] can be found from the table following 3.15. These numbers are the same
as given by Kojima and Miyamoto [14] for the minimal volume hyperbolic
3-manifold with totally geodiesic boundary (it takes a little thought to see how
to arrange copies of the fundamental polyhedral prism that we constructed into
the requisite number of truncated hyperbolic ideal tetrahedra of [14]) . Cutting
Mo open along this surface yields a hyperbolic 3-manifold with totally geodesic
boundary (it doesn't give two such manifolds as the surface is not separating).
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In Mi the lift of the surface is separating. Cutting M\ open along this surface
gives two manifolds with totally geodesic boundary; and since one of these must
have volume of no more than half the volume of Mo (and since this is minimal),
then both pieces have the same volume as the smallest such manifold (again by
f 14]) and the result follows.

Next we discuss another exceptionally interesting class of these groups.

THEOREM 4.4. Whenever q is an odd multiple of 6, say q — 6m where m is
odd, the group P = r°A(q) has a torsion free subgroup H of index 4q, with
core

of index 24q. The images of two elements in P which generate the (2, 4, q)
triangle group generate in T/N a subgroup of order 4q, isomorphic to the
automorphism group of the Accola-Maclachlan surface of genus (q — 2)/2,
which is isometrically and totally geodesically embedded in H3/ P.

PROOF. Let us use the presentation of the group P2,4(<?) given in the appendix.
Set

X = eb, Y = ea, U = ec and V = ed,

so the relations imply

X2= U2= V2= (XY)3= (UY)2= (VY)2= (XU)4= (XV)2= (UV)q= 1.

Now make another change of variables, taking

x = VX, y = XU, t = X and w = UY.

In terms of the earlier generators, X — t, U — X2U = ty, V = VX2 — xt
and Y = X2U2Y = tyw; and the relations become

x
2 = y4 = (xy)q = t2 = (xt)2 = (yt)2 = w2 = (xyw)2 = (yw)3 = 1.

In particular (x, y) is isomorphic to the (2,4, q) triangle group, and (x, y, t) to its
Z2 -extension. Next let K = 4q = 24m, and construct a transitive permutation
representation of P on the set {1, 2, 3 . . . , , K} by letting x, y, t act as follows.
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x(k) = j

y(k) =

k
k

k
k

—
+

+

3
3

1
3

if* = 1
if it = 2

ifit = 1
ifit = 4

or 3
or 4

or 2
mod

mod
mod

or 3
4

4
4

mod 4

t(k) = K + l-k

w(k) =

k-Am + 3
k + 16m + 1
k + 8m - 1
k + Am - 1
k + 8m + 1
k + 16m - 1
* - 4w + 1
A; + Am - 3

for all k

if ^ = 1 mod 8
if k = 2 mod 8
if A; = 3 mod 8
if it = 4 mod 8
if k = 5 mod 8
if/: = 6 mod 8
if it = 7 mod 8
if it = 8 mod 8

In each case here the right hand side of the definition is considered mod K
where necessary. For example in the case q — 6 these permutations are

x = (l, 22)(2, 5)(3, 24)(4, 7)(6, 9)(8, 11)(10, 13)(12, 15)(14, 17)(16, 19)

(18, 21)(20, 23)

y = (1,2,3,4)(5, 6, 7, 8)(9, 10, 11, 12)(13, 14, 15, 16)(17, 18, 19, 20)

(21,22,23,24)

t = (1, 24)(2, 23)(3, 22)(4, 21)(5, 20)(6, 19)(7, 18)(8, 17)(9, 16)(10, 15)

w = (1, 24)(2, 19)(3, 10)(4, 7)(5, 14)(6, 21)(8, 9)(11, 18)(12, 15)(13, 22)

(16,17)(20, 23)

It is not difficult to check the relations

x2 = yA = (xy)q =t2 = (xt)2 = (yt)2 = w2 = (xyw)2 = (yw)3 = 1

are satisfied, and that each of the permutations x, y, xy, t, xt, yt, w, xyw
and yw not only has the appropriate order (as indicated by the exponents in
the relations), but also is semiregular (having all cycles the same length). In
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particular, every nontrivial power of one of these permutations is fixed point
free, and it follows that if H is the stabilizer of the point 1 in this representation,
then H is a torsion free subgroup of F of index K.

Similarly it is not too difficult to see that x and y2 commute so that the
commutator [x, v2] is trivial (in fact H is generated by conjugates of [x, y2]
together with xy2t and the element wt (xy)m~'.) Thus {x, y) is a central extension
of (y2) (of order two) by a dihedral group of order 2q, and is therefore a factor
group of the (2, 4, q) triangle group, of order 4q. This shows that {x,y) is
isomorphic to the automorphism group of the Accola-Maclachlan surface of
genus (4q — 8)/8 = (q — 2)/2. Next, (x, y, t) is a group of twice this order, and
finally (x, y, t, w) has order 24q (with the identity, w and vox in distinct cosets
of (x, y, t)) so that N, the kernel of the representation, has index 24q in F.

Finally, let A denote the (2, 4, q) triangle subgroup of F and A* the extended
triangle group. The remainder of the theorem follows from the fact that the
suface subgroup F Pi A has index 4q in A and index Sq in A*.

COROLLARY 4.5. Let N be as in Theorem 4.2 and set N3(q) - H3/N, where
q = 6m, for m odd. Then N3(q) is an orientable hyperbolic 3-manifold
containing a totally geodesic orientable suface of genus 3m — 1. Moreover for
large q

Vol(N3(q)) f» 12.05?,

and the order of the automorphism group ofN3{q) is exactly 24q.

PROOF. The only thing that is not clear from what we have proved above is
that the order of the automorphism group of N3(q) is precisely 24q for all q
sufficiently large. This follows from the fact that

Vol(iV3(<7))
\ W " - • 0.501. . . as q - • oo.

The order of the automorphism group is divisible by 24q. If there were an
infinite sequence of q with the order of the automorphism group larger than
24q, then the limit above would be less than \ x (0.501...) < 0.26. But as we
have earlier pointed out the smallest limit orbifold volume is 0.30532... This
contradiction establishes the claim.

Below we have presented a table of what we have found out about the groups
F°6(<7) for some small values of q using the University of Sydney's CAYLEY
package.
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168 torsion-free subgroups of index 84. All associated with the factor group
PSL(2,83) of order 285852,
e.g. < bdca, dacdbecdcb, decabeae >

344 torsion-free subgroups of index 48:
96 with associated factor group PGL(2,23) of order 12144,
e.g. < dceb, daebca, cbedcaedcbab >
48 with associated factor group soluble of order 6144 (= 3 x 2 u ) ,
e.g. < caeb, baedcd, bcdcdcdc, cbdcedcdcabc >
48 with associated factor group soluble of order 98304 (=3x215),
e.g. < caed, dcdbcdcb, cbedcbab >
48 with associated factor group of order 20160 (a subdirect product of
S5 and PGL(2,7)),
e.g. < adcb, bcebcdca, edcaedcbcd >
48 with associated factor group of order 5643509764108 (a wreath
product of A5 by PGL(2,7)),
e.g. < adcb, edcaeb, ebdcdcdc, cabcedcdcdbc >
24 with associated factor group of order 8064 (a direct product of S4
and PGL(2,7)),
e.g. < adcb, edcaeb, cdcdebcdcd, dcbcedcdcdbc >
24 with associated factor group of order 2016 (a direct product of S3
and PGL(2,7)),
e.g. < edcdcb,cdcbcdab,cabcdcdb,caeace >
8 with associated factor group PGL(2,7) of order 336,
e.g. < edcdcb, bdcdca, cabacdcdbc >

?,6
No torsion free subgroups of index 36. There are many of index 72.
Some associated with factor group A72,
e.g. < dceb, cbcaedab, cdcbcdcbac, cadcbdcdcdcdebac >
Some associated with factor group of order 234 x 36! a wreath product of
Cz by A36, e.g. < dceb, cbcaedab, cdcdcdcbac, cdcbcaedcbcdac,
cabcbdcdacbdcdac >

r?.6O2) -
64 torsion-free subgroups of index 24:

24 with associated factor group PSL(2,23) of order 6072,
e.g. < dcbe, cdcbac, cbcaedab >
24 with associated factor group PGL(2,11) of order 1320,
e.g. < caeb, dcbdcb, bdcaedbc >
16 with associated factor group soluble of order 648,
e.g. < dcbe, daebac, bdcaebab >
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272 torsion-free subgroups of index 48 intersecting < be, bd > in a subgroup
of index 24 and < be, bd, be > in a subgroup of index 48:
72 with associated factor group PSL(2,23)xC2 of order 12144,
e.g. < bdea, eacdbe, bedebded, bcbdabcdcdcd >
48 with associated factor group soluble of order 37 x 222,
e.g. < bdea, eacdbe, bedebded, dcdcdcbacdcd >
48 with associated factor group of order 73738368 (containing the direct
product of two copies of PSL(2,23) as a subgroup of index 2 ),
e.g. < bdea, eacdbe, daedbebdeb, dcbdcdcdcb >
24 with associated factor group of order 7308155289600 (containing
the direct product of two copies of a wreath product of Ci by PSL(2,11)
as a subgroup of index 4),
e.g. < edeabd, beaeab, babebded, bacdedbc >
24 with associated factor group of order 1742400 (containing the
direct product of two copies of PSL(2,21) as a subgroup of index 4),
e.g. < edeabd,beaeab, babebded, bacdedbc >
24 with associated factor group PGL(2,11) x C-i of order 2640,
e.g. < edeabd, becabeab, cabacded, bacdedbc >
16 with associated factor group soluble of order 139968 (37 x 26),
e.g. < edeabd,beaeab, babebded,bedebaed >
16 with associated factor group soluble of order 1296,
e.g. < edeabd,becabeca, babebded,bedebaed >
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5. Appendix : Presentation of the reflection groups

ri,6(<7) = {a, b, c, d, e : a2 = b2 = c2 = d2 = e2 = (eb)2 = (ec)2 = (ed)2

= (abf = (ac)2 = (ad)2 = (be)3 = (bd)2 = (cd)i = 1)
ri,3(<7) = (a, b, c, d, e : a2 = b2 = c2 = d2 = e2 = (eb)2 = (ec)2 = (ed)2

= (abf = (ac)2 = (ad)2 = (be)" = (bd)2 = (cd)6 = 1)
ri,2(<?) = (a, b, c,d,e : a2 = b2 = c2 = d2 = e2 = (eb)2 = (ec)2 = (ed)2

= (abf = (ac)2 = (ad)2 = (be)3 = (bd)" = (cd)6 = 1)
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2.

r2,2(«7) {a, b, c,d,e : a2 = b2 = c2 = d2 = e2 = (ebf = (ec)2 = (ed)2

= (abf = (acf = (ad)2 = (be)4 = (bd)i = (cd)4 = 1)
(a, b, c,d,e : a2 = b2 = c2 = d2 = e2 = (eb)2 = (ec)2 = (ed)2

= (abf = (ac)2 = (ad)2 = (be)4 = (bd)2 = (cd)" = 1)
(a, b, c,d,e : a2 = b2 = c2 = d2 = e2 = (eb)2 = (ec)2 = (ed)2

= (abf = (ac)2 = (ad)2 = (bc)i = (bd)2 = (cd)4 = 1)

3.

r3,3(<7) (a, b, c,d,e : a2 = b2 = c2 = d2 = e2 = (eb)2 = (ec)2 = (ed)2

= (abf = (ac)2 = (ad)2 = (bef = (bd)3 = (cd)« = 1)
(a, b, c,d,e : a2 = b2 = c2 = d2 = e2 = (eb)2 = (ec)2 = (ed)2

= (abf = (ac)2 = (ad)2 = (be)" = (bdf = (cdf = 1)

4 o = o—o = (

(a, b, c, d, e : a2 = b2 = c2 = d2 = e2 = (eb)2 = (ec)2 = (ed)2

= (ab)4 = (ac)2 = (ad)2 = (bef = (bd)2 = (cd)q = 1)
(a, b, c, d, e : a2 = b2 = c2 = d2 = e2 = (eb)2 = (ec)2 = (edf

= (ab)4 = (ac)2 = (ad)2 = (be)" = (bd)2 = (cd)6 = 1)
(a, b, c,d,e : a2 = b2 = c2 = d2 = e2 = (eb)2 = (ec)2 = (ed)2

= (ab)4 = (ac)2 = (ad)2 = (bef = (bd)q = (cdf = 1)

5.

r5,4(<7) (a, b, c, d, e : a2 = b2 = c2 = d2 = e2 = (eb)2 = (ec)2 = (edf
= (abf = (ac)2 = (adf = (be)" = (bd)4 = (cdf = 1)

(a, b, c,d,e : a2 = b2 = c2 = d2 = e2 = (ebf = (ecf = (edf
= (abf = (acf = (adf = (bef = (bd)4 = (cd)" = 1}

6.

r6,6(<7) (a, b, c.d.e : a2 = b2 = c2 = d2 = e2 = (ebf = (ecf = (edf
= (abf = (acf = (adf = (bef = (bdf = (cd)" = 1)

(a, b, c,d,e : a2 = b2 = c2 = d2 = e2 = (ebf = (ecf = (edf
= (abf = (acf = (adf = (be)" = (bdf = (cd)6 = 1}

{a, b, c, d, e : a2 = b2 = c2 = d2 = e2 = (ebf = (ecf = (edf
= (abf = (acf = (adf = (bef = (bd)" = (cd)6 = 1)
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7. o = c<

r7,3(<7) = {a,b,c,d,e:a2 = b2 = c2 = d2 = e2 = (eb)2 = (ec)2 = (ed)2

= (ab)4 = (ac)2 = (ad)2 = (be)3 = (bd)3 = (cd)« = 1}
r;3(<7) = (a, b, c, d, e : a2 = b2 = c2 = d2 = e2 = (eb)2 = (ec)2 = (ed)2

= (ab)4 = (ac)2 = (ad)2 = (Jbc)i = (bd)3 = (cd)3 = 1)

o—o

rg,4(<7) = {a, b, c,d,e : a2 = b2 = c2 = d2 = e2 = (eb)2 = (ec)2 = (ed)2

= (ab)3 = (ac)2 = (ad)3 = (be)4 = (bd)2 = (cd)* = 1)
r8,2(<?) = (a, b, c,d,e : a2 = b2 = c2 = d2 = e2 = (eb)2 = (ec)2 = (ed)2

= (ab)3 = (ac)2 = (ad)3 = (be)4 = (bd)* = (cd)4 = 1)

r9j3(<7) = (a,b,c,d,e:a2=b2 = c2=d2 = e2

= (ab)5 = (ac)2 = (ad)2 = (be)3 = (bd) = (cd)* = 1}
F'93(q) = (a,b,c,d,e:a2 = b2 = c2=d2 = e2 = (eb)2 = (ec)2 = (ed)

= (ab)5 = (ac)2 = (ad)2 = (be)* = (bd)3 = (cd)3 = 1)

6. Appendix: co-Volumes of the finite families

For the finite families (of finite co-volume) we have computed the volumes
(by numerical integration) and have presented these below.

/•JT/3 / Pi \

co-Vol(r?3(<7)) = 2Vi 4- / arcsinh I , I dd

Jx/q \v/(3sec2(6>) -4)(4-sec2(6>))/

co-Vol(r?3(4)) w 0.294192..., co-Vol(r5>?3(5)) « 0.44129...,

co-Vol(rJ>3(6)) RS 0.612888...

co-Vol(rJ3(3)) = 2V4 + f arcsinh ( -
Jn/4 \ y-r/4 \v/(3sec2(0)-4)(4-sec2(0))/

% 0.639249...

co-Mo\(Vl2(q)) = 2V,

\d0

+ f arcsinh I _ ^ = ^ ^ ^ r ^ = = = = = = = = | de
nlq \J(4sm2(6) - I)(4cos2(6>) + 2V3cos(6»))/

https://doi.org/10.1017/S1446788700032018 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700032018


182 Marston D. E. Conder and Gaven J. Martin [34]

co-Vol(r°2(3)) as 0.537619.. . , co-Vol(r°2(4)) % 0.748154...

co-Vol(r°2(5)) ™ 0.915902.. . , co-Vol(rf_2(6)) % 1.09947...

co-Vol(r°2(<7)) = 2V4

+ / arcsinh | „ — v - , ' * | d9
- I)(4cos2(6>) +2v/3cos(6>))/

co-Vo\(Tl2(2,)) % 0.901266... , co-Vol(T°2(4)) % 1.33469...

co-Vol(r°2(3)) = 2V6

, i • u i V3cos(6>) , .
+ / arcsinh | , | dO

isin2(6>) - I)(4cos2(6») + 273008(61)),

• 0.940957.. . , A = - = ? —
V5 + 1

r/3 . I cos(6>) + 1 \ J
+ / arcsinh , dB

Jn/q \v/2(4sin2(<9) - l)(cos(20 +cos(6>))/

co-Vol(r3
D'3(4)) « 0.530572..., co-Vol(r^3(5)) % 0.727099...,

co -VolCr^ ) ) « 0.92314...

f C ° S ( 6 > ) + ' ) d6co-Vol(r°'3(4)) = 2V7 + / arcsinh
J^/4

1.03621...

co-Vol(r?'_(fl)) = 2V2 + / arcsinh I z z ) dO
2'4 Jn/q V(4sin2(0)-l)(l-tan2(0));
co-Vol(r^'4(5)) % 0.425962..., co-Vol(r^(6)) % 0.634324...

• n/2 I

= 2v2 + / a r c s i n h [ , / ^ _ , , ; : ; ; " / ; : , _ , i ^
•\̂ Y 2cos(6»)(l - •

i 0.666637.. . , c o - V o K r ^ ) ) « 0.887613...

% 1.05936..., co-Vol(r!?2(6)) % 1.24493...
/.JT/4 / J S

co-Vol(r?4(^)) = 2V5 + / arcsinh I I dO

co-Vol(rfi4(5)) % 0.619684..., co-Vol(r£4(6)) % 0.84577....

Department of Mathematics Department of Mathematics
The University of Auckland The University of Auckland
Private Bag 92019 Auckland Private Bag 92019 Auckland
NEW ZEALAND NEW ZEALAND
email: conder@mat.aukuni.ac.nz email: martin@mat.aukuni.ac.nz

https://doi.org/10.1017/S1446788700032018 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700032018

