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A method of finding (i) the double points of a unicursal
curve, (ii) unicursal quartics with three given

double points.

By Dr R. J. T. BELL.

(Read and Received ISth December 1912.)

The equations

where J\(t), fi(t), <f>(t) are polynomials in t, determine a unicursal
curve. If a. and /3 can be found so that

(at2 + 2bt + c)fa(t)

then the point (<x, /?) is on the curve and is given by two values
of t, <! and <2, which are the roots of the equation at2 + 2bt + c = 0.
The gradients of the tangents through («., /8) are

L y^I and L y-P

L Ut) A L

Hence if t: and t2 are real and distinct, there are two distinct
tangents through (a, 3̂), and (<x, /3) is a node. If t-^ = t2, the
tangents coincide and («., /3) is a cusp. If t1 and U are imaginary,
the tangents are imaginary and (<x, /?) is a conjugate point.

We have assumed that ^i(t) and tyM have no common factor.
If they had, (a., f3) would be a multiple point of higher order than
the second and the tangents through it could be found as above.

Since, when (a;, y) is a double point,

A(t)-xtft) and M)-y<Kt)
have a common factor of the form at2 + 2bt + c, we may find the
double points as follows :—regard f^t) - x<j>(t) and /2(l) - y4>(t) as
polynomials in I, and proceed to find their H.C.F. At a certain
stage of the process the remainders will be of the form

ut' + vt + w, u'P + v't
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where u, v, w, u', v', w' are functions of x and y. These
remainders must both be multiples of the common factor
at3 + 2bt + c, and therefore

^ = ^ - = ̂  (1)
U V W

Solve these equations for x and y. Any values of x and y which
satisfy all three equations give double points. (Of course, we may
take instead of f^t) - x<f>(t) and /2(t) - y<f>(t) any legitimate com-
bination of these expressions which will simplify the process of
finding the H.C.F.).

Let us consider as an example the curve

x f y -t*-t3

Equating the values of t3 + ? - 1, we have

We have also ' xt3 + (x - a)t - x = 0.

Apply the rule for finding the H.C.F. to the expressions in
equations (2).

xt2 + xt + y xt3 + (x-a)t -x
xt3 + xfi + yt

- at* -yt - x
Hence for double points

x x y
a y x '

or x(y-a) = 0, x2 = y"; x- = ay.

The .Jbhree equations are satisfied at (0, 0), (o, a), ( - a, a), and
these points are therefore double points. Since x and y have a
common factor t", (0, 0) is a cusp. The gradient of the tangent
there is

hence OX is the tangent at the origin.

Again, x-a = -F-—5

x + a--
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Hence (a, a) is a conjugate point, being given by t2 +1 + 1 = 0, and
( -a, a) is a node, being given by t* + t- 1 =0. The gradient of a-
tangent at the node is

x+a

— 2
'7+1 -1-2.

The form of the curve is shown in Fig. 1. The numbers affixed
are the values of t, and it is interesting to note in this and the
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following examples how rapidly t varies at some parts of the curve
and how slowly at others.

The constraint equation of the curve is found by eliminating t
between the freedom equations, or between the equations (2). But
since we may combine the expressions in these equations as we did
in finding the H.C.F., the above elimination reduces to the elimina-
tion of t between the equations

x? + xt + y = 0, aP + yl + x^O, (3)

formed by equating to zero the remainders of the second degree in
the H.C.F. process. From (3)

t" t 1
x2 - y1 x2 - ay x(y - a)'

whence the constraint equation is

(a;2 - ayf = x(y - a)(x" - y2).

I t is easy to verify generally that any solutions of all the three
equations (1) give double points on the curve. As above, the con-
straint equation of the curve is found by eliminating t from the
equations

uf + vt + w = 0, u'f + v't + w = 0,

and is therefore

(wu' - w'uf = (uv' — u'v)(yw' - v'w).

Hence any values of x and y which satisfy

, wu' — w'u = 0, uv - uv = 0, and vw' - v'w = 0

give double points. I t should be noted that though the three
equations (1) are not independent it is possible to find values of
x and y which satisfy two of them and do not satisfy the third.
For example, any solutions of u = 0 and u = 0 would satisfy the
first two and might not satisfy the third. The constraint equation
shows that if none of the expressions wu - w'u, uv - u'v, vw' - v'w
is a perfect square, («., fS) is a double point only if x = a, y = fi
satisfy all three equations (1).

The nature of the double point can be decided by an examina-
tion of the discriminants of the factors ut" + vt + w, u'f + v't + w. If
v2 - iwu is positive when the coordinates of the double point are
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substituted in n, v, w, the double point is a node; if it is negative,
a conjugate point. But if v2 - 4toit = 0 we cannot at once infer that
the double point is a cusp. For the coordinates (a., /?) of the double
point may satisfy the equations u = v = w = 0, and in this case the
factor u(2 + vt + w disappears on substituting the coordinates.
Hence

ut* + vt + w is of the form F . (ptf + qt + r)

where F is a factor which is zero when x = a. and y = (3, and the
double point is a node, cusp, or conjugate point according as the
roots of pt- + qt + r = 0 are real, equal, or imaginary. (If both of
the discriminants v1 - 4KJU, V"2 - iw'u' vanish when x = a, y = f3,
(OL, ft) is generally a cusp.)

An example may help to make this clearer. Take the curve

x = a(t3 - It), y = a((i - W +1).

We have for the H.C.F.

t at3 -2at-x
a? - xt* + t(y - a)

fx — a)t - x

at* - 3al2 + (a-y)
at4 - la? - xt

- a«2 + tx + (a - y)

therefore for double points — = =
ax a-y

or x2 + y2 = a2, xy = 0,

Whence we find (a, 0), ( - a, 0), (0, - a) are double points; [(0, a)
is not a double point, though its coordinates satisfy two of the
equations].

The discriminants of the remainders are

The first of these vanishes when x = 0, y — -a, but the second is
positive. Since x2 = a(y + a) we may write the first remainder in
the form

fx -t x
a

and we see that it vanishes on account of the factor x. Divide out
by x/a and we get at? -xt - a, whose discriminant, x" + 4a2 is always
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positive, and hence (0, - a) is a node, and the other double points
are also nodes. Fig. 2 shows the form of the curve.

r

X'

The foregoing discussion suggested a means of obtaining
unicursftl quartic curves with three given points as double points.
If we can find two conies through the three points and their

u v w ,
equations can be put in the forms —; = —- = —-, where u, v, w,

u', v', w', are linear functions of x and y, then the coordinates of the
three given points will generally satisfy all the three equations

n v w
If therefore we eliminate t from the equations

uf + vl + w =0,
u't2 + v't + w' = 0,

we shall have the constraint equation of a quartic with the given
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points as double points. If we arrange these equations as equations
in x and y and solve, we express x and y as functions of t, and
obtain the freedom equations of the curve.

It is easy to find the two conies. We may determine the
constants in the equations

(x + a)(y + b) = c a.y = x2 + fix + y,

so that the conies they represent may pass through three given
points. The second equation may then be written

"•(y -8) = (x + a)(x + /3- a),
where a.8 = y - a/3 + a2,
and the two equations therefore give

x+a 1 a(y — 8)
c y + b c(x + fi-a)'

Thus if we take the points (a, 0), ( - a, 0), (0, - a) to be the
double points, we may choose x2 + y1 = a2, x2 = a(y + o) as the conies.

x d — y a
These may be written = = —, which gives the third equa-J a+y x x ° H

tion xy = 0. This is satisfied by the coordinates of the given points.
Consider now

xt2+2kt(a-y) + la = 0, (i)
(a + y)f + 2ktx + lx = 0, (ii)

where k and I are arbitrary constants.

Eliminate t from these equations and we have

l(v? -ay- a2) + Wxy(x? + y2- a?) = 0.

Solve for x and y and we get

x iki' + W y _ (l+iktf-t*
=T = ~ tl + ikt2 + 2kW ~a = t* + ±kf> + 2kll '

We have here the constraint and the freedom equations of a
unicursal quartic with the three given points as double points.

The discriminant of (i) is k"{a - yf - lax = D,, say,
„ (ii) „ k-x2 - lx(a + y) = D2 „

When x = a, y = 0, D ^ F - Z ) ^ , V2 = (k° - l)a?;

Hence (0, - a) must be a node, but by choosing I - k2 we can make
(a, 0) a cusp, or by l>k~, a conjugate point.

By rearranging the coefficients of t-, t, and the constant terms
in (i) and (ii) in the cyclic order we obtain three curves.

https://doi.org/10.1017/S0013091500034143 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500034143


42

Greater control over the nature of the double points may be
obtained by the introduction of more arbitrary constants. Thus
the equations of any conies through the three points (a, 0), ( - a, 0),
(0, — a) may be written

x1 + Ixy = (a + y)(a + my), ar + \xy = (a + y)(a + /xy).
x a + my a + fiy

Whence = — = ^ .
a + y x + ly x + Ky

The third conic is therefore
(a + my)(x + ky) = {x + ly)(a + fxy),

or y[x(m-n) + y(m\-l/i
It passes through all three points if

Provided that I, TO, A, fi, are chosen to satisfy this equation,
they are otherwise at our disposal and we may assign values to
them so that the discriminants have given signs, or that the curves
may satisfy other conditions.

The following examples have been constructed by the above
methods: —

x 3t — 2t3 y t* — 3 < 2 + l

a ~ t* - 2t2 + 2 ' a t*-2f+2:

xy (x +y

x' A

{Or

2y- + ay

r

— ^
0

0

r

-a-);

\

/

(Fig. 3).

fc.o?

)

Pig. 3.
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(ii)
x _ At y _ - 2 ( t a + l ) _

a t * + 3 ' a
xs(2/ + a) ! + (x2 - 3y- - 2ay;(*» - J/2) = 0 ; (Fig. 4).

X'
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(iii)
221 y \W+\)

-y2) = 0; (Fig. 5).

- a)2 = 0 ; (Fig. 6).

https://doi.org/10.1017/S0013091500034143 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500034143


45

(v)
x _ t-2t' y _ t* - 2ls + l- - 1

((a, 0) is a conjugate point on this curve); (Fig. 7).

(vi)
x_-t(3t-2) y

{T? + If + ay - o2)2 - 8a;2/(ar
i - ay - a?) ; (Fig. 8).
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Fig. 8.
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