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REPRESENTATIONS OF FOUNDATION 
SEMIGROUPS AND THEIR ALGEBRAS 

M. LASHKARIZADEH BAMI 

Introduction. The aim of this paper is to extend to a suitable class of 
topological semigroups parts of well-defined theory of representations of 
topological groups. In attempting to obtain these results it was soon 
realized that no general theory was likely to be obtainable for all locally 
compact semigroups. The reason for this is the absence of any analogue of 
the group algebra Ll(G). So the theory in this paper is restricted to a 
certain family of topological semigroups. In this account we shall only give 
the details of those parts of proofs which depart from the standard proofs 
of analogous theorems for groups. 

On a locally compact semigroup S the algebra L(S) of all ju. e M (S) for 
which the mapping x —» x * |/x| and JC —> |JU,| * 3c of S to M(S) (where x 
denotes the point mass at JC) are continuous when M(S) has the weak 
topology was first studied in the sequence of papers [1, 2, 3] by A. C. and 
J. W. Baker. A locally compact topological semigroup S is said to be 
foundation if S coincides with the closure of U {supp(/x):ju e L(S) }. 

In the first three sections of the present paper we investigate the 
relationship between the representations of S and the representations of 
L(S) by bounded operators on reflexive Banach (or Hilbert) spaces, 
whenever S is a foundation topological semigroup with identity. The 
techniques yield results about automatic continuity of representations of S 
and the *-semisimplicity of the Banach *-algebras M(S) and L(S). In 
Section 4, we study the weighted measure algebras M(S, w) and L(S, w) 
for a topological semigroup S with a Borel measurable weight function w. 
(We have been unable to find, in the literature, a full investigation of the 
basic properties of algebra M(S, w) for arbitrary w.) Finally, in Section 5, 
we extend the major results of the earlier sections to foundation 
topological semigroups with a Borel measurable weight function. 
Although many of the results of Sections 2 and 3 are special cases of 
those given in Section 5, it was felt preferable, for the reason of clarity, 
to give proofs (for the case w = 1) in the earlier sections, and explain in 
Section 5 how these proofs are modified to deal with more general weight 
functions w. 
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30 M. LASHKARIZADEH BAMI 

1. Definitions and notations. Let S be a topological semigroup and E be 
a normed linear space. A representation V of S by bounded operators on E is 
a homomorphism x —> Vx of S into B(E), the space of all bounded 
operators on E. That is; for each x e Sy 

Vx <E B(E) and Vxy = VxVy for all x, y Œ S. 

If there exists a positive constant k such that 

IIK^H g k ||£|| for all x G S and all £ e £, 

then F is said to be bounded. The infimum of all such k will be denoted by 
| |F| | . A subspace Ex of E is said to be invariant for Vii Vx(El) Q Ex for all 
x e S, and Fis said to be topologically irreducible if {0} and £" are the only 
closed invariant subspaces for V. For notational reasons (as in the group 
case) whenever we are concerned with reflexive Banach spaces we shall 
consider the representations of S by bounded operators on E*, the dual 
space of E. If E is a Hilbert space, the distinction vanishes. 

Let E be a reflexive Banach space and F be a representation of S by 
bounded operators on E*. If the function 

is continuous [Borel measurable, ju-measurable] for all £ e £* and TJ e £, 
then F i s said to be (wea/c/y) continuous [weakly Borel measurable, weakly 
li-measurable]. If S has an involution * (a map *:S —» S such that x** = 
x and (.xy)* = y*x* for all x, y e S), and F is a representation of S by 
bounded operators on a Hilbert space / / such that Vx* = V* for all x Œ S, 
where F* is the adjoint operator of Vx on i/, then V is called a 
^-representation. We denote by ^ ( S ) the space of all bounded and 
continuous ^representations of S by bounded operators on Hilbert 
spaces. We also denote by \&{S) ] the subspace of C(S) (the space of all 
bounded, complex-valued continuous functions on 5) generated by all 
functions of the form 

where V e &(S) and £ belongs to the representation Hilbert space of V. 
The representation V is said to be faithful if for each x1? x2 e S with 
X] TÉ x2, we have K̂  # Vx . Given a nonvoid family of {Hy}y^T of 
Hilbert spaces, and, for every y e T, a representation Vy of S by bounded 
operators on Hy such that 

s u p { | | n i : y e T} < o o , 

the mapping x -> Vx which is given by 

vx = 2 v\ 
ver 
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defines a bounded representation V of S by bounded operators on 

H = ©r Hr 

It is easy to see that F i s a *-representation if and only if for each y e T , 
Vy is a ^representation. 

We assume that the reader is familiar with the representation theory of 
normed algebras. We recall that a representation T of an algebra A by 
bounded operators on a normed space E is said to be topologically cyclic if 
there exists a vector f e £ such that the linear subspace {TJ :x e A } is 
dense in E. Such a vector f is called a cyc//c vector. 

2. Relations between representations of L(S) and representations of S 
for a foundation topological semigroup S. We begin with the following 
theorem. The proof is similar to that given for Theorem 22.3 of [7] in the 
group case, so we omit it. 

THEOREM 2.1. Let S be a topological semigroup and E be a reflexive 
Banach space. Let A be a subalgebra of M{S) and V be a bounded 
representation of S by bounded operators on E*. Suppose that for every 
[x, v G i4, V is weakly \\x\-measurable and weakly |/x| * \v\-measurable. Then 
the formula 

<T^> ">) = I (VxQMx) 0* e ^ , f e £*, i, e E) 

defines a bounded representation T of A by bounded operators on E* with 
\\T\\ ^ \\V\\. 

The proof of the next lemma is straightforward. 

LEMMA 2.2. Let S be a topological semigroup and let f be a Borel 
measurable function on S such that 

fsf(xW(x) = 0 
for all \x G L(S). Then f = 0, \x-almost everywhere, for each n G L(S). In 
particular, if S is foundation and f is continuous then f vanishes identically 
on S. 

We now state and prove the basic theorem of this section. 

THEOREM 2.3. Let S be a foundation topological semigroup with identity 
and let E be a reflexive Banach space. Suppose that T is a bounded and cyclic 
representation of L(S) by bounded operators on E*. Then there exists a 
unique continuous and bounded representation V of S by bounded operators 
on E* with \\V\\ = \\T\\, Vx = I, and 
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32 M. LASHKARIZADEH BAMI 

0 ) (T,L V) = fs (Vx& T))dii(x) (LI G L(S), i G E*9 TJ e £ ) . 

Furthermore, VXT, = 7̂ *M a«d 7 ^ ^ = 7^*- /or every /x G L(S) ûwd every 
x G S. 77ze representations T and V have the same closed invariant 
subspaces. If T is faithful then V is also faithful, and in this case Vx ¥= Ofor 
all x G S. 

Proof Let f e £* be a fixed cyclic vector for T; thus the linear 
subspace 

Ef = {Tj-.p e L(S) } 

of E* is dense in E*. Let (*>a) be a fixed approximate identity for L(S) with 
||*>J| = 1 for all a (see [10, Theorem 3.13] ). For every x G S and /x G L(S) 
we have 

(2) H 7 ^ w - 7^J| ^ | |n| ||x * (*a * IL - p) || 

^ ||r|| ||,a * it - /xii^o, 

as a increases. Let £ G £ | . Then £ = T f̂ for some ii G L(5). From (2) it 
follows that 

lim r ^ #/i(f) = 7 ^ ( 0 , 

for every x G S'. For each x G 5 we denote this limit by Vx£, so 

(3) V£ = lim ^ (£) = lim Ts. (Q = 7 ^ 0 ) . 
« a 

We now prove that for every x G S and every £ G Ef, V'xi; is well defined. 
To prove this we take t- ̂  Ef and we suppose that 

è = T^ = T^S, for some fih \i2 G L(S). 

Then for each a we have 

Thus 

^ • ^ • / x i ^ = ^ ^ ^ ( f ) f o r a 1 1 « • 

By (3), we have 

lim T-*Va^(0 = lim T ^ ^ f ) . 

This proves that V is well defined. By the use of (3), one can easily prove 
that V defines a bounded representation of S by bounded operators on Ef 
with HK'II ^ ||T|| and V\ = I, the identity operator on Ef. Let (xp) be a net 
which converges to x G £, and suppose that £ G ^ with £ = 7 ^ for some 
/x G L(5). Then we have 
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\W'Xfi(0- V'x(è)\\ = \\T-X^)- T^«)\\ 

g | | r | | IIJC^ */ i " 3c */ i | | | | f | | -> 0, 

by the norm continuity of the mapping x —> x * ju (see [10; Theorem 
3.13]). Therefore V is continuous. Now, since for each x G S, V'x is 
a bounded operator on E*, we can extend Vx uniquely to a bound
ed operator Vx on Ef with \\VX\\ = \\VX\\. It is easily seen that V de
fines a bounded representation of S by bounded operators on £* with 
| |F| | = | |r | | . Using the continuity of V and the fact that Fis bounded we 
can also prove that V is continuous. 

We now proceed to the proof of formula (1). For each fixed TJ G E the 
mapping 

M -> < V , rj> o* e £(£) ) 
defines a bounded linear functional on L(S). So, by Lemma 2.2 of [3] we 
have 

(4) < 2 ^ , TJ> = j f <T-^, î|>dWx) 

for all /*, ? <= L(S). Let £ G Ef with £ = 7;f for some *> G L(5). Then for 
every JU G L(S') we have 

= fs (Tx^, v)dKx) (by (4)) 

= j s (VJ, V)dix(x) (by (3)). 

Since both functions 

* - » < r , £ i , > and Z^> fs<Vxt,i,)dKx) 

are linear in £ and bounded by | |r | | ||/x|| ||TJ|| on £*, and i:*is dense in E*, 
we infer that 

(5) (T£ V) = I (Vxt vydptx) 

for all £ G Is*, T) e £, and JU, G L(S). This establishes the formula (1). 
From (5) it follows that 

\(T^r1)\ ^ ||K|| ||£|| IWI ||/i|| 

(H G L(S), £ G E*, i\ G £) . Hence | |r | | ^ | |F| | . Therefore | |F| | = | |r | | . 
Lemma 2.2 together with the formula (5) imply the uniqueness of V. 

We now suppose the M is a closed invariant subspace for T. If M is not 
invariant for V, then there exists a £0 G M and JC0 G S such that 
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Since E is reflexive, there exists Î) G £ such that 

TJ(M) = 0 and (V^ri) = 1. 

From (5) it follows that 

0 = <^o> V) = j s (V&, 7i)dKx), Qi G L(S) ). 

Therefore by Lemma 2.2 we have 

(V^TI) = 0 for all x e S. 

This is a contradiction. So, M is also invariant for V. The converse is 
trivial. That 

VXT, = T^ and 7;FX = T^ (x e 5, M e 1 (5 ) )• 

are easy consequences of (5). Finally, we suppose that T is faithful and 
let xx, x2 G L(5) with xl ^ x2. Choose a measure \x e L(S) (with 
1 G supp(jix) ) such that xx * /x i^ x2 * JU,. Since T is faithful, we have 

T- ¥= T-
xx*ii Mx2*fJi' 

Hence 

V T ^ y T 

Thus F^ ^ F^ . The last assertion can be proved similarly. So the theorem 
is established. 

In the next theorem we extend the above result to (not necessarily 
cyclic) *-representations of the Banach *-algebra L(S) by bound
ed operators on a Hilbert space H and the bounded continuous 
^representations of S by bounded operators on // , where S is a 
foundation topological semigroup with identity and with a continuous 
involution *. 

THEOREM 2.4. Let S be a foundation topological semigroup with identity 
and with a continuous involution *. Suppose that T is a *-representation of 
the Banach * -algebra L(S) by bounded operators on a Hilbert space H such 
that for every 0 ¥= £ e H there exists a \x e L(S) with TJ- ¥= 0. Then there 
exists a unique bounded and continuous *-representation V of S by bounded 
operators on H with \\V\\ = 1 such that 

Is (6) <r„É, T,) = Js (VJ, r,)d,j.(x) (ix e L(S), & r, e H). 

Moreover, T and V have the same closed invariant subspaces. For every 
JU, e L(S) and x G. S, 
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If T is faithful then V is also faithful and vx ¥- 0 for all x G S. 

Proof The proof of the formula (6) is essentially the same as that for 
groups (see [7], p. 339, (II) of Theorem 22.7). The rest of the theorem is an 
easy consequence of the formula (6). 

As a consequence of the above theorem we obtain the following 
corollary. 

COROLLARY 2.5. Let S be a foundation topological semigroup with identity 
and with a continuous involution *. Let V be a bounded and weakly Borel 
measurable *-representation of S by bounded operators on a Hilbert space H 
such that Vxè, ¥= Ofor every 0 ¥= { G H. Then V is continuous if and only if 
for every £,17 G H the set 

{x ^ S:(VJ, V) = 0} 

is closed. 

Proof If V is continuous, then it is evident that for every £, TJ G / / the 
set 

{ x e S:(VJ,V) = 0} 

is closed. To prove the converse we define T by 

(7) <r„£, tj> = j s (VJ, n)ditx) (11 e L(S), Z, r, e H). 

By Theorem 2.1, T defines a bounded representation of L(S) by bounded 
operators on // , and it is also easy to see that T is a *-representation. 
Moreover, for every 0 ¥= £ G H there exists a ju G L(S) such that T £ ¥= 0. 
For if not, then there exists a 0 ¥= £ G H with TJ; = 0 for all /x G L(S). 
So, 

< 7 £ TJ) = 0 for all fx G L(S)9 

and hence 

fs (vj, v&dKx) = 0 
for all JU G L(S). Therefore by Lemma 2.2 

(VJ, F , 0 = 0 a.e. ju, 

for all JU, G L(S). This is a contradiction, because 

U={xe S:(VX£, VxO * 0} 

is an open set which contains 1, and S is foundation. By Theorem 2.4, 
there exists a bounded-continuous *-representation V of S by bounded 
operators on H such that 
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(8) (T^, T,) = fs {V% V)dp(x) (M e L(S), £, rj e / / ) . 

From (7), (8), and the fact that V and V are *-representations it follows 
that 

(9) (T^ Vy ri) = (T£, VyT\) (/z G L(S), £ TJ G 7/). 

Using the same argument given on page 339 for part (ii) of the proof of 
Theorem 22.7 of [7], we can write H as a direct sum © Hy of sub-

spaces [Hy}y(ET, which are closed, pairwise orthogonal, and invariant, 
such that for each y G T, Ty (the restriction of T to H ) is a cyclic and 
bounded *-representation of L(S) by bounded operators on H , and V'y 

(the restriction of V to 7/y) is a bounded and continuous *-representation 
of S by bounded operators on Hy which is related to Ty according to the 
formula 

<7^ y , r,Y> = jf (V%, -njditx) (M e L(S), ^ TJT e tfy). 

For each y G T let Jy G ify be a cyclic vector for r y . Now, if S is a fixed 
element of T, then by (9) for every Tjy G 7/ we have 

(10) (T%, v%) = < j % K,T,Y> 

for all /x G L(S) and all jv G S. Since if is invariant for V'y, and for every 
8 G r the set 

{Tfc.p G L(S)} 

is dense in H8, it follows from (10) that Hy is also invariant under Vy 

(the restriction of V to i / ) and Vy defines a bounded representation 
of S by bounded operators on H , with FY = Vy, for every 
y G T. Therefore V can be written as © Vy. Since 

V = © F y and K'y = FY for every y G T, 

it follows that V = V. This completes the proof. 

Remark. One can easily see that on the non-foundation topological 
semigroup S = ( [0, 1], min) (with the usual topology and the natural 
involution x* = x for all x G S) the function x which is given by x(x) = 0 
if x ^ 1/2, and x(x) = 1 ^ x > 1/2, defines a Borel measurable 
one-dimensional representation which is discontinuous at x = 1/2. 

Before proceeding any further we recall that a nonzero function 
X'S ~~> C is said to be a semicharacter on S if 

X(*>0 = X(*)x(y) for all x, >> G S. 
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(For reasons that will become apparent, we shall not assume x *s 

bounded.) If S has an involution *, and x is a semicharacter on S such that 
x(x*) = x(x) (x G S)> t n e n X is called a ^-semicharacter. 

PROPOSITION 2.6. Let S be a commutative foundation topological 
semigroup with a continuous involution *. A nonzero, continuous and bounded 
*-representation of S by bounded operators on a Hilbert space is irreducible if 
and only if it is equivalent to a nonzero continuous and bounded 
*-semicharacter on S. 

Proof. The proof is essentially the same as for groups (see the proof of 
Theorem 22.17 of [7] ). 

3. The *-semisimplicity of M(S) and L(S). Our starting point is the 
following lemma. Throughout its proof we assume that the reader is 
familiar with the elementary properties of tensor products of Hilbert 
spaces as given on page 48 of [9]. 

LEMMA 3.1. Let S be a topological semigroup with a continuous involu
tion *. Then the following are satisfied; 

(i) [&(S) ] is a self conjugate subalgebra of C(S) and contains a nonzero 
constant function ; 

(ii) \&{S) ] separates the points of S if and only if &(S) separates the 
points of S. 

Proof (i) It is obvious that [&{S) ] is a subspace of C(S) which is closed 
under complex-conjugation of its elements and contains a nonzero 
constant function. To prove that 1&(S) ] is closed under multiplication we 
assume that x -> (VJ, £> and x -» (V£\ £'> belong to \Si(S) ] with J e H 
and £r G H\ the representation Hilbert spaces for V and V\ respectively. 
It is easy to see that V ® V which is given by 

(V®V)X =VX®VX (x G S) 

defines a bounded and continuous *-representation of S by bounded 
operators on H ® // ' , the Hilbert space tensor product of H and H''. 
Since 

it follows that the mapping 

also belongs to [@(S) ]. This proves that Y%(S) ] is a subalgebra of 
C(S). 

(ii) The proof is standard and hence is omitted. 

Before we proceed to the next theorem we recall that for a Banach 
*-algebra^4, the *-radical, *-rad(^), is defined to be the intersection of the 
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kernels of all irreducible *-representations of A by bounded operators on 
Hilbert spaces. If *-rad(/l) = 0, then A is said to be *-sernisirnple. 

THEOREM 3.2. Let S be a topological semigroup with a continuous 
involution *. If&(S) separates the points of S, then M(S) is *-semisimple. 

Proof. By using the arguments given on page 223 of [4], we only need to 
show that for every 0 ¥^ /x G M(S) there exists a ^representation T of 
M(S) by bounded operators on a Hilbert space with T ^ 0. Since @(S) 
separates the points of S, it follows from Lemma 3.1 that l^(S) ] is a 
self-conjugate subalgebra of C(S) which separates the points of S and 
contains a nonzero constant function. Therefore by Lemma 3.5 of [3], 
\S$(S) ] is dense (Z^-norm) in L](S, |/A| ). Let / be a Borel measurable 
function on S with | / | = 1, d\i = fd\\i\ and d|/i| = fdfi. Put e = 1/2 ||/x||, 
and choose g in [^(S) ] such that 

I ,s \g(x) - f(x) MH (X) < £. 

Then we have 

Hence 

1 1 \g(x) - f{x) W(x) I ^ j [ \g(x) - f(x) M/i| (x) < c. 

I J5g(x)J/x(x)| ^ I jsf\x)diiix) I - c 

= jf M / i | ( x ) - € ^ 6 > 0. 

So there must exist a function * —» ( J^o* £o) m I^(^) 1» where £0 belongs 
to the representation Hilbert space H of V such that 

j s (VX£Q, £0)dix(x) * 0. 

Now we define T on M(S) by 

x (r.fc 7]> = J 5 ( F ^ , l y y ^ ) iv e M(S), Ê, iy e 7/). 

By Theorem 2.1, 71 defines a bounded representation of the Banach 
*-algebra M(S) by bounded operators on H which is also a *-rep
resentation. Since 

(Tfa, èo) * 0, 
we infer that T ¥= 0. This is what we wished to prove. 

LEMMA 3.3. Let S be a foundation topological semigroup with identity and 
with a continuous involution *. If L(S) is *semisimple then &iS) separates 
the points of S. 
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Proof. Let jcl5 x2 be two distinct points of S. Then we can find a measure 
jit e L(S) (1 <E supp(ju) ) such that 

By the *-semisimplicity of L(S), there is an irreducible ^representation T 
of L(-S) by bounded operators on a Hilbert space H such that 

T - ^ T -

Since by (ii) of Theorem 21.30 of [7] every nonzero vector in H is a cyclic 
vector for T, we infer that for every 0 ¥= £ G. H there exists a v e L(S) 
with Tv^ T̂  0. Therefore, by Theorem 2.4, there exists a continuous and 
bounded *-representation V of S by bounded operators on H such that 

(11) (T& V) = fs (Vx£9 v)dv(x) (v e L(S\ £, T? e # ) • 

From (11) it follows that 

^ X | = 7 ^ , and T ^ = T^, 

and therefore Vx ^ Vx . Hence &(S) separates the points of S. 

A combination of Theorem 3.2 and Lemma 3.3 leads us to the following 
theorem. 

THEOREM 3.4. Let S be a foundation topological semigroup with identity 
and with a continuous involution *. The following are equivalent: 

(i) M(S) is *-semisimple; 
(ii) L(S) is *-semisimple; 

(iii) &(S) separates the points of S. 

Remark. We do not know whether the above result is true for non-
foundation topological semigroups. 

4. Representations of weighted topological semigroups. Our main goal in 
this section is to extend some of the results of previous sections to the 
situation of foundation topological semigroups which have positive Borel 
measurable weight functions. We first set out the theory of weighted 
measure algebras, as this does not seem to have been done before in the 
generality we required. We begin with the following definition. 

Definition 4.1. A complex-valued function/on a topological space Xis 
said to be locally bounded if for every x e X there exists a neighbourhood 
of x on which/ is bounded. 

Note that if X is locally compact then/ i s locally bounded if and only if 
it is bounded on each compact subset of X. 

Definition 4.2. Let S be a semigroup. Then a function w:S —> R is said to 
be a weight function if w(x) ^ 0, and 
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w(xy) â w(x)w(y) for ail x, y <E S. 

Definition 4.3. Let S be a semigroup and w be a weight function on S. A 
complex-valued function / on S is said to be w-bounded if there exists a 
constant /c è 0 such that 

\f(x) | ^ kw(x) (x e 5). 

The next lemma will be needed to prove the first theorem of this 
section. 

LEMMA 4.4. Let /x be a positive regular Borel measure on a locally compact 
Hausdorff space X. Then for every locally bounded Borel measurable function 
w with 0 = w < oo on X, wfi is a regular Borel measure. 

Proof The result follows from Theorem E [8, p. 248]. 

Definition 4.5. Let /x and v be regular Borel measures on a locally 
compact Hausdorff space X. Then v is said to be locally absolute continuous 
with respect to (L.A.C.) it if \v\ (F) = 0, whenever F i s a compact subset of 
X with |/x| (F) = 0. 

The following theorem is essential throughout this section. 

THEOREM 4.6. Let S be a topological semigroup and suppose that w > 0 is 
a Borel measurable weight function on S such that w and \/w are locally 
bounded. Then 

(i) CQ(S, W), the space of all Borel measurable functions f on S such that 
f/w G C0(S, w) under the w-norm given by 

\\f\\w = sup{\f/w(x)\:x G S} 

is a Banach space. 
(ii) M(S, w), the space of all regular Borel measures \i on S such that 

w\\x\ e M(S) with the w-norm 

I ML = i MMI 

can be identified with C0(S, w)*, the dual of C0(S, w), via the pairing 

<M,/> = Kf) = jsf(x)d^x) 0* e M(S, w),f e C0(5, w) ). 

Given /x, v G M(S, w), to /x * v be the measure in M(S, w) defined by 

(12) 0* *v)(f) = fsf(xW*v(X) 

= Us f(xy)Mx)d»(y) (f e C0(S, w) ). 

Then the Banach space M(S, w) with the convolution product * is a 
convolution Banach algebra in which MK(S), the space of all measures in 
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M (S) with compact supports, is w-norm dense. 
(iii) For every w-bounded Borel measurable function f on S we have 

(13) jsf(x)dn * v(x) = fs fsf(xyW(x)dv(y) (M, V e M(S, W) ). 

Moreover, for each compact subset F of S and every /x, v Œ. M(S, w), we 
have 

(14) (ix * P)(F) = fsfs XF^y)dÂx)àv(y) 

= fsv(x-]F)diJix) = jsn(Fy-')dp(y). 

(iv) L(S, w), the space of all regular Borel measures /x on S such that 
w\fi\ <E L(S) is a closed two-sided ideal of M(S, w) and is solid in M(S, w) 
in the sense that given fi G L(S, w) and v e M(S, w) with v L.A.C. /x, 
then v <E L(S, w). 

(We have been unable to prove the formula (13) for each |/i| * 
|*>|-integrable function/, and even in the group case the proof given for 
part (4) of Theorem 4.19.5 of [5] does not seem to be correct.) 

Proof (i) This is clear. 
(ii) This follows from Lemma 4.4 and the fact that w and \/w are 

locally bounded. 
(iii) Let T denote the mapping (x, y) —> xy of S X S into S. For each 

subset A of S, and every complex-valued function / on S, we denote 
T~ (A) a n d / o r by A and / , respectively. Suppose t h a t / i s a w-bounded 
Borel measurable function on^S. It is clear that for each /x, v G M (S, w), 
l/l is |/x| * |p|-integrable, and | / | is |/x| X |*>|-integrable. Therefore, in view 
of Theorem 4.3.2 of [5] to prove (13) we only need to establish this formula 
for the case when /x, v are positive measures in M(S, w) a n d / i s a Borel 
measurable function on S with 0 ^ f(x) ^ w(x) for all x G S. For 
simplicity we denote /x * v by y and /x X v by m. By using an argument 
similar to that of the first part of the proof of Theorem 19.10 of [7] and the 
fact that w and \lw are locally bounded we can easily prove that for every 
y-null set A, A is also 77-null. Now, for each n G. N, we denote the set 

[x G S:/(x)>^j byAn. 

Then 

y{An) ^ ny(f) < 00. 

Since y is regular, we can choose an increasing sequence (Kn) of compact 
sets such that 
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K„ ç A„ and y(A„ \ K„) < - (n e N). 
n 

It is easy to see that (fxtc ) increases (pointwise) to f on S \ A, where 

oo oo 
A = „ u , ( A » N

 m
u , K ^ -

oo 

Since 04 „ \ U X"w) is an increasing sequence, we have 

CO 

0^y(A)= lim Y(^„ \ U A"m) ^ lim y(^„ \ *„) = 0. 
«—>co ra—1 «—>oo 

It follows that (fxx ) increases to / 7r-almost everywhere. Therefore, in 
view of the monotone convergence theorem, we may assume that / 
vanishes identically outside a compact set K. So y{K) < oo, by the 
regularity of y. Since 0 ^ f/w ^ 1, and/ /w vanishes identically outside K 
with y(K) < oo, it follows from a corollary to Lusin's theorem (see [8, p. 
53] ) that there exists a sequence (gn) in C00(S) such that 

\gn\ ^ 1 and (f/w)(x) = lim gn(x) a.e. y. 
n—*oo 

Since y e; M(S), w is y-integrable. It is also clear that w is 77-integrable. 
By virtue of the dominated convergence theorem, we see that 

y(f) = lim y(gnw) and ir(f) = lim ir(g~w). 
n—>oo n—*oo 

Since for every n <= N, g„w G C0(S, w), from (12) it follows that 

Y(&,w) = ^ (g^» -

Therefore y ( / ) = 7r(/). This establishes the formula (13). The formula 
(14) now follows from (13) by using the fact that for each compact subset 
F of S, XF is a w-bounded Borel measurable function on S. 

(iv) This easily follows from the locally boundedness of w and 1/w, and 
the fact that L(S) is a solid ideal of M(S). 

Remark. For the rest of this paper we assume that w > 0 is a Borel 
measurable weight function on S such that w and \/w are locally 
bounded. 

PROPOSITION 4.7. Let S be a foundation topological semigroup with 
identity and with a weight function w. Then 

(i)for every \x e L(S, w) the maps x —» JU, * 3c, and x —» x * JU, «re w-norm 
continuous; 

(ii) /or eac/z compact neighbourhood U of the identity there exists a 
bounded approximate identity (/i^) /or L(S, w) of positive measures such 
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that supp(/xA) ç U; ||juA|| = 1, and \\li\\\w = kfor all À G A, where k is any 
positive constant with w(x) ^ kfor all x e U. 

Proof. Both (i) and (ii) are easy consequences of Theorem 3.13 
of [10], the locally boundedness of w, and the w-norm density of LK(S) 
( = L(S) n MK(S)) in L(S). 

LEMMA 4.8. Let S be a foundation topological semigroup with a Borel 
measurable weight function w. Let f be a continuous complex-valued, and 
w-bounded function on S such that 

Js fdp = 0 for all /i e L(S, w). 

Then f vanishes identically on S. 

Proof The result follows from the w-norm density of LK(S) in 
L(S, w), and the fact that 

S = U {supp(ju):Lt e LK(S) }. 

We now establish a lemma which is essential for the next section. 

LEMMA 4.9. Let S be a topological semigroup with a Borel measurable 
weight function w such that the maps x —» LI * x and x —> x * \x (jn e 
L(S, w) ) are w-norm continuous. Let /x e L(S, w), v e M(S, w), and 
f G (L(S, w) )*. Then the maps x — /̂(ju. * x) and x —»/(* * /x) define a 
w-bounded continuous function on S with 

f(ti * v) = Jsf(Li * x)dv(x\ f(y * LL) = Jsf(x * Li)dv(x). 

Proof. It is clear that x —>/(jti. * 3c) and x —>f(x * /x) are continuous and 
w-bounded. From the w-norm continuity of the map x —» /x * AT and the 
locally boundedness of w it follows that for each compact subset F of S the 
map x —» ii * x(F) is continuous on S. Suppose that F is a compact subset 
of S such that 

W * M (f) = o. 
Therefore by (14) we have 

0 = \ii\*\v\(F) = ^ l i t K x - ^ I H C x ) . 

Hence 

\p\ * jc(F) = 0 a.e. M. 

From the continuity of the function x —> \LL\ * x(F) it follows that 

\LL\ * x(F) = 0 for all x e supp(p). 

Let us denote by L(S, |/i| * \v\ ) the spaces of all measures in L(S, w) which 
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are L.A.C. |/x| * H- Then the map: X —> wÀ defines a linear isometry 
of L(S, |JU| * M ) into Ll(S, W( |/X| * \v\ ) ). For each X G L(S, |/I| * M ) we 
set O(wX) = f(X). It is easy to see that 0 defines a bounded linear 
functional on the subspace 

{wX:X e L(S, |/i| * H ) } 

of L1(5,,w( |/x| * |H ) ). By the Hahn-Banach theorem we may assume that $ 
is a bounded linear functional on L'(S, w( |/x| * |H ) ). Therefore there 
exists a bounded Borel measurable function 6} on S such that 

*(7) = X e\(*)<h{x) (y e L!(S, iv( |p| * H ) ) ). 

Therefore 

(15) /(A) = <D(wÀ) = jsex(x)d(wX)(x) = js(6xw)dX{x\ 

for each À G L(5, |/A| * |J>| ). Since 6 = 6xw is w-bounded, by (15) we 
have 

/O* * ") = X 0d/x * *> 

0(yx)dli(x)dv{y) (by (13)) 

= Is dv{x) L e(y)dlx * *(y) 

= Jsf(v> * *>fr(*)-
The proof of the other formula is similar. So the lemma is proven. 

5. Relationship between the bounded representations of L(S, w) and the 
w-bounded representations of S. We commence this section with the 
following definition. 

Definition 5.1. Let S be a semigroup with a weight function w, and let E 
be a reflexive Banach space. Then a representation V of S by bounded 
operators on E* is said to be w-bounded if there exists a positive constant k 
such that 

| (VJ, TJ> | ^ fcw(jc) ||£|| |H|, (x G S, £ e E*, and r? G £ ) . 

Using the formula (13) of Theorem 4.6 with the techniques of the proof 
of [7, Theorem 22.3] we can easily obtain the following generalization of 
Theorem 2.1. 

THEOREM 5.2. Let S be a topological semigroup with a Borel measurable 
weight function w. Let E be a reflexive Banach space and V be a w-bounded 
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Borel measurable representation of S by bounded operators on E*. Then for 
every subalgebra A of M(S, w) the formula 

(T£ v) = I (VJ, v)dKx) ( ( i e i , ^ P , , e E) 

defines a bounded representation of A by bounded operators on E* with 
\\T\\ ë \\V\\W. 

We shall now give a generalization of Theorem 2.3. 

THEOREM 5.3. Let S be a foundation topological semigroup with identity 
and with a Borel measurable weight function w. Suppose that T is a bounded 
cyclic representation of L(S, w) by bounded operators on E*, where E is a 
reflexive Banach space. Then there exists a unique, w-bounded, and 
continuous representation V of S by bounded operators on E* with Vx = 1, 
||7"|| ^ ll^llw, and \\V\\W = k\\T\\ for some positive constant k, with the 
property that the representations T and V are related to each other according 
to the formula 

(16) (T^, V) = j s (VJ, v)dfi(x) (/i G L(S, w), f e E*9 i, e E). 

Moreover, T and V have the same closed invariant subspaces. Furthermore, 

*x* /A *x*n 6 W " J- fx^x •*• n*x 

for every x e S and \x G. L(S, w). If T is faithful, then V is faithful, and in 
this case Vx ¥" 0 for all x e S. Finally, if w is continuous at identity and 
w(l) = \,then\\V\\w = \\T\\. 

Proof. Let f e E* be a fixed cyclic vector for T. Then the linear 
subspace 

Ef= {7^:/i G L(S,w)} 

of E* is dense in E*. Let (*>a) be a fixed approximate identity for L(S, w) 
and suppose that k is a positive constant such that 

\\va\\w =i k for all a. 

By a method similar to that of Theorem 3.2, we can prove that there exists 
a (unique) continuous representation V of S by bounded operators on E* 
such that 

(17) Vxi = lim T; (0 = lim 7 ^ ( 0 = T ^ t f ) , 
a a 

for every x e 5 and £ = T^ e ££ From (17) it follows that 

uni ^ *imi. 
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Now, if, in the proof of Theorem 2.3, we apply Lemma 4.9 instead of 
Lemma 2.2 of [3], then we establish the formula (16). The rest of the proof 
is similar to the proof of the corresponding part of Theorem 2.3. To prove 
the final assertion we suppose that e > 0 is given. Then there exists a 
compact neighbourhood U€ of the identity such that 

\w(x) - 1| < € for all x G UC 

Let (v^) be a bounded approximate identity for L(S, w) as in part (ii) of 
Proposition 4.7. Then we have 

ll"L°IL - i = X ( M*) ~ ^p(:\x) s «£>(£/) = «• 
Therefore 

ll"Lc)IL ^ i + «. 
By virtue of the equalities in (17) we see that the definition of V is 
independent of the choice of the approximate identity for L(S, w). 
Replacement of va by v^ in (17) results in the equation 

VX(Q = lim T^(& « e Ef). 
a 

Therefore 

\w\\w ^ uni ci + c). 
Now the arbitrariness of e > 0 implies that \\V\\W ^ ||!T||. This completes 
the proof of the theorem. 

Remark. It is not true in general that a Borel measurable weight 
function on a foundation topological semigroup which is continuous at the 
identity is also continuous everywhere. For example on the foundation 
topological semigroup (R + , + ) , the additive semigroup of nonnegative 
real numbers with the usual topology, the function w(x) = ex if 0 = x = 1 
and w(x) = ex/2 if x > 1, defines a Borel measurable weight function 
which is continuous at 0, the identity, and is discontinuous at x = 1. 

Using the techniques of the proof of Theorem 2.4 with the aid of 
Theorem 5.3, we can easily establish the following generalization of 
Theorem 2.4, and for that reason the proof is omitted. 

THEOREM 5.4. Let S be a foundation topological semigroup with identity 
and with a continuous involution *. Suppose that w is a Borel measurable 
weight function on S such that w(x*) = w(x) for all x e S. Let T be a 
bounded *-representation of the Banach *-algebra L(S, w) by bounded 
operators on a Hilbert space H such that for every 0 ^ £ e H there exists a 
measure /x G L(S, w) with TJ- ¥* 0. Then there exists a unique w-bounded 
continuous *-representation V of S by bounded operators on H such that 
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1 ^ II^IIH; = k for some positive constant k. The representations T and V are 
related to each other according to the formula. 

<r„£, TJ> = j s (V£ v)dKx) (11 e L(S, w), £ r, e H). 

Furthermore, T and V satisfy all the other conditions of Theorem 
2.4. Moreover, if w is continuous at the identity and w(l) == 1, then 
\W\\W = 1. 

Conjecture. Let S and w be as in the hypotheses of Theorem 5.4. Then 
Theorem 5.4 easily implies that if the Banach *-algebra L(S, w) is 
*-semisimple, then &(S, w), the space of all w-bounded continuous 
^representations of S by bounded operators on Hilbert spaces, separates 
the points of S. We conjecture that the converse is also true, as it is for the 
case when w = 1 by Theorem 3.4. 
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